Sensor and Feature Level Fusion of Thermal Image and ECG Signals in Recognizing Human Emotions

Recent studies on recognition of various emotion labels concentrated on speech signals, text, visual images and anatomical variables. The proposed system combines the features of ECG which are extracted using empirical mode decomposition and features of thermal images which are extracted from Gray L...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of innovative technology and exploring engineering Vol. 9; no. 2S; pp. 78 - 82
Format Journal Article
LanguageEnglish
Published 31.12.2019
Online AccessGet full text
ISSN2278-3075
2278-3075
DOI10.35940/ijitee.B1054.1292S19

Cover

Abstract Recent studies on recognition of various emotion labels concentrated on speech signals, text, visual images and anatomical variables. The proposed system combines the features of ECG which are extracted using empirical mode decomposition and features of thermal images which are extracted from Gray Level Co-occurrence Matrix (GLCM) viz energy, contrast, homogeneity and correlation. ECG is acquired from AD8232 module and thermal images from FLUKE TiS20. Data of ECG and thermal images are acquired simultaneously from a subject and database consists of data from 40 subjects in age group of 20 years to 40 years from Hassan, Karnataka, India. Here different labels of emotions have been classified based on K-nearest neighbor decision rule. This system yielded highest accuracy for disgust and lowest for anger using ECG and highest accuracy for disgust and surprise and least for sad.
AbstractList Recent studies on recognition of various emotion labels concentrated on speech signals, text, visual images and anatomical variables. The proposed system combines the features of ECG which are extracted using empirical mode decomposition and features of thermal images which are extracted from Gray Level Co-occurrence Matrix (GLCM) viz energy, contrast, homogeneity and correlation. ECG is acquired from AD8232 module and thermal images from FLUKE TiS20. Data of ECG and thermal images are acquired simultaneously from a subject and database consists of data from 40 subjects in age group of 20 years to 40 years from Hassan, Karnataka, India. Here different labels of emotions have been classified based on K-nearest neighbor decision rule. This system yielded highest accuracy for disgust and lowest for anger using ECG and highest accuracy for disgust and surprise and least for sad.
BookMark eNp1kF1LwzAYhYNMcM79BCF_oDMfTZtcurEvGAhu15a0eVsz2mQ0qzJ_vd0m4o1X51yc51w892jgvAOEHimZcKFi8mT39ggwmVIi4gllim2pukFDxlIZcZKKwZ9-h8Yh7AkhlMdUJmqI3rbggm-xdgYvQB-7FvAGPqDGiy5Y77Av8e4d2kbXeN3oCi7L-WyJt7Zyug7YOvwKha-c_bKuwquu0Q7PG3_s6fCAbst-BOOfHKHdYr6braLNy3I9e95EheIqElqlMmeSMwoFZ4XMgRihOAhmEiGTQphcMqMYMzIvCVep0LE2KctJTgxoPkLJ9bZzB3361HWdHVrb6PaUUZJdPGVXT1l-9pSdPQWqelBcwaL1IbRQ_stNf7neL_8G1TpwnQ
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.35940/ijitee.B1054.1292S19
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2278-3075
EndPage 82
ExternalDocumentID 10.35940/ijitee.b1054.1292s19
10_35940_ijitee_B1054_1292S19
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
RNS
ADTOC
UNPAY
ID FETCH-LOGICAL-c939-5a978b28321ec32c8be0d593e52d6586c5db82d922d8bf03975a4ad72b0b0dea3
IEDL.DBID UNPAY
ISSN 2278-3075
IngestDate Wed Oct 01 15:42:27 EDT 2025
Tue Jul 01 02:31:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2S
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c939-5a978b28321ec32c8be0d593e52d6586c5db82d922d8bf03975a4ad72b0b0dea3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.35940/ijitee.b1054.1292s19
PageCount 5
ParticipantIDs unpaywall_primary_10_35940_ijitee_b1054_1292s19
crossref_primary_10_35940_ijitee_B1054_1292S19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-31
PublicationDateYYYYMMDD 2019-12-31
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-31
  day: 31
PublicationDecade 2010
PublicationTitle International journal of innovative technology and exploring engineering
PublicationYear 2019
SSID ssj0001341869
Score 2.01506
Snippet Recent studies on recognition of various emotion labels concentrated on speech signals, text, visual images and anatomical variables. The proposed system...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 78
Title Sensor and Feature Level Fusion of Thermal Image and ECG Signals in Recognizing Human Emotions
URI https://doi.org/10.35940/ijitee.b1054.1292s19
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2278-3075
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001341869
  issn: 2278-3075
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oHIwH30aMkj14banb3do9IimiEWIEErzY7AuDYiFAY-Tgb3eWAkETEr33azbTyc73dV4IXXCprCzwHK0JCBTmM4cLXzvMV4bwrtS6axuF642g1qZ3HdaZN6vbXpiV_L3POPVKvVegXsaVwAOoC8GJjO2Qz3zAgHrnUL7deCg_2QVyxKb5If5lXTrrsT_iz1aaDMXnh-j3V4JKdRc1FsfJakne3HQiXTX9Nanxz-fdQztzeonLmT_sow2THKDtlaGDh-i5Ccp1MMIi0dgSwHRk8L0tHcLV1P46w4MuBueBC7uPb9_hupk9GVVucLP3Yqct416CH7O6oym8Ec_yADjK9gGNj1CrGrUqNWe-ZcFR3OcOE6Aj5WxhkVE-UaE0nmbcN4xoYCeBYlqGRHNCdCi7HtAXJqjQV0R60tNG-McolwwSc4IwlSEFfGBFJQ0E5UorzqTmhoQApgXkLkwfD7NZGjFokJnd4sxu8bW1W2zt1rzkBVRafqC1CLlEgKVP_404Q7nJKDXnQC0msog2619Rce5W3wuKzWk
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YOBgPvo0YNXvw2lK3u7V7RAKiUWIEErzY7KsGxUKAxsivd7YtBE1I9N6v2UwnO9_XeSF0waWyssBztCYgUJjPHC587TBfGcJjqXVsG4Uf2kGrR-_6rF80q9temJX8vc849aqDN6BexpXAA6gLwYlM7ZDPcsCAepdQudd-rD3bBXLEpvkh_uVdOuuxP-LPZpqMxdenGA5XgkpzB7UXx8lrSd7ddCZdNf81qfHP591F2wW9xLXcH_bQhkn20dbK0MED9NIB5TqaYJFobAlgOjH43pYO4WZqf53hUYzBeeDCHuLbD7husicb9RvcGbzaact4kOCnvO5oDm_EWR4AN_J9QNND1G02uvWWU2xZcBT3ucME6EiZLSwyyicqlMbTjPuGEQ3sJFBMy5BoTogOZewBfWGCCn1FpCc9bYR_hErJKDHHCFMZUsAHVlTSQFCutOJMam5ICGBaQe7C9NE4n6URgQbJ7Bbldouurd0ia7fOJa-g6vIDrUXIJQIsffJvxCkqzSapOQNqMZPnhUN9Az-fzDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+and+Feature+Level+Fusion+of+Thermal+Image+and+ECG+Signals+in+Recognizing+Human+Emotions&rft.jtitle=International+journal+of+innovative+technology+and+exploring+engineering&rft.date=2019-12-31&rft.issn=2278-3075&rft.eissn=2278-3075&rft.volume=9&rft.issue=2S&rft.spage=78&rft.epage=82&rft_id=info:doi/10.35940%2Fijitee.B1054.1292S19&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijitee_B1054_1292S19
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2278-3075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2278-3075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2278-3075&client=summon