The spectrum of the Poincaré operator in an ellipsoid

We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial...

Full description

Saved in:
Bibliographic Details
Published inJournal of spectral theory
Main Authors Colin de Verdière, Yves, Vidal, Jérémie
Format Journal Article
LanguageEnglish
Published European Mathematical Society 06.06.2025
Subjects
Online AccessGet full text
ISSN1664-039X
1664-0403
1664-0403
DOI10.4171/jst/553

Cover

Abstract We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial eigenvectors [Backus and Rieutord, Phys. Rev. E 95 (2017), article no. 053116]. We give two new proofs of this result. Moreover, we describe the large-degree asymptotics of the restriction of that operator to polynomial vector fields of fixed degrees. The main tool is the microlocal analysis of the partial differential equation satisfied by the orthogonal polynomials in ellipsoids. This work also contains numerical calculations of these spectra, showing a very good agreement with the mathematical results.
AbstractList We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial eigenvectors [Backus & Rieutord, Phys. Rev. E 95 (2017), 053116]. We give two new proofs of this result. Moreover, we describe the large-degree asymptotics of the restriction of that operator to polynomial vector fields of fixed degrees. The main tool is the microlocal analysis of the partial differential equation satisfied by the orthogonal polynomials in ellipsoids. This work also contains numerical calculations of these spectra, showing a very good agreement with the mathematical results.
We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is interesting for many physical applications. It is known that the spectrum of this bounded self-adjoint operator is pure point with polynomial eigenvectors [Backus and Rieutord, Phys. Rev. E 95 (2017), article no. 053116]. We give two new proofs of this result. Moreover, we describe the large-degree asymptotics of the restriction of that operator to polynomial vector fields of fixed degrees. The main tool is the microlocal analysis of the partial differential equation satisfied by the orthogonal polynomials in ellipsoids. This work also contains numerical calculations of these spectra, showing a very good agreement with the mathematical results.
Author Colin de Verdière, Yves
Vidal, Jérémie
Author_xml – sequence: 1
  givenname: Yves
  orcidid: 0000-0001-7350-4662
  surname: Colin de Verdière
  fullname: Colin de Verdière, Yves
– sequence: 2
  givenname: Jérémie
  orcidid: 0000-0002-3654-6633
  surname: Vidal
  fullname: Vidal, Jérémie
BackLink https://hal.science/hal-04085246$$DView record in HAL
BookMark eNp1kE1OwzAQhS1UJEqpuIJ3wCLUjn-SLKuKUqRIsMiCnTVxbDVVGkd2CuqROAcXIyUgVqxm5s2nJ713iSataw1C15Tcc5rQxS70CyHYGZpSKXlEOGGT351lrxdoHsKOEDIoyfCbIllsDQ6d0b0_7LGzuB_uF1e3GvznB3ad8dA7j-sWQ4tN09RdcHV1hc4tNMHMf-YMFeuHYrWJ8ufHp9Uyj3SWsYhCZY3mZVVSGvNEWJmaUpcciBYp0yaTiYY0s5ylAJYDY0xQQ-PSUhGDYGyGbkfbQ9vB8R2aRnW-3oM_KkrUKbEaEivxjd6N6Bb-IAe12ixzddKGLlIRc_kWD-zNyGrvQvDG_uv6BTDKZlo
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.4171/jst/553
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1664-0403
ExternalDocumentID 10.4171/jst/553
oai_HAL_hal_04085246v2
10_4171_jst_553
GroupedDBID AAFWJ
AAYXX
AENEX
AFPKN
AKZPS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AUREJ
CITATION
FEDTE
GROUPED_DOAJ
H13
HVGLF
IAO
IGS
ITC
J9A
OK1
REW
1XC
VOOES
ADTOC
UNPAY
VH7
ID FETCH-LOGICAL-c993-1adfec4bdb112475f68ebcb4a0c583ce967ca89f438aaf4a33351e12bf152a533
IEDL.DBID UNPAY
ISSN 1664-039X
1664-0403
IngestDate Mon Sep 15 08:17:13 EDT 2025
Wed Oct 01 07:00:00 EDT 2025
Wed Oct 01 05:13:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Poincaré equation
propagation of singularities
Weyl asymptotics
boundary pseudo-differential calculus
inertial waves
orthogonal polynomials
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c993-1adfec4bdb112475f68ebcb4a0c583ce967ca89f438aaf4a33351e12bf152a533
ORCID 0000-0001-7350-4662
0000-0002-3654-6633
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.4171/jst/553
ParticipantIDs unpaywall_primary_10_4171_jst_553
hal_primary_oai_HAL_hal_04085246v2
crossref_primary_10_4171_jst_553
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-06
PublicationDateYYYYMMDD 2025-06-06
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-06
  day: 06
PublicationDecade 2020
PublicationTitle Journal of spectral theory
PublicationYear 2025
Publisher European Mathematical Society
Publisher_xml – name: European Mathematical Society
SSID ssj0001667403
Score 2.304097
Snippet We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant rotation. As explained in the paper, this mathematical problem is...
SourceID unpaywall
hal
crossref
SourceType Open Access Repository
Index Database
SubjectTerms Analysis of PDEs
Classical Analysis and ODEs
Differential Geometry
Fluid mechanics
Mathematics
Mechanics
Physics
Spectral Theory
Title The spectrum of the Poincaré operator in an ellipsoid
URI https://hal.science/hal-04085246
https://doi.org/10.4171/jst/553
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-0403
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001667403
  issn: 1664-039X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB11OcCFHVFWg7imTeKJkxwrBKoQIA5UKqfIcRxRKEnVBQR_xHfwY4zbUAoSiFtkJ070xva8ySwGOA5Ih-skcSw_TmILE3StEG20FFli6Me0Vyrj0b28Eq02nne8TgkOPnNh5vz36PhO4344angeL0NVGA9SBartq-vmrTGjhEDL5mFndo02n6bFzj_5Td-U70y048I468uXZ9nrzamSs-WvUgLTCJKH-ngU19Xrj_qMf3zlCiwVNJI1p3JfhZLO1mC5oJSsWLDDdRA0Ddgkm3IwfmR5yojvseu8myk5eH9jeV9P3OysmzGZMT1xDOTdZANuzk5vTlpWcVSCpUwAniOTVCskuAl69L1UBDpWMUpbeQFXOhS-kkGYIg-kTFFyzj1HO26ckvqWxPg2oZLlmd4C5gdCKxJcSFwFdeKFqBSNRsucOugNNWCfeEb9aUGMiAwJA0NEMEQEQw2OCOdZrylg3WpeRKbNNgXVXBRPbg0OZ2L4baDtf9yzA4uuOZLX_BgRu1AhOPUe8YRRvD-xr_eLGfMBq2W7UA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB215QAXyirKahDXlCwTJzlWiKpCUPUAUjlFjuOIQkmqLiD4I76DH2PcpKUggbhFduJEb2zPm8xigFOfdLiKY8vwojgyMEbbCNBEQ5Ilhl5Ee6XUHt3rNm_d4mXX7ZbgaJYLs-C_R8uzzh5G4zPXdcqwxLUHqQJLt-1O406bUZyjYTpBd36NppOnxS4--U3flO91tOPyJB2I1xfR7y-okmb1q5RAHkHyWJ-Mo7p8-1Gf8Y-vXIPVgkayRi73dSipdAOqBaVkxYIdbQKnacCm2ZTDyRPLEkZ8j3WyXirF8OOdZQM1dbOzXspEytTUMZD14i24aV7cnLeM4qgEQ-oAPEvEiZJIcBP06LkJ91UkIxSmdH1HqoB7UvhBgo4vRILCcRzXUpYdJaS-BTG-baikWap2gHk-V5IEFxBXQRW7AUpJo9Eypw56Qw3YDM9wkBfECMmQ0DCEBENIMNTghHCe9-oC1q3GVajbTF1QzUb-bNfgeC6G3wba_cc9e7Bi6yN59Y8Rvg8VglMdEE8YR4fFXPkETRS6Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+spectrum+of+the+Poincar%C3%A9+operator+in+an+ellipsoid&rft.jtitle=Journal+of+spectral+theory&rft.au=Colin+de+Verd%C3%AC%C3%A8re%2C+Yves&rft.au=Vidal%2C+J%C3%A9r%C3%A9mie&rft.date=2025-06-06&rft.pub=European+Mathematical+Society&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171%2FJST%2F553&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04085246v2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon