Multi-dimensional XAI Framework Revealing Critical Supply Chain Vulnerability Drivers

This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models in global supply chain management. Traditional risk assessment approaches often function as black boxes, providing risk scores without trans...

Full description

Saved in:
Bibliographic Details
Published inWorld Journal of Advanced Engineering Technology and Sciences Vol. 15; no. 3; pp. 2141 - 2152
Main Author Venkata Manikesh Iruku
Format Journal Article
LanguageEnglish
Published 30.06.2025
Online AccessGet full text
ISSN2582-8266
2582-8266
DOI10.30574/wjaets.2025.15.3.1154

Cover

Abstract This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models in global supply chain management. Traditional risk assessment approaches often function as black boxes, providing risk scores without transparent justification, which hinders proactive mitigation efforts. The article develops context-aware explanation algorithms that move beyond simple feature importance to generate actionable, interpretable insights into the specific drivers of potential disruptions. The multi-dimensional XAI framework incorporates temporal and spatial dimensions alongside causal relationship modeling to pinpoint vulnerabilities such as upstream supplier dependencies, geopolitical instability indicators, and transportation chokepoints. Through rigorous implementation across diverse supply chain typologies and comparison with traditional methods, it demonstrates that these explainable approaches significantly enhance risk driver identification, decision-making timeliness, and mitigation effectiveness. Despite implementation challenges related to data accessibility, computational complexity, and organizational factors, the enhanced transparency enables more targeted interventions, collaborative risk management, and improved operational efficiency. The implications extend beyond supply chain management to establish explainability as a fundamental requirement for responsible AI deployment in business operations.
AbstractList This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models in global supply chain management. Traditional risk assessment approaches often function as black boxes, providing risk scores without transparent justification, which hinders proactive mitigation efforts. The article develops context-aware explanation algorithms that move beyond simple feature importance to generate actionable, interpretable insights into the specific drivers of potential disruptions. The multi-dimensional XAI framework incorporates temporal and spatial dimensions alongside causal relationship modeling to pinpoint vulnerabilities such as upstream supplier dependencies, geopolitical instability indicators, and transportation chokepoints. Through rigorous implementation across diverse supply chain typologies and comparison with traditional methods, it demonstrates that these explainable approaches significantly enhance risk driver identification, decision-making timeliness, and mitigation effectiveness. Despite implementation challenges related to data accessibility, computational complexity, and organizational factors, the enhanced transparency enables more targeted interventions, collaborative risk management, and improved operational efficiency. The implications extend beyond supply chain management to establish explainability as a fundamental requirement for responsible AI deployment in business operations.
Author Venkata Manikesh Iruku
Author_xml – sequence: 1
  surname: Venkata Manikesh Iruku
  fullname: Venkata Manikesh Iruku
BookMark eNqNkLFOwzAYhC0EEqX0FVBeIMGO7cQeq0ChUhESFMRmOc5fMLhOZKet8va0lIGR6W6474bvAp361gNCVwRnFPOSXe8-NfQxy3HOM8IzmhHC2Qka5VzkqciL4vRPP0eTGG2NOS4ZxpSN0MvDxvU2bewafLSt1y55m86TWdBr2LXhK3mCLWhn_XtSBdtbsx88b7rODUn1oa1PXjfOQ9C1dbYfkptgtxDiJTpbaRdh8ptjtJzdLqv7dPF4N6-mi9RIzlJdGmm05A1tDBAKojYNA6zrsjA1hoJLJmphQDDDZdloUgKWhEojmSGiEHSMyuPtxnd62GnnVBfsWodBEax-_KijH3XwowhXVB387MniSJrQxhhg9V_wG3M1cBM
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.30574/wjaets.2025.15.3.1154
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2582-8266
EndPage 2152
ExternalDocumentID 10.30574/wjaets.2025.15.3.1154
10_30574_wjaets_2025_15_3_1154
GroupedDBID AAYXX
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c954-a7c9ca95d3dce13e8bcd4e0ab76cb0e65948b8ce84c597da17e09139c94c18683
IEDL.DBID UNPAY
ISSN 2582-8266
IngestDate Tue Aug 19 23:30:32 EDT 2025
Wed Oct 01 05:50:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c954-a7c9ca95d3dce13e8bcd4e0ab76cb0e65948b8ce84c597da17e09139c94c18683
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.30574/wjaets.2025.15.3.1154
PageCount 12
ParticipantIDs unpaywall_primary_10_30574_wjaets_2025_15_3_1154
crossref_primary_10_30574_wjaets_2025_15_3_1154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-6-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-6-30
  day: 30
PublicationDecade 2020
PublicationTitle World Journal of Advanced Engineering Technology and Sciences
PublicationYear 2025
SSID ssib050740034
Score 1.9184078
Snippet This article introduces novel Explainable AI (XAI) methodologies tailored for multi-factor supply chain risk models to address the opacity of predictive models...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 2141
Title Multi-dimensional XAI Framework Revealing Critical Supply Chain Vulnerability Drivers
URI https://doi.org/10.30574/wjaets.2025.15.3.1154
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2582-8266
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050740034
  issn: 2582-8266
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMcX2x48-UDFipY9eE2aNJtsciy1pQqtIq3UU9idTPBRYimJpR787O7mIdWD1A8wsDs7MP9hZ35DyCXYTEaIjgESVYHCODekEqKGFYMfYwccC_SA82jsDafsZubOykJRz8Js_N-rSOSsvXoRmGqudsc1bdd0TM2PqZGGpz-U6qQxHd91H_UGOVdJRaWVvWIM-A_jHxloN0sWYr0S8_lGWhnsk9vqQEU3yauZpdKEj1-sxu1PfED2SoVJu0VIHJIdTI7INB-0NSLN8i84HHTWvaaDqjWL3uO7kowqj9Fq-QHNF36uae9JPCf0IZtrPnXeSrumV8u8neOYTAb9SW9olBsVDAhcZggOAYjAjZwI0HbQlxAxtITkHkgLPY1ukT6gz0DVGZGwOebYUAgYaKy-c0LqyVuCp4QyiDgwZJa0kXFEESito-4JsdIXsYibpF05OVwU3IxQ1Ru5h8LCQ6H2UGi7oRNqDzWJ9f0WW5qc_d_knNTTZYYXSkmkskVqo89-qwyiL-cWyC0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMcXbQ-efKBiRWUPXpMmzSabHEu1VMEq0ko9LbuTCT5KWkpiqZ_e3TykepD6AQZ2ZwfmP-zMbwi5BJepGNGzQKEuUBjnltJC1HISCBPsgOeAGXC-GwaDMbud-JOqUDSzMGv_9zoSOWsv3yRmhqvd8W3Xtz3b8GO2STMwH0oN0hwPH7rPZoOcr6Wi1spBOQb8h_GPDLSTp3O5WsrpdC2t9PfIfX2gspvk3c4zZcPnL1bj5ifeJ7uVwqTdMiQOyBamh2RcDNpasWH5lxwOOune0H7dmkUf8UNLRp3HaL38gBYLP1e09yJfU_qUTw2fumilXdGrRdHOcURG_etRb2BVGxUsiHxmSQ4RyMiPvRjQ9TBUEDN0pOIBKAcDg25RIWDIQNcZsXQ5FthQiBgYrL53TBrpLMUTQhnEHBgyR7nIOKKMtNbR94RE64tEJi3Srp0s5iU3Q-h6o_CQKD0kjIeE6wtPGA-1iPP9FhuanP7f5Iw0skWO51pJZOqiCp8vOqLG_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-dimensional+XAI+Framework+Revealing+Critical+Supply+Chain+Vulnerability+Drivers&rft.jtitle=World+Journal+of+Advanced+Engineering+Technology+and+Sciences&rft.au=Venkata+Manikesh+Iruku&rft.date=2025-06-30&rft.issn=2582-8266&rft.eissn=2582-8266&rft.volume=15&rft.issue=3&rft.spage=2141&rft.epage=2152&rft_id=info:doi/10.30574%2Fwjaets.2025.15.3.1154&rft.externalDBID=n%2Fa&rft.externalDocID=10_30574_wjaets_2025_15_3_1154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2582-8266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2582-8266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2582-8266&client=summon