Pengelompokkan Data Runtun Waktu menggunakan Analisis Cluster
The export value of East Kalimantan Province has big data conditions with time series and multivariable data types. Cluster analysis can be applied to time series data, where there are different procedures and grouping algorithms compared to grouping cross section data. Algorithms and procedures in...
Saved in:
| Published in | EKSPONENSIAL Vol. 11; no. 1; p. 29 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
19.01.2021
|
| Online Access | Get full text |
| ISSN | 2085-7829 2798-3455 2798-3455 |
| DOI | 10.30872/eksponensial.v11i1.642 |
Cover
| Abstract | The export value of East Kalimantan Province has big data conditions with time series and multivariable data types. Cluster analysis can be applied to time series data, where there are different procedures and grouping algorithms compared to grouping cross section data. Algorithms and procedures in the cluster formation process are done differently, because time series data is a series of observational data that occur based on a time index in sequence with a fixed time interval. The purpose of this research is to obtain the best similarity measurement using the cophenetic correlation coefficient and get the optimal c-value using the silhouete coefficient. In this study, the grouping algorithm used is a single linkage with four measurements of similarity, namely the Pearson correlation distance, euclidean, dynamic time warping and autocorrelation based distance. The sample in this study is the data on the export value of oil and non-oil commodities in East Kalimantan Province from January 2000 to December 2016 consisting of 10 variables. Based on the results of the analysis, the distance of the best similarity measurement in clustering the export value of oil and non-oil commodities in East Kalimantan Province is the dynamic time warping distance with the optimal c-value of 3 clusters. |
|---|---|
| AbstractList | The export value of East Kalimantan Province has big data conditions with time series and multivariable data types. Cluster analysis can be applied to time series data, where there are different procedures and grouping algorithms compared to grouping cross section data. Algorithms and procedures in the cluster formation process are done differently, because time series data is a series of observational data that occur based on a time index in sequence with a fixed time interval. The purpose of this research is to obtain the best similarity measurement using the cophenetic correlation coefficient and get the optimal c-value using the silhouete coefficient. In this study, the grouping algorithm used is a single linkage with four measurements of similarity, namely the Pearson correlation distance, euclidean, dynamic time warping and autocorrelation based distance. The sample in this study is the data on the export value of oil and non-oil commodities in East Kalimantan Province from January 2000 to December 2016 consisting of 10 variables. Based on the results of the analysis, the distance of the best similarity measurement in clustering the export value of oil and non-oil commodities in East Kalimantan Province is the dynamic time warping distance with the optimal c-value of 3 clusters. |
| Author | Rizki, Nanda Arista Wahyuningsih, Sri Dani, Andrea Tri Rian |
| Author_xml | – sequence: 1 givenname: Andrea Tri Rian surname: Dani fullname: Dani, Andrea Tri Rian – sequence: 2 givenname: Sri surname: Wahyuningsih fullname: Wahyuningsih, Sri – sequence: 3 givenname: Nanda Arista surname: Rizki fullname: Rizki, Nanda Arista |
| BookMark | eNqNkFFLwzAQx4NMcM59BvsFOi9J06QPPoyqUxgoMvCx3JpklKZpaVpl3966-eCjT3fc_37H8bsmM996Q8gthRUHJdmdqUM3jXyo0K0-Ka3oKk3YBZkzmamYJ0LMph6UiKVi2RVZhlDtQYDkFJSak_s34w_GtU3X1jX66AEHjN5HP4w--sB6GKNmWjiMHn_StUdXhSpEuRvDYPobcmnRBbP8rQuye3rc5c_x9nXzkq-3cZlJFlthtGYCMi4tlNMfVnFIQJepYNboLBH7TFOjUsYFWBAUKSBL0fBEaWU1XxB1Pjv6Do9f6FzR9VWD_bGgUJxEFH9FFCcRxSRiQuUZLfs2hN7Yf5PfRydrzw |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.30872/eksponensial.v11i1.642 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2798-3455 |
| ExternalDocumentID | 10.30872/eksponensial.v11i1.642 10_30872_eksponensial_v11i1_642 |
| GroupedDBID | AAYXX CITATION M~E ADTOC UNPAY |
| ID | FETCH-LOGICAL-c972-f5edd250937f0c782f83040dc652fed945b9d1e862350f051a10a26ae348d8fd3 |
| IEDL.DBID | UNPAY |
| ISSN | 2085-7829 2798-3455 |
| IngestDate | Sun Sep 07 11:09:14 EDT 2025 Tue Jul 01 03:05:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c972-f5edd250937f0c782f83040dc652fed945b9d1e862350f051a10a26ae348d8fd3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.30872/eksponensial.v11i1.642 |
| ParticipantIDs | unpaywall_primary_10_30872_eksponensial_v11i1_642 crossref_primary_10_30872_eksponensial_v11i1_642 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-19 |
| PublicationDateYYYYMMDD | 2021-01-19 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | EKSPONENSIAL |
| PublicationYear | 2021 |
| SSID | ssib050731088 |
| Score | 1.7494532 |
| Snippet | The export value of East Kalimantan Province has big data conditions with time series and multivariable data types. Cluster analysis can be applied to time... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 29 |
| Title | Pengelompokkan Data Runtun Waktu menggunakan Analisis Cluster |
| URI | http://doi.org/10.30872/eksponensial.v11i1.642 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2798-3455 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050731088 issn: 2085-7829 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH647eDJH6g40dGD1862adrmOObGEDZFNpynkjSJjM46XKvowb_dl3XTiSDDc5uQfryX9z365QvAOech0X4U2Fw7xPZpIjClmG-LkHoyIUwSas4O9wdBb-Rfjen4u1Fc-31vrOq8C5UapajRciMVfXHdidtExlyBWkCRe1ehNhrctO7NDXJGRY_lzvBdL2SRTXxKS0HXXzP9KEfbRTbjb698Ol2rMd1duF6d1CmlJWmzyEUzef9t3Ljh8vdgZ0k3rVYZH_uwpbIDwH3QSFlxJ3hKU55Zlzzn1m2B1Sez7niaF9YjvvBQZNw8NbYlk_lkbrWnhXFVOIRhtzNs9-zlNQp2wkLP1lRJiUQHeYh2EkRIRwQzVyYB9bSSzKeCSVdhZ0OoozFHuetwL-CK-JGMtCRHUM3wG47BYo5E-mj8ZhR2kU4opDGoF24QGdd9FtXBWYEZz0qzjBibjAUU8ToU8QKKGKGog_sF-qZjTv4x5hSq-XOhzpBB5KIBlf5Hp7EMnk8z1MhI |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA66HTz5AxUnKjl47Uybpm2OYzqG4BTZcJ5K0iQyOrvhGkX_el_WTSeCDM9tQvrxXt736JcvCJ0LEVMTJpEnDKFeyDIJKcVDT8YsUBnlijJ3dvimF3UH4fWQDb8bxZXf986qLrjQuVOKOi03UNFX3x_5TWDMm6geMeDeNVQf9O5aj-4GOaeih3Ln-G4Q88SjIWOVoOuvmX6Uoy1bTMX7mxiPV2pMZwfdLk_qVNKSvGlL2cw-fhs3rrn8XbS9oJu4VcXHHtrQxT6CfdBJWWEnmOS5KPClKAW-t1B9Cvwg8tLiZ3jhyRbCPXW2JaPZaIbbY-tcFQ5Qv3PVb3e9xTUKXsbjwDNMKwVEB3iIIRkgZBIKmauyiAVGKx4yyZWvobOhjBjIUeETEURC0zBRiVH0ENUK-IYjhDlRQB-d34yGLpLEUjmDeulHiXPd50kDkSWY6bQyy0ihyZhDka5Ckc6hSAGKBvK_QF93zPE_xpygWvli9SkwiFKeLcLmE4avxxc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pengelompokkan+Data+Runtun+Waktu+menggunakan+Analisis+Cluster&rft.jtitle=EKSPONENSIAL&rft.au=Dani%2C+Andrea+Tri+Rian&rft.au=Wahyuningsih%2C+Sri&rft.au=Rizki%2C+Nanda+Arista&rft.date=2021-01-19&rft.issn=2085-7829&rft.eissn=2798-3455&rft.volume=11&rft.issue=1&rft.spage=29&rft_id=info:doi/10.30872%2Feksponensial.v11i1.642&rft.externalDBID=n%2Fa&rft.externalDocID=10_30872_eksponensial_v11i1_642 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2085-7829&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2085-7829&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2085-7829&client=summon |