Flood Detection using Google Earth Engine: A Comparison of Optical and SAR-based Remote Sensing Methods

Floods are one of the most frequent and damaging disasters in India, particularly during the monsoon season. The urban settlement of Mahad, which lies along the Savitri River in Raigad district, Maharashtra, is highly susceptible to flooding. This requires reliable and scalable flood detection metho...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Innovative Research in Advanced Engineering Vol. 12; no. 9; p. 314
Main Authors Dhotre, Y.S., Jadhav, Y.U., Rawoot, S.S., Gurushette, P.V., Kshirsagar, S.P., Malandkar, M.S.
Format Journal Article
LanguageEnglish
Published 10.10.2025
Online AccessGet full text
ISSN2349-2163
2349-2163
DOI10.26562/ijirae.2025.v1209.01

Cover

Abstract Floods are one of the most frequent and damaging disasters in India, particularly during the monsoon season. The urban settlement of Mahad, which lies along the Savitri River in Raigad district, Maharashtra, is highly susceptible to flooding. This requires reliable and scalable flood detection methods for disaster preparedness which current methods struggle with concerning issues such as false positives and cloud interference. We compare and contrast five Satellite based flood detection methods implemented in Google Earth Engine (GEE) - hybrid models, NDWI classification, and SAR ratio thresholding. We focus on accuracy, validation strategy, automation, scalability, and type of data (optical/SAR) as our evaluation criteria. The findings shows that NDWI approach are suits for water detection with high precision, but also under-perform in the presence of cloud cover, whereas SAR-based techniques are impervious to cloud cover, but prone to false positives. The effectiveness of ground validation across studies was only limited to one study, which was robust. In relation to these findings, we present a hybrid flood identification approach which incorporates visual validation using FCCs and thresholding with Sentinel-1 SAR VV ratio, as well as NDWI with Sentinel-2. The proposed methodology will enable accurate, cloud-independent and scalable flood mapping in areas affected by monsoon, such as Mahad.
AbstractList Floods are one of the most frequent and damaging disasters in India, particularly during the monsoon season. The urban settlement of Mahad, which lies along the Savitri River in Raigad district, Maharashtra, is highly susceptible to flooding. This requires reliable and scalable flood detection methods for disaster preparedness which current methods struggle with concerning issues such as false positives and cloud interference. We compare and contrast five Satellite based flood detection methods implemented in Google Earth Engine (GEE) - hybrid models, NDWI classification, and SAR ratio thresholding. We focus on accuracy, validation strategy, automation, scalability, and type of data (optical/SAR) as our evaluation criteria. The findings shows that NDWI approach are suits for water detection with high precision, but also under-perform in the presence of cloud cover, whereas SAR-based techniques are impervious to cloud cover, but prone to false positives. The effectiveness of ground validation across studies was only limited to one study, which was robust. In relation to these findings, we present a hybrid flood identification approach which incorporates visual validation using FCCs and thresholding with Sentinel-1 SAR VV ratio, as well as NDWI with Sentinel-2. The proposed methodology will enable accurate, cloud-independent and scalable flood mapping in areas affected by monsoon, such as Mahad.
Author Kshirsagar, S.P.
Jadhav, Y.U.
Rawoot, S.S.
Gurushette, P.V.
Dhotre, Y.S.
Malandkar, M.S.
Author_xml – sequence: 1
  givenname: Y.S.
  orcidid: 0009-0004-6239-1227
  surname: Dhotre
  fullname: Dhotre, Y.S.
– sequence: 2
  givenname: Y.U.
  orcidid: 0009-0004-3085-1671
  surname: Jadhav
  fullname: Jadhav, Y.U.
– sequence: 3
  givenname: S.S.
  orcidid: 0009-0009-5279-6059
  surname: Rawoot
  fullname: Rawoot, S.S.
– sequence: 4
  givenname: P.V.
  orcidid: 0009-0001-7902-8713
  surname: Gurushette
  fullname: Gurushette, P.V.
– sequence: 5
  givenname: S.P.
  orcidid: 0009-0007-1648-4555
  surname: Kshirsagar
  fullname: Kshirsagar, S.P.
– sequence: 6
  givenname: M.S.
  orcidid: 0000-0001-5904-6183
  surname: Malandkar
  fullname: Malandkar, M.S.
BookMark eNqNkE1OwzAYRC1UJErpEZB8gQTbSZyEXVXaglRUKWVv2fHn1Ci1ozgF9fb0hwVLVjOLebN492jkvAOEHimJGc84e7KftpcQM8Ky-IsyUsaE3qAxS9IyYpQnoz_9Dk1DsOo0TVhKCRmjZtl6r_ELDFAP1jt8CNY1eOV90wJeyH7Y4YVrrINnPMNzv-9kb8Np5w3edIOtZYul03g7qyIlA2hcwd4PgLfgLk_vMOy8Dg_o1sg2wPQ3J6haLj7mr9F6s3qbz9ZRXSY0qpkEk_O6ZEA0KJUWRWa0NhxyTdMiY6B4XpBcGZ2YEkipeWpqWtJEpoomE8SvpwfXyeO3bFvR9XYv-6OgRFx0iasucdYlLroEOYPZFax7H0IP5p_cDx4CdCY
Cites_doi 10.62796/pijst.2024v1i402
10.1016/j.pdisas.2022.100235
10.22214/ijraset.2022.42080
10.3390/su14074210
10.1371/journal.pone.0237324
10.3390/rs15225368
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.26562/ijirae.2025.v1209.01
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2349-2163
ExternalDocumentID 10.26562/ijirae.2025.v1209.01
10_26562_ijirae_2025_v1209_01
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
OK1
ADTOC
UNPAY
ID FETCH-LOGICAL-c931-c2aef76c92e0debb4885fddf6e7d14852eb67807bfd3f9e09d64fc1913a4b13
IEDL.DBID UNPAY
ISSN 2349-2163
IngestDate Thu Oct 30 06:01:08 EDT 2025
Wed Oct 29 21:22:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c931-c2aef76c92e0debb4885fddf6e7d14852eb67807bfd3f9e09d64fc1913a4b13
ORCID 0009-0009-5279-6059
0009-0007-1648-4555
0009-0004-6239-1227
0009-0001-7902-8713
0009-0004-3085-1671
0000-0001-5904-6183
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.26562/ijirae.2025.v1209.01
ParticipantIDs unpaywall_primary_10_26562_ijirae_2025_v1209_01
crossref_primary_10_26562_ijirae_2025_v1209_01
PublicationCentury 2000
PublicationDate 2025-10-10
PublicationDateYYYYMMDD 2025-10-10
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-10
  day: 10
PublicationDecade 2020
PublicationTitle International Journal of Innovative Research in Advanced Engineering
PublicationYear 2025
References ref4
ref3
ref0
cr-split#-ref5.2
ref2
ref1
cr-split#-ref5.1
References_xml – ident: ref4
  doi: 10.62796/pijst.2024v1i402
– ident: #cr-split#-ref5.1
– ident: ref2
  doi: 10.1016/j.pdisas.2022.100235
– ident: ref0
  doi: 10.22214/ijraset.2022.42080
– ident: ref3
  doi: 10.3390/su14074210
– ident: #cr-split#-ref5.2
  doi: 10.1371/journal.pone.0237324
– ident: ref1
  doi: 10.3390/rs15225368
SSID ssib025324100
Score 2.3080418
Snippet Floods are one of the most frequent and damaging disasters in India, particularly during the monsoon season. The urban settlement of Mahad, which lies along...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 314
Title Flood Detection using Google Earth Engine: A Comparison of Optical and SAR-based Remote Sensing Methods
URI https://doi.org/10.26562/ijirae.2025.v1209.01
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2349-2163
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib025324100
  issn: 2349-2163
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0oHDz5ETVilOzBa8vS7bauN4IgMQENSIKnZredRZS0BItGD_52d9tC0MQEf8A0m7fTzEz73huELlxFmW9oFZwxqQcUIi0hgRsbVxJSAuBlFhvdntcZurcjNirE6kYLs_b_3tGthlObPE_mwvhZOsx-M0JP26i1yh7TrXcJlYe9-8ZjtkDO5Zajm4tcpfN37I_6s7OIZ-LjXUyna0WlvYd6y-PkXJIXe5FKO_z85dS48Xn30W7RXuJGng8HaAviQzRuG3Y6voY0413F2JDdx_gmScZTwC2dPE849yW8wg3cXG0mxInCd7PsYzcWcYQHjb5lql6E-6BvGPDAsN_1k7rZGurXI9Rvtx6aHatYsGCFnNat0BGgfC_kDpAIpNTvMlNRpDzwIz0lMQekLmXElyqiigPhkeeqUA94VLiyTo9RKU5iOEEYHKBwyVhIJXWJK7iewpSQUoExnCOqguwl5sEsN9EI9PCRARbkgAUGsCADLCD1CqqtbmaziNN_R5yhUjpfwLnuKVJZRdvdr1a1yKdvmPDKow
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dT8IwFG0MPPjkR9SIUdMHXzfKug7r24IgMQENSIJPS7ve4gfZCA6N_nrbbRA0McEfcJfm9C733u2ccxG68DVlTUur4IxJM6AQ6QgJ3Nq4kpgSgCC32Oj1g-7Ivx2zcSlWt1qYtf_3nmk1vPrzy_NcWD9Lj7nvVujpWrVWNWCm9a6g6qh_Hz7mC-R87nimuShUOn_H_qg_24tkJj4_xHS6VlQ6u6i_PE7BJXl1F5l0469fTo0bn3cP7ZTtJQ6LfNhHW5AcoEnHstPxNWQ57yrBluw-wTdpOpkCbpvkecKFL-EVDnFrtZkQpxrfzfKP3VgkCg_DgWOrnsIDMDcMeGjZ7-ZJvXwN9dshGnTaD62uUy5YcGJOG07sCdDNIOYeEAVSmneZaaV0AE1lpiTmgTSljDSlVlRzIFwFvo7NgEeFLxv0CFWSNIFjhMEDCpeMxVRSn_iCmylMCyk1WMM5omvIXWIezQoTjcgMHzlgUQFYZAGLcsAi0qih-upmNos4-XfEKapk8wWcmZ4ik-dlJn0D3anJcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flood+Detection+using+Google+Earth+Engine%3A+A+Comparison+of+Optical+and+SAR-based+Remote+Sensing+Methods&rft.jtitle=International+Journal+of+Innovative+Research+in+Advanced+Engineering&rft.au=Dhotre%2C+Y.S.&rft.au=Jadhav%2C+Y.U.&rft.au=Rawoot%2C+S.S.&rft.au=Gurushette%2C+P.V.&rft.date=2025-10-10&rft.issn=2349-2163&rft.eissn=2349-2163&rft.volume=12&rft.issue=9&rft.spage=314&rft_id=info:doi/10.26562%2Fijirae.2025.v1209.01&rft.externalDBID=n%2Fa&rft.externalDocID=10_26562_ijirae_2025_v1209_01
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-2163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-2163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-2163&client=summon