Data Science and Big Data
Saved in:
| Main Authors | , |
|---|---|
| Format | eBook |
| Language | English |
| Published |
Cham
Springer International Publishing AG
2017
|
| Edition | 1 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319534732 3319534734 |
Cover
| Author | Pedrycz, Witold Chen, Shyi-Ming |
|---|---|
| Author_xml | – sequence: 1 fullname: Pedrycz, Witold – sequence: 2 fullname: Chen, Shyi-Ming |
| BookMark | eNpVjk1PwzAQRI34EKXkB3DLjVMkr9fOro80tIBUqYfCuXLsDSpUDjTh_xMEF06jeU8azZU6y32WE1V4YkTwDi1Zf_qvo7lQM8-aLTmwl6oYhjetNTD4mnCmbu7DGMpt3EuOUoacysX-tfyB1-q8C4dBir-cq5fV8rl5rNabh6fmbl0l0EhVbeo2dqkliQwE0TobugAUESccLSQhNymTRCj5Tjtm7QQ6C6RZDM7V7e_ux7H__JJh3Enb9-9R8ngMh91y0Vg2jNPbb-urPqU |
| ContentType | eBook |
| DEWEY | 006.3 |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783319534749 3319534742 |
| Edition | 1 |
| ExternalDocumentID | EBC4828367 |
| GroupedDBID | 0D9 0DA 38. AABBV AALVI AAZIN ABQUB ACBPT ACLYY ADCXD AEJLV AEKFX AETDV AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CEWPM CZZ DBMNP I4C IEZ SBO SWYDZ TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 |
| ID | FETCH-LOGICAL-d1037-626bcfdb7ec8171c454afa17c33cfdc41de75c812dee7d9f058805e1f41708e23 |
| ISBN | 9783319534732 3319534734 |
| IngestDate | Fri May 30 18:50:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | Q342 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-d1037-626bcfdb7ec8171c454afa17c33cfdc41de75c812dee7d9f058805e1f41708e23 |
| OCLC | 980847514 |
| PQID | EBC4828367 |
| PageCount | 303 |
| ParticipantIDs | proquest_ebookcentral_EBC4828367 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationYear | 2017 |
| Publisher | Springer International Publishing AG |
| Publisher_xml | – name: Springer International Publishing AG |
| SSID | ssj0001819673 |
| Score | 2.0019913 |
| SourceID | proquest |
| SourceType | Publisher |
| SubjectTerms | Health care management |
| TableOfContents | 4.4 Methods of Data Computations -- 5 Conclusion -- References -- Online Anomaly Detection in Big Data: The First Line of Defense Against Intruders -- 1 Introduction -- 2 Data Abstraction Methods -- 3 Burst Learning -- 3.1 Estimating the Number of PCs -- 3.2 Anomaly Detection Using Hotelling's Statistic -- 3.3 PCA in ``Big Data'' Using NIPALS -- 3.4 Model Parameter Learning -- 4 Online Anomaly Detection -- 4.1 Batch Detection -- 4.2 Page's Test -- 4.3 Shiryaev's Test -- 4.4 Tagging Multiple Anomalies -- 5 Simulation Results -- 6 Conclusions -- References -- Developing Modified Classifier for Big Data Paradigm: An Approach Through Bio-Inspired Soft Computing -- 1 Introduction -- 1.1 Motivation and Background -- 2 Similar Works -- 3 Proposed Model -- 4 Discussion -- 5 Conclusion -- References -- 6 Unified Framework for Control of Machine Learning Tasks Towards Effective and Efficient Processing of Big Data -- Abstract -- 1 Introduction -- 2 Fundamentals of Machine Learning -- 3 Framework for Control of Machine Learning Tasks -- 3.1 Key Features -- 3.2 Justification -- 4 Experimental Studies -- 4.1 Measure of Learnability -- 4.2 Measure of Data Variability -- 5 Conclusion -- References -- 7 An Efficient Approach for Mining High Utility Itemsets Over Data Streams -- Abstract -- 1 Introduction -- 2 Related Work -- 3 Mining High Utility Itemsets in a Data Stream -- 3.1 The Algorithm HUIStream+ -- 3.2 The Algorithm HUIStream− -- 3.3 High Utility Itemset Generation -- 4 Experimental Results -- 5 Conclusion -- References -- Event Detection in Location-Based Social Networks -- 1 Introduction -- 2 Problem Definition -- 3 Background -- 3.1 DBSCAN -- 3.2 Mixture Models -- 4 Event Detection Techniques -- 4.1 Tweet-SCAN: A Data Mining Approach -- 4.2 Warble: A Machine Learning Approach -- 5 Experimental Setup and Results 5.1 ``La Mercé'': A Dataset for Local Event Detection -- 5.2 Detection Performance Metrics -- 5.3 Assessment -- 6 Conclusions and Future Work -- 6.1 Conclusions -- 6.2 Future Work -- References -- Applications -- 9 Using Computational Intelligence for the Safety Assessment of Oil and Gas Pipelines: A Survey -- Abstract -- 1 Introduction -- 2 Safety Assessment in Oil and Gas Pipelines -- 2.1 Big Data Processing -- 2.2 Defect Detection -- 2.3 Determination of Defect Size -- 2.4 Assessment of Defect Severity -- 2.5 Repair Management -- 3 Computational Intelligence -- 3.1 Data Mining -- 3.1.1 K-Nearest Neighbor (KNN) -- 3.1.2 Support Vector Machine (SVM) -- 3.2 Artificial Neural Networks -- 3.3 Hybrid Neuro-Fuzzy Systems -- 4 Pipeline Safety Assessment Using Intelligent Techniques -- 4.1 Data Mining-Based Techniques -- 4.2 Neural Network-Based Techniques -- 4.3 Hybrid Neuro-Fuzzy Systems-Based Techniques -- 5 Conclusion -- References -- Big Data for Effective Management of Smart Grids -- 1 Introduction -- 2 Smart Grids and Smart Micro-Grids -- 3 Big Data Properties of Smart Grid -- 4 Research Lines and Contribution -- 4.1 Interoperability and Standardization -- 4.2 Big Data Storages -- 4.3 Big Data Analytic -- 4.4 Research Projects Networked with Companies -- 5 Conclusion -- References -- Distributed Machine Learning on Smart-Gateway Network Towards Real-Time Indoor Data Analytics -- 1 Introduction -- 1.1 Computational Intelligence -- 1.2 Distributed Machine Learning -- 1.3 Indoor Positioning -- 1.4 Network Intrusion Detection -- 1.5 Chapter Organizations -- 2 Distributed Data Analytics Platform on Smart Gateways -- 2.1 Smart Home Management System -- 2.2 Distributed Computation Platform -- 3 Distributed Machine Learning Based Indoor Positioning Data Analytics -- 3.1 Problem Formulation -- 3.2 Indoor Positioning by Distributed SVM 3.3 Indoor Positioning by Distributed-neural-network -- 4 Distributed Machine Learning Based Network Intrusion Detection System -- 4.1 Problem Formulation and Analysis -- 4.2 Experimental Results -- 5 Conclusion -- References -- 12 Predicting Spatiotemporal Impacts of Weather on Power Systems Using Big Data Science -- Abstract -- 1 Introduction -- 2 Background -- 2.1 Power System Operation, Generation, Outage and Asset Management -- 2.2 Weather Data Parameters and Sources -- 2.3 Spatio-Temporal Correlation of Data -- 3 Weather Impact on Power System -- 3.1 Weather Impact on Outages -- 3.2 Renewable Generation -- 4 Predictive Data Analytics -- 4.1 Regression -- 4.1.1 Unstructured Regression -- 4.1.2 Structured Regression (Probabilistic Graphical Models) -- Probabilistic Graphical Models -- Conditional Random Fields -- 4.2 Gaussian Conditional Random Fields (GCRF) -- 4.2.1 Continuous Conditional Random Fields Model -- 4.2.2 Association and Interaction Potentials in the GCRF Model -- 4.2.3 Gaussian Canonical Form -- 4.2.4 Learning and Inference -- 4.2.5 GCRF Extensions -- 5 Applications and Results -- 5.1 Insulation Coordination -- 5.1.1 Introduction -- 5.1.2 Modeling -- Risk Based Insulation Coordination -- Lightning Hazard -- Prediction of Vulnerability -- Economic Impact -- 5.1.3 Test Setup and Results -- 5.2 Solar Generation Forecast -- 5.2.1 Introduction -- 5.2.2 Modeling -- Solar Generation Versus Solar Irradiance -- Temporal Correlation Modeling -- Spatial Correlation Modeling -- 5.2.3 Test Setup and Results -- 6 Conclusions -- References -- Index Intro -- Preface -- Contents -- Fundamentals -- Large-Scale Clustering Algorithms -- 1 Introduction -- 2 Notation -- 3 Standard Clustering Approaches -- 3.1 Spectral Clustering -- 3.2 K-Means -- 4 Fixed-Size Kernel Spectral Clustering (FSKSC) -- 4.1 Related Work -- 4.2 KSC Overview -- 4.3 Fixed-Size KSC Approach -- 4.4 Computational Complexity -- 5 Regularized Stochastic K-Means (RSKM) -- 5.1 Related Work -- 5.2 Generalities -- 5.3 l2-Regularization -- 5.4 l1-Regularization -- 5.5 Influence of Outliers -- 5.6 Theoretical Guarantees -- 6 Experiments -- 7 Conclusions -- References -- On High Dimensional Searching Spaces and Learning Methods -- 1 Introduction -- 1.1 Classification and Clustering -- 2 Membership Function -- 2.1 Challenges on Learning Methods -- 2.2 Bounded Fuzzy Possibilistic Method (BFPM) -- 2.3 Numerical Example -- 3 Similarity Functions -- 3.1 Challenges on Similarity Functions -- 3.2 Weighted Feature Distances -- 4 Data Types -- 4.1 Data Objects Taxonomies -- 4.2 Complex and Advanced Objects -- 4.3 Outlier and Outstanding Objects -- 5 Experimental Results -- 6 Conclusion -- References -- 3 Enhanced Over_Sampling Techniques for Imbalanced Big Data Set Classification -- Abstract -- 1 Introduction -- 1.1 Basics of Data Mining -- 1.2 Classification -- 1.3 Clustering -- 2 Mapreduce Framework and Classification of Imbalanced Data Sets -- 2.1 MapReduce Framework -- 2.2 Classification of Imbalanced Datasets -- 3 Methodology -- 3.1 Architecture -- 3.1.1 Input Pre-processing and Similarity Based Parallel Clustering of Streaming Data -- 3.1.2 Enhanced Over_Sampling Techniques for Imbalanced Dataset -- 3.2 Sampling Design and Assumptions -- 3.3 Evaluation Parameters -- 4 Conceptual Framework -- 4.1 Pre-processing and Efficient Parallel Clustering Architecture -- 4.2 Conceptual Flow of Experimentation -- 4.3 Data Sets |
| Title | Data Science and Big Data |
| URI | https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4828367 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA7aXjy5Y92Yg3iRSDPZ2mM3LUW92GpvZbKMFqRqGQ_11_syazsKogyESSZMmPdNXt6Sl4fQGVdCE0AWhzJQmEnOsFKaYN-CxizDehAG8S7fO9EfscGYj4sMYnF0SaQu9eePcSX_QRXaAFcXJfsHZPOXQgPcA75QAsJQloTfvJqA2w2iIJ-WzvTdnj5ddJMws5TTmflCx8bhR5izL6Zw4yd85v55McW32bqVqv1EltT-zOxXMhwu2a5a1yuqIqXOYcYkXeF9Sfxy6cTpXrvDQBGjQp6_vWOXoMs5stNsJetoXUpgJdVWb3DzUJizQLIQ0mXNyAdKjl1cGvjbchev4cMtVLUusGMbrdnZDtrM0ll4KRl3Uc0RMKt6QFUPqOq5xj00uuoNO32cZo7AJol79IXSoTs5WjeIJJpxBj8dkZpSaNaMGCs5PPKNtdI0wzoHNsYtCRmR9Yb16T6qzF5n9gB5lGsCUprVokFB-YWO2hfasAAuKkyzhrzsoyaxfzvdVDspqHj4e5cjtFGAfIwq0fzDnoC0E6nTlNJfNTr_pw |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Data+Science+and+Big+Data&rft.au=Pedrycz%2C+Witold&rft.au=Chen%2C+Shyi-Ming&rft.date=2017-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319534732&rft.volume=24&rft.externalDocID=EBC4828367 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783319534732/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783319534732/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783319534732/sc.gif&client=summon&freeimage=true |