The complete genome of an individual by massively parallel DNA sequencing

One man's genome Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such technology has now been used to analyse much of the genetic code of a single individual — who happens to be James D. Watson. The procedure,...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 452; no. 7189; pp. 872 - 876
Main Authors Wheeler, David A., Srinivasan, Maithreyan, Egholm, Michael, Shen, Yufeng, Chen, Lei, McGuire, Amy, He, Wen, Chen, Yi-Ju, Makhijani, Vinod, Roth, G. Thomas, Gomes, Xavier, Tartaro, Karrie, Niazi, Faheem, Turcotte, Cynthia L., Irzyk, Gerard P., Lupski, James R., Chinault, Craig, Song, Xing-zhi, Liu, Yue, Yuan, Ye, Nazareth, Lynne, Qin, Xiang, Muzny, Donna M., Margulies, Marcel, Weinstock, George M., Gibbs, Richard A., Rothberg, Jonathan M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.04.2008
Nature Publishing
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
1476-4679
DOI10.1038/nature06884

Cover

Abstract One man's genome Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such technology has now been used to analyse much of the genetic code of a single individual — who happens to be James D. Watson. The procedure, which involves no cloning of the genomic DNA, makes use of the latest 454 parallel sequencing instrument. The sequence cost less than US$1 million (and a mere two months) to produce, compared to the approximately US$100 million reported for sequencing Craig Venter's genome by traditional methods. Still a major undertaking, but another step towards the goal of 'personalized genomes' and 'personalized medicine'. The DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels is reported. The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of ‘genomic medicine’. However, the formidable size of the diploid human genome 1 , approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2–40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual 2 by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of ‘personalized genome sequencing’.
AbstractList The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'. [PUBLICATION ABSTRACT]
The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre- size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next- generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.
The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.
The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.
One man's genome Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such technology has now been used to analyse much of the genetic code of a single individual — who happens to be James D. Watson. The procedure, which involves no cloning of the genomic DNA, makes use of the latest 454 parallel sequencing instrument. The sequence cost less than US$1 million (and a mere two months) to produce, compared to the approximately US$100 million reported for sequencing Craig Venter's genome by traditional methods. Still a major undertaking, but another step towards the goal of 'personalized genomes' and 'personalized medicine'. The DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels is reported. The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of ‘genomic medicine’. However, the formidable size of the diploid human genome 1 , approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2–40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual 2 by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of ‘personalized genome sequencing’.
Audience Academic
Author Makhijani, Vinod
Margulies, Marcel
Muzny, Donna M.
Rothberg, Jonathan M.
Roth, G. Thomas
Egholm, Michael
Weinstock, George M.
Turcotte, Cynthia L.
Liu, Yue
Gomes, Xavier
He, Wen
McGuire, Amy
Lupski, James R.
Shen, Yufeng
Tartaro, Karrie
Yuan, Ye
Nazareth, Lynne
Gibbs, Richard A.
Chen, Lei
Song, Xing-zhi
Srinivasan, Maithreyan
Niazi, Faheem
Chen, Yi-Ju
Irzyk, Gerard P.
Wheeler, David A.
Qin, Xiang
Chinault, Craig
Author_xml – sequence: 1
  givenname: David A.
  surname: Wheeler
  fullname: Wheeler, David A.
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 2
  givenname: Maithreyan
  surname: Srinivasan
  fullname: Srinivasan, Maithreyan
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 3
  givenname: Michael
  surname: Egholm
  fullname: Egholm, Michael
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 4
  givenname: Yufeng
  surname: Shen
  fullname: Shen, Yufeng
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 5
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 6
  givenname: Amy
  surname: McGuire
  fullname: McGuire, Amy
  organization: Center for Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA
– sequence: 7
  givenname: Wen
  surname: He
  fullname: He, Wen
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 8
  givenname: Yi-Ju
  surname: Chen
  fullname: Chen, Yi-Ju
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 9
  givenname: Vinod
  surname: Makhijani
  fullname: Makhijani, Vinod
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 10
  givenname: G. Thomas
  surname: Roth
  fullname: Roth, G. Thomas
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 11
  givenname: Xavier
  surname: Gomes
  fullname: Gomes, Xavier
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 12
  givenname: Karrie
  surname: Tartaro
  fullname: Tartaro, Karrie
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA, Present addresses: Molecular Imaging Systems, Carestream Health, Inc., 4 Science Park, New Haven, Connecticut 06511, USA (K.T.); Rothberg Institute for Childhood Diseases, 530 Whitfield Street, Guilford, Connecticut 06437, USA (J.M.R.)
– sequence: 13
  givenname: Faheem
  surname: Niazi
  fullname: Niazi, Faheem
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 14
  givenname: Cynthia L.
  surname: Turcotte
  fullname: Turcotte, Cynthia L.
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 15
  givenname: Gerard P.
  surname: Irzyk
  fullname: Irzyk, Gerard P.
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 16
  givenname: James R.
  surname: Lupski
  fullname: Lupski, James R.
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA, Texas Children’s Hospital, Texas Medical Center, Houston, Texas 77030, USA
– sequence: 17
  givenname: Craig
  surname: Chinault
  fullname: Chinault, Craig
  organization: Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA
– sequence: 18
  givenname: Xing-zhi
  surname: Song
  fullname: Song, Xing-zhi
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 19
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 20
  givenname: Ye
  surname: Yuan
  fullname: Yuan, Ye
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 21
  givenname: Lynne
  surname: Nazareth
  fullname: Nazareth, Lynne
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 22
  givenname: Xiang
  surname: Qin
  fullname: Qin, Xiang
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 23
  givenname: Donna M.
  surname: Muzny
  fullname: Muzny, Donna M.
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
– sequence: 24
  givenname: Marcel
  surname: Margulies
  fullname: Margulies, Marcel
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA
– sequence: 25
  givenname: George M.
  surname: Weinstock
  fullname: Weinstock, George M.
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA
– sequence: 26
  givenname: Richard A.
  surname: Gibbs
  fullname: Gibbs, Richard A.
  email: jonathan.rothberg@gmail.com
  organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA
– sequence: 27
  givenname: Jonathan M.
  surname: Rothberg
  fullname: Rothberg, Jonathan M.
  email: agibbs@bcm.tmc.edu
  organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA, Present addresses: Molecular Imaging Systems, Carestream Health, Inc., 4 Science Park, New Haven, Connecticut 06511, USA (K.T.); Rothberg Institute for Childhood Diseases, 530 Whitfield Street, Guilford, Connecticut 06437, USA (J.M.R.)
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20246928$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18421352$$D View this record in MEDLINE/PubMed
BookMark eNqNk91v0zAUxSM0xLrBE-8oQhoIQYftOLbzWJWvStOQoIjHyHWviyfHyexk0P8eT61oOrW0yoOl6HfPPTr33rPkxNUOkuQ5RpcYZeK9k23nATEh6KNkgClnQ8oEP0kGCBExRCJjp8lZCDcIoRxz-iQ5xYISnOVkkEymvyBVddVYaCFdgKsrSGudSpcaNzd3Zt5Jm86WaSVDMHdgl2kjvbQWbPrhepQGuO3AKeMWT5PHWtoAz9bvefLj08fp-Mvw6uvnyXh0NVSiyNvhjAhNNKKaEshYxoAzkjONQGV6pjkR0RjmCnHOCcVIzPEsZ5RluWaUFFmRnSfvVrqda-Tyd7RSNt5U0i9LjMr7RMpeIhF_vcIbX0eroS0rExRYKx3UXShje8JFkWWRfPVfkhUY5wXjB0GCBI1TwBF8-QC8qTvvYjqRoZQRRu_bDlfQQloojdN166WKk4AYc5y0NvH3CBcZ5ZSw_FheFJyKnPONiS1eNea27Ivuh3pKlzug-M2hMmqn1eMKeh3ebBVEpoU_7UJ2IZST79-2xQ-yPd23-9nR9Of4elv5CLqn_WI95G5WwXyzjOsbi8DFGpBBSau9jPcS_nEEEcoKIjZtla9D8KAP7DV-QCvTytZEr14au6dmfTohKrsF-M0-7sL_AghUWnY
CODEN NATUAS
CitedBy_id crossref_primary_10_1007_s12284_009_9025_z
crossref_primary_10_1377_hlthaff_27_6_1612
crossref_primary_10_1186_s13059_020_02107_y
crossref_primary_10_1161_CIRCRESAHA_113_300939
crossref_primary_10_1016_j_conb_2008_08_010
crossref_primary_10_1146_annurev_genom_082908_150112
crossref_primary_10_1002_mma_6631
crossref_primary_10_1016_j_gene_2011_11_022
crossref_primary_10_1186_1471_2164_10_547
crossref_primary_10_1111_eva_12178
crossref_primary_10_1016_j_coi_2010_08_016
crossref_primary_10_1007_s13577_011_0019_y
crossref_primary_10_7717_peerj_13286
crossref_primary_10_1007_s12551_021_00857_y
crossref_primary_10_1080_19585969_2022_12130781
crossref_primary_10_1038_nrg2878
crossref_primary_10_1186_s12859_018_2077_6
crossref_primary_10_1016_j_trsl_2015_10_005
crossref_primary_10_1038_nbt_1561
crossref_primary_10_1093_nar_gks800
crossref_primary_10_1073_pnas_0914609107
crossref_primary_10_1101_gr_153346_112
crossref_primary_10_1038_ejhg_2011_103
crossref_primary_10_1111_j_1749_6632_2011_06350_x
crossref_primary_10_1093_nar_gkp531
crossref_primary_10_1186_1471_2105_12_210
crossref_primary_10_5528_wjtm_v3_i3_119
crossref_primary_10_1186_s41241_019_0075_2
crossref_primary_10_1002_chem_201301868
crossref_primary_10_1177_2040620711403028
crossref_primary_10_1038_nrg2626
crossref_primary_10_1126_science_1181498
crossref_primary_10_1097_MD_0000000000013521
crossref_primary_10_1007_s00268_008_9836_x
crossref_primary_10_1038_nbt_1596
crossref_primary_10_1016_j_bpg_2025_101988
crossref_primary_10_1186_1471_2164_11_140
crossref_primary_10_1038_nbt_1593
crossref_primary_10_1016_j_ab_2011_08_033
crossref_primary_10_1007_s10764_013_9721_9
crossref_primary_10_1007_s11427_011_4232_4
crossref_primary_10_1186_1755_8794_4_25
crossref_primary_10_1016_j_jshs_2022_09_002
crossref_primary_10_1016_j_critrevonc_2015_05_017
crossref_primary_10_1101_gr_229401_117
crossref_primary_10_1101_gr_096388_109
crossref_primary_10_1051_medsci_2010266_7579
crossref_primary_10_1038_nmeth0810_575
crossref_primary_10_1128_microbiolspec_TBS_0012_2012
crossref_primary_10_1038_nbt_1583
crossref_primary_10_1002_pmic_201500396
crossref_primary_10_1186_s12864_021_07816_7
crossref_primary_10_1183_09031936_00042409
crossref_primary_10_1002_ajmg_a_33626
crossref_primary_10_1093_bib_bbq016
crossref_primary_10_3389_fgene_2014_00466
crossref_primary_10_1002_em_21943
crossref_primary_10_1007_s10709_008_9326_y
crossref_primary_10_1038_jhg_2012_91
crossref_primary_10_1038_nrg2841
crossref_primary_10_1186_1471_2164_12_116
crossref_primary_10_1186_s12864_021_07686_z
crossref_primary_10_1038_s41588_020_0651_0
crossref_primary_10_1007_s40484_016_0060_7
crossref_primary_10_1002_humu_21259
crossref_primary_10_1016_j_gene_2011_12_042
crossref_primary_10_1111_j_1462_2920_2009_01941_x
crossref_primary_10_1038_ng_691
crossref_primary_10_1017_S0016672309990310
crossref_primary_10_1016_j_imbio_2011_07_023
crossref_primary_10_1155_2016_6329217
crossref_primary_10_1016_j_eururo_2009_11_043
crossref_primary_10_1016_j_fsigen_2015_02_002
crossref_primary_10_1186_1471_2164_12_103
crossref_primary_10_1242_dmm_049484
crossref_primary_10_1039_C6RA10008B
crossref_primary_10_1038_nbt_1523
crossref_primary_10_1002_bies_200900181
crossref_primary_10_1080_07391102_2014_968624
crossref_primary_10_1038_s41588_022_01128_6
crossref_primary_10_1093_molbev_msq287
crossref_primary_10_1186_gb_2009_10_6_r60
crossref_primary_10_1038_ng_680
crossref_primary_10_1200_JCO_2012_45_3753
crossref_primary_10_1186_1471_2156_14_6
crossref_primary_10_1002_humu_21033
crossref_primary_10_1186_1755_8794_2_39
crossref_primary_10_1371_journal_pone_0141105
crossref_primary_10_1002_em_20630
crossref_primary_10_1002_humu_21276
crossref_primary_10_1007_s12041_013_0313_4
crossref_primary_10_1016_j_gde_2009_04_010
crossref_primary_10_1101_gr_091868_109
crossref_primary_10_1016_j_yamp_2019_08_002
crossref_primary_10_1016_j_nbt_2011_11_016
crossref_primary_10_12688_f1000research_19630_1
crossref_primary_10_18632_oncotarget_3758
crossref_primary_10_12688_f1000research_19630_2
crossref_primary_10_1016_j_heliyon_2024_e38826
crossref_primary_10_1038_ng_684
crossref_primary_10_4137_CIN_S30793
crossref_primary_10_1101_gr_091991_109
crossref_primary_10_1002_humu_21260
crossref_primary_10_1007_s11105_011_0291_8
crossref_primary_10_1093_bioinformatics_bty653
crossref_primary_10_1186_1471_2105_12_406
crossref_primary_10_1101_gr_077065_108
crossref_primary_10_1002_0471142727_mb2123s99
crossref_primary_10_1007_s13238_010_0065_3
crossref_primary_10_1186_1471_2164_12_375
crossref_primary_10_1534_genetics_111_134874
crossref_primary_10_1007_s00439_016_1667_5
crossref_primary_10_1038_nmeth_1451
crossref_primary_10_1038_ejhg_2012_198
crossref_primary_10_1038_nnano_2015_320
crossref_primary_10_1534_genetics_110_124776
crossref_primary_10_1016_j_immbio_2012_12_002
crossref_primary_10_1038_ng_437
crossref_primary_10_1182_asheducation_2013_1_316
crossref_primary_10_4236_jasmi_2013_32012
crossref_primary_10_1371_journal_pgen_1000249
crossref_primary_10_1155_2012_876234
crossref_primary_10_1002_ajmg_a_34357
crossref_primary_10_1042_BST0361091
crossref_primary_10_1089_dna_2015_2897
crossref_primary_10_1038_452819a
crossref_primary_10_1101_gr_133652_111
crossref_primary_10_1186_gb_2009_10_2_r23
crossref_primary_10_3390_cancers7030869
crossref_primary_10_1016_j_repc_2013_02_006
crossref_primary_10_1371_journal_pone_0064036
crossref_primary_10_1038_nbt_1739
crossref_primary_10_1016_j_cell_2010_05_020
crossref_primary_10_1007_s11883_011_0168_1
crossref_primary_10_1016_j_cell_2010_05_021
crossref_primary_10_1038_nbt_1975
crossref_primary_10_2217_pme_09_63
crossref_primary_10_1586_erm_12_10
crossref_primary_10_1038_nature08516
crossref_primary_10_12677_hjcb_2013_32002
crossref_primary_10_1098_rsif_2008_0341
crossref_primary_10_1016_j_nbt_2008_12_009
crossref_primary_10_1186_s40035_017_0098_0
crossref_primary_10_1093_nar_gkr342
crossref_primary_10_4168_aair_2013_5_5_258
crossref_primary_10_1371_journal_pcbi_1000567
crossref_primary_10_1186_s12864_022_08437_4
crossref_primary_10_1136_amiajnl_2011_000737
crossref_primary_10_1186_1471_2105_11_269
crossref_primary_10_1016_j_aca_2014_07_045
crossref_primary_10_1016_j_ygeno_2015_11_003
crossref_primary_10_1002_humu_21602
crossref_primary_10_1073_pnas_1112567108
crossref_primary_10_1002_humu_21601
crossref_primary_10_1007_s12263_010_0186_6
crossref_primary_10_1016_j_semcdb_2011_11_003
crossref_primary_10_3389_fphar_2020_01177
crossref_primary_10_1161_CIRCRESAHA_110_236067
crossref_primary_10_1111_cge_12714
crossref_primary_10_1016_S0140_6736_10_60452_7
crossref_primary_10_1111_j_1467_7652_2009_00406_x
crossref_primary_10_1134_S000368381007001X
crossref_primary_10_3389_fnmol_2022_905328
crossref_primary_10_15406_jpnc_2019_09_00402
crossref_primary_10_2217_14622416_10_2_213
crossref_primary_10_1007_s13631_014_0066_y
crossref_primary_10_1007_s12237_009_9182_8
crossref_primary_10_1038_ng_647
crossref_primary_10_1007_s12041_014_0451_3
crossref_primary_10_1016_j_trsl_2011_08_001
crossref_primary_10_1111_j_1755_0998_2011_03098_x
crossref_primary_10_1002_humu_22965
crossref_primary_10_1042_ETLS20210213
crossref_primary_10_1038_onc_2010_117
crossref_primary_10_1038_ejhg_2013_46
crossref_primary_10_1097_HJH_0b013e328341d0fd
crossref_primary_10_1093_hmg_ddv146
crossref_primary_10_1007_s13744_021_00895_x
crossref_primary_10_1146_annurev_animal_020518_115344
crossref_primary_10_1248_yakushi_128_1547
crossref_primary_10_1007_s11825_010_0216_1
crossref_primary_10_2217_pme_09_55
crossref_primary_10_1016_j_atg_2015_08_005
crossref_primary_10_1101_gr_102921_109
crossref_primary_10_1371_journal_pone_0174696
crossref_primary_10_1016_j_patbio_2009_09_008
crossref_primary_10_1586_erm_12_20
crossref_primary_10_1021_acs_jpcc_8b00241
crossref_primary_10_1186_s13059_019_1774_4
crossref_primary_10_1038_ng_872
crossref_primary_10_1101_gr_112094_110
crossref_primary_10_1101_gr_156075_113
crossref_primary_10_1265_jjh_65_37
crossref_primary_10_1017_S0029665112002856
crossref_primary_10_1002_ijch_201900133
crossref_primary_10_1101_gr_113555_110
crossref_primary_10_1007_s11538_012_9744_y
crossref_primary_10_1101_gr_119792_110
crossref_primary_10_1038_s41563_018_0241_z
crossref_primary_10_3389_fncel_2019_00118
crossref_primary_10_1021_ac102666n
crossref_primary_10_1093_nar_gku642
crossref_primary_10_3390_ht6030010
crossref_primary_10_1007_s10482_010_9465_x
crossref_primary_10_1038_s41598_017_09287_x
crossref_primary_10_1038_nature07485
crossref_primary_10_1038_nature07484
crossref_primary_10_1186_1471_2105_11_471
crossref_primary_10_3389_fped_2020_00373
crossref_primary_10_3327_jaesjb_54_8_521
crossref_primary_10_1038_nature08795
crossref_primary_10_1056_NEJMoa0908094
crossref_primary_10_1101_gr_088013_108
crossref_primary_10_3389_fmars_2020_606601
crossref_primary_10_5504_BBEQ_2013_0099
crossref_primary_10_1111_j_1478_3231_2009_01974_x
crossref_primary_10_3109_0284186X_2010_500297
crossref_primary_10_1098_rstb_2010_0259
crossref_primary_10_1186_1471_2156_11_19
crossref_primary_10_1186_gb_2009_10_3_r32
crossref_primary_10_3109_07388551_2015_1083939
crossref_primary_10_1016_j_ymeth_2012_07_021
crossref_primary_10_3389_fgene_2015_00055
crossref_primary_10_1002_0471142905_hg0611s69
crossref_primary_10_3390_ht6030001
crossref_primary_10_1586_erm_09_41
crossref_primary_10_1016_S0140_6736_10_60598_3
crossref_primary_10_1002_pd_2129
crossref_primary_10_1007_s11032_009_9357_9
crossref_primary_10_1038_srep20291
crossref_primary_10_1007_s00103_014_2096_z
crossref_primary_10_1016_j_aquatox_2013_04_004
crossref_primary_10_1007_s12041_012_0129_7
crossref_primary_10_1089_cmb_2011_0171
crossref_primary_10_1007_s00335_009_9187_4
crossref_primary_10_1016_j_bios_2022_114486
crossref_primary_10_1007_s11280_017_0518_1
crossref_primary_10_1371_journal_pgen_1001111
crossref_primary_10_1007_s10142_014_0363_6
crossref_primary_10_1038_aja_2011_51
crossref_primary_10_1016_j_tree_2008_11_004
crossref_primary_10_1161_CIRCRESAHA_110_226258
crossref_primary_10_1586_erm_09_50
crossref_primary_10_1093_bib_bbv084
crossref_primary_10_3390_ijms23073976
crossref_primary_10_1038_nature07446
crossref_primary_10_1016_j_csbj_2019_11_002
crossref_primary_10_1002_cplu_201402194
crossref_primary_10_1093_nar_gkr363
crossref_primary_10_1089_gtmb_2012_0464
crossref_primary_10_1371_journal_pone_0065188
crossref_primary_10_1128_genomeA_00489_16
crossref_primary_10_1161_CIRCRESAHA_111_249409
crossref_primary_10_1093_bioinformatics_btp208
crossref_primary_10_1194_jlr_R800081_JLR200
crossref_primary_10_1016_j_jbiotec_2010_09_945
crossref_primary_10_1038_ncomms1130
crossref_primary_10_3109_10408361003633318
crossref_primary_10_1016_j_cell_2017_01_037
crossref_primary_10_1101_gr_092197_109
crossref_primary_10_1038_ejhg_2008_198
crossref_primary_10_1161_CIRCGENETICS_110_958322
crossref_primary_10_3928_01477447_20160304_03
crossref_primary_10_1128_genomeA_01301_17
crossref_primary_10_1002_elps_200800456
crossref_primary_10_1007_s12265_009_9132_7
crossref_primary_10_1038_stemcells_2008_85
crossref_primary_10_1186_s12885_019_5845_4
crossref_primary_10_3892_mmr_2014_2349
crossref_primary_10_1016_j_rhum_2021_09_013
crossref_primary_10_1161_CIR_0b013e31825b07f8
crossref_primary_10_1515_labmed_2018_0054
crossref_primary_10_1119_1_4869198
crossref_primary_10_1016_j_tibtech_2008_08_003
crossref_primary_10_1177_1745691616635594
crossref_primary_10_1586_erm_11_3
crossref_primary_10_1016_j_ajhg_2010_07_002
crossref_primary_10_1093_bioinformatics_btu805
crossref_primary_10_1093_dnares_dss011
crossref_primary_10_1016_j_cell_2011_05_025
crossref_primary_10_1016_j_fsigen_2013_03_010
crossref_primary_10_1002_humu_22096
crossref_primary_10_4236_ojmp_2014_32019
crossref_primary_10_1186_1471_2105_9_239
crossref_primary_10_1186_1471_2164_13_417
crossref_primary_10_1186_1471_2164_13_414
crossref_primary_10_3389_fsysb_2022_940321
crossref_primary_10_1101_gr_157602_113
crossref_primary_10_1101_gad_2017311
crossref_primary_10_1161_CIRCGENETICS_110_959437
crossref_primary_10_1128_EC_00123_10
crossref_primary_10_1186_gm13
crossref_primary_10_2217_pme_13_41
crossref_primary_10_1101_gr_092619_109
crossref_primary_10_3390_diagnostics3010126
crossref_primary_10_3390_genes15040443
crossref_primary_10_1093_nar_gkn939
crossref_primary_10_1186_1471_2164_15_255
crossref_primary_10_1016_j_preteyeres_2017_03_003
crossref_primary_10_1186_s12881_017_0465_9
crossref_primary_10_1016_j_ajhg_2013_05_009
crossref_primary_10_1016_j_ajhg_2012_12_005
crossref_primary_10_1016_j_bbadis_2012_05_018
crossref_primary_10_1093_bioinformatics_btp373
crossref_primary_10_1101_gr_103499_109
crossref_primary_10_1371_journal_pcbi_1000752
crossref_primary_10_1002_polb_22284
crossref_primary_10_1007_s00268_010_0941_2
crossref_primary_10_1016_j_fsigen_2024_103156
crossref_primary_10_1016_j_brainresbull_2011_11_015
crossref_primary_10_1088_0957_4484_26_7_074003
crossref_primary_10_1016_j_tig_2009_02_002
crossref_primary_10_1093_bfgp_els037
crossref_primary_10_1101_gr_101360_109
crossref_primary_10_1093_nar_gkn906
crossref_primary_10_1111_j_1365_294X_2008_03954_x
crossref_primary_10_2217_pgs_15_5
crossref_primary_10_2183_pjab_93_042
crossref_primary_10_1186_1755_8166_7_52
crossref_primary_10_1038_nbt_4060
crossref_primary_10_1016_j_jmoldx_2023_12_003
crossref_primary_10_1093_bioinformatics_btq695
crossref_primary_10_1371_journal_pone_0013857
crossref_primary_10_1101_gr_148718_112
crossref_primary_10_1186_1756_0500_4_338
crossref_primary_10_1038_ejhg_2009_196
crossref_primary_10_1002_ajmg_a_38350
crossref_primary_10_1093_bioinformatics_btq215
crossref_primary_10_1093_bioinformatics_btq214
crossref_primary_10_1007_s13577_019_00286_w
crossref_primary_10_1007_s10577_024_09746_y
crossref_primary_10_1093_bioinformatics_btr303
crossref_primary_10_1007_s00268_010_0954_x
crossref_primary_10_1093_bioinformatics_btr305
crossref_primary_10_1155_2022_8077664
crossref_primary_10_1515_cclm_2019_0657
crossref_primary_10_1186_1471_2164_15_235
crossref_primary_10_1007_s00268_008_9861_9
crossref_primary_10_1111_j_1365_294X_2010_04650_x
crossref_primary_10_1134_S0026893309020095
crossref_primary_10_1093_bioinformatics_btt512
crossref_primary_10_1038_srep04666
crossref_primary_10_1186_s12864_015_1481_9
crossref_primary_10_1002_ajmg_b_32223
crossref_primary_10_2217_17520363_2_3_209
crossref_primary_10_1093_bioinformatics_btp394
crossref_primary_10_1186_gb_2013_14_10_r120
crossref_primary_10_1038_ncomms2502
crossref_primary_10_1093_nar_gku361
crossref_primary_10_1177_0300985810387939
crossref_primary_10_3390_ht6010001
crossref_primary_10_1038_nature10242
crossref_primary_10_1093_bioinformatics_btp399
crossref_primary_10_1586_erm_13_1
crossref_primary_10_1007_s00439_010_0920_6
crossref_primary_10_1038_nbt0909_820
crossref_primary_10_1038_nbt_2065
crossref_primary_10_1161_CIRCRESAHA_110_229260
crossref_primary_10_1071_RD09215
crossref_primary_10_1093_bib_bbu047
crossref_primary_10_1134_S1022795410040022
crossref_primary_10_1016_j_bdq_2015_04_003
crossref_primary_10_1007_s10059_013_0127_5
crossref_primary_10_1089_cmb_2009_0185
crossref_primary_10_1016_j_jsb_2010_09_009
crossref_primary_10_1038_453281a
crossref_primary_10_1186_1471_2105_10_80
crossref_primary_10_1016_j_tibtech_2008_07_003
crossref_primary_10_1101_gr_204255_116
crossref_primary_10_1038_464670a
crossref_primary_10_1089_crispr_2017_0016
crossref_primary_10_3390_genes9080377
crossref_primary_10_1371_journal_pone_0018055
crossref_primary_10_1101_pdb_top62
crossref_primary_10_1101_gr_133702_111
crossref_primary_10_1002_cphg_49
crossref_primary_10_2144_000113136
crossref_primary_10_1016_j_mimet_2011_04_006
crossref_primary_10_1002_ajmg_b_32204
crossref_primary_10_1093_nar_gkv677
crossref_primary_10_1534_genetics_113_153049
crossref_primary_10_1371_journal_pone_0060572
crossref_primary_10_3390_genes3030545
crossref_primary_10_1093_bioinformatics_btq027
crossref_primary_10_1097_HCO_0b013e328352207e
crossref_primary_10_1186_gb_2010_11_9_r91
crossref_primary_10_15446_abc_v21n1Supl_51233
crossref_primary_10_1007_s00439_011_1001_1
crossref_primary_10_1161_CIRCRESAHA_116_308830
crossref_primary_10_1186_1756_0500_5_27
crossref_primary_10_2217_epi_09_7
crossref_primary_10_3389_frmbi_2022_1049688
crossref_primary_10_1101_gr_136739_111
crossref_primary_10_1038_456049a
crossref_primary_10_1080_03014460_2021_1944312
crossref_primary_10_1159_000370213
crossref_primary_10_1007_s11906_008_0091_1
crossref_primary_10_1093_bioinformatics_btr344
crossref_primary_10_1111_bjh_16249
crossref_primary_10_1016_j_nmd_2022_07_401
crossref_primary_10_1093_bioinformatics_btp166
crossref_primary_10_1007_s00216_012_5914_x
crossref_primary_10_1038_hdy_2010_152
crossref_primary_10_1097_JBR_0000000000000028
crossref_primary_10_1002_0471142727_mb0712s102
crossref_primary_10_1002_humu_20972
crossref_primary_10_1002_ajmg_a_34195
crossref_primary_10_1016_j_jacc_2016_09_968
crossref_primary_10_1038_jhg_2010_19
crossref_primary_10_1007_s10555_013_9429_5
crossref_primary_10_1101_gr_113084_110
crossref_primary_10_1146_annurev_genom_091212_153408
crossref_primary_10_4168_aair_2011_3_4_236
crossref_primary_10_1172_JCI40662
crossref_primary_10_1186_s40104_023_00860_1
crossref_primary_10_1007_s11825_019_0240_8
crossref_primary_10_1210_jc_2013_3690
crossref_primary_10_1007_s00018_014_1772_3
crossref_primary_10_1038_ng_1007
crossref_primary_10_1371_journal_pone_0037104
crossref_primary_10_3390_molecules16010412
crossref_primary_10_2217_pgs_12_72
crossref_primary_10_1038_s42003_021_01681_6
crossref_primary_10_1038_456023a
crossref_primary_10_3390_life12010041
crossref_primary_10_1186_gb_2010_11_8_r82
crossref_primary_10_1080_14737159_2016_1224181
crossref_primary_10_1017_S0140525X11002226
crossref_primary_10_1186_1755_8794_2_29
crossref_primary_10_1371_journal_pone_0060585
crossref_primary_10_1255_ejms_1045
crossref_primary_10_1002_cncr_30581
crossref_primary_10_1186_gb_2010_11_8_r88
crossref_primary_10_2217_14622416_9_6_667
crossref_primary_10_1016_j_jviromet_2013_12_018
crossref_primary_10_1007_s12265_011_9259_1
crossref_primary_10_1093_bioinformatics_bts219
crossref_primary_10_1093_brain_awu356
crossref_primary_10_1111_pbi_12072
crossref_primary_10_1038_nbt_2053
crossref_primary_10_1093_bib_bbae022
crossref_primary_10_1373_clinchem_2014_237461
crossref_primary_10_1093_hmg_ddr599
crossref_primary_10_1007_s10641_010_9628_7
crossref_primary_10_3390_ijms23020651
crossref_primary_10_1002_pst_460
crossref_primary_10_5483_BMBRep_2013_46_6_177
crossref_primary_10_1038_452788b
crossref_primary_10_1101_gr_092072_109
crossref_primary_10_1371_journal_pone_0021400
crossref_primary_10_1073_pnas_0914114107
crossref_primary_10_1371_journal_pgen_1000906
crossref_primary_10_1145_3340286
crossref_primary_10_2217_fon_14_307
crossref_primary_10_1186_gb_2010_11_4_r44
crossref_primary_10_1038_jhg_2010_55
crossref_primary_10_1371_journal_pone_0020794
crossref_primary_10_1134_S0006350910030036
crossref_primary_10_1373_clinchem_2014_225250
crossref_primary_10_3390_genes11090977
crossref_primary_10_1097_ACM_0b013e3181ccbebf
crossref_primary_10_1016_S1673_8527_08_60113_7
crossref_primary_10_1371_journal_pone_0198249
crossref_primary_10_1016_j_febslet_2009_11_050
crossref_primary_10_1016_j_ymeth_2014_10_012
crossref_primary_10_1371_journal_pone_0208901
crossref_primary_10_1186_1471_2164_11_88
crossref_primary_10_1016_j_cca_2014_09_034
crossref_primary_10_1007_s12274_022_4632_8
crossref_primary_10_1186_1471_2164_13_208
crossref_primary_10_1016_j_ymeth_2009_05_014
crossref_primary_10_1016_j_cub_2014_01_018
crossref_primary_10_1038_scibx_2009_3
crossref_primary_10_1016_j_ygeno_2012_10_004
crossref_primary_10_1186_1471_2164_14_248
crossref_primary_10_1016_j_nurpra_2010_06_007
crossref_primary_10_1111_j_1399_0004_2009_01342_x
crossref_primary_10_3390_jpm6020014
crossref_primary_10_1016_j_jbiotec_2013_04_006
crossref_primary_10_1371_journal_pone_0038470
crossref_primary_10_1007_s40618_014_0149_7
crossref_primary_10_1007_s13580_019_00160_6
crossref_primary_10_1093_annonc_mdq664
crossref_primary_10_17116_repro20232904168
crossref_primary_10_3390_cancers17040682
crossref_primary_10_1186_gb_2010_11_5_r52
crossref_primary_10_1007_s10142_012_0289_9
crossref_primary_10_1038_nbt_3309
crossref_primary_10_12968_jokc_2021_6_3_112
crossref_primary_10_1101_gr_088633_108
crossref_primary_10_1146_annurev_med_051010_162644
crossref_primary_10_1002_widm_54
crossref_primary_10_5483_BMBRep_2008_41_11_757
crossref_primary_10_1093_bioinformatics_bts019
crossref_primary_10_1016_j_tig_2010_04_002
crossref_primary_10_4161_mabs_3_1_14169
crossref_primary_10_7868_S0016675817010027
crossref_primary_10_1101_gr_095026_109
crossref_primary_10_1101_gr_100040_109
crossref_primary_10_5352_JLS_2014_24_11_1258
crossref_primary_10_1038_srep17560
crossref_primary_10_1007_s00439_011_1021_x
crossref_primary_10_1093_database_baw124
crossref_primary_10_1016_j_jaci_2010_05_025
crossref_primary_10_1098_rsos_150565
crossref_primary_10_1111_j_1467_2979_2008_00306_x
crossref_primary_10_1126_scitranslmed_3001756
crossref_primary_10_3390_nu13010201
crossref_primary_10_1101_gr_115907_110
crossref_primary_10_1038_ng_2311
crossref_primary_10_1093_bioinformatics_btt362
crossref_primary_10_1371_journal_pone_0009976
crossref_primary_10_1093_gigascience_giaa123
crossref_primary_10_1016_j_ajhg_2013_04_018
crossref_primary_10_1093_bioinformatics_btq098
crossref_primary_10_1186_gb_2011_12_8_125
crossref_primary_10_1038_s41598_019_38996_8
crossref_primary_10_1038_nrd3200
crossref_primary_10_1146_annurev_genom_082509_141802
crossref_primary_10_3390_biology1030460
crossref_primary_10_1186_s12864_016_2824_x
crossref_primary_10_4161_gmic_1_6_13608
crossref_primary_10_1056_NEJMe0903433
crossref_primary_10_1186_1471_2164_13_440
crossref_primary_10_1016_j_jbspin_2021_105319
crossref_primary_10_1371_journal_pone_0004012
crossref_primary_10_1016_j_cvsm_2014_01_006
crossref_primary_10_1093_hmg_ddq400
crossref_primary_10_1371_journal_pgen_1002144
crossref_primary_10_3389_fcell_2020_00728
crossref_primary_10_3389_fgene_2022_931996
crossref_primary_10_5363_tits_16_7_84
crossref_primary_10_1016_j_imu_2020_100296
crossref_primary_10_1186_1471_2105_11_318
crossref_primary_10_1098_rsfs_2019_0049
crossref_primary_10_1371_journal_pone_0016486
crossref_primary_10_1093_molbev_msq198
crossref_primary_10_1007_s00125_009_1324_9
crossref_primary_10_1007_s10741_009_9138_x
crossref_primary_10_1101_cshperspect_a034579
crossref_primary_10_1016_j_pedobi_2008_09_001
crossref_primary_10_1007_s00439_011_0964_2
crossref_primary_10_1016_j_prp_2011_11_001
crossref_primary_10_1016_j_ajhg_2013_02_006
crossref_primary_10_1186_1471_2164_11_469
crossref_primary_10_1021_acs_analchem_6b02117
crossref_primary_10_1016_j_mcp_2011_08_005
crossref_primary_10_1016_j_margen_2015_05_006
crossref_primary_10_1056_NEJMra0808700
crossref_primary_10_1016_j_tig_2009_05_005
crossref_primary_10_1038_nrg2999
crossref_primary_10_1159_000500574
crossref_primary_10_1371_journal_pcbi_1000296
crossref_primary_10_1016_j_arr_2009_10_006
crossref_primary_10_1073_pnas_0910672106
crossref_primary_10_1186_1471_2164_11_232
crossref_primary_10_1111_j_1399_0004_2011_01712_x
crossref_primary_10_1586_eem_11_19
crossref_primary_10_1016_j_yamp_2024_06_007
crossref_primary_10_1093_bib_bbr004
crossref_primary_10_1371_journal_pone_0006659
crossref_primary_10_1038_ng_363
crossref_primary_10_1007_s00401_012_1072_7
crossref_primary_10_1007_s00268_010_0949_7
crossref_primary_10_1007_s10545_018_0154_7
crossref_primary_10_1038_nmeth_1527
crossref_primary_10_1667_RR1991_1
crossref_primary_10_1371_journal_pone_0085233
crossref_primary_10_1002_cbic_201402556
crossref_primary_10_1002_slct_202305069
crossref_primary_10_1371_journal_pone_0014288
crossref_primary_10_1007_s13353_011_0057_x
crossref_primary_10_1101_gr_091363_109
crossref_primary_10_1089_gtmb_2016_0413
crossref_primary_10_1016_j_ajhg_2010_11_004
crossref_primary_10_1016_j_bbcan_2009_03_001
crossref_primary_10_1038_s41398_023_02689_8
crossref_primary_10_1016_j_nbt_2012_11_012
crossref_primary_10_1073_pnas_0907112106
crossref_primary_10_1007_s12010_017_2568_3
crossref_primary_10_1111_j_1748_1716_2010_02127_x
crossref_primary_10_1186_s13742_016_0132_7
crossref_primary_10_1373_clinchem_2008_112789
crossref_primary_10_1039_C5LC01533B
crossref_primary_10_1016_j_gdata_2014_11_016
crossref_primary_10_1371_journal_pone_0014278
crossref_primary_10_5213_inj_1632742_371
crossref_primary_10_1002_humu_22435
crossref_primary_10_1016_j_preteyeres_2016_06_001
crossref_primary_10_1038_nprot_2014_063
crossref_primary_10_3732_ajb_1000296
crossref_primary_10_1016_j_gene_2020_145237
crossref_primary_10_1093_hmg_ddq416
crossref_primary_10_1186_1756_8722_4_36
crossref_primary_10_1242_jcs_054304
crossref_primary_10_1371_journal_pone_0052353
crossref_primary_10_1002_biot_201200153
crossref_primary_10_1016_j_molcel_2015_05_004
crossref_primary_10_1080_08989575_2016_1180032
crossref_primary_10_1016_j_tig_2009_06_003
crossref_primary_10_1016_j_tibtech_2023_06_007
crossref_primary_10_1109_TCBB_2014_2366103
crossref_primary_10_1016_j_jtbi_2011_07_021
crossref_primary_10_1159_000351267
crossref_primary_10_1038_nature07517
crossref_primary_10_1186_1755_8794_3_20
crossref_primary_10_2217_pgs_09_10
crossref_primary_10_1186_1471_2164_12_243
crossref_primary_10_1016_j_tibtech_2009_05_006
crossref_primary_10_1186_1471_2105_11_514
crossref_primary_10_1080_17513758_2015_1033022
crossref_primary_10_3390_foods12061120
crossref_primary_10_1146_annurev_phyto_072910_095408
crossref_primary_10_2217_pgs_10_10
crossref_primary_10_1134_S1022795417010021
crossref_primary_10_1186_s12864_018_4552_x
crossref_primary_10_1038_nature07744
crossref_primary_10_1038_nature08835
crossref_primary_10_1016_j_tcm_2012_08_001
crossref_primary_10_1093_nar_gkr668
crossref_primary_10_1007_s00439_013_1287_2
crossref_primary_10_1093_bib_bbp039
crossref_primary_10_1534_genetics_117_203067
crossref_primary_10_1371_journal_pone_0015348
crossref_primary_10_1016_j_yexmp_2011_02_007
crossref_primary_10_1017_S003329171000070X
crossref_primary_10_1039_c0lc00553c
crossref_primary_10_1038_nrg2958
crossref_primary_10_1186_gb_2009_10_10_r116
crossref_primary_10_3390_jpm8040031
crossref_primary_10_1542_peds_2011_3636
crossref_primary_10_5808_GI_2008_6_4_161
crossref_primary_10_1007_s00401_012_0982_8
crossref_primary_10_3390_ijms24021153
crossref_primary_10_1093_bib_bbp026
crossref_primary_10_1002_bmb_21561
crossref_primary_10_1002_humu_21397
crossref_primary_10_1063_1_4978426
crossref_primary_10_1080_09168451_2016_1171701
crossref_primary_10_1016_j_ajhg_2010_12_006
crossref_primary_10_1002_bmb_20237
crossref_primary_10_2217_pgs_09_34
crossref_primary_10_1371_journal_pgen_1001081
crossref_primary_10_1017_S1462399410001390
crossref_primary_10_1007_s12033_015_9884_z
crossref_primary_10_1016_j_ijrobp_2020_04_008
crossref_primary_10_1016_j_ab_2010_07_022
crossref_primary_10_1038_nbt_2764
crossref_primary_10_1016_j_cca_2023_117568
crossref_primary_10_1038_ng_564
crossref_primary_10_1093_eurheartj_ehv173
crossref_primary_10_1038_s41419_017_0232_z
crossref_primary_10_4236_jbm_2015_35002
crossref_primary_10_1038_nature24286
crossref_primary_10_1186_1753_6561_5_S9_S13
crossref_primary_10_3748_wjg_15_5377
crossref_primary_10_1038_nm_2038
crossref_primary_10_1186_1471_2164_15_86
crossref_primary_10_1002_humu_22472
crossref_primary_10_1007_s00604_014_1249_y
crossref_primary_10_2353_jmoldx_2010_100043
crossref_primary_10_1007_s11920_013_0349_4
crossref_primary_10_1089_cmb_2012_0091
crossref_primary_10_1186_s12864_015_1290_1
crossref_primary_10_1186_s12864_015_1479_3
crossref_primary_10_1111_j_1423_0410_2010_01444_x
crossref_primary_10_1537_asj_117_1
crossref_primary_10_1016_j_ajhg_2018_12_018
crossref_primary_10_1016_j_tig_2009_12_007
crossref_primary_10_1016_j_hjb_2016_12_007
crossref_primary_10_1016_S1470_2045_09_70359_6
crossref_primary_10_1371_journal_pone_0195971
crossref_primary_10_5808_GI_2009_7_3_159
crossref_primary_10_1101_gad_1968411
crossref_primary_10_1146_annurev_genom_090413_025352
crossref_primary_10_1038_s41586_019_1879_7
crossref_primary_10_1101_gr_128991_111
crossref_primary_10_1002_humu_21149
crossref_primary_10_1093_bioinformatics_btn548
crossref_primary_10_1002_ajmg_a_35328
crossref_primary_10_1186_2041_2223_2_23
crossref_primary_10_1007_s12975_010_0041_5
crossref_primary_10_1186_1758_907X_2_2
crossref_primary_10_1038_ng0509_510
crossref_primary_10_1371_journal_pgen_1003634
crossref_primary_10_1002_hed_24085
crossref_primary_10_1093_database_baz056
crossref_primary_10_1111_jeb_14233
crossref_primary_10_3103_S0095452710040109
crossref_primary_10_1186_s12915_021_01077_2
crossref_primary_10_1186_s12864_015_1516_2
crossref_primary_10_1109_TC_2020_3041402
crossref_primary_10_1128_CMR_00003_14
crossref_primary_10_1021_ar900255c
crossref_primary_10_1016_j_gde_2017_01_001
crossref_primary_10_2174_0124681873279660231226070118
crossref_primary_10_1016_j_hrthm_2010_05_026
crossref_primary_10_2217_pme_11_16
crossref_primary_10_1146_annurev_genom_082908_145957
crossref_primary_10_1002_elps_201000585
crossref_primary_10_1038_nprot_2009_68
crossref_primary_10_1186_1471_2164_9_404
crossref_primary_10_1093_nar_gkr221
crossref_primary_10_1111_j_1365_2583_2010_01043_x
crossref_primary_10_1002_adsr_202200098
crossref_primary_10_1038_nrg3445
crossref_primary_10_1051_medsci_2008245529
crossref_primary_10_1080_15376510902855529
crossref_primary_10_1016_j_jgg_2011_02_003
crossref_primary_10_1038_nbt_1600
crossref_primary_10_1186_1741_7007_8_98
crossref_primary_10_1007_s00103_023_03777_2
crossref_primary_10_1002_cyto_b_20453
crossref_primary_10_3389_fevo_2018_00114
crossref_primary_10_1038_ejhg_2014_279
crossref_primary_10_1161_CIRCRESAHA_121_318346
crossref_primary_10_1159_000448041
crossref_primary_10_1016_j_clinbiochem_2009_01_020
crossref_primary_10_2196_54332
crossref_primary_10_1002_path_2636
crossref_primary_10_1186_s13073_014_0089_z
crossref_primary_10_1016_j_drudis_2008_03_025
crossref_primary_10_1111_j_1365_2362_2010_02437_x
crossref_primary_10_1038_nbt_2728
crossref_primary_10_1038_nmeth_1363
crossref_primary_10_1126_scitranslmed_3002243
crossref_primary_10_1186_s12864_016_2894_9
crossref_primary_10_1186_1471_2105_11_130
crossref_primary_10_1186_s13071_015_0960_9
crossref_primary_10_1371_journal_pgen_1000336
crossref_primary_10_1016_j_biotechadv_2012_01_021
crossref_primary_10_1002_path_2645
crossref_primary_10_1093_bioinformatics_btn582
crossref_primary_10_1016_j_nmd_2014_04_010
crossref_primary_10_1038_mp_2010_26
crossref_primary_10_1371_journal_pcbi_1002886
crossref_primary_10_1146_annurev_biochem_060410_094158
crossref_primary_10_1093_bioinformatics_btr707
crossref_primary_10_1038_nbt_1868
crossref_primary_10_1016_j_phycom_2021_101435
crossref_primary_10_3389_fpsyg_2024_1399995
crossref_primary_10_3892_ol_2018_9150
crossref_primary_10_1016_j_compbiolchem_2008_11_003
crossref_primary_10_1016_j_clp_2019_09_004
crossref_primary_10_1016_j_eplepsyres_2010_08_003
crossref_primary_10_1093_nar_gkx1125
crossref_primary_10_1002_0471142905_hg0924s79
crossref_primary_10_1016_j_pathol_2016_01_001
crossref_primary_10_1093_hmg_dds187
crossref_primary_10_1371_journal_pone_0099069
crossref_primary_10_1038_nature09534
crossref_primary_10_1038_nrneurol_2012_148
crossref_primary_10_1038_s41598_020_77558_1
crossref_primary_10_1186_gb_2009_10_11_r125
crossref_primary_10_1016_j_tig_2012_10_001
crossref_primary_10_1089_omi_2012_0001
crossref_primary_10_7550_rmb_43498
crossref_primary_10_1016_j_esmoop_2023_101642
crossref_primary_10_1186_1471_2105_12_5
crossref_primary_10_1039_D0BM01672A
crossref_primary_10_1093_brain_awaa256
crossref_primary_10_1038_nature08211
crossref_primary_10_1021_acs_jpclett_2c02824
crossref_primary_10_1186_1471_2164_11_284
crossref_primary_10_1111_j_1469_185X_2008_00071_x
crossref_primary_10_1016_j_cell_2011_09_008
crossref_primary_10_1093_bioinformatics_btp319
crossref_primary_10_1179_2047773215Y_0000000015
crossref_primary_10_3389_fnut_2019_00047
crossref_primary_10_14720_aas_2022_118_3_2419
crossref_primary_10_1146_annurev_genom_082410_101446
crossref_primary_10_1534_g3_120_401440
crossref_primary_10_1007_s00439_009_0677_y
crossref_primary_10_1021_pr4011052
crossref_primary_10_1038_nrg2554
crossref_primary_10_1073_pnas_1802244115
crossref_primary_10_1139_G10_025
crossref_primary_10_1016_j_mrrev_2011_11_002
crossref_primary_10_1007_s12687_012_0092_2
crossref_primary_10_1212_01_wnl_0000338350_68544_06
crossref_primary_10_56093_ijans_v93i8_136161
crossref_primary_10_1002_humu_21525
crossref_primary_10_1111_sji_12523
crossref_primary_10_1586_erm_11_18
crossref_primary_10_3389_fmicb_2022_934272
crossref_primary_10_1371_journal_pgen_1001239
crossref_primary_10_1111_j_1365_294X_2009_04158_x
crossref_primary_10_1371_journal_pgen_1002326
crossref_primary_10_1371_journal_pcbi_1000432
crossref_primary_10_1089_cmb_2013_0105
crossref_primary_10_1371_journal_pone_0081992
crossref_primary_10_1098_rsob_120061
crossref_primary_10_1101_gr_092841_109
crossref_primary_10_1016_S1474_4422_14_70029_8
crossref_primary_10_1203_PDR_0b013e3181b0cbd8
crossref_primary_10_1016_j_watcyc_2022_01_002
crossref_primary_10_2217_pme_11_35
crossref_primary_10_1093_nar_gkr009
crossref_primary_10_1186_1755_8417_3_2
crossref_primary_10_1093_nar_gkn1008
crossref_primary_10_1002_elps_201300361
crossref_primary_10_1371_journal_pgen_1000134
crossref_primary_10_1093_nar_gkw935
crossref_primary_10_1016_j_arr_2017_10_006
crossref_primary_10_1194_jlr_P001578
crossref_primary_10_1063_1_5097828
crossref_primary_10_1016_j_jneuroim_2011_12_017
crossref_primary_10_1101_gr_091827_109
crossref_primary_10_1186_s12864_019_6070_x
crossref_primary_10_7853_kjvs_2016_39_1_41
crossref_primary_10_7600_jpfsm_5_25
crossref_primary_10_1038_nbt0909_777
crossref_primary_10_1182_blood_2008_04_151480
crossref_primary_10_3389_fpsyt_2020_593233
crossref_primary_10_1101_gr_122275_111
crossref_primary_10_1038_nature08489
crossref_primary_10_3390_genes1020263
crossref_primary_10_1007_s10577_012_9334_8
crossref_primary_10_1517_17460441_2012_660145
crossref_primary_10_1109_TCBB_2016_2576441
crossref_primary_10_1186_gb_2011_12_1_r1
crossref_primary_10_1371_journal_pone_0012681
crossref_primary_10_1109_TCBB_2011_82
crossref_primary_10_5482_ha12050001
crossref_primary_10_1103_PhysRevE_85_016214
crossref_primary_10_1111_ene_14294
crossref_primary_10_1093_bioinformatics_btp236
crossref_primary_10_1126_scitranslmed_3002064
crossref_primary_10_1089_omi_2014_0058
crossref_primary_10_1016_j_tig_2009_09_012
crossref_primary_10_1146_annurev_genom_9_081307_164217
crossref_primary_10_1016_j_canlet_2015_04_009
crossref_primary_10_1038_nature08250
crossref_primary_10_1186_1471_2164_15_142
crossref_primary_10_1111_j_1601_5223_2010_02166_x
crossref_primary_10_1152_physrev_00001_2010
crossref_primary_10_1186_2193_1801_1_66
crossref_primary_10_1016_j_mrrev_2010_04_002
crossref_primary_10_1093_hmg_ddab209
crossref_primary_10_1093_nar_gkq1101
crossref_primary_10_1128_MCB_00652_15
crossref_primary_10_1158_1055_9965_EPI_15_0205
crossref_primary_10_1002_cyto_a_20625
crossref_primary_10_3390_microorganisms8050746
crossref_primary_10_1002_1873_3468_14068
crossref_primary_10_1093_bfgp_elr033
crossref_primary_10_1007_s00268_010_0953_y
crossref_primary_10_1186_1471_2164_13_500
crossref_primary_10_3892_etm_2016_3797
crossref_primary_10_1016_j_tvjl_2011_06_014
crossref_primary_10_1093_bmb_ldae003
crossref_primary_10_1097_HCO_0b013e3283389683
crossref_primary_10_1146_annurev_genom_083115_022545
crossref_primary_10_1038_nature09796
crossref_primary_10_1038_clpt_2008_114
crossref_primary_10_1186_gb_2012_13_7_r58
crossref_primary_10_1371_journal_pone_0195491
crossref_primary_10_2217_bmm_10_66
crossref_primary_10_1158_1541_7786_MCR_10_0264
crossref_primary_10_3390_cells12030493
crossref_primary_10_1214_15_AOAS817
crossref_primary_10_1038_s41591_023_02379_4
crossref_primary_10_1002_elps_201300459
crossref_primary_10_1093_nar_gks003
crossref_primary_10_1007_s00268_008_9851_y
crossref_primary_10_3732_ajb_1100491
crossref_primary_10_1038_ng_806
crossref_primary_10_1161_STROKEAHA_109_570523
crossref_primary_10_1371_journal_pntd_0000880
crossref_primary_10_1097_MOP_0b013e32835a1996
crossref_primary_10_1038_jhg_2015_102
crossref_primary_10_1186_1471_2105_15_111
crossref_primary_10_1007_s00203_022_03166_4
crossref_primary_10_1016_j_ajhg_2010_01_030
crossref_primary_10_1186_gb_2011_12_9_r88
crossref_primary_10_1158_2159_8290_CD_11_0110
crossref_primary_10_1089_acm_2011_0960
crossref_primary_10_1186_1471_2105_11_S12_S2
crossref_primary_10_1007_s12275_010_0055_4
crossref_primary_10_1158_0008_5472_CAN_13_2100
crossref_primary_10_1038_s41598_019_56943_5
crossref_primary_10_1146_annurev_genom_9_081307_164242
crossref_primary_10_1161_CIRCULATIONAHA_110_972828
crossref_primary_10_3390_jcm10153334
crossref_primary_10_1186_1471_2164_14_556
crossref_primary_10_1017_S0007485309006737
crossref_primary_10_1007_s10528_009_9262_2
crossref_primary_10_1007_s11883_009_0025_7
crossref_primary_10_1007_s12052_010_0262_9
crossref_primary_10_3390_jcm10153339
crossref_primary_10_1016_j_gofs_2020_06_006
crossref_primary_10_1016_j_tig_2009_09_003
crossref_primary_10_1186_1756_0500_6_25
crossref_primary_10_1002_biot_201000324
crossref_primary_10_1016_j_tube_2012_11_002
crossref_primary_10_1186_1471_2105_15_100
crossref_primary_10_1016_j_jacc_2015_09_109
crossref_primary_10_1093_hmg_ddq162
crossref_primary_10_1101_gr_089532_108
crossref_primary_10_1021_ac401875h
crossref_primary_10_1667_RR3095_1
crossref_primary_10_1186_1471_2164_13_726
crossref_primary_10_1101_gr_107524_110
crossref_primary_10_1111_mec_16643
crossref_primary_10_1002_0471250953_bi0113s39
crossref_primary_10_1093_hmg_ddp071
crossref_primary_10_2217_pgs_11_119
crossref_primary_10_4161_fly_19695
crossref_primary_10_1093_bib_bbw113
crossref_primary_10_1016_j_copbio_2012_09_004
crossref_primary_10_1016_j_trsl_2009_09_008
crossref_primary_10_1002_elps_200800301
crossref_primary_10_1111_odi_12403
crossref_primary_10_1093_database_baz146
crossref_primary_10_1111_j_1753_4887_2012_00493_x
crossref_primary_10_1073_pnas_1009526107
crossref_primary_10_3390_genes13030556
crossref_primary_10_1007_s00268_011_1056_0
crossref_primary_10_1101_gr_080069_108
crossref_primary_10_3390_pharmaceutics8020015
crossref_primary_10_1038_tpj_2014_70
crossref_primary_10_1063_1_4766363
crossref_primary_10_1111_jzs_12558
crossref_primary_10_1371_journal_pone_0071554
crossref_primary_10_1016_j_jacbts_2018_08_001
crossref_primary_10_1021_ac2010857
crossref_primary_10_1186_1752_0509_9_S1_S10
crossref_primary_10_1371_journal_pone_0055089
crossref_primary_10_1016_j_molimm_2021_06_018
crossref_primary_10_3892_mmr_2016_5014
crossref_primary_10_1093_nar_gkv319
crossref_primary_10_1111_nyas_13211
crossref_primary_10_1093_nar_gkt372
crossref_primary_10_1093_nar_gkx730
crossref_primary_10_1016_j_cancergencyto_2010_08_008
crossref_primary_10_1371_journal_pone_0023501
crossref_primary_10_1007_s40484_013_0005_3
crossref_primary_10_1161_CIRCRESAHA_115_307344
crossref_primary_10_1517_17530059_2011_540566
crossref_primary_10_1146_annurev_med_011209_132719
crossref_primary_10_1186_1471_2105_10_254
crossref_primary_10_1101_gr_125047_111
crossref_primary_10_1088_1478_3975_11_6_065003
crossref_primary_10_1139_gen_2013_0125
crossref_primary_10_1371_journal_pone_0149405
crossref_primary_10_1016_j_ajhg_2010_01_005
crossref_primary_10_1038_nature22312
crossref_primary_10_1373_clinchem_2008_107565
crossref_primary_10_1007_s00439_016_1682_6
crossref_primary_10_1186_gb_2011_12_7_r68
crossref_primary_10_2217_pme_12_97
crossref_primary_10_2217_pme_14_34
crossref_primary_10_1111_tan_12165
crossref_primary_10_1093_gbe_evp029
crossref_primary_10_1002_humu_22387
crossref_primary_10_1146_annurev_pathol_020712_164026
crossref_primary_10_3389_fimmu_2021_622064
crossref_primary_10_1186_1471_2164_12_557
crossref_primary_10_1371_journal_pcbi_1009830
crossref_primary_10_1016_j_xgen_2023_100316
crossref_primary_10_1371_journal_pone_0059494
crossref_primary_10_1517_17460441_2016_1143813
crossref_primary_10_1021_acscombsci_5b00106
crossref_primary_10_1186_1471_2229_9_72
crossref_primary_10_1097_FPC_0b013e328352c770
crossref_primary_10_1093_eurheartj_ehq187
crossref_primary_10_1063_1_4825119
crossref_primary_10_1177_2474126416683850
crossref_primary_10_5511_plantbiotechnology_25_413
crossref_primary_10_1371_journal_pone_0187457
crossref_primary_10_1002_gepi_20501
crossref_primary_10_1089_omi_2008_0041
crossref_primary_10_1111_bjh_16102
crossref_primary_10_1080_02648725_2010_10648148
crossref_primary_10_1016_j_ydbio_2013_05_019
crossref_primary_10_1186_bcr2431
crossref_primary_10_1186_s12864_018_4963_8
crossref_primary_10_2217_pgs_13_36
crossref_primary_10_1093_eurheartj_ehs112
crossref_primary_10_1007_s12031_012_9714_8
crossref_primary_10_1093_bfgp_elp010
crossref_primary_10_1101_sqb_2015_80_027623
crossref_primary_10_1177_2374289518766521
crossref_primary_10_1186_1471_2105_12_S1_S53
crossref_primary_10_1371_journal_pone_0017288
crossref_primary_10_1093_bfgp_elp013
crossref_primary_10_1038_leu_2009_66
crossref_primary_10_1038_nbt1485
crossref_primary_10_1093_carcin_bgp273
crossref_primary_10_1098_rstb_2008_0173
crossref_primary_10_3732_ajb_1100419
crossref_primary_10_1038_nbt1486
crossref_primary_10_1002_humu_21078
crossref_primary_10_1016_j_tibtech_2008_10_002
crossref_primary_10_14802_jmd_10001
crossref_primary_10_1186_gb_2011_12_9_228
crossref_primary_10_1093_nar_gks1363
crossref_primary_10_1371_journal_pone_0035062
crossref_primary_10_1152_ajpregu_00645_2010
crossref_primary_10_1093_bfgp_elp040
crossref_primary_10_1111_j_1601_183X_2010_00617_x
crossref_primary_10_1586_erd_10_22
crossref_primary_10_1038_nature11236
crossref_primary_10_3171_2009_10_FOCUS09218
crossref_primary_10_1007_s00268_008_9877_1
crossref_primary_10_1371_journal_pone_0052881
crossref_primary_10_1016_j_repce_2013_10_024
crossref_primary_10_1086_720130
crossref_primary_10_1038_nbt1494
crossref_primary_10_1111_j_1755_148X_2010_00691_x
crossref_primary_10_1051_medsci_2010265452
crossref_primary_10_1093_ntr_nts207
crossref_primary_10_1186_1471_2105_11_S9_S12
crossref_primary_10_1038_clpt_2009_303
crossref_primary_10_18632_oncotarget_11334
crossref_primary_10_1039_c1cs15049a
crossref_primary_10_1371_journal_pone_0171504
crossref_primary_10_1016_j_canlet_2015_09_014
crossref_primary_10_1186_gb_2012_13_4_r31
crossref_primary_10_1093_bib_bbr070
crossref_primary_10_1088_1742_5468_2013_01_P01004
crossref_primary_10_1111_j_1439_0418_2009_01448_x
crossref_primary_10_1371_journal_pgen_1000840
crossref_primary_10_1101_gr_235119_118
crossref_primary_10_1016_j_sder_2010_04_006
crossref_primary_10_1534_genetics_117_300078
crossref_primary_10_1371_journal_pone_0010612
crossref_primary_10_1371_journal_pone_0037029
crossref_primary_10_1371_journal_ppat_1000580
crossref_primary_10_1016_j_ajhg_2008_05_017
crossref_primary_10_1371_journal_pgen_1000832
crossref_primary_10_1002_eji_201444669
crossref_primary_10_1007_s11427_013_4441_0
crossref_primary_10_4018_jitr_2012010103
crossref_primary_10_1002_humu_21080
crossref_primary_10_1093_nar_gkq730
crossref_primary_10_1016_j_ejim_2009_11_003
crossref_primary_10_1039_c0lc00145g
crossref_primary_10_1073_pnas_1707609114
crossref_primary_10_3390_genes3020233
crossref_primary_10_1038_ncomms11101
crossref_primary_10_1073_pnas_0914638107
crossref_primary_10_1016_j_ajhg_2014_06_014
crossref_primary_10_1016_j_jid_2021_11_042
crossref_primary_10_1016_j_sajb_2013_02_166
crossref_primary_10_1056_NEJMp0808100
crossref_primary_10_1093_hmg_ddp011
crossref_primary_10_1186_1471_2105_10_S15_S3
crossref_primary_10_1586_1744666X_2015_995096
crossref_primary_10_1038_jhg_2011_52
crossref_primary_10_1100_2012_254962
crossref_primary_10_3892_ijmm_2013_1417
crossref_primary_10_1016_j_tig_2009_10_004
crossref_primary_10_1093_gbe_evp041
crossref_primary_10_1109_TMBMC_2016_2537305
crossref_primary_10_1016_j_tig_2011_06_004
crossref_primary_10_1371_journal_ppat_1000560
crossref_primary_10_1101_gr_098947_109
crossref_primary_10_1038_nbt_2122
crossref_primary_10_1161_CIRCRESAHA_114_305243
crossref_primary_10_1016_j_bbamem_2015_09_023
crossref_primary_10_1016_j_jacbts_2020_05_013
crossref_primary_10_1093_bfgp_elr019
crossref_primary_10_1007_BF03256426
crossref_primary_10_1002_elps_201900009
crossref_primary_10_1016_j_cell_2012_06_030
crossref_primary_10_1186_s13071_017_2437_5
crossref_primary_10_1101_gad_1864110
crossref_primary_10_1146_annurev_genet_111212_133501
crossref_primary_10_1109_TITB_2012_2199570
crossref_primary_10_1101_gr_115956_110
crossref_primary_10_1016_j_tibtech_2009_07_002
crossref_primary_10_15857_ksep_2022_00479
crossref_primary_10_1016_S1006_8104_14_60073_8
crossref_primary_10_1186_1471_2105_15_33
crossref_primary_10_1093_nar_gkx585
crossref_primary_10_1002_pauz_200890046
crossref_primary_10_1155_2010_782465
crossref_primary_10_1016_j_jbiosc_2013_05_016
crossref_primary_10_1093_bioinformatics_btw516
crossref_primary_10_1186_1471_2105_15_30
Cites_doi 10.1371/journal.pgen.0010049
10.1038/nature03959
10.1371/journal.pgen.0030063
10.1038/nature03001
10.1038/nrg2302
10.1038/nature05329
10.1007/978-3-662-02489-8
10.1038/nature04072
10.1016/0888-7543(88)90007-9
10.1002/humu.10212
10.1016/S0168-9525(02)00045-8
10.1056/NEJMcibr067658
10.1126/science.1149504
10.1371/journal.pbio.0050254
10.1101/gr.8.3.186
10.1086/342727
10.1093/nar/gkf493
10.1534/genetics.104.031757
10.1101/gr.2264004
10.1038/ng1094-117
10.1101/gr.3059305
ContentType Journal Article
Copyright The Author(s) 2008
2008 INIST-CNRS
COPYRIGHT 2008 Nature Publishing Group
Copyright Nature Publishing Group Apr 17, 2008
Copyright_xml – notice: The Author(s) 2008
– notice: 2008 INIST-CNRS
– notice: COPYRIGHT 2008 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 17, 2008
DBID C6C
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
7QH
7T7
7UA
ADTOC
UNPAY
DOI 10.1038/nature06884
DatabaseName Springer Nature OA Free Journals
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Middle School (subscription)
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection (subscription)
ProQuest Central Essentials
Biological Science Database (Proquest)
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (subscription)
Research Library (Corporate)
Nursing & Allied Health Premium
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Aqualine
Industrial and Applied Microbiology Abstracts (Microbiology A)
Water Resources Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Aqualine
Water Resources Abstracts
DatabaseTitleList Agricultural Science Database
Genetics Abstracts
MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Biology
EISSN 1476-4687
1476-4679
EndPage 876
ExternalDocumentID 10.1038/nature06884
1464624971
A193474265
A189748577
18421352
20246928
10_1038_nature06884
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1VR
29M
2KS
2XV
354
39C
3O-
3V.
4.4
41X
42X
4R4
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYOK
AAYZH
ABAWZ
ABDBF
ABDQB
ABEFU
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFHKK
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YYP
YZZ
Z5M
ZCA
ZGI
ZHY
ZKB
ZKG
~02
~7V
~88
~8M
~G0
~KM
1CY
1OL
1VW
3EH
41~
663
79B
AAJYS
AARCD
AAVBQ
AAYXX
ABDPE
ABFSG
ACBNA
ACBTR
ACSTC
ACTDY
ADGHP
ADRHT
ADXHL
AETEA
AEZWR
AFANA
AFBBN
AFHIU
AFKWF
AGQPQ
AHWEU
AIXLP
AJUXI
ALPWD
ATHPR
CITATION
ESTFP
FA8
FAC
HG6
J5H
LGEZI
LOTEE
LSO
N4W
NADUK
NFIDA
NXXTH
ODYON
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
XOL
YJ6
YQI
YQJ
YV5
YXA
YYQ
ZCG
ZE2
ZY4
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ABUFD
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
36B
ABCQX
AFWHJ
AHBCP
AHOSX
AIBTJ
D0L
NNMJJ
QF4
QM4
QN7
QO4
7X8
7QH
7T7
7UA
ADTOC
UNPAY
ID FETCH-LOGICAL-c895t-b28f2f04f42e3636e76256f0ec3fbf72821317c077724108d1b564635f6429393
IEDL.DBID UNPAY
ISSN 0028-0836
1476-4687
IngestDate Tue Aug 19 19:34:04 EDT 2025
Tue Oct 07 09:58:45 EDT 2025
Thu Oct 02 21:19:16 EDT 2025
Tue Oct 07 09:15:47 EDT 2025
Tue Oct 07 05:16:27 EDT 2025
Fri Jun 13 01:08:57 EDT 2025
Fri Jun 13 00:46:53 EDT 2025
Tue Jun 10 15:35:44 EDT 2025
Tue Jun 10 15:34:07 EDT 2025
Mon Oct 20 17:20:57 EDT 2025
Mon Oct 20 17:25:58 EDT 2025
Thu Oct 16 16:12:36 EDT 2025
Thu Oct 16 16:11:13 EDT 2025
Thu Oct 16 16:08:50 EDT 2025
Thu Oct 16 15:58:44 EDT 2025
Wed Feb 19 02:34:51 EST 2025
Mon Jul 21 09:10:34 EDT 2025
Wed Oct 01 03:25:27 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Fri Feb 21 02:38:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7189
Keywords Human
Genetic variability
Nucleotide sequence
DNA
Method
Genome
Sequencing
Medical application
Language English
License https://creativecommons.org/licenses/by-nc-sa/3.0
CC BY 4.0
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c895t-b28f2f04f42e3636e76256f0ec3fbf72821317c077724108d1b564635f6429393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/nature06884.pdf
PMID 18421352
PQID 204462643
PQPubID 23462
PageCount 5
ParticipantIDs unpaywall_primary_10_1038_nature06884
proquest_miscellaneous_762278933
proquest_miscellaneous_69115967
proquest_miscellaneous_20844761
proquest_journals_204462643
gale_infotracgeneralonefile_A193474265
gale_infotracgeneralonefile_A189748577
gale_infotraccpiq_193474265
gale_infotraccpiq_189748577
gale_infotracacademiconefile_A193474265
gale_infotracacademiconefile_A189748577
gale_incontextgauss_ISR_A193474265
gale_incontextgauss_ISR_A189748577
gale_incontextgauss_ATWCN_A193474265
gale_incontextgauss_ATWCN_A189748577
pubmed_primary_18421352
pascalfrancis_primary_20246928
crossref_primary_10_1038_nature06884
crossref_citationtrail_10_1038_nature06884
springer_journals_10_1038_nature06884
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-04-17
PublicationDateYYYYMMDD 2008-04-17
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-17
  day: 17
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2008
Publisher Nature Publishing Group UK
Nature Publishing
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing
– name: Nature Publishing Group
References McGuireALCaulfieldTChoMKResearch ethics and the challenge of whole genome sequencingNature Rev. Genet.200891521561:CAS:528:DC%2BD1cXnt1ensg%3D%3D10.1038/nrg2302
EwingBGreenPBase-calling of automated sequencer traces using phred. II. Error probabilitiesGenome Res.199881861941:CAS:528:DyaK1cXitlWlu7g%3D10.1101/gr.8.3.186
The International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004)
RichardsSComparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolutionGenome Res.2005151181:CAS:528:DC%2BD2MXlsVSktg%3D%3D10.1101/gr.3059305
The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature437, 69–87 (2005)
KiddJMNewmanTLTuzunEKaulREichlerEEPopulation stratification of a common APOBEC gene deletion polymorphismPLOS Genetics200735845921:CAS:528:DC%2BD2sXkvFeksbc%3D10.1371/journal.pgen.0030063
HalliganDLKeightleyPDHow many lethal alleles?Trends Genet.20031957591:CAS:528:DC%2BD3sXkvVyisg%3D%3D10.1016/S0168-9525(02)00045-8
MarguliesMGenome sequencing in microfabricated high-density picolitre reactorsNature20054373763801:CAS:528:DC%2BD2MXpvFOrt7s%3D10.1038/nature039592005Natur.437..376M
KorbelJOPaired-end mapping reveals extensive structural variation in the human genomeScience20073184204261:CAS:528:DC%2BD2sXhtFOjtbzL10.1126/science.11495042007Sci...318..420K
HavlakPThe Atlas genome assembly systemGenome Res.2004147217321:CAS:528:DC%2BD2cXjt1yjt7Y%3D10.1101/gr.2264004
LevySThe diploid genome sequence of a single individualPLoS Biol.20075e254e28610.1371/journal.pbio.0050254
BennettEAColemanLETsuiCPittardWSDevineSENatural genetic variation caused by transposable elements in humansGenetics20041689339511:CAS:528:DC%2BD2cXhtVKms7rJ10.1534/genetics.104.031757
VogelFMotulskyAGHuman Genetics: Problems and Approaches198648750210.1007/978-3-662-02489-8
StensonPDHuman Gene Mutation Database (HGMD): 2003 updateHum. Mutat.2003215775811:CAS:528:DC%2BD3sXkvVyhtrk%3D10.1002/humu.10212
WeberJLHuman diallelic insertion/deletion polymorphismsAm. J. Hum. Genet.20027185486210.1086/342727
RedonRGlobal variation in copy number in the human genomeNature20064444444541:CAS:528:DC%2BD28Xht1aku7zI10.1038/nature053292006Natur.444..444R
RamenskyVBorkPSunyaevSHuman non-synonymous SNPs: server and surveyNucleic Acids Res.200230389439001:CAS:528:DC%2BD38Xms1Klt7k%3D10.1093/nar/gkf493
LupskiJRStructural variation in the human genomeN. Engl. J. Med.2007356116911711:CAS:528:DC%2BD2sXivVKnsL0%3D10.1056/NEJMcibr067658
LupskiJRStankiewiczPGenomic disorders: molecular mechanisms for rearrangements and conveyed phenotypesPLoS Genetics200516276331:CAS:528:DC%2BD28XisVWhsA%3D%3D10.1371/journal.pgen.0010049
LanderESWatermanMSGenomic mapping by fingerprinting random clones: a mathematical analysisGenomics198822312391:CAS:528:DyaL1cXlsVeqs7s%3D10.1016/0888-7543(88)90007-9
BittlesAHNeelJVThe costs of human inbreeding and their implications for variations at the DNA levelNature Genet.199481171211:STN:280:DyaK2M7ksVWltA%3D%3D10.1038/ng1094-117
DL Halligan (BFnature06884_CR12) 2003; 19
ES Lander (BFnature06884_CR21) 1988; 2
BFnature06884_CR5
JL Weber (BFnature06884_CR7) 2002; 71
JR Lupski (BFnature06884_CR10) 2007; 356
R Redon (BFnature06884_CR8) 2006; 444
AL McGuire (BFnature06884_CR17) 2008; 9
F Vogel (BFnature06884_CR14) 1986
P Havlak (BFnature06884_CR18) 2004; 14
B Ewing (BFnature06884_CR20) 1998; 8
M Margulies (BFnature06884_CR3) 2005; 437
BFnature06884_CR1
JR Lupski (BFnature06884_CR6) 2005; 1
V Ramensky (BFnature06884_CR15) 2002; 30
JM Kidd (BFnature06884_CR9) 2007; 3
AH Bittles (BFnature06884_CR13) 1994; 8
S Levy (BFnature06884_CR2) 2007; 5
EA Bennett (BFnature06884_CR4) 2004; 168
JO Korbel (BFnature06884_CR16) 2007; 318
PD Stenson (BFnature06884_CR11) 2003; 21
S Richards (BFnature06884_CR19) 2005; 15
18421337 - Nature. 2008 Apr 17;452(7189):819-20
References_xml – reference: BittlesAHNeelJVThe costs of human inbreeding and their implications for variations at the DNA levelNature Genet.199481171211:STN:280:DyaK2M7ksVWltA%3D%3D10.1038/ng1094-117
– reference: EwingBGreenPBase-calling of automated sequencer traces using phred. II. Error probabilitiesGenome Res.199881861941:CAS:528:DyaK1cXitlWlu7g%3D10.1101/gr.8.3.186
– reference: HavlakPThe Atlas genome assembly systemGenome Res.2004147217321:CAS:528:DC%2BD2cXjt1yjt7Y%3D10.1101/gr.2264004
– reference: StensonPDHuman Gene Mutation Database (HGMD): 2003 updateHum. Mutat.2003215775811:CAS:528:DC%2BD3sXkvVyhtrk%3D10.1002/humu.10212
– reference: LevySThe diploid genome sequence of a single individualPLoS Biol.20075e254e28610.1371/journal.pbio.0050254
– reference: HalliganDLKeightleyPDHow many lethal alleles?Trends Genet.20031957591:CAS:528:DC%2BD3sXkvVyisg%3D%3D10.1016/S0168-9525(02)00045-8
– reference: RichardsSComparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolutionGenome Res.2005151181:CAS:528:DC%2BD2MXlsVSktg%3D%3D10.1101/gr.3059305
– reference: The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature437, 69–87 (2005)
– reference: MarguliesMGenome sequencing in microfabricated high-density picolitre reactorsNature20054373763801:CAS:528:DC%2BD2MXpvFOrt7s%3D10.1038/nature039592005Natur.437..376M
– reference: KorbelJOPaired-end mapping reveals extensive structural variation in the human genomeScience20073184204261:CAS:528:DC%2BD2sXhtFOjtbzL10.1126/science.11495042007Sci...318..420K
– reference: McGuireALCaulfieldTChoMKResearch ethics and the challenge of whole genome sequencingNature Rev. Genet.200891521561:CAS:528:DC%2BD1cXnt1ensg%3D%3D10.1038/nrg2302
– reference: LupskiJRStructural variation in the human genomeN. Engl. J. Med.2007356116911711:CAS:528:DC%2BD2sXivVKnsL0%3D10.1056/NEJMcibr067658
– reference: LanderESWatermanMSGenomic mapping by fingerprinting random clones: a mathematical analysisGenomics198822312391:CAS:528:DyaL1cXlsVeqs7s%3D10.1016/0888-7543(88)90007-9
– reference: The International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004)
– reference: LupskiJRStankiewiczPGenomic disorders: molecular mechanisms for rearrangements and conveyed phenotypesPLoS Genetics200516276331:CAS:528:DC%2BD28XisVWhsA%3D%3D10.1371/journal.pgen.0010049
– reference: VogelFMotulskyAGHuman Genetics: Problems and Approaches198648750210.1007/978-3-662-02489-8
– reference: WeberJLHuman diallelic insertion/deletion polymorphismsAm. J. Hum. Genet.20027185486210.1086/342727
– reference: BennettEAColemanLETsuiCPittardWSDevineSENatural genetic variation caused by transposable elements in humansGenetics20041689339511:CAS:528:DC%2BD2cXhtVKms7rJ10.1534/genetics.104.031757
– reference: RamenskyVBorkPSunyaevSHuman non-synonymous SNPs: server and surveyNucleic Acids Res.200230389439001:CAS:528:DC%2BD38Xms1Klt7k%3D10.1093/nar/gkf493
– reference: RedonRGlobal variation in copy number in the human genomeNature20064444444541:CAS:528:DC%2BD28Xht1aku7zI10.1038/nature053292006Natur.444..444R
– reference: KiddJMNewmanTLTuzunEKaulREichlerEEPopulation stratification of a common APOBEC gene deletion polymorphismPLOS Genetics200735845921:CAS:528:DC%2BD2sXkvFeksbc%3D10.1371/journal.pgen.0030063
– volume: 1
  start-page: 627
  year: 2005
  ident: BFnature06884_CR6
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0010049
– volume: 437
  start-page: 376
  year: 2005
  ident: BFnature06884_CR3
  publication-title: Nature
  doi: 10.1038/nature03959
– volume: 3
  start-page: 584
  year: 2007
  ident: BFnature06884_CR9
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.0030063
– ident: BFnature06884_CR1
  doi: 10.1038/nature03001
– volume: 9
  start-page: 152
  year: 2008
  ident: BFnature06884_CR17
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg2302
– volume: 444
  start-page: 444
  year: 2006
  ident: BFnature06884_CR8
  publication-title: Nature
  doi: 10.1038/nature05329
– start-page: 487
  volume-title: Human Genetics: Problems and Approaches
  year: 1986
  ident: BFnature06884_CR14
  doi: 10.1007/978-3-662-02489-8
– ident: BFnature06884_CR5
  doi: 10.1038/nature04072
– volume: 2
  start-page: 231
  year: 1988
  ident: BFnature06884_CR21
  publication-title: Genomics
  doi: 10.1016/0888-7543(88)90007-9
– volume: 21
  start-page: 577
  year: 2003
  ident: BFnature06884_CR11
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.10212
– volume: 19
  start-page: 57
  year: 2003
  ident: BFnature06884_CR12
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(02)00045-8
– volume: 356
  start-page: 1169
  year: 2007
  ident: BFnature06884_CR10
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcibr067658
– volume: 318
  start-page: 420
  year: 2007
  ident: BFnature06884_CR16
  publication-title: Science
  doi: 10.1126/science.1149504
– volume: 5
  start-page: e254
  year: 2007
  ident: BFnature06884_CR2
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050254
– volume: 8
  start-page: 186
  year: 1998
  ident: BFnature06884_CR20
  publication-title: Genome Res.
  doi: 10.1101/gr.8.3.186
– volume: 71
  start-page: 854
  year: 2002
  ident: BFnature06884_CR7
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/342727
– volume: 30
  start-page: 3894
  year: 2002
  ident: BFnature06884_CR15
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf493
– volume: 168
  start-page: 933
  year: 2004
  ident: BFnature06884_CR4
  publication-title: Genetics
  doi: 10.1534/genetics.104.031757
– volume: 14
  start-page: 721
  year: 2004
  ident: BFnature06884_CR18
  publication-title: Genome Res.
  doi: 10.1101/gr.2264004
– volume: 8
  start-page: 117
  year: 1994
  ident: BFnature06884_CR13
  publication-title: Nature Genet.
  doi: 10.1038/ng1094-117
– volume: 15
  start-page: 1
  year: 2005
  ident: BFnature06884_CR19
  publication-title: Genome Res.
  doi: 10.1101/gr.3059305
– reference: 18421337 - Nature. 2008 Apr 17;452(7189):819-20
SSID ssj0005174
ssj0014407
Score 2.5306563
Snippet One man's genome Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such...
The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of...
SourceID unpaywall
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 872
SubjectTerms Alleles
Biological and medical sciences
Biomedical research
Cloning
Computational Biology
Deoxyribonucleic acid
Diverse techniques
DNA
DNA sequencing
Electrophoresis
Fundamental and applied biological sciences. Psychology
Genetic diversity
Genetic Predisposition to Disease - genetics
Genetic variation
Genetic Variation - genetics
Genome, Human - genetics
Genomics
Genomics - economics
Genomics - methods
Genomics - trends
Genotype
Human genome
Humanities and Social Sciences
Humans
Individuality
letter
Male
Methods
Molecular and cellular biology
Molecular biology
multidisciplinary
Nucleic acids
Nucleotide sequencing
Oligonucleotide Array Sequence Analysis
Physiological aspects
Polymorphism, Single Nucleotide - genetics
Reproducibility of Results
Science
Science (multidisciplinary)
Sensitivity and Specificity
Sequence Alignment
Sequence Analysis, DNA - economics
Sequence Analysis, DNA - methods
Software
Technological change
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELZGJwQIITbeymBYaONNikhsx3E-IFTGpg1pFRqb2LfITu1pUpZ2pBXqv-fcOEmD-vI5T6-OfXc-x3fPIbQnAxlzqYQX2hQqJg31YhFIj3MGBxBLWSVsvfNpnx9fsB-X4eUGOq1qYWxaZeUTZ456MEztN3I4pMPBBXZv-nV069mmUfZyteqgIV1nhcGXGcPYHbRJLDFWB21-O-z_PGtyPv6jZXYFez4Vn0seTduChbW2KOeoH45kAZNmym4Xi8LRuavUB-jeJB_J6V-ZZXO71dFj9MiFmbhX6sUW2tD5Nro7S_dMi2205Uy6wB8c7_THJ-gEVAbPUswhkMaWvPVG46HBMsfXddkWVlN8AwE3OMlsii1xeJbpDH_v97DLyoaxPUUXR4fnB8ee67TgpSIOx54iwhDjM8OIppxyDS4y5MbXKTXKRHAsCyDOSP0IYnFYQzEIVMgZxCoGji8xjekz1MmHuX6BcBQaQ5RmRCrJfKVFEGqtFNFKRkoS3UWfqslNUkdDbrthZMnsOpyKZG4lumivBo9K9o0lMLtKieWzyG3CzJWcFEXSO_990E96gYAzkwijaA0spiyCeCXsoreLYCe_zlqyVoAaSe8dyAzhHVPpSh5gpizrVkvcOmQjc6eFTEfXt8mcnEVPm9--az29KjVs0XDWABuJuy3DqFeJQOzHYyJgQJWlJM47Fklty130pn4Kbs3eVclcDycWIhiLeLAcwWGbDmMOY8VLEKDEts6bwt88L220USLBQKVD0kX7ldE2w1uoYfu1Ra_SxJcrX3cH3S_TjZgXRK9QZ_xnol9DTDtWu85T_QNPvJ1X
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCDGEEBsMwmBYaONLimj8FeexKkwbEn2ATewtsoM9TcrSQlqh_vecEzcfqF159i9X174738l3PyN0qCKVCKVlyF0JFVOWhomMVCgEgwTEUVZJ1-_8dSxOztmXC37hi2hcL0zv_r6i7q4JLt3bKOw2uiNBI91DBSMxais5_iFb9m148PnHzse9g8e73wdTVcJS2PoNi1VBZueC9D66Ny-mavFH5XnnDDp-hB764BEP693eQbdMsYvuVkWcWbmLdryhlvidZ5N-_xidgiLgqnAcwmPsKFmvDZ5YrAp81TRjYb3A1xBGg-vLF9jRgee5yfGn8RD7WmuY2xN0fvz5bHQS-vcTwkwmfBZqIi2xA2YZMVRQYcDxcWEHJqNW2xiSrQiih2wQQ4QNOyN_RpoLBhGIhaQkoQndQ1vFpDDPEI65tUQbRpRWbKCNjLgxWhOjVawVMQH6sFzcNPPk4u6NizytLrmpTDs7EaDDBjytOTXWwNwupY6lonBlMJdqXpbp8OzHaJwOIwmZkORxvAGWUAbZv-ABer0Kdvr9W0_WDaBW0lsPshP4j5nyjQywUo5LqyduE7KVud9DZtOrX2lHzqrR9ts3vdHLWsNWTWcDsJV40DOMZpcIRHQiIRImtLSU1Pu8EgYZg_SY0QC9akbBWbkbKFWYydxBJGOxiNYjBBy-PBEwV7wGAUrsurcp_MzT2kZbJZIMVJqTAB0tjbad3koNO2os-iZNfP6f8vbRdl1OxMIofoG2Zr_n5iXErDN9UHmsv5TOj4o
  priority: 102
  providerName: Springer Nature
Title The complete genome of an individual by massively parallel DNA sequencing
URI https://link.springer.com/article/10.1038/nature06884
https://www.ncbi.nlm.nih.gov/pubmed/18421352
https://www.proquest.com/docview/204462643
https://www.proquest.com/docview/20844761
https://www.proquest.com/docview/69115967
https://www.proquest.com/docview/762278933
https://www.nature.com/articles/nature06884.pdf
UnpaywallVersion publishedVersion
Volume 452
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-4687
  dateEnd: 20151119
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: ABDBF
  dateStart: 19970605
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-4687
  dateEnd: 20151130
  omitProxy: true
  ssIdentifier: ssj0014407
  issn: 0028-0836
  databaseCode: ABDBF
  dateStart: 19990501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20151119
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: A8Z
  dateStart: 19970605
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0014407
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19990501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0014407
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19990501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8FG
  dateStart: 19900104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwELa2VggQAjbeyqBYaONNStckjuN8LGVlQ6KqxirKp8jO7GkiSwtphcqv55w4TYraFb5Eavzk6pfz-bF8d0Zon9s8oFwwy9MuVIQr1wqYzS1KCWxAdMoqpuOdP_fp8ZB8GnmjLXRYxMJkTvtZSsvMTBfeYYf5O31DCmlNztU2qlMPyHcN1Yf9QedbNddyFk_kU4tQ5puIvLbLqhKW1iBjie9MeAq9ovLrLFbxzcpZ6W10c5ZM-PwXj-PKctS7hwZFQ3IvlO-t2VS0ot9_5Xj8j5beR3cNNcWdHLKDtmSyi25kLqJRuot2jBlI8RuTq_rtA3QCaoYzt3Qg31gnfL2SeKwwT_DlItQLizm-ApIOhjWeY51sPI5ljD_0O9h4ckNzH6Jh7-ise2yZ2xmsiAXe1BIOU45qE0Uc6VKXSjCrHlVtGblKKB-2cjZwk6jtA3-HcWfntvAoAX6jYMsTuIH7CNWScSKfIOx7SjlCEocLTtpCMtuTUghHCu4L7sgGeleMVxiZ1OX6Bo04zI7QXRZWOq2B9hfgSZ6xYw1MD3yoc2Ak2snmgs_SNOycfe32w47NYJ_FPN_fAAtc4gPH8Rro5SrYyZfTJVnXgEpJrw1IjaGNETdhEtBTOlPXkrhNyFLm3hIymlz-CCtyVpWW375aKr3INWxVdTYAS4nNpbm2GCUH-CINHAYVKiZfaCxqCoWEwOabuA30YlEKplCfb_FEjmcawghMfHs9gsLSDmYD6orXIECJdWy4C3_zOJ_2pRIxAirtOQ10UNiBsnorNexgYSSu08Sn_4jbQ7dyZyVi2f4zVJv-nMnnwIinoom2_ZEPT9a19bP3sYnq74_6g1P41aXdprGSfwC8LbkF
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamITQQQmzcymCz0MpNimhsx3EeEKo2ppZtfYBO9C3YmT1NytKOtJr6o_iPHDe3BvXytOd8PT2xzzU-PgehA-nKgEslHM-WUDFpqBMIVzqcM0hAbMsqYe87n_V455x9H3iDDfS3uAtjyyoLmzgz1BfDyH4jhyQdEhfw3vTr6MaxQ6Ps4WoxQSOTihM9vYWMLf3SPYLtbRJy_K1_2HHyoQJOJAJv7CgiDDEtZhjRlFOuwRp43LR0RI0yPmQgLrjUqOVD2AnsigtXeZyBWzYQqQfU9l4Ci3-PUTAloD7-wK8qSv5r-pxfB2xR8Tnr0mkHvLCaA8zdwKORTGFLTDZLY1GwO3dQ-xBtTZKRnN7KOJ7zhcdP0OM8iMXtTOq20YZOdtD9WTFplO6g7dxgpPhD3tX641PUBYHEswJ2CNOxbQ17rfHQYJngq_JSGFZTfA3hPJjgeIptW_I41jE-6rVxXvMNvD1D53ey5M_RZjJM9EuEfc8YojQjUknWUlq4ntZKEa2kryTRDfSpWNwwypuc21kbcTg7bKcinNuJBjoowaOst8cSmN2l0HbLSGw5zqWcpGnY7v867IVtV0BGJjzfXwMLKPMhGvIa6O0iWPfnjxqtFaCK0vscZIbwjpHML1TAStmeXjVy65AVzd0aMhpd3YRzdBY9rX77rvb0MpOwReysAVYU92qKUe4SgciSB0QAQ4WmhLntTcPSUjTQfvkUjKY9CZOJHk4sRDDmc3c5gkMQ4AUceMVLECDE9hY5hb95keloJUSCgUh7pIGahdJW7C2UsGap0ask8dXK191HW53-2Wl42u2d7KIHWWETc1z_Ndoc_5noNxA9j9XezGZh9PuujeQ_nDHQlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemIV5CiI1XGWwWWnlJ0ZrYiZ0PCFUr1cqgQrCJfgt2Zk-TsrQjrab-afx3nBsnaVAfn_Y51-vFPv_uLr4HQvvCFWEgJHd8k0JFhSZOyF3hBAGFAMS0rOKm3vlbPzg6pV8G_mAD_S1qYUxaZYGJM6A-G8bmGzkE6RC4gPUmB9pmRXzvdD-NrhwzQMpctBbTNHINOVbTa4jeso-9Dmx10_O6n08Ojxw7YMCJeeiPHelx7ekW1dRTJCCBAmTwA91SMdFSM4hGXDCvcYuBCwqi8zNX-gEFE63Baw-J6cME6H-LERKabEI2YFV2yX8NoG1pYIvwg7xjpxn2QmvG0JqEByORwfbofK7GIsd37tL2Pro7SUdiei2SZM4udh-hh9ahxe1cA7fQhkq30e1ZYmmcbaMtCx4Zfmc7XL9_jHqgnHiWzA4uOzZtYi8VHmosUnxRFohhOcWX4NoDHCdTbFqUJ4lKcKffxjb_G2R7gk5vZMmfos10mKrnCDNfa08q6gkpaEsq7vpKSekpKZgUnmqgD8XiRrFteG7mbiTR7OKd8GhuJxpovyQe5X0-lpCZXYpM54zUKOG5mGRZ1D75ddiP2i6H6Iz7jK0hCwll4Bn5DfR6EVnv548arxVEFae3lkgP4R1jYYsrYKVMf68au3WUFc-dGmU8uriK5vgselr99k3t6XmuYYvEWUNYcdytHYxylzzwMoPQ4yBQcVIii8NZVKJGA-2VTwFAza2YSNVwYkg4pSxwl1ME4BD4YQCy4iUUoMSmopzA3zzLz2ilRJyCSvteAzWLQ1uJt1DDmuWJXqWJL1a-7h66A_AYfe31j3fQvTzHiToue4k2x38m6hU40mO5O4MsjH7fNEb-AzOV1Nk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdGJwQIARuvMhgW2nhJ6fKwHedjNZg2JKoJVm18iuzMniaytJBWqPz1nBOnSVC7wtf6l6sf5_Pv5LszQjvCExETkjvUhFARoQMn4p5wGCPggJiSVdzkO38esMMh-XRGz9bQXpULUwTtFyUtCzNdRYftlb-ZF1JIb3yub6B1RoF8d9D6cHDc_9astVzkE4XMIYyHNiPPDXhTQusMspb47ljkMCu6fM5iEd9s3JXeQbem2VjMfok0bRxHB_fRcTWQMgrle286kb3k9181Hv9jpA_QPUtNcb-EbKA1lW2im0WIaJJvog1rBnL81taqfvcQHYGa4SIsHcg3NgVfrxQeaSwyfDlP9cJyhq-ApINhTWfYFBtPU5XiD4M-tpHcMNxHaHjw8WT_0LGvMzgJj-jEkT7XvnaJJr4KWMAUmFXKtKuSQEsdgivnATdJ3BD4O6w7P_ckZQT4jQaXJwqi4DHqZKNMPUU4pFr7UhFfSEFcqbhHlZLSV1KEUviqi95X6xUntnS5eUEjjYsr9IDHjUnrop05eFxW7FgCMwsfmxoYmQmyuRDTPI_7J6f7g7jvcfCzOA3DFbAoICFwHNpFrxbBjr5-acm6BlRLemNBegRjTIRNk4CZMpW6WuJWIWuZWy1kMr78ETfkLGqtv33dar0oNWxRd1YAa4nbrb02XyUf-CKLfA4dqjZfbC1qDo2EgPNNgi56OW8FU2jut0SmRlMD4QQ2vrccweBoB7MBfcVLEKDEJjc8gL95Um77Wok4AZWmfhftVnag7t5CDdudG4nrNPHZP-K20O0yWIk4XvgcdSY_p-oFMOKJ3LZW8A_9_LP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complete+genome+of+an+individual+by+massively+parallel+DNA+sequencing&rft.jtitle=Nature+%28London%29&rft.au=Wheelers%2C+David+A&rft.au=Srinivasan%2C+Maithreyan&rft.au=Egholm%2C+Michael&rft.au=Shens%2C+Yufeng&rft.date=2008-04-17&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=452&rft.issue=7189&rft.spage=872&rft_id=info:doi/10.1038%2Fnature06884&rft.externalDocID=A193474265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon