Multi-dimensional XAI Framework Revealing Critical Supply Chain Vulnerability Drivers
This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models in global supply chain management. Traditional risk assessment approaches often function as black boxes, providing risk scores without trans...
Saved in:
Published in | World Journal of Advanced Engineering Technology and Sciences Vol. 15; no. 3; pp. 2141 - 2152 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
30.06.2025
|
Online Access | Get full text |
ISSN | 2582-8266 2582-8266 |
DOI | 10.30574/wjaets.2025.15.3.1154 |
Cover
Abstract | This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models in global supply chain management. Traditional risk assessment approaches often function as black boxes, providing risk scores without transparent justification, which hinders proactive mitigation efforts. The article develops context-aware explanation algorithms that move beyond simple feature importance to generate actionable, interpretable insights into the specific drivers of potential disruptions. The multi-dimensional XAI framework incorporates temporal and spatial dimensions alongside causal relationship modeling to pinpoint vulnerabilities such as upstream supplier dependencies, geopolitical instability indicators, and transportation chokepoints. Through rigorous implementation across diverse supply chain typologies and comparison with traditional methods, it demonstrates that these explainable approaches significantly enhance risk driver identification, decision-making timeliness, and mitigation effectiveness. Despite implementation challenges related to data accessibility, computational complexity, and organizational factors, the enhanced transparency enables more targeted interventions, collaborative risk management, and improved operational efficiency. The implications extend beyond supply chain management to establish explainability as a fundamental requirement for responsible AI deployment in business operations. |
---|---|
AbstractList | This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models in global supply chain management. Traditional risk assessment approaches often function as black boxes, providing risk scores without transparent justification, which hinders proactive mitigation efforts. The article develops context-aware explanation algorithms that move beyond simple feature importance to generate actionable, interpretable insights into the specific drivers of potential disruptions. The multi-dimensional XAI framework incorporates temporal and spatial dimensions alongside causal relationship modeling to pinpoint vulnerabilities such as upstream supplier dependencies, geopolitical instability indicators, and transportation chokepoints. Through rigorous implementation across diverse supply chain typologies and comparison with traditional methods, it demonstrates that these explainable approaches significantly enhance risk driver identification, decision-making timeliness, and mitigation effectiveness. Despite implementation challenges related to data accessibility, computational complexity, and organizational factors, the enhanced transparency enables more targeted interventions, collaborative risk management, and improved operational efficiency. The implications extend beyond supply chain management to establish explainability as a fundamental requirement for responsible AI deployment in business operations. |
Author | Venkata Manikesh Iruku |
Author_xml | – sequence: 1 surname: Venkata Manikesh Iruku fullname: Venkata Manikesh Iruku |
BookMark | eNqNkLFOwzAYhC0EEqX0FVBeIMGO7cQeq0ChUhESFMRmOc5fMLhOZKet8va0lIGR6W6474bvAp361gNCVwRnFPOSXe8-NfQxy3HOM8IzmhHC2Qka5VzkqciL4vRPP0eTGG2NOS4ZxpSN0MvDxvU2bewafLSt1y55m86TWdBr2LXhK3mCLWhn_XtSBdtbsx88b7rODUn1oa1PXjfOQ9C1dbYfkptgtxDiJTpbaRdh8ptjtJzdLqv7dPF4N6-mi9RIzlJdGmm05A1tDBAKojYNA6zrsjA1hoJLJmphQDDDZdloUgKWhEojmSGiEHSMyuPtxnd62GnnVBfsWodBEax-_KijH3XwowhXVB387MniSJrQxhhg9V_wG3M1cBM |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTOC UNPAY |
DOI | 10.30574/wjaets.2025.15.3.1154 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2582-8266 |
EndPage | 2152 |
ExternalDocumentID | 10.30574/wjaets.2025.15.3.1154 10_30574_wjaets_2025_15_3_1154 |
GroupedDBID | AAYXX CITATION M~E ADTOC UNPAY |
ID | FETCH-LOGICAL-c954-a7c9ca95d3dce13e8bcd4e0ab76cb0e65948b8ce84c597da17e09139c94c18683 |
IEDL.DBID | UNPAY |
ISSN | 2582-8266 |
IngestDate | Tue Aug 19 23:30:32 EDT 2025 Wed Oct 01 05:50:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c954-a7c9ca95d3dce13e8bcd4e0ab76cb0e65948b8ce84c597da17e09139c94c18683 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.30574/wjaets.2025.15.3.1154 |
PageCount | 12 |
ParticipantIDs | unpaywall_primary_10_30574_wjaets_2025_15_3_1154 crossref_primary_10_30574_wjaets_2025_15_3_1154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-6-30 |
PublicationDateYYYYMMDD | 2025-06-30 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-6-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | World Journal of Advanced Engineering Technology and Sciences |
PublicationYear | 2025 |
SSID | ssib050740034 |
Score | 1.9184078 |
Snippet | This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models... |
SourceID | unpaywall crossref |
SourceType | Open Access Repository Index Database |
StartPage | 2141 |
Title | Multi-dimensional XAI Framework Revealing Critical Supply Chain Vulnerability Drivers |
URI | https://doi.org/10.30574/wjaets.2025.15.3.1154 |
UnpaywallVersion | publishedVersion |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2582-8266 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050740034 issn: 2582-8266 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMcX2x48-UDFipY9eE2aNJtsciy1pQqtIq3UU9idTPBRYimJpR787O7mIdWD1A8wsDs7MP9hZ35DyCXYTEaIjgESVYHCODekEqKGFYMfYwccC_SA82jsDafsZubOykJRz8Js_N-rSOSsvXoRmGqudsc1bdd0TM2PqZGGpz-U6qQxHd91H_UGOVdJRaWVvWIM-A_jHxloN0sWYr0S8_lGWhnsk9vqQEU3yauZpdKEj1-sxu1PfED2SoVJu0VIHJIdTI7INB-0NSLN8i84HHTWvaaDqjWL3uO7kowqj9Fq-QHNF36uae9JPCf0IZtrPnXeSrumV8u8neOYTAb9SW9olBsVDAhcZggOAYjAjZwI0HbQlxAxtITkHkgLPY1ukT6gz0DVGZGwOebYUAgYaKy-c0LqyVuCp4QyiDgwZJa0kXFEESito-4JsdIXsYibpF05OVwU3IxQ1Ru5h8LCQ6H2UGi7oRNqDzWJ9f0WW5qc_d_knNTTZYYXSkmkskVqo89-qwyiL-cWyC0 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMcXbQ-efKBiRWUPXpMmzSabHEu1VMEq0ko9LbuTCT5KWkpiqZ_e3TykepD6AQZ2ZwfmP-zMbwi5BJepGNGzQKEuUBjnltJC1HISCBPsgOeAGXC-GwaDMbud-JOqUDSzMGv_9zoSOWsv3yRmhqvd8W3Xtz3b8GO2STMwH0oN0hwPH7rPZoOcr6Wi1spBOQb8h_GPDLSTp3O5WsrpdC2t9PfIfX2gspvk3c4zZcPnL1bj5ifeJ7uVwqTdMiQOyBamh2RcDNpasWH5lxwOOune0H7dmkUf8UNLRp3HaL38gBYLP1e09yJfU_qUTw2fumilXdGrRdHOcURG_etRb2BVGxUsiHxmSQ4RyMiPvRjQ9TBUEDN0pOIBKAcDg25RIWDIQNcZsXQ5FthQiBgYrL53TBrpLMUTQhnEHBgyR7nIOKKMtNbR94RE64tEJi3Srp0s5iU3Q-h6o_CQKD0kjIeE6wtPGA-1iPP9FhuanP7f5Iw0skWO51pJZOqiCp8vOqLG_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-dimensional+XAI+Framework+Revealing+Critical+Supply+Chain+Vulnerability+Drivers&rft.jtitle=World+Journal+of+Advanced+Engineering+Technology+and+Sciences&rft.au=Venkata+Manikesh+Iruku&rft.date=2025-06-30&rft.issn=2582-8266&rft.eissn=2582-8266&rft.volume=15&rft.issue=3&rft.spage=2141&rft.epage=2152&rft_id=info:doi/10.30574%2Fwjaets.2025.15.3.1154&rft.externalDBID=n%2Fa&rft.externalDocID=10_30574_wjaets_2025_15_3_1154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2582-8266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2582-8266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2582-8266&client=summon |