Movie Success Prediction System Using Python and Machine Learning Algorithms
In the entertainment industry, predicting the success of a movie is a crucial task. With advancements in technology, machine learning has emerged as a powerful tool for predicting the success of movies. In this research paper, we aim to develop a machine learning-based movie success prediction syste...
        Saved in:
      
    
          | Published in | International journal for research in applied science and engineering technology Vol. 13; no. 2; pp. 1373 - 1379 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        28.02.2025
     | 
| Online Access | Get full text | 
| ISSN | 2321-9653 2321-9653  | 
| DOI | 10.22214/ijraset.2025.67098 | 
Cover
| Abstract | In the entertainment industry, predicting the success of a movie is a crucial task. With advancements in technology, machine learning has emerged as a powerful tool for predicting the success of movies. In this research paper, we aim to develop a machine learning-based movie success prediction system using Python. To achieve this goal, we will collect and preprocess movie data from various sources. The data preprocessing stage will involve cleaning and selecting relevant features that contribute to the prediction of movie success. This paper will also explore the key features to consider when developing a machine learning-based movie success prediction system. Through this research, we hope to provide insights into the effectiveness of machine learning algorithms in predicting movie success. | 
    
|---|---|
| AbstractList | In the entertainment industry, predicting the success of a movie is a crucial task. With advancements in technology, machine learning has emerged as a powerful tool for predicting the success of movies. In this research paper, we aim to develop a machine learning-based movie success prediction system using Python. To achieve this goal, we will collect and preprocess movie data from various sources. The data preprocessing stage will involve cleaning and selecting relevant features that contribute to the prediction of movie success. This paper will also explore the key features to consider when developing a machine learning-based movie success prediction system. Through this research, we hope to provide insights into the effectiveness of machine learning algorithms in predicting movie success. | 
    
| Author | Singh, Mohit | 
    
| Author_xml | – sequence: 1 givenname: Mohit surname: Singh fullname: Singh, Mohit  | 
    
| BookMark | eNqNkMluwjAURa2KSqWUL-jGPxDqkThLhDogBRUJuo4c-wWMgoPs0Cp_3zAsuuzqPt2ncxfnEQ184wGhZ0omjDEqXtw-6AjthBEmJ9OUZOoODRlnNMmmkg_-3A9oHOOeENIXjBE5RPmy-XaA1ydjIEa8CmCdaV3j8bqLLRzwV3R-i1ddu-s77S1earNzHnAOOvjzb1Zvm-Da3SE-oftK1xHGtxyhzdvrZv6R5J_vi_ksT4zKVMKZqoiVVhqutNVSMzBVlaZSqCmFklDDiZSgSmGpEkJbKymVprSiFKmFjI-QuM6e_FF3P7qui2NwBx26gpLi4qS4OSnOToqLkx7jV8yEJsYA1b-oXyg7akQ | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.22214/ijraset.2025.67098 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2321-9653 | 
    
| EndPage | 1379 | 
    
| ExternalDocumentID | 10.22214/ijraset.2025.67098 10_22214_ijraset_2025_67098  | 
    
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION FRP M~E ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c898-328f0d5d5c38ada5a2ecff7754861eb01c3055e8b4d1844add5115cbd4b47de93 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2321-9653 | 
    
| IngestDate | Tue Aug 19 23:34:09 EDT 2025 Wed Oct 01 06:48:05 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | false | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c898-328f0d5d5c38ada5a2ecff7754861eb01c3055e8b4d1844add5115cbd4b47de93 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.22214/ijraset.2025.67098 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | unpaywall_primary_10_22214_ijraset_2025_67098 crossref_primary_10_22214_ijraset_2025_67098  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-2-28 | 
    
| PublicationDateYYYYMMDD | 2025-02-28 | 
    
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-2-28 day: 28  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International journal for research in applied science and engineering technology | 
    
| PublicationYear | 2025 | 
    
| SSID | ssj0003212205 | 
    
| Score | 1.9034905 | 
    
| Snippet | In the entertainment industry, predicting the success of a movie is a crucial task. With advancements in technology, machine learning has emerged as a powerful... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Index Database  | 
    
| StartPage | 1373 | 
    
| Title | Movie Success Prediction System Using Python and Machine Learning Algorithms | 
    
| URI | https://doi.org/10.22214/ijraset.2025.67098 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2321-9653 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003212205 issn: 2321-9653 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeD2w6e_IGKEx05eDRzbZIuOQ7ZGGLHwA3mqeRX53R2o1uRefBvN2mrqCDMewrl2zTvPfJ9nwfApaIEY8EpUnGgEKEcI86pRpIyoX2hSKBc73A4CPpjcjuhk5Kz7Xphvt3f28jlkevZU2qPc-d69GnTwcZYBdQCahPvKqiNB8POQz4-zhkNAooLrtBfT_6IPbtZshSbVzGffwsovf2iU3uVcwidj-S5ma1lU739ojRu-a4HYK9MLGGn2AmHYMckR-AuXNi4B--zfCwiHKbuWsZ9CliQymHuGIDDjSMIQJFoGObmSgNL7uoUdubTRTpbP76sjsGo1x3d9FE5PwEpxhnCPotbmmqqsNVdUOEbFceOeMcCz8iWpxztyzBJtC3ziD3obPJFldREkrY2HJ-AarJIzCmAWBqbKLWNZNj-9NwTnNlyVstACoEpN3Vw9SlstCwoGZGtLnJVolKVyKkS5arUAfoSf5v1Z_9cfw6q6zQzFzZdWMsGqITv3Ua5WT4Ae7XANg | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3bS8MwFMaDbg8-eUHFiUoefDRzbS5LHoc4hjgZuMF8Krl1Tmc3uhaZf71JW2UKwnxPoXxNc84h3_kdAC41JRhLQZGOmUaECoyEoAYpyqUJpSZM-97h_gPrjcjdmI4rzrbvhVm7v3eRKyDX05fUHefe9RjSpoeN8W1QZ9Ql3jVQHz0MOk_F-DhvNGAUl1yhv578EXt28mQhV-9yNlsLKN29slN7WXAIvY_ktZlnqqk_flEaN3zXfbBbJZawU-6EA7Blk0Nw35-7uAcf82IsIhyk_lrGfwpYksph4RiAg5UnCECZGNgvzJUWVtzVCezMJvN0mj2_LY_AsHs7vOmhan4C0lxwhEMetww1VGOnu6QytDqOPfGOs8CqVqA97ctyRYwr84g76FzyRbUyRJG2sQIfg1oyT-wJgFhZlyi1reLY_fQikIK7ctYopqTEVNgGuPoSNlqUlIzIVReFKlGlSuRViQpVGgB9i7_J-tN_rj8DtSzN7blLFzJ1UW2TT_78vwU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Movie+Success+Prediction+System+Using+Python+and+Machine+Learning+Algorithms&rft.jtitle=International+journal+for+research+in+applied+science+and+engineering+technology&rft.au=Singh%2C+Mohit&rft.date=2025-02-28&rft.issn=2321-9653&rft.eissn=2321-9653&rft.volume=13&rft.issue=2&rft.spage=1373&rft.epage=1379&rft_id=info:doi/10.22214%2Fijraset.2025.67098&rft.externalDBID=n%2Fa&rft.externalDocID=10_22214_ijraset_2025_67098 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2321-9653&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2321-9653&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2321-9653&client=summon |