Gettering in polySi/SiO xpassivating contacts enables Si-based tandem solar cells with high thermal and contamination resilience

Multijunction solar cells in a tandem configuration could further lower the costs of electricity if crystalline Si (c-Si) is used as the bottom cell. However, for direct monolithic integration on c-Si, only a restricted number of top and bottom cell architectures are compatible, due to either epitax...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces
Main Authors Assar, Alireza, Martinho, Filipe, Larsen, Jes, Saini, Nishant, Shearer, Denver, Moro, Marcos V, Stulen, Fredrik Arnesen, Grini, Sigbjørn, Engberg, Sara, Stamate, Eugen, Schou, Jørgen, Vines, Lasse, Canulescu, Stela, Platzer-Björkman, Charlotte, Hansen, Ole
Format Journal Article
LanguageEnglish
Norwegian
Published 30.03.2022
Online AccessGet full text
ISSN1944-8244
1944-8252
DOI10.1021/acsami.2c00319

Cover

Abstract Multijunction solar cells in a tandem configuration could further lower the costs of electricity if crystalline Si (c-Si) is used as the bottom cell. However, for direct monolithic integration on c-Si, only a restricted number of top and bottom cell architectures are compatible, due to either epitaxy or high-temperature constraints, where the interface between subcells is subject to a trade-off between transmittance, electrical interconnection, and bottom cell degradation. Using polySi/SiOx passivating contacts for Si, this degradation can be largely circumvented by tuning the polySi/SiOx stacks to promote gettering of contaminants admitted into the Si bottom cell during the top cell synthesis. Applying this concept to the low-cost top cell chalcogenides Cu2ZnSnS4 (CZTS), CuGaSe2 (CGSe), and AgInGaSe2 (AIGSe), fabricated under harsh S or Se atmospheres above 550 °C, we show that increasing the heavily doped polySi layer thickness from 40 to up to 400 nm prevents a reduction in Si carrier lifetime by 1 order of magnitude, with final lifetimes above 500 μs uniformly across areas up to 20 cm2. In all cases, the increased resilience was correlated with a 99.9% reduction in contaminant concentration in the c-Si bulk, provided by the thick polySi layer, which acts as a buried gettering layer in the tandem structure without compromising the Si passivation quality. The Si resilience decreased as AIGSe > CGSe > CZTS, in accordance with the measured Cu contamination profiles and higher annealing temperatures. An efficiency of up to 7% was achieved for a CZTS/Si tandem, where the Si bottom cell is no longer the limiting factor.
AbstractList Multijunction solar cells in a tandem configuration could further lower the costs of electricity if crystalline Si (c-Si) is used as the bottom cell. However, for direct monolithic integration on c-Si, only a restricted number of top and bottom cell architectures are compatible, due to either epitaxy or high-temperature constraints, where the interface between subcells is subject to a trade-off between transmittance, electrical interconnection, and bottom cell degradation. Using polySi/SiOx passivating contacts for Si, this degradation can be largely circumvented by tuning the polySi/SiOx stacks to promote gettering of contaminants admitted into the Si bottom cell during the top cell synthesis. Applying this concept to the low-cost top cell chalcogenides Cu2ZnSnS4 (CZTS), CuGaSe2 (CGSe), and AgInGaSe2 (AIGSe), fabricated under harsh S or Se atmospheres above 550 °C, we show that increasing the heavily doped polySi layer thickness from 40 to up to 400 nm prevents a reduction in Si carrier lifetime by 1 order of magnitude, with final lifetimes above 500 μs uniformly across areas up to 20 cm2. In all cases, the increased resilience was correlated with a 99.9% reduction in contaminant concentration in the c-Si bulk, provided by the thick polySi layer, which acts as a buried gettering layer in the tandem structure without compromising the Si passivation quality. The Si resilience decreased as AIGSe > CGSe > CZTS, in accordance with the measured Cu contamination profiles and higher annealing temperatures. An efficiency of up to 7% was achieved for a CZTS/Si tandem, where the Si bottom cell is no longer the limiting factor.
Author Canulescu, Stela
Saini, Nishant
Shearer, Denver
Assar, Alireza
Engberg, Sara
Vines, Lasse
Moro, Marcos V
Schou, Jørgen
Stamate, Eugen
Stulen, Fredrik Arnesen
Hansen, Ole
Martinho, Filipe
Larsen, Jes
Platzer-Björkman, Charlotte
Grini, Sigbjørn
Author_xml – sequence: 1
  fullname: Assar, Alireza
– sequence: 2
  fullname: Martinho, Filipe
– sequence: 3
  fullname: Larsen, Jes
– sequence: 4
  fullname: Saini, Nishant
– sequence: 5
  fullname: Shearer, Denver
– sequence: 6
  fullname: Moro, Marcos V
– sequence: 7
  fullname: Stulen, Fredrik Arnesen
– sequence: 8
  fullname: Grini, Sigbjørn
– sequence: 9
  fullname: Engberg, Sara
– sequence: 10
  fullname: Stamate, Eugen
– sequence: 11
  fullname: Schou, Jørgen
– sequence: 12
  fullname: Vines, Lasse
– sequence: 13
  fullname: Canulescu, Stela
– sequence: 14
  fullname: Platzer-Björkman, Charlotte
– sequence: 15
  fullname: Hansen, Ole
BookMark eNo9j81KAzEYRYNUsK1u3ZoXmDaTyU-zlKJVKHQx3ZdvMl86kUymTII_Ox_dSsXVvXAPB-6MTOIQkZD7ki1Kxssl2AS9X3DLWFWaKzItjRDFiks--e9C3JBZSm-MqYozOSXfG8wZRx-P1Ed6GsJX7Ze139HPE6Tk3yH_TnaIGWxOFCM0AROtfdFAwpZmiC32NA0BRmoxhEQ_fO5o548dzR2OPQR6Zi6K3sezcIh0xOSDx2jxllw7CAnv_nJO9s9P-_VLsd1tXteP28IakQsQ2mLbMOEE142WSjnLkbXOacMbRDCs1aidkCCVtq0Gx6yWTIFS0qqqmpOHi9aOPp0_HeIwwqFkK8kPxmheVT8M9mS_
ContentType Journal Article
Copyright info:eu-repo/semantics/openAccess
Copyright_xml – notice: info:eu-repo/semantics/openAccess
DBID 3HK
DOI 10.1021/acsami.2c00319
DatabaseName NORA - Norwegian Open Research Archives
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
ExternalDocumentID 10852_99723
GroupedDBID ---
.K2
23M
3HK
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
EBS
ED~
EJD
F5P
GGK
GNL
IH9
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
ID FETCH-LOGICAL-c94t-a47cedb04f427b7566fc2e0dff792beea90d7e7f45a567cd7af0c7506a665c633
ISSN 1944-8244
IngestDate Sat Apr 29 05:44:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
Norwegian
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c94t-a47cedb04f427b7566fc2e0dff792beea90d7e7f45a567cd7af0c7506a665c633
Notes NFR/325573
OpenAccessLink http://hdl.handle.net/10852/99723
ParticipantIDs cristin_nora_10852_99723
PublicationCentury 2000
PublicationDate 2022-03-30
PublicationDateYYYYMMDD 2022-03-30
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-30
  day: 30
PublicationDecade 2020
PublicationTitle ACS applied materials & interfaces
PublicationYear 2022
SSID ssj0063205
Score 2.3791606
Snippet Multijunction solar cells in a tandem configuration could further lower the costs of electricity if crystalline Si (c-Si) is used as the bottom cell. However,...
SourceID cristin
SourceType Open Access Repository
Title Gettering in polySi/SiO xpassivating contacts enables Si-based tandem solar cells with high thermal and contamination resilience
URI http://hdl.handle.net/10852/99723
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1944-8252
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063205
  issn: 1944-8244
  databaseCode: ACS
  dateStart: 20090128
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3La9wwEIfFNr20h9In6RMdejNOXFmWouMSmobSx8FbyG2R9SALW2-IHWhyyp-eGUn2On1A28uyeI128XzMQzu_ESFvS1UprYzMhXUm5_pA501pqrywVirHnJMMtcOfv4jjb_zjSXUym11OupYu-mbPXP1WV_I_VoVrYFdUyf6DZcdF4QK8B_vCK1gYXv_Kxh-CFiepUs4268saF6tXX7MfZ5AUh4PLgqa27TU2bbgglOqyGgpiiF42w30E9z3rsL7NcA8_id1wiDGmpOC110n5Bktg10zABUr01Tr4hGluOz-sM52SWsiD4wMIaOFMinOPzV8jX10XO7vna_C5V2NsiFMNTsP-7RFu9YzcfYIKPAlJtsvUeL5FBLo71amFJ-1hQPmLor5i4nYV5_kBi5Mg99z0Wpxv-4ujh9QEo5jp8JgkZtA3qW1IG_7G_ynSjf2HKLlgS9QMl3fIXQYBAU_9gMc0BHFRstD9Ov6wYd4ne7d_-0uhbjLBHbeTvGTxkDxIBQWdRzoekVm7eUzuT8ZMPiHXIyd01dLIyT5QQqeU0IESmiihAyU0UkIDJTRQQpESipTQRAmFe-gtSuiWkqdkcfR-cXicp5M3cqN4n2sujbNNwT1nspGQ8XvDXGG9l4o1zmlVWOmk55WuhDRWal8YSD2FFqIyoiyfkZ1207pdQlUJN3jndcOhFhWNMgxrCuad5YVV5jnZTY9v2YLPW04s8-LPH70k97YYvSI7_fmFew3JYd-8CWa8AfV1bNU
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gettering+in+polySi%2FSiO+xpassivating+contacts+enables+Si-based+tandem+solar+cells+with+high+thermal+and+contamination+resilience&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Assar%2C+Alireza&rft.au=Martinho%2C+Filipe&rft.au=Larsen%2C+Jes&rft.au=Saini%2C+Nishant&rft.date=2022-03-30&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.2c00319&rft.externalDBID=n%2Fa&rft.externalDocID=10852_99723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon