Parkinson's Disease Prediction Using Deep Learning Classification Algorithms

complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up sys...

Full description

Saved in:
Bibliographic Details
Published inThe Ukrainian Scientific Medical Youth Journal Vol. 152; no. 1; pp. 92 - 96
Main Authors Kayacioglu, Rumeysa, Kaсar, Fırat
Format Journal Article
LanguageEnglish
Published 25.02.2025
Online AccessGet full text
ISSN2311-6951
1996-353X
1996-353X
DOI10.32345/USMYJ.1(152).2025.92-96

Cover

Abstract complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up systems related to Parkinson's disease. For this purpose, in this study, we studied the classification of a data set consisting of various voice recordings for each patient with the designed deep learning architecture in order to assist in the more objective diagnosis of Parkinson's disease. Although it is important for the estimation of the study to find different sound samples of each subject in the data set, it is not known how much these recordings represent all the sound recordings of the person. Recurrent neural networks, which are a deep learning architecture, are an efficient system that can achieve high success in voice data and can be preferred in the diagnosis and follow-up of Parkinson's disease. However, this study showed that in such a network design, much larger and more diverse data are needed to increase the classification rate, to make more accurate predictions in the field of medicine, and to make remote diagnosis.
AbstractList complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are increasing as technology advances. With the increasing interest in these areas, studies have been carried out on various diagnosis and follow-up systems related to Parkinson's disease. For this purpose, in this study, we studied the classification of a data set consisting of various voice recordings for each patient with the designed deep learning architecture in order to assist in the more objective diagnosis of Parkinson's disease. Although it is important for the estimation of the study to find different sound samples of each subject in the data set, it is not known how much these recordings represent all the sound recordings of the person. Recurrent neural networks, which are a deep learning architecture, are an efficient system that can achieve high success in voice data and can be preferred in the diagnosis and follow-up of Parkinson's disease. However, this study showed that in such a network design, much larger and more diverse data are needed to increase the classification rate, to make more accurate predictions in the field of medicine, and to make remote diagnosis.
Author Kayacioglu, Rumeysa
Kaсar, Fırat
Author_xml – sequence: 1
  givenname: Rumeysa
  orcidid: 0000-0003-1829-9947
  surname: Kayacioglu
  fullname: Kayacioglu, Rumeysa
– sequence: 2
  givenname: Fırat
  surname: Kaсar
  fullname: Kaсar, Fırat
BookMark eNplkEtLAzEYRYNUsNb-h9mpixnzmKTzLUtrfTBiwRZ0FZJMpkanmZK0SP-9bS0ouLpcuOcuzjnq-NZbhBKCM0ZZzm_mL09vjxm5IpxeZxRTngFNQZygLgEQKePstYO6lBGSCuDkDPVjdBpjLnDBBO2icqrCp_Ox9ZcxGbtoVbTJNNjKmbVrfTKPzi-SsbWrpLQq-H0bNWr3UjujDpNhs2iDW78v4wU6rVUTbf-YPTSb3M5G92n5fPcwGpapgUKkhSJGcF1oqAxQDbpikOdUG6OhFmJABRvoGjNNqLai1jkwxRWQnGjLOFSsh4qf241fqe2Xahq5Cm6pwlYSLA9i5CYutx-SyJ0YufcigUoQv6gJbYzB1v_Jg9Ij-Rf9Bn87bHA
Cites_doi 10.21437/Interspeech.2011-720
10.1109/5.58326
10.1016/j.bandc.2004.05.002
10.1002/mds.10248
10.1002/mds.21899
10.1016/j.promfg.2019.06.205
10.1162/neco.1997.9.8.1735
10.1162/089976600300015015
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.32345/USMYJ.1(152).2025.92-96
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1996-353X
EndPage 96
ExternalDocumentID 10.32345/usmyj.1(152).2025.92-96
10_32345_USMYJ_1_152__2025_92_96
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c986-8a1c65b8b9dc92b9bd39442bccb9f6672637bf03b12be6fb493a5a9141be359d3
IEDL.DBID UNPAY
ISSN 2311-6951
1996-353X
IngestDate Sun Sep 07 11:24:37 EDT 2025
Tue Jul 01 05:28:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c986-8a1c65b8b9dc92b9bd39442bccb9f6672637bf03b12be6fb493a5a9141be359d3
ORCID 0000-0003-1829-9947
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32345/usmyj.1(152).2025.92-96
PageCount 5
ParticipantIDs unpaywall_primary_10_32345_usmyj_1_152_2025_92_96
crossref_primary_10_32345_USMYJ_1_152__2025_92_96
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-25
PublicationDateYYYYMMDD 2025-02-25
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-25
  day: 25
PublicationDecade 2020
PublicationTitle The Ukrainian Scientific Medical Youth Journal
PublicationYear 2025
References 10480
10471
10482
10481
10473
10472
10483
10475
10474
10477
10476
10479
10478
References_xml – ident: 10476
  doi: 10.21437/Interspeech.2011-720
– ident: 10480
  doi: 10.1109/5.58326
– ident: 10475
  doi: 10.1016/j.bandc.2004.05.002
– ident: 10471
– ident: 10473
  doi: 10.1002/mds.10248
– ident: 10474
  doi: 10.1002/mds.21899
– ident: 10477
– ident: 10472
– ident: 10479
– ident: 10478
– ident: 10483
  doi: 10.1016/j.promfg.2019.06.205
– ident: 10481
  doi: 10.1162/neco.1997.9.8.1735
– ident: 10482
  doi: 10.1162/089976600300015015
SSID ssib005608362
ssib044763810
Score 2.2862453
Snippet complaints arising from neurological disorders continue to increase today. At the same time, studies on diagnosis and treatment methods in medicine are...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 92
Title Parkinson's Disease Prediction Using Deep Learning Classification Algorithms
URI https://doi.org/10.32345/usmyj.1(152).2025.92-96
UnpaywallVersion publishedVersion
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-353X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044763810
  issn: 1996-353X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aHjz5QEVFJQdBPaQ2ySbbHIsPilipaKGews5uVsW2lj4QPfjbnc1utSoI-gNm2f1msvOFbx6E7IVpNRUBaIYBLBn-_VIGzgALkd47qKkk8gp-81I32sF5R3XmSHXaCzOj30shA3U0GfVe8DwfYJ45xOucUBUjmNHzpKwVsu8SKbcvW_VbLx4bzaSSHb9PjnOmkT3kxTu_PupLRlqY9AfRy3PU7c6kmbMlcjV9wby65LEyGUMlfv02u_EvX7BMFgvOSet5kKyQOddfJRdZv7Nv_dof0ZNcpqGtYabbZL6ivpaAnjg3oMUM1jvqN2hmtUXenbTevXsaPozve6M1cnN2enPcYMVqBRabGjom4rFWUAOTxEaAgSTrjxUQx2BSrUOhZQhpVQIX4HQKgZGRigwPODipTCLXSan_1HcbhCZ4gJNUxzwWDslBCg6xDyFBYpMpeMEm4VN07SAfoGHx4uGhse3r5u255RahsTaDxhphjUabDzf8NPJ4FkafNlv_sNkmpfFw4naQVoxhl8w33053i3h6BxwCxnE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61Hjz5QEVFJQdBPaQ2ySbbHIu1iGhRtFBPYWc3q2Jf9IHUX-9sdusTBP0Bs-x-M9n5wjcPQg7CtJqKADTDAJYM_34pA2eAhUjvHdRUEnkF_6qlz9vBRUd1SqQ674X5pN9LIQN1Mh33ZniejzDPHON1TqiKEczoBbKoFbLvMllst67r9148NppJJTt-nxznTCN7yIt3fn3Ul4y0NO0Po9lL1O1-SjPNFXIzf8G8uuS5Mp1AJX79NrvxL1-wSpYLzknreZCskZLrr5PLrN_Zt34djmkjl2no9SjTbTJfUV9LQBvODWkxg_WB-g2aWW2Rdyetdx8Go6fJY2-8Qe6aZ3en56xYrcBiU0PHRDzWCmpgktgIMJBk_bEC4hhMqnUotAwhrUrgApxOITAyUpHhAQcnlUnkJin3B323RWiCBzhJdcxj4ZAcpOAQ-xASJDaZghdsEz5H1w7zARoWLx4eGtu-vbq_sNwiNNZm0FgjrNFo8-6Gn0Yez8Low2bnHza7pDwZTd0e0ooJ7BeR9AZ558VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+Disease+Prediction+Using+Deep+Learning+Classification+Algorithms&rft.jtitle=The+Ukrainian+Scientific+Medical+Youth+Journal&rft.au=Kayacioglu%2C+Rumeysa&rft.au=Ka%D1%81ar%2C+F%C4%B1rat&rft.date=2025-02-25&rft.issn=2311-6951&rft.eissn=1996-353X&rft.volume=152&rft.issue=1&rft.spage=92&rft.epage=96&rft_id=info:doi/10.32345%2FUSMYJ.1%28152%29.2025.92-96&rft.externalDBID=n%2Fa&rft.externalDocID=10_32345_USMYJ_1_152__2025_92_96
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6951&client=summon