The spectrum of the Poincaré operator in an ellipsoid
We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial...
Saved in:
Published in | Journal of spectral theory |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
European Mathematical Society
06.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-039X 1664-0403 1664-0403 |
DOI | 10.4171/jst/553 |
Cover
Abstract | We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial eigenvectors [Backus and Rieutord, Phys. Rev. E 95 (2017), article no. 053116]. We give two new proofs of this result. Moreover, we describe the large-degree asymptotics of the restriction of that operator to polynomial vector fields of fixed degrees. The main tool is the microlocal analysis of the partial differential equation satisfied by the orthogonal polynomials in ellipsoids. This work also contains numerical calculations of these spectra, showing a very good agreement with the mathematical results. |
---|---|
AbstractList | We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial eigenvectors [Backus & Rieutord, Phys. Rev. E 95 (2017), 053116]. We give two new proofs of this result. Moreover, we describe the large-degree asymptotics of the restriction of that operator to polynomial vector fields of fixed degrees. The main tool is the microlocal analysis of the partial differential equation satisfied by the orthogonal polynomials in ellipsoids. This work also contains numerical calculations of these spectra, showing a very good agreement with the mathematical results. We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial eigenvectors [Backus and Rieutord, Phys. Rev. E 95 (2017), article no. 053116]. We give two new proofs of this result. Moreover, we describe the large-degree asymptotics of the restriction of that operator to polynomial vector fields of fixed degrees. The main tool is the microlocal analysis of the partial differential equation satisfied by the orthogonal polynomials in ellipsoids. This work also contains numerical calculations of these spectra, showing a very good agreement with the mathematical results. |
Author | Colin de Verdière, Yves Vidal, Jérémie |
Author_xml | – sequence: 1 givenname: Yves orcidid: 0000-0001-7350-4662 surname: Colin de Verdière fullname: Colin de Verdière, Yves – sequence: 2 givenname: Jérémie orcidid: 0000-0002-3654-6633 surname: Vidal fullname: Vidal, Jérémie |
BackLink | https://hal.science/hal-04085246$$DView record in HAL |
BookMark | eNp1kE1OwzAQhS1UJEqpuIJ3wCLUjn-SLKuKUqRIsMiCnTVxbDVVGkd2CuqROAcXIyUgVqxm5s2nJ713iSataw1C15Tcc5rQxS70CyHYGZpSKXlEOGGT351lrxdoHsKOEDIoyfCbIllsDQ6d0b0_7LGzuB_uF1e3GvznB3ad8dA7j-sWQ4tN09RdcHV1hc4tNMHMf-YMFeuHYrWJ8ufHp9Uyj3SWsYhCZY3mZVVSGvNEWJmaUpcciBYp0yaTiYY0s5ylAJYDY0xQQ-PSUhGDYGyGbkfbQ9vB8R2aRnW-3oM_KkrUKbEaEivxjd6N6Bb-IAe12ixzddKGLlIRc_kWD-zNyGrvQvDG_uv6BTDKZlo |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY |
DOI | 10.4171/jst/553 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1664-0403 |
ExternalDocumentID | 10.4171/jst/553 oai_HAL_hal_04085246v2 10_4171_jst_553 |
GroupedDBID | AAFWJ AAYXX AENEX AFPKN AKZPS ALMA_UNASSIGNED_HOLDINGS AMVHM AUREJ CITATION FEDTE GROUPED_DOAJ H13 HVGLF IAO IGS ITC J9A OK1 REW 1XC VOOES ADTOC UNPAY VH7 |
ID | FETCH-LOGICAL-c993-1adfec4bdb112475f68ebcb4a0c583ce967ca89f438aaf4a33351e12bf152a533 |
IEDL.DBID | UNPAY |
ISSN | 1664-039X 1664-0403 |
IngestDate | Mon Sep 15 08:17:13 EDT 2025 Wed Oct 01 07:00:00 EDT 2025 Wed Oct 01 05:13:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Poincaré equation propagation of singularities Weyl asymptotics boundary pseudo-differential calculus inertial waves orthogonal polynomials |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c993-1adfec4bdb112475f68ebcb4a0c583ce967ca89f438aaf4a33351e12bf152a533 |
ORCID | 0000-0001-7350-4662 0000-0002-3654-6633 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.4171/jst/553 |
ParticipantIDs | unpaywall_primary_10_4171_jst_553 hal_primary_oai_HAL_hal_04085246v2 crossref_primary_10_4171_jst_553 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-06-06 |
PublicationDateYYYYMMDD | 2025-06-06 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Journal of spectral theory |
PublicationYear | 2025 |
Publisher | European Mathematical Society |
Publisher_xml | – name: European Mathematical Society |
SSID | ssj0001667403 |
Score | 2.304097 |
Snippet | We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is... |
SourceID | unpaywall hal crossref |
SourceType | Open Access Repository Index Database |
SubjectTerms | Analysis of PDEs Classical Analysis and ODEs Differential Geometry Fluid mechanics Mathematics Mechanics Physics Spectral Theory |
Title | The spectrum of the Poincaré operator in an ellipsoid |
URI | https://hal.science/hal-04085246 https://doi.org/10.4171/jst/553 |
UnpaywallVersion | publishedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-0403 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001667403 issn: 1664-039X databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB11OcCFHVFWg7imTeKJkxwrBKoQIA5UKqfIcRxRKEnVBQR_xHfwY4zbUAoSiFtkJ070xva8ySwGOA5Ih-skcSw_TmILE3StEG20FFli6Me0Vyrj0b28Eq02nne8TgkOPnNh5vz36PhO4344angeL0NVGA9SBartq-vmrTGjhEDL5mFndo02n6bFzj_5Td-U70y048I468uXZ9nrzamSs-WvUgLTCJKH-ngU19Xrj_qMf3zlCiwVNJI1p3JfhZLO1mC5oJSsWLDDdRA0Ddgkm3IwfmR5yojvseu8myk5eH9jeV9P3OysmzGZMT1xDOTdZANuzk5vTlpWcVSCpUwAniOTVCskuAl69L1UBDpWMUpbeQFXOhS-kkGYIg-kTFFyzj1HO26ckvqWxPg2oZLlmd4C5gdCKxJcSFwFdeKFqBSNRsucOugNNWCfeEb9aUGMiAwJA0NEMEQEQw2OCOdZrylg3WpeRKbNNgXVXBRPbg0OZ2L4baDtf9yzA4uuOZLX_BgRu1AhOPUe8YRRvD-xr_eLGfMBq2W7UA |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB215QAXyirKahDXlCwTJzlWiKpCUPUAUjlFjuOIQkmqLiD4I76DH2PcpKUggbhFduJEb2zPm8xigFOfdLiKY8vwojgyMEbbCNBEQ5Ilhl5Ee6XUHt3rNm_d4mXX7ZbgaJYLs-C_R8uzzh5G4zPXdcqwxLUHqQJLt-1O406bUZyjYTpBd36NppOnxS4--U3flO91tOPyJB2I1xfR7y-okmb1q5RAHkHyWJ-Mo7p8-1Gf8Y-vXIPVgkayRi73dSipdAOqBaVkxYIdbQKnacCm2ZTDyRPLEkZ8j3WyXirF8OOdZQM1dbOzXspEytTUMZD14i24aV7cnLeM4qgEQ-oAPEvEiZJIcBP06LkJ91UkIxSmdH1HqoB7UvhBgo4vRILCcRzXUpYdJaS-BTG-baikWap2gHk-V5IEFxBXQRW7AUpJo9Eypw56Qw3YDM9wkBfECMmQ0DCEBENIMNTghHCe9-oC1q3GVajbTF1QzUb-bNfgeC6G3wba_cc9e7Bi6yN59Y8Rvg8VglMdEE8YR4fFXPkETRS6Ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+spectrum+of+the+Poincar%C3%A9+operator+in+an+ellipsoid&rft.jtitle=Journal+of+spectral+theory&rft.au=Colin+de+Verd%C3%AC%C3%A8re%2C+Yves&rft.au=Vidal%2C+J%C3%A9r%C3%A9mie&rft.date=2025-06-06&rft.pub=European+Mathematical+Society&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171%2FJST%2F553&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04085246v2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon |