The complete genome of an individual by massively parallel DNA sequencing
One man's genome Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such technology has now been used to analyse much of the genetic code of a single individual — who happens to be James D. Watson. The procedure,...
Saved in:
| Published in | Nature Vol. 452; no. 7189; pp. 872 - 876 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
17.04.2008
Nature Publishing Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0028-0836 1476-4687 1476-4687 1476-4679 |
| DOI | 10.1038/nature06884 |
Cover
| Abstract | One man's genome
Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such technology has now been used to analyse much of the genetic code of a single individual — who happens to be James D. Watson. The procedure, which involves no cloning of the genomic DNA, makes use of the latest 454 parallel sequencing instrument. The sequence cost less than US$1 million (and a mere two months) to produce, compared to the approximately US$100 million reported for sequencing Craig Venter's genome by traditional methods. Still a major undertaking, but another step towards the goal of 'personalized genomes' and 'personalized medicine'.
The DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels is reported.
The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of ‘genomic medicine’. However, the formidable size of the diploid human genome
1
, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2–40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual
2
by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of ‘personalized genome sequencing’. |
|---|---|
| AbstractList | The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'. [PUBLICATION ABSTRACT] The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre- size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next- generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'. The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'. The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'. One man's genome Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such technology has now been used to analyse much of the genetic code of a single individual — who happens to be James D. Watson. The procedure, which involves no cloning of the genomic DNA, makes use of the latest 454 parallel sequencing instrument. The sequence cost less than US$1 million (and a mere two months) to produce, compared to the approximately US$100 million reported for sequencing Craig Venter's genome by traditional methods. Still a major undertaking, but another step towards the goal of 'personalized genomes' and 'personalized medicine'. The DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels is reported. The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of ‘genomic medicine’. However, the formidable size of the diploid human genome 1 , approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2–40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual 2 by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of ‘personalized genome sequencing’. |
| Audience | Academic |
| Author | Makhijani, Vinod Margulies, Marcel Muzny, Donna M. Rothberg, Jonathan M. Roth, G. Thomas Egholm, Michael Weinstock, George M. Turcotte, Cynthia L. Liu, Yue Gomes, Xavier He, Wen McGuire, Amy Lupski, James R. Shen, Yufeng Tartaro, Karrie Yuan, Ye Nazareth, Lynne Gibbs, Richard A. Chen, Lei Song, Xing-zhi Srinivasan, Maithreyan Niazi, Faheem Chen, Yi-Ju Irzyk, Gerard P. Wheeler, David A. Qin, Xiang Chinault, Craig |
| Author_xml | – sequence: 1 givenname: David A. surname: Wheeler fullname: Wheeler, David A. organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 2 givenname: Maithreyan surname: Srinivasan fullname: Srinivasan, Maithreyan organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 3 givenname: Michael surname: Egholm fullname: Egholm, Michael organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 4 givenname: Yufeng surname: Shen fullname: Shen, Yufeng organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 5 givenname: Lei surname: Chen fullname: Chen, Lei organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 6 givenname: Amy surname: McGuire fullname: McGuire, Amy organization: Center for Ethics and Health Policy, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA – sequence: 7 givenname: Wen surname: He fullname: He, Wen organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 8 givenname: Yi-Ju surname: Chen fullname: Chen, Yi-Ju organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 9 givenname: Vinod surname: Makhijani fullname: Makhijani, Vinod organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 10 givenname: G. Thomas surname: Roth fullname: Roth, G. Thomas organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 11 givenname: Xavier surname: Gomes fullname: Gomes, Xavier organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 12 givenname: Karrie surname: Tartaro fullname: Tartaro, Karrie organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA, Present addresses: Molecular Imaging Systems, Carestream Health, Inc., 4 Science Park, New Haven, Connecticut 06511, USA (K.T.); Rothberg Institute for Childhood Diseases, 530 Whitfield Street, Guilford, Connecticut 06437, USA (J.M.R.) – sequence: 13 givenname: Faheem surname: Niazi fullname: Niazi, Faheem organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 14 givenname: Cynthia L. surname: Turcotte fullname: Turcotte, Cynthia L. organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 15 givenname: Gerard P. surname: Irzyk fullname: Irzyk, Gerard P. organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 16 givenname: James R. surname: Lupski fullname: Lupski, James R. organization: Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA, Texas Children’s Hospital, Texas Medical Center, Houston, Texas 77030, USA – sequence: 17 givenname: Craig surname: Chinault fullname: Chinault, Craig organization: Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA – sequence: 18 givenname: Xing-zhi surname: Song fullname: Song, Xing-zhi organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 19 givenname: Yue surname: Liu fullname: Liu, Yue organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 20 givenname: Ye surname: Yuan fullname: Yuan, Ye organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 21 givenname: Lynne surname: Nazareth fullname: Nazareth, Lynne organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 22 givenname: Xiang surname: Qin fullname: Qin, Xiang organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 23 givenname: Donna M. surname: Muzny fullname: Muzny, Donna M. organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA – sequence: 24 givenname: Marcel surname: Margulies fullname: Margulies, Marcel organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA – sequence: 25 givenname: George M. surname: Weinstock fullname: Weinstock, George M. organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA – sequence: 26 givenname: Richard A. surname: Gibbs fullname: Gibbs, Richard A. email: jonathan.rothberg@gmail.com organization: Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston Texas 77030, USA – sequence: 27 givenname: Jonathan M. surname: Rothberg fullname: Rothberg, Jonathan M. email: agibbs@bcm.tmc.edu organization: 454 Life Sciences, Roche Diagnostics, 20 Commercial Street, Bradford, Connecticut 06405, USA, Present addresses: Molecular Imaging Systems, Carestream Health, Inc., 4 Science Park, New Haven, Connecticut 06511, USA (K.T.); Rothberg Institute for Childhood Diseases, 530 Whitfield Street, Guilford, Connecticut 06437, USA (J.M.R.) |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20246928$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18421352$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk91v0zAUxSM0xLrBE-8oQhoIQYftOLbzWJWvStOQoIjHyHWviyfHyexk0P8eT61oOrW0yoOl6HfPPTr33rPkxNUOkuQ5RpcYZeK9k23nATEh6KNkgClnQ8oEP0kGCBExRCJjp8lZCDcIoRxz-iQ5xYISnOVkkEymvyBVddVYaCFdgKsrSGudSpcaNzd3Zt5Jm86WaSVDMHdgl2kjvbQWbPrhepQGuO3AKeMWT5PHWtoAz9bvefLj08fp-Mvw6uvnyXh0NVSiyNvhjAhNNKKaEshYxoAzkjONQGV6pjkR0RjmCnHOCcVIzPEsZ5RluWaUFFmRnSfvVrqda-Tyd7RSNt5U0i9LjMr7RMpeIhF_vcIbX0eroS0rExRYKx3UXShje8JFkWWRfPVfkhUY5wXjB0GCBI1TwBF8-QC8qTvvYjqRoZQRRu_bDlfQQloojdN166WKk4AYc5y0NvH3CBcZ5ZSw_FheFJyKnPONiS1eNea27Ivuh3pKlzug-M2hMmqn1eMKeh3ebBVEpoU_7UJ2IZST79-2xQ-yPd23-9nR9Of4elv5CLqn_WI95G5WwXyzjOsbi8DFGpBBSau9jPcS_nEEEcoKIjZtla9D8KAP7DV-QCvTytZEr14au6dmfTohKrsF-M0-7sL_AghUWnY |
| CODEN | NATUAS |
| CitedBy_id | crossref_primary_10_1007_s12284_009_9025_z crossref_primary_10_1377_hlthaff_27_6_1612 crossref_primary_10_1186_s13059_020_02107_y crossref_primary_10_1161_CIRCRESAHA_113_300939 crossref_primary_10_1016_j_conb_2008_08_010 crossref_primary_10_1146_annurev_genom_082908_150112 crossref_primary_10_1002_mma_6631 crossref_primary_10_1016_j_gene_2011_11_022 crossref_primary_10_1186_1471_2164_10_547 crossref_primary_10_1111_eva_12178 crossref_primary_10_1016_j_coi_2010_08_016 crossref_primary_10_1007_s13577_011_0019_y crossref_primary_10_7717_peerj_13286 crossref_primary_10_1007_s12551_021_00857_y crossref_primary_10_1080_19585969_2022_12130781 crossref_primary_10_1038_nrg2878 crossref_primary_10_1186_s12859_018_2077_6 crossref_primary_10_1016_j_trsl_2015_10_005 crossref_primary_10_1038_nbt_1561 crossref_primary_10_1093_nar_gks800 crossref_primary_10_1073_pnas_0914609107 crossref_primary_10_1101_gr_153346_112 crossref_primary_10_1038_ejhg_2011_103 crossref_primary_10_1111_j_1749_6632_2011_06350_x crossref_primary_10_1093_nar_gkp531 crossref_primary_10_1186_1471_2105_12_210 crossref_primary_10_5528_wjtm_v3_i3_119 crossref_primary_10_1186_s41241_019_0075_2 crossref_primary_10_1002_chem_201301868 crossref_primary_10_1177_2040620711403028 crossref_primary_10_1038_nrg2626 crossref_primary_10_1126_science_1181498 crossref_primary_10_1097_MD_0000000000013521 crossref_primary_10_1007_s00268_008_9836_x crossref_primary_10_1038_nbt_1596 crossref_primary_10_1016_j_bpg_2025_101988 crossref_primary_10_1186_1471_2164_11_140 crossref_primary_10_1038_nbt_1593 crossref_primary_10_1016_j_ab_2011_08_033 crossref_primary_10_1007_s10764_013_9721_9 crossref_primary_10_1007_s11427_011_4232_4 crossref_primary_10_1186_1755_8794_4_25 crossref_primary_10_1016_j_jshs_2022_09_002 crossref_primary_10_1016_j_critrevonc_2015_05_017 crossref_primary_10_1101_gr_229401_117 crossref_primary_10_1101_gr_096388_109 crossref_primary_10_1051_medsci_2010266_7579 crossref_primary_10_1038_nmeth0810_575 crossref_primary_10_1128_microbiolspec_TBS_0012_2012 crossref_primary_10_1038_nbt_1583 crossref_primary_10_1002_pmic_201500396 crossref_primary_10_1186_s12864_021_07816_7 crossref_primary_10_1183_09031936_00042409 crossref_primary_10_1002_ajmg_a_33626 crossref_primary_10_1093_bib_bbq016 crossref_primary_10_3389_fgene_2014_00466 crossref_primary_10_1002_em_21943 crossref_primary_10_1007_s10709_008_9326_y crossref_primary_10_1038_jhg_2012_91 crossref_primary_10_1038_nrg2841 crossref_primary_10_1186_1471_2164_12_116 crossref_primary_10_1186_s12864_021_07686_z crossref_primary_10_1038_s41588_020_0651_0 crossref_primary_10_1007_s40484_016_0060_7 crossref_primary_10_1002_humu_21259 crossref_primary_10_1016_j_gene_2011_12_042 crossref_primary_10_1111_j_1462_2920_2009_01941_x crossref_primary_10_1038_ng_691 crossref_primary_10_1017_S0016672309990310 crossref_primary_10_1016_j_imbio_2011_07_023 crossref_primary_10_1155_2016_6329217 crossref_primary_10_1016_j_eururo_2009_11_043 crossref_primary_10_1016_j_fsigen_2015_02_002 crossref_primary_10_1186_1471_2164_12_103 crossref_primary_10_1242_dmm_049484 crossref_primary_10_1039_C6RA10008B crossref_primary_10_1038_nbt_1523 crossref_primary_10_1002_bies_200900181 crossref_primary_10_1080_07391102_2014_968624 crossref_primary_10_1038_s41588_022_01128_6 crossref_primary_10_1093_molbev_msq287 crossref_primary_10_1186_gb_2009_10_6_r60 crossref_primary_10_1038_ng_680 crossref_primary_10_1200_JCO_2012_45_3753 crossref_primary_10_1186_1471_2156_14_6 crossref_primary_10_1002_humu_21033 crossref_primary_10_1186_1755_8794_2_39 crossref_primary_10_1371_journal_pone_0141105 crossref_primary_10_1002_em_20630 crossref_primary_10_1002_humu_21276 crossref_primary_10_1007_s12041_013_0313_4 crossref_primary_10_1016_j_gde_2009_04_010 crossref_primary_10_1101_gr_091868_109 crossref_primary_10_1016_j_yamp_2019_08_002 crossref_primary_10_1016_j_nbt_2011_11_016 crossref_primary_10_12688_f1000research_19630_1 crossref_primary_10_18632_oncotarget_3758 crossref_primary_10_12688_f1000research_19630_2 crossref_primary_10_1016_j_heliyon_2024_e38826 crossref_primary_10_1038_ng_684 crossref_primary_10_4137_CIN_S30793 crossref_primary_10_1101_gr_091991_109 crossref_primary_10_1002_humu_21260 crossref_primary_10_1007_s11105_011_0291_8 crossref_primary_10_1093_bioinformatics_bty653 crossref_primary_10_1186_1471_2105_12_406 crossref_primary_10_1101_gr_077065_108 crossref_primary_10_1002_0471142727_mb2123s99 crossref_primary_10_1007_s13238_010_0065_3 crossref_primary_10_1186_1471_2164_12_375 crossref_primary_10_1534_genetics_111_134874 crossref_primary_10_1007_s00439_016_1667_5 crossref_primary_10_1038_nmeth_1451 crossref_primary_10_1038_ejhg_2012_198 crossref_primary_10_1038_nnano_2015_320 crossref_primary_10_1534_genetics_110_124776 crossref_primary_10_1016_j_immbio_2012_12_002 crossref_primary_10_1038_ng_437 crossref_primary_10_1182_asheducation_2013_1_316 crossref_primary_10_4236_jasmi_2013_32012 crossref_primary_10_1371_journal_pgen_1000249 crossref_primary_10_1155_2012_876234 crossref_primary_10_1002_ajmg_a_34357 crossref_primary_10_1042_BST0361091 crossref_primary_10_1089_dna_2015_2897 crossref_primary_10_1038_452819a crossref_primary_10_1101_gr_133652_111 crossref_primary_10_1186_gb_2009_10_2_r23 crossref_primary_10_3390_cancers7030869 crossref_primary_10_1016_j_repc_2013_02_006 crossref_primary_10_1371_journal_pone_0064036 crossref_primary_10_1038_nbt_1739 crossref_primary_10_1016_j_cell_2010_05_020 crossref_primary_10_1007_s11883_011_0168_1 crossref_primary_10_1016_j_cell_2010_05_021 crossref_primary_10_1038_nbt_1975 crossref_primary_10_2217_pme_09_63 crossref_primary_10_1586_erm_12_10 crossref_primary_10_1038_nature08516 crossref_primary_10_12677_hjcb_2013_32002 crossref_primary_10_1098_rsif_2008_0341 crossref_primary_10_1016_j_nbt_2008_12_009 crossref_primary_10_1186_s40035_017_0098_0 crossref_primary_10_1093_nar_gkr342 crossref_primary_10_4168_aair_2013_5_5_258 crossref_primary_10_1371_journal_pcbi_1000567 crossref_primary_10_1186_s12864_022_08437_4 crossref_primary_10_1136_amiajnl_2011_000737 crossref_primary_10_1186_1471_2105_11_269 crossref_primary_10_1016_j_aca_2014_07_045 crossref_primary_10_1016_j_ygeno_2015_11_003 crossref_primary_10_1002_humu_21602 crossref_primary_10_1073_pnas_1112567108 crossref_primary_10_1002_humu_21601 crossref_primary_10_1007_s12263_010_0186_6 crossref_primary_10_1016_j_semcdb_2011_11_003 crossref_primary_10_3389_fphar_2020_01177 crossref_primary_10_1161_CIRCRESAHA_110_236067 crossref_primary_10_1111_cge_12714 crossref_primary_10_1016_S0140_6736_10_60452_7 crossref_primary_10_1111_j_1467_7652_2009_00406_x crossref_primary_10_1134_S000368381007001X crossref_primary_10_3389_fnmol_2022_905328 crossref_primary_10_15406_jpnc_2019_09_00402 crossref_primary_10_2217_14622416_10_2_213 crossref_primary_10_1007_s13631_014_0066_y crossref_primary_10_1007_s12237_009_9182_8 crossref_primary_10_1038_ng_647 crossref_primary_10_1007_s12041_014_0451_3 crossref_primary_10_1016_j_trsl_2011_08_001 crossref_primary_10_1111_j_1755_0998_2011_03098_x crossref_primary_10_1002_humu_22965 crossref_primary_10_1042_ETLS20210213 crossref_primary_10_1038_onc_2010_117 crossref_primary_10_1038_ejhg_2013_46 crossref_primary_10_1097_HJH_0b013e328341d0fd crossref_primary_10_1093_hmg_ddv146 crossref_primary_10_1007_s13744_021_00895_x crossref_primary_10_1146_annurev_animal_020518_115344 crossref_primary_10_1248_yakushi_128_1547 crossref_primary_10_1007_s11825_010_0216_1 crossref_primary_10_2217_pme_09_55 crossref_primary_10_1016_j_atg_2015_08_005 crossref_primary_10_1101_gr_102921_109 crossref_primary_10_1371_journal_pone_0174696 crossref_primary_10_1016_j_patbio_2009_09_008 crossref_primary_10_1586_erm_12_20 crossref_primary_10_1021_acs_jpcc_8b00241 crossref_primary_10_1186_s13059_019_1774_4 crossref_primary_10_1038_ng_872 crossref_primary_10_1101_gr_112094_110 crossref_primary_10_1101_gr_156075_113 crossref_primary_10_1265_jjh_65_37 crossref_primary_10_1017_S0029665112002856 crossref_primary_10_1002_ijch_201900133 crossref_primary_10_1101_gr_113555_110 crossref_primary_10_1007_s11538_012_9744_y crossref_primary_10_1101_gr_119792_110 crossref_primary_10_1038_s41563_018_0241_z crossref_primary_10_3389_fncel_2019_00118 crossref_primary_10_1021_ac102666n crossref_primary_10_1093_nar_gku642 crossref_primary_10_3390_ht6030010 crossref_primary_10_1007_s10482_010_9465_x crossref_primary_10_1038_s41598_017_09287_x crossref_primary_10_1038_nature07485 crossref_primary_10_1038_nature07484 crossref_primary_10_1186_1471_2105_11_471 crossref_primary_10_3389_fped_2020_00373 crossref_primary_10_3327_jaesjb_54_8_521 crossref_primary_10_1038_nature08795 crossref_primary_10_1056_NEJMoa0908094 crossref_primary_10_1101_gr_088013_108 crossref_primary_10_3389_fmars_2020_606601 crossref_primary_10_5504_BBEQ_2013_0099 crossref_primary_10_1111_j_1478_3231_2009_01974_x crossref_primary_10_3109_0284186X_2010_500297 crossref_primary_10_1098_rstb_2010_0259 crossref_primary_10_1186_1471_2156_11_19 crossref_primary_10_1186_gb_2009_10_3_r32 crossref_primary_10_3109_07388551_2015_1083939 crossref_primary_10_1016_j_ymeth_2012_07_021 crossref_primary_10_3389_fgene_2015_00055 crossref_primary_10_1002_0471142905_hg0611s69 crossref_primary_10_3390_ht6030001 crossref_primary_10_1586_erm_09_41 crossref_primary_10_1016_S0140_6736_10_60598_3 crossref_primary_10_1002_pd_2129 crossref_primary_10_1007_s11032_009_9357_9 crossref_primary_10_1038_srep20291 crossref_primary_10_1007_s00103_014_2096_z crossref_primary_10_1016_j_aquatox_2013_04_004 crossref_primary_10_1007_s12041_012_0129_7 crossref_primary_10_1089_cmb_2011_0171 crossref_primary_10_1007_s00335_009_9187_4 crossref_primary_10_1016_j_bios_2022_114486 crossref_primary_10_1007_s11280_017_0518_1 crossref_primary_10_1371_journal_pgen_1001111 crossref_primary_10_1007_s10142_014_0363_6 crossref_primary_10_1038_aja_2011_51 crossref_primary_10_1016_j_tree_2008_11_004 crossref_primary_10_1161_CIRCRESAHA_110_226258 crossref_primary_10_1586_erm_09_50 crossref_primary_10_1093_bib_bbv084 crossref_primary_10_3390_ijms23073976 crossref_primary_10_1038_nature07446 crossref_primary_10_1016_j_csbj_2019_11_002 crossref_primary_10_1002_cplu_201402194 crossref_primary_10_1093_nar_gkr363 crossref_primary_10_1089_gtmb_2012_0464 crossref_primary_10_1371_journal_pone_0065188 crossref_primary_10_1128_genomeA_00489_16 crossref_primary_10_1161_CIRCRESAHA_111_249409 crossref_primary_10_1093_bioinformatics_btp208 crossref_primary_10_1194_jlr_R800081_JLR200 crossref_primary_10_1016_j_jbiotec_2010_09_945 crossref_primary_10_1038_ncomms1130 crossref_primary_10_3109_10408361003633318 crossref_primary_10_1016_j_cell_2017_01_037 crossref_primary_10_1101_gr_092197_109 crossref_primary_10_1038_ejhg_2008_198 crossref_primary_10_1161_CIRCGENETICS_110_958322 crossref_primary_10_3928_01477447_20160304_03 crossref_primary_10_1128_genomeA_01301_17 crossref_primary_10_1002_elps_200800456 crossref_primary_10_1007_s12265_009_9132_7 crossref_primary_10_1038_stemcells_2008_85 crossref_primary_10_1186_s12885_019_5845_4 crossref_primary_10_3892_mmr_2014_2349 crossref_primary_10_1016_j_rhum_2021_09_013 crossref_primary_10_1161_CIR_0b013e31825b07f8 crossref_primary_10_1515_labmed_2018_0054 crossref_primary_10_1119_1_4869198 crossref_primary_10_1016_j_tibtech_2008_08_003 crossref_primary_10_1177_1745691616635594 crossref_primary_10_1586_erm_11_3 crossref_primary_10_1016_j_ajhg_2010_07_002 crossref_primary_10_1093_bioinformatics_btu805 crossref_primary_10_1093_dnares_dss011 crossref_primary_10_1016_j_cell_2011_05_025 crossref_primary_10_1016_j_fsigen_2013_03_010 crossref_primary_10_1002_humu_22096 crossref_primary_10_4236_ojmp_2014_32019 crossref_primary_10_1186_1471_2105_9_239 crossref_primary_10_1186_1471_2164_13_417 crossref_primary_10_1186_1471_2164_13_414 crossref_primary_10_3389_fsysb_2022_940321 crossref_primary_10_1101_gr_157602_113 crossref_primary_10_1101_gad_2017311 crossref_primary_10_1161_CIRCGENETICS_110_959437 crossref_primary_10_1128_EC_00123_10 crossref_primary_10_1186_gm13 crossref_primary_10_2217_pme_13_41 crossref_primary_10_1101_gr_092619_109 crossref_primary_10_3390_diagnostics3010126 crossref_primary_10_3390_genes15040443 crossref_primary_10_1093_nar_gkn939 crossref_primary_10_1186_1471_2164_15_255 crossref_primary_10_1016_j_preteyeres_2017_03_003 crossref_primary_10_1186_s12881_017_0465_9 crossref_primary_10_1016_j_ajhg_2013_05_009 crossref_primary_10_1016_j_ajhg_2012_12_005 crossref_primary_10_1016_j_bbadis_2012_05_018 crossref_primary_10_1093_bioinformatics_btp373 crossref_primary_10_1101_gr_103499_109 crossref_primary_10_1371_journal_pcbi_1000752 crossref_primary_10_1002_polb_22284 crossref_primary_10_1007_s00268_010_0941_2 crossref_primary_10_1016_j_fsigen_2024_103156 crossref_primary_10_1016_j_brainresbull_2011_11_015 crossref_primary_10_1088_0957_4484_26_7_074003 crossref_primary_10_1016_j_tig_2009_02_002 crossref_primary_10_1093_bfgp_els037 crossref_primary_10_1101_gr_101360_109 crossref_primary_10_1093_nar_gkn906 crossref_primary_10_1111_j_1365_294X_2008_03954_x crossref_primary_10_2217_pgs_15_5 crossref_primary_10_2183_pjab_93_042 crossref_primary_10_1186_1755_8166_7_52 crossref_primary_10_1038_nbt_4060 crossref_primary_10_1016_j_jmoldx_2023_12_003 crossref_primary_10_1093_bioinformatics_btq695 crossref_primary_10_1371_journal_pone_0013857 crossref_primary_10_1101_gr_148718_112 crossref_primary_10_1186_1756_0500_4_338 crossref_primary_10_1038_ejhg_2009_196 crossref_primary_10_1002_ajmg_a_38350 crossref_primary_10_1093_bioinformatics_btq215 crossref_primary_10_1093_bioinformatics_btq214 crossref_primary_10_1007_s13577_019_00286_w crossref_primary_10_1007_s10577_024_09746_y crossref_primary_10_1093_bioinformatics_btr303 crossref_primary_10_1007_s00268_010_0954_x crossref_primary_10_1093_bioinformatics_btr305 crossref_primary_10_1155_2022_8077664 crossref_primary_10_1515_cclm_2019_0657 crossref_primary_10_1186_1471_2164_15_235 crossref_primary_10_1007_s00268_008_9861_9 crossref_primary_10_1111_j_1365_294X_2010_04650_x crossref_primary_10_1134_S0026893309020095 crossref_primary_10_1093_bioinformatics_btt512 crossref_primary_10_1038_srep04666 crossref_primary_10_1186_s12864_015_1481_9 crossref_primary_10_1002_ajmg_b_32223 crossref_primary_10_2217_17520363_2_3_209 crossref_primary_10_1093_bioinformatics_btp394 crossref_primary_10_1186_gb_2013_14_10_r120 crossref_primary_10_1038_ncomms2502 crossref_primary_10_1093_nar_gku361 crossref_primary_10_1177_0300985810387939 crossref_primary_10_3390_ht6010001 crossref_primary_10_1038_nature10242 crossref_primary_10_1093_bioinformatics_btp399 crossref_primary_10_1586_erm_13_1 crossref_primary_10_1007_s00439_010_0920_6 crossref_primary_10_1038_nbt0909_820 crossref_primary_10_1038_nbt_2065 crossref_primary_10_1161_CIRCRESAHA_110_229260 crossref_primary_10_1071_RD09215 crossref_primary_10_1093_bib_bbu047 crossref_primary_10_1134_S1022795410040022 crossref_primary_10_1016_j_bdq_2015_04_003 crossref_primary_10_1007_s10059_013_0127_5 crossref_primary_10_1089_cmb_2009_0185 crossref_primary_10_1016_j_jsb_2010_09_009 crossref_primary_10_1038_453281a crossref_primary_10_1186_1471_2105_10_80 crossref_primary_10_1016_j_tibtech_2008_07_003 crossref_primary_10_1101_gr_204255_116 crossref_primary_10_1038_464670a crossref_primary_10_1089_crispr_2017_0016 crossref_primary_10_3390_genes9080377 crossref_primary_10_1371_journal_pone_0018055 crossref_primary_10_1101_pdb_top62 crossref_primary_10_1101_gr_133702_111 crossref_primary_10_1002_cphg_49 crossref_primary_10_2144_000113136 crossref_primary_10_1016_j_mimet_2011_04_006 crossref_primary_10_1002_ajmg_b_32204 crossref_primary_10_1093_nar_gkv677 crossref_primary_10_1534_genetics_113_153049 crossref_primary_10_1371_journal_pone_0060572 crossref_primary_10_3390_genes3030545 crossref_primary_10_1093_bioinformatics_btq027 crossref_primary_10_1097_HCO_0b013e328352207e crossref_primary_10_1186_gb_2010_11_9_r91 crossref_primary_10_15446_abc_v21n1Supl_51233 crossref_primary_10_1007_s00439_011_1001_1 crossref_primary_10_1161_CIRCRESAHA_116_308830 crossref_primary_10_1186_1756_0500_5_27 crossref_primary_10_2217_epi_09_7 crossref_primary_10_3389_frmbi_2022_1049688 crossref_primary_10_1101_gr_136739_111 crossref_primary_10_1038_456049a crossref_primary_10_1080_03014460_2021_1944312 crossref_primary_10_1159_000370213 crossref_primary_10_1007_s11906_008_0091_1 crossref_primary_10_1093_bioinformatics_btr344 crossref_primary_10_1111_bjh_16249 crossref_primary_10_1016_j_nmd_2022_07_401 crossref_primary_10_1093_bioinformatics_btp166 crossref_primary_10_1007_s00216_012_5914_x crossref_primary_10_1038_hdy_2010_152 crossref_primary_10_1097_JBR_0000000000000028 crossref_primary_10_1002_0471142727_mb0712s102 crossref_primary_10_1002_humu_20972 crossref_primary_10_1002_ajmg_a_34195 crossref_primary_10_1016_j_jacc_2016_09_968 crossref_primary_10_1038_jhg_2010_19 crossref_primary_10_1007_s10555_013_9429_5 crossref_primary_10_1101_gr_113084_110 crossref_primary_10_1146_annurev_genom_091212_153408 crossref_primary_10_4168_aair_2011_3_4_236 crossref_primary_10_1172_JCI40662 crossref_primary_10_1186_s40104_023_00860_1 crossref_primary_10_1007_s11825_019_0240_8 crossref_primary_10_1210_jc_2013_3690 crossref_primary_10_1007_s00018_014_1772_3 crossref_primary_10_1038_ng_1007 crossref_primary_10_1371_journal_pone_0037104 crossref_primary_10_3390_molecules16010412 crossref_primary_10_2217_pgs_12_72 crossref_primary_10_1038_s42003_021_01681_6 crossref_primary_10_1038_456023a crossref_primary_10_3390_life12010041 crossref_primary_10_1186_gb_2010_11_8_r82 crossref_primary_10_1080_14737159_2016_1224181 crossref_primary_10_1017_S0140525X11002226 crossref_primary_10_1186_1755_8794_2_29 crossref_primary_10_1371_journal_pone_0060585 crossref_primary_10_1255_ejms_1045 crossref_primary_10_1002_cncr_30581 crossref_primary_10_1186_gb_2010_11_8_r88 crossref_primary_10_2217_14622416_9_6_667 crossref_primary_10_1016_j_jviromet_2013_12_018 crossref_primary_10_1007_s12265_011_9259_1 crossref_primary_10_1093_bioinformatics_bts219 crossref_primary_10_1093_brain_awu356 crossref_primary_10_1111_pbi_12072 crossref_primary_10_1038_nbt_2053 crossref_primary_10_1093_bib_bbae022 crossref_primary_10_1373_clinchem_2014_237461 crossref_primary_10_1093_hmg_ddr599 crossref_primary_10_1007_s10641_010_9628_7 crossref_primary_10_3390_ijms23020651 crossref_primary_10_1002_pst_460 crossref_primary_10_5483_BMBRep_2013_46_6_177 crossref_primary_10_1038_452788b crossref_primary_10_1101_gr_092072_109 crossref_primary_10_1371_journal_pone_0021400 crossref_primary_10_1073_pnas_0914114107 crossref_primary_10_1371_journal_pgen_1000906 crossref_primary_10_1145_3340286 crossref_primary_10_2217_fon_14_307 crossref_primary_10_1186_gb_2010_11_4_r44 crossref_primary_10_1038_jhg_2010_55 crossref_primary_10_1371_journal_pone_0020794 crossref_primary_10_1134_S0006350910030036 crossref_primary_10_1373_clinchem_2014_225250 crossref_primary_10_3390_genes11090977 crossref_primary_10_1097_ACM_0b013e3181ccbebf crossref_primary_10_1016_S1673_8527_08_60113_7 crossref_primary_10_1371_journal_pone_0198249 crossref_primary_10_1016_j_febslet_2009_11_050 crossref_primary_10_1016_j_ymeth_2014_10_012 crossref_primary_10_1371_journal_pone_0208901 crossref_primary_10_1186_1471_2164_11_88 crossref_primary_10_1016_j_cca_2014_09_034 crossref_primary_10_1007_s12274_022_4632_8 crossref_primary_10_1186_1471_2164_13_208 crossref_primary_10_1016_j_ymeth_2009_05_014 crossref_primary_10_1016_j_cub_2014_01_018 crossref_primary_10_1038_scibx_2009_3 crossref_primary_10_1016_j_ygeno_2012_10_004 crossref_primary_10_1186_1471_2164_14_248 crossref_primary_10_1016_j_nurpra_2010_06_007 crossref_primary_10_1111_j_1399_0004_2009_01342_x crossref_primary_10_3390_jpm6020014 crossref_primary_10_1016_j_jbiotec_2013_04_006 crossref_primary_10_1371_journal_pone_0038470 crossref_primary_10_1007_s40618_014_0149_7 crossref_primary_10_1007_s13580_019_00160_6 crossref_primary_10_1093_annonc_mdq664 crossref_primary_10_17116_repro20232904168 crossref_primary_10_3390_cancers17040682 crossref_primary_10_1186_gb_2010_11_5_r52 crossref_primary_10_1007_s10142_012_0289_9 crossref_primary_10_1038_nbt_3309 crossref_primary_10_12968_jokc_2021_6_3_112 crossref_primary_10_1101_gr_088633_108 crossref_primary_10_1146_annurev_med_051010_162644 crossref_primary_10_1002_widm_54 crossref_primary_10_5483_BMBRep_2008_41_11_757 crossref_primary_10_1093_bioinformatics_bts019 crossref_primary_10_1016_j_tig_2010_04_002 crossref_primary_10_4161_mabs_3_1_14169 crossref_primary_10_7868_S0016675817010027 crossref_primary_10_1101_gr_095026_109 crossref_primary_10_1101_gr_100040_109 crossref_primary_10_5352_JLS_2014_24_11_1258 crossref_primary_10_1038_srep17560 crossref_primary_10_1007_s00439_011_1021_x crossref_primary_10_1093_database_baw124 crossref_primary_10_1016_j_jaci_2010_05_025 crossref_primary_10_1098_rsos_150565 crossref_primary_10_1111_j_1467_2979_2008_00306_x crossref_primary_10_1126_scitranslmed_3001756 crossref_primary_10_3390_nu13010201 crossref_primary_10_1101_gr_115907_110 crossref_primary_10_1038_ng_2311 crossref_primary_10_1093_bioinformatics_btt362 crossref_primary_10_1371_journal_pone_0009976 crossref_primary_10_1093_gigascience_giaa123 crossref_primary_10_1016_j_ajhg_2013_04_018 crossref_primary_10_1093_bioinformatics_btq098 crossref_primary_10_1186_gb_2011_12_8_125 crossref_primary_10_1038_s41598_019_38996_8 crossref_primary_10_1038_nrd3200 crossref_primary_10_1146_annurev_genom_082509_141802 crossref_primary_10_3390_biology1030460 crossref_primary_10_1186_s12864_016_2824_x crossref_primary_10_4161_gmic_1_6_13608 crossref_primary_10_1056_NEJMe0903433 crossref_primary_10_1186_1471_2164_13_440 crossref_primary_10_1016_j_jbspin_2021_105319 crossref_primary_10_1371_journal_pone_0004012 crossref_primary_10_1016_j_cvsm_2014_01_006 crossref_primary_10_1093_hmg_ddq400 crossref_primary_10_1371_journal_pgen_1002144 crossref_primary_10_3389_fcell_2020_00728 crossref_primary_10_3389_fgene_2022_931996 crossref_primary_10_5363_tits_16_7_84 crossref_primary_10_1016_j_imu_2020_100296 crossref_primary_10_1186_1471_2105_11_318 crossref_primary_10_1098_rsfs_2019_0049 crossref_primary_10_1371_journal_pone_0016486 crossref_primary_10_1093_molbev_msq198 crossref_primary_10_1007_s00125_009_1324_9 crossref_primary_10_1007_s10741_009_9138_x crossref_primary_10_1101_cshperspect_a034579 crossref_primary_10_1016_j_pedobi_2008_09_001 crossref_primary_10_1007_s00439_011_0964_2 crossref_primary_10_1016_j_prp_2011_11_001 crossref_primary_10_1016_j_ajhg_2013_02_006 crossref_primary_10_1186_1471_2164_11_469 crossref_primary_10_1021_acs_analchem_6b02117 crossref_primary_10_1016_j_mcp_2011_08_005 crossref_primary_10_1016_j_margen_2015_05_006 crossref_primary_10_1056_NEJMra0808700 crossref_primary_10_1016_j_tig_2009_05_005 crossref_primary_10_1038_nrg2999 crossref_primary_10_1159_000500574 crossref_primary_10_1371_journal_pcbi_1000296 crossref_primary_10_1016_j_arr_2009_10_006 crossref_primary_10_1073_pnas_0910672106 crossref_primary_10_1186_1471_2164_11_232 crossref_primary_10_1111_j_1399_0004_2011_01712_x crossref_primary_10_1586_eem_11_19 crossref_primary_10_1016_j_yamp_2024_06_007 crossref_primary_10_1093_bib_bbr004 crossref_primary_10_1371_journal_pone_0006659 crossref_primary_10_1038_ng_363 crossref_primary_10_1007_s00401_012_1072_7 crossref_primary_10_1007_s00268_010_0949_7 crossref_primary_10_1007_s10545_018_0154_7 crossref_primary_10_1038_nmeth_1527 crossref_primary_10_1667_RR1991_1 crossref_primary_10_1371_journal_pone_0085233 crossref_primary_10_1002_cbic_201402556 crossref_primary_10_1002_slct_202305069 crossref_primary_10_1371_journal_pone_0014288 crossref_primary_10_1007_s13353_011_0057_x crossref_primary_10_1101_gr_091363_109 crossref_primary_10_1089_gtmb_2016_0413 crossref_primary_10_1016_j_ajhg_2010_11_004 crossref_primary_10_1016_j_bbcan_2009_03_001 crossref_primary_10_1038_s41398_023_02689_8 crossref_primary_10_1016_j_nbt_2012_11_012 crossref_primary_10_1073_pnas_0907112106 crossref_primary_10_1007_s12010_017_2568_3 crossref_primary_10_1111_j_1748_1716_2010_02127_x crossref_primary_10_1186_s13742_016_0132_7 crossref_primary_10_1373_clinchem_2008_112789 crossref_primary_10_1039_C5LC01533B crossref_primary_10_1016_j_gdata_2014_11_016 crossref_primary_10_1371_journal_pone_0014278 crossref_primary_10_5213_inj_1632742_371 crossref_primary_10_1002_humu_22435 crossref_primary_10_1016_j_preteyeres_2016_06_001 crossref_primary_10_1038_nprot_2014_063 crossref_primary_10_3732_ajb_1000296 crossref_primary_10_1016_j_gene_2020_145237 crossref_primary_10_1093_hmg_ddq416 crossref_primary_10_1186_1756_8722_4_36 crossref_primary_10_1242_jcs_054304 crossref_primary_10_1371_journal_pone_0052353 crossref_primary_10_1002_biot_201200153 crossref_primary_10_1016_j_molcel_2015_05_004 crossref_primary_10_1080_08989575_2016_1180032 crossref_primary_10_1016_j_tig_2009_06_003 crossref_primary_10_1016_j_tibtech_2023_06_007 crossref_primary_10_1109_TCBB_2014_2366103 crossref_primary_10_1016_j_jtbi_2011_07_021 crossref_primary_10_1159_000351267 crossref_primary_10_1038_nature07517 crossref_primary_10_1186_1755_8794_3_20 crossref_primary_10_2217_pgs_09_10 crossref_primary_10_1186_1471_2164_12_243 crossref_primary_10_1016_j_tibtech_2009_05_006 crossref_primary_10_1186_1471_2105_11_514 crossref_primary_10_1080_17513758_2015_1033022 crossref_primary_10_3390_foods12061120 crossref_primary_10_1146_annurev_phyto_072910_095408 crossref_primary_10_2217_pgs_10_10 crossref_primary_10_1134_S1022795417010021 crossref_primary_10_1186_s12864_018_4552_x crossref_primary_10_1038_nature07744 crossref_primary_10_1038_nature08835 crossref_primary_10_1016_j_tcm_2012_08_001 crossref_primary_10_1093_nar_gkr668 crossref_primary_10_1007_s00439_013_1287_2 crossref_primary_10_1093_bib_bbp039 crossref_primary_10_1534_genetics_117_203067 crossref_primary_10_1371_journal_pone_0015348 crossref_primary_10_1016_j_yexmp_2011_02_007 crossref_primary_10_1017_S003329171000070X crossref_primary_10_1039_c0lc00553c crossref_primary_10_1038_nrg2958 crossref_primary_10_1186_gb_2009_10_10_r116 crossref_primary_10_3390_jpm8040031 crossref_primary_10_1542_peds_2011_3636 crossref_primary_10_5808_GI_2008_6_4_161 crossref_primary_10_1007_s00401_012_0982_8 crossref_primary_10_3390_ijms24021153 crossref_primary_10_1093_bib_bbp026 crossref_primary_10_1002_bmb_21561 crossref_primary_10_1002_humu_21397 crossref_primary_10_1063_1_4978426 crossref_primary_10_1080_09168451_2016_1171701 crossref_primary_10_1016_j_ajhg_2010_12_006 crossref_primary_10_1002_bmb_20237 crossref_primary_10_2217_pgs_09_34 crossref_primary_10_1371_journal_pgen_1001081 crossref_primary_10_1017_S1462399410001390 crossref_primary_10_1007_s12033_015_9884_z crossref_primary_10_1016_j_ijrobp_2020_04_008 crossref_primary_10_1016_j_ab_2010_07_022 crossref_primary_10_1038_nbt_2764 crossref_primary_10_1016_j_cca_2023_117568 crossref_primary_10_1038_ng_564 crossref_primary_10_1093_eurheartj_ehv173 crossref_primary_10_1038_s41419_017_0232_z crossref_primary_10_4236_jbm_2015_35002 crossref_primary_10_1038_nature24286 crossref_primary_10_1186_1753_6561_5_S9_S13 crossref_primary_10_3748_wjg_15_5377 crossref_primary_10_1038_nm_2038 crossref_primary_10_1186_1471_2164_15_86 crossref_primary_10_1002_humu_22472 crossref_primary_10_1007_s00604_014_1249_y crossref_primary_10_2353_jmoldx_2010_100043 crossref_primary_10_1007_s11920_013_0349_4 crossref_primary_10_1089_cmb_2012_0091 crossref_primary_10_1186_s12864_015_1290_1 crossref_primary_10_1186_s12864_015_1479_3 crossref_primary_10_1111_j_1423_0410_2010_01444_x crossref_primary_10_1537_asj_117_1 crossref_primary_10_1016_j_ajhg_2018_12_018 crossref_primary_10_1016_j_tig_2009_12_007 crossref_primary_10_1016_j_hjb_2016_12_007 crossref_primary_10_1016_S1470_2045_09_70359_6 crossref_primary_10_1371_journal_pone_0195971 crossref_primary_10_5808_GI_2009_7_3_159 crossref_primary_10_1101_gad_1968411 crossref_primary_10_1146_annurev_genom_090413_025352 crossref_primary_10_1038_s41586_019_1879_7 crossref_primary_10_1101_gr_128991_111 crossref_primary_10_1002_humu_21149 crossref_primary_10_1093_bioinformatics_btn548 crossref_primary_10_1002_ajmg_a_35328 crossref_primary_10_1186_2041_2223_2_23 crossref_primary_10_1007_s12975_010_0041_5 crossref_primary_10_1186_1758_907X_2_2 crossref_primary_10_1038_ng0509_510 crossref_primary_10_1371_journal_pgen_1003634 crossref_primary_10_1002_hed_24085 crossref_primary_10_1093_database_baz056 crossref_primary_10_1111_jeb_14233 crossref_primary_10_3103_S0095452710040109 crossref_primary_10_1186_s12915_021_01077_2 crossref_primary_10_1186_s12864_015_1516_2 crossref_primary_10_1109_TC_2020_3041402 crossref_primary_10_1128_CMR_00003_14 crossref_primary_10_1021_ar900255c crossref_primary_10_1016_j_gde_2017_01_001 crossref_primary_10_2174_0124681873279660231226070118 crossref_primary_10_1016_j_hrthm_2010_05_026 crossref_primary_10_2217_pme_11_16 crossref_primary_10_1146_annurev_genom_082908_145957 crossref_primary_10_1002_elps_201000585 crossref_primary_10_1038_nprot_2009_68 crossref_primary_10_1186_1471_2164_9_404 crossref_primary_10_1093_nar_gkr221 crossref_primary_10_1111_j_1365_2583_2010_01043_x crossref_primary_10_1002_adsr_202200098 crossref_primary_10_1038_nrg3445 crossref_primary_10_1051_medsci_2008245529 crossref_primary_10_1080_15376510902855529 crossref_primary_10_1016_j_jgg_2011_02_003 crossref_primary_10_1038_nbt_1600 crossref_primary_10_1186_1741_7007_8_98 crossref_primary_10_1007_s00103_023_03777_2 crossref_primary_10_1002_cyto_b_20453 crossref_primary_10_3389_fevo_2018_00114 crossref_primary_10_1038_ejhg_2014_279 crossref_primary_10_1161_CIRCRESAHA_121_318346 crossref_primary_10_1159_000448041 crossref_primary_10_1016_j_clinbiochem_2009_01_020 crossref_primary_10_2196_54332 crossref_primary_10_1002_path_2636 crossref_primary_10_1186_s13073_014_0089_z crossref_primary_10_1016_j_drudis_2008_03_025 crossref_primary_10_1111_j_1365_2362_2010_02437_x crossref_primary_10_1038_nbt_2728 crossref_primary_10_1038_nmeth_1363 crossref_primary_10_1126_scitranslmed_3002243 crossref_primary_10_1186_s12864_016_2894_9 crossref_primary_10_1186_1471_2105_11_130 crossref_primary_10_1186_s13071_015_0960_9 crossref_primary_10_1371_journal_pgen_1000336 crossref_primary_10_1016_j_biotechadv_2012_01_021 crossref_primary_10_1002_path_2645 crossref_primary_10_1093_bioinformatics_btn582 crossref_primary_10_1016_j_nmd_2014_04_010 crossref_primary_10_1038_mp_2010_26 crossref_primary_10_1371_journal_pcbi_1002886 crossref_primary_10_1146_annurev_biochem_060410_094158 crossref_primary_10_1093_bioinformatics_btr707 crossref_primary_10_1038_nbt_1868 crossref_primary_10_1016_j_phycom_2021_101435 crossref_primary_10_3389_fpsyg_2024_1399995 crossref_primary_10_3892_ol_2018_9150 crossref_primary_10_1016_j_compbiolchem_2008_11_003 crossref_primary_10_1016_j_clp_2019_09_004 crossref_primary_10_1016_j_eplepsyres_2010_08_003 crossref_primary_10_1093_nar_gkx1125 crossref_primary_10_1002_0471142905_hg0924s79 crossref_primary_10_1016_j_pathol_2016_01_001 crossref_primary_10_1093_hmg_dds187 crossref_primary_10_1371_journal_pone_0099069 crossref_primary_10_1038_nature09534 crossref_primary_10_1038_nrneurol_2012_148 crossref_primary_10_1038_s41598_020_77558_1 crossref_primary_10_1186_gb_2009_10_11_r125 crossref_primary_10_1016_j_tig_2012_10_001 crossref_primary_10_1089_omi_2012_0001 crossref_primary_10_7550_rmb_43498 crossref_primary_10_1016_j_esmoop_2023_101642 crossref_primary_10_1186_1471_2105_12_5 crossref_primary_10_1039_D0BM01672A crossref_primary_10_1093_brain_awaa256 crossref_primary_10_1038_nature08211 crossref_primary_10_1021_acs_jpclett_2c02824 crossref_primary_10_1186_1471_2164_11_284 crossref_primary_10_1111_j_1469_185X_2008_00071_x crossref_primary_10_1016_j_cell_2011_09_008 crossref_primary_10_1093_bioinformatics_btp319 crossref_primary_10_1179_2047773215Y_0000000015 crossref_primary_10_3389_fnut_2019_00047 crossref_primary_10_14720_aas_2022_118_3_2419 crossref_primary_10_1146_annurev_genom_082410_101446 crossref_primary_10_1534_g3_120_401440 crossref_primary_10_1007_s00439_009_0677_y crossref_primary_10_1021_pr4011052 crossref_primary_10_1038_nrg2554 crossref_primary_10_1073_pnas_1802244115 crossref_primary_10_1139_G10_025 crossref_primary_10_1016_j_mrrev_2011_11_002 crossref_primary_10_1007_s12687_012_0092_2 crossref_primary_10_1212_01_wnl_0000338350_68544_06 crossref_primary_10_56093_ijans_v93i8_136161 crossref_primary_10_1002_humu_21525 crossref_primary_10_1111_sji_12523 crossref_primary_10_1586_erm_11_18 crossref_primary_10_3389_fmicb_2022_934272 crossref_primary_10_1371_journal_pgen_1001239 crossref_primary_10_1111_j_1365_294X_2009_04158_x crossref_primary_10_1371_journal_pgen_1002326 crossref_primary_10_1371_journal_pcbi_1000432 crossref_primary_10_1089_cmb_2013_0105 crossref_primary_10_1371_journal_pone_0081992 crossref_primary_10_1098_rsob_120061 crossref_primary_10_1101_gr_092841_109 crossref_primary_10_1016_S1474_4422_14_70029_8 crossref_primary_10_1203_PDR_0b013e3181b0cbd8 crossref_primary_10_1016_j_watcyc_2022_01_002 crossref_primary_10_2217_pme_11_35 crossref_primary_10_1093_nar_gkr009 crossref_primary_10_1186_1755_8417_3_2 crossref_primary_10_1093_nar_gkn1008 crossref_primary_10_1002_elps_201300361 crossref_primary_10_1371_journal_pgen_1000134 crossref_primary_10_1093_nar_gkw935 crossref_primary_10_1016_j_arr_2017_10_006 crossref_primary_10_1194_jlr_P001578 crossref_primary_10_1063_1_5097828 crossref_primary_10_1016_j_jneuroim_2011_12_017 crossref_primary_10_1101_gr_091827_109 crossref_primary_10_1186_s12864_019_6070_x crossref_primary_10_7853_kjvs_2016_39_1_41 crossref_primary_10_7600_jpfsm_5_25 crossref_primary_10_1038_nbt0909_777 crossref_primary_10_1182_blood_2008_04_151480 crossref_primary_10_3389_fpsyt_2020_593233 crossref_primary_10_1101_gr_122275_111 crossref_primary_10_1038_nature08489 crossref_primary_10_3390_genes1020263 crossref_primary_10_1007_s10577_012_9334_8 crossref_primary_10_1517_17460441_2012_660145 crossref_primary_10_1109_TCBB_2016_2576441 crossref_primary_10_1186_gb_2011_12_1_r1 crossref_primary_10_1371_journal_pone_0012681 crossref_primary_10_1109_TCBB_2011_82 crossref_primary_10_5482_ha12050001 crossref_primary_10_1103_PhysRevE_85_016214 crossref_primary_10_1111_ene_14294 crossref_primary_10_1093_bioinformatics_btp236 crossref_primary_10_1126_scitranslmed_3002064 crossref_primary_10_1089_omi_2014_0058 crossref_primary_10_1016_j_tig_2009_09_012 crossref_primary_10_1146_annurev_genom_9_081307_164217 crossref_primary_10_1016_j_canlet_2015_04_009 crossref_primary_10_1038_nature08250 crossref_primary_10_1186_1471_2164_15_142 crossref_primary_10_1111_j_1601_5223_2010_02166_x crossref_primary_10_1152_physrev_00001_2010 crossref_primary_10_1186_2193_1801_1_66 crossref_primary_10_1016_j_mrrev_2010_04_002 crossref_primary_10_1093_hmg_ddab209 crossref_primary_10_1093_nar_gkq1101 crossref_primary_10_1128_MCB_00652_15 crossref_primary_10_1158_1055_9965_EPI_15_0205 crossref_primary_10_1002_cyto_a_20625 crossref_primary_10_3390_microorganisms8050746 crossref_primary_10_1002_1873_3468_14068 crossref_primary_10_1093_bfgp_elr033 crossref_primary_10_1007_s00268_010_0953_y crossref_primary_10_1186_1471_2164_13_500 crossref_primary_10_3892_etm_2016_3797 crossref_primary_10_1016_j_tvjl_2011_06_014 crossref_primary_10_1093_bmb_ldae003 crossref_primary_10_1097_HCO_0b013e3283389683 crossref_primary_10_1146_annurev_genom_083115_022545 crossref_primary_10_1038_nature09796 crossref_primary_10_1038_clpt_2008_114 crossref_primary_10_1186_gb_2012_13_7_r58 crossref_primary_10_1371_journal_pone_0195491 crossref_primary_10_2217_bmm_10_66 crossref_primary_10_1158_1541_7786_MCR_10_0264 crossref_primary_10_3390_cells12030493 crossref_primary_10_1214_15_AOAS817 crossref_primary_10_1038_s41591_023_02379_4 crossref_primary_10_1002_elps_201300459 crossref_primary_10_1093_nar_gks003 crossref_primary_10_1007_s00268_008_9851_y crossref_primary_10_3732_ajb_1100491 crossref_primary_10_1038_ng_806 crossref_primary_10_1161_STROKEAHA_109_570523 crossref_primary_10_1371_journal_pntd_0000880 crossref_primary_10_1097_MOP_0b013e32835a1996 crossref_primary_10_1038_jhg_2015_102 crossref_primary_10_1186_1471_2105_15_111 crossref_primary_10_1007_s00203_022_03166_4 crossref_primary_10_1016_j_ajhg_2010_01_030 crossref_primary_10_1186_gb_2011_12_9_r88 crossref_primary_10_1158_2159_8290_CD_11_0110 crossref_primary_10_1089_acm_2011_0960 crossref_primary_10_1186_1471_2105_11_S12_S2 crossref_primary_10_1007_s12275_010_0055_4 crossref_primary_10_1158_0008_5472_CAN_13_2100 crossref_primary_10_1038_s41598_019_56943_5 crossref_primary_10_1146_annurev_genom_9_081307_164242 crossref_primary_10_1161_CIRCULATIONAHA_110_972828 crossref_primary_10_3390_jcm10153334 crossref_primary_10_1186_1471_2164_14_556 crossref_primary_10_1017_S0007485309006737 crossref_primary_10_1007_s10528_009_9262_2 crossref_primary_10_1007_s11883_009_0025_7 crossref_primary_10_1007_s12052_010_0262_9 crossref_primary_10_3390_jcm10153339 crossref_primary_10_1016_j_gofs_2020_06_006 crossref_primary_10_1016_j_tig_2009_09_003 crossref_primary_10_1186_1756_0500_6_25 crossref_primary_10_1002_biot_201000324 crossref_primary_10_1016_j_tube_2012_11_002 crossref_primary_10_1186_1471_2105_15_100 crossref_primary_10_1016_j_jacc_2015_09_109 crossref_primary_10_1093_hmg_ddq162 crossref_primary_10_1101_gr_089532_108 crossref_primary_10_1021_ac401875h crossref_primary_10_1667_RR3095_1 crossref_primary_10_1186_1471_2164_13_726 crossref_primary_10_1101_gr_107524_110 crossref_primary_10_1111_mec_16643 crossref_primary_10_1002_0471250953_bi0113s39 crossref_primary_10_1093_hmg_ddp071 crossref_primary_10_2217_pgs_11_119 crossref_primary_10_4161_fly_19695 crossref_primary_10_1093_bib_bbw113 crossref_primary_10_1016_j_copbio_2012_09_004 crossref_primary_10_1016_j_trsl_2009_09_008 crossref_primary_10_1002_elps_200800301 crossref_primary_10_1111_odi_12403 crossref_primary_10_1093_database_baz146 crossref_primary_10_1111_j_1753_4887_2012_00493_x crossref_primary_10_1073_pnas_1009526107 crossref_primary_10_3390_genes13030556 crossref_primary_10_1007_s00268_011_1056_0 crossref_primary_10_1101_gr_080069_108 crossref_primary_10_3390_pharmaceutics8020015 crossref_primary_10_1038_tpj_2014_70 crossref_primary_10_1063_1_4766363 crossref_primary_10_1111_jzs_12558 crossref_primary_10_1371_journal_pone_0071554 crossref_primary_10_1016_j_jacbts_2018_08_001 crossref_primary_10_1021_ac2010857 crossref_primary_10_1186_1752_0509_9_S1_S10 crossref_primary_10_1371_journal_pone_0055089 crossref_primary_10_1016_j_molimm_2021_06_018 crossref_primary_10_3892_mmr_2016_5014 crossref_primary_10_1093_nar_gkv319 crossref_primary_10_1111_nyas_13211 crossref_primary_10_1093_nar_gkt372 crossref_primary_10_1093_nar_gkx730 crossref_primary_10_1016_j_cancergencyto_2010_08_008 crossref_primary_10_1371_journal_pone_0023501 crossref_primary_10_1007_s40484_013_0005_3 crossref_primary_10_1161_CIRCRESAHA_115_307344 crossref_primary_10_1517_17530059_2011_540566 crossref_primary_10_1146_annurev_med_011209_132719 crossref_primary_10_1186_1471_2105_10_254 crossref_primary_10_1101_gr_125047_111 crossref_primary_10_1088_1478_3975_11_6_065003 crossref_primary_10_1139_gen_2013_0125 crossref_primary_10_1371_journal_pone_0149405 crossref_primary_10_1016_j_ajhg_2010_01_005 crossref_primary_10_1038_nature22312 crossref_primary_10_1373_clinchem_2008_107565 crossref_primary_10_1007_s00439_016_1682_6 crossref_primary_10_1186_gb_2011_12_7_r68 crossref_primary_10_2217_pme_12_97 crossref_primary_10_2217_pme_14_34 crossref_primary_10_1111_tan_12165 crossref_primary_10_1093_gbe_evp029 crossref_primary_10_1002_humu_22387 crossref_primary_10_1146_annurev_pathol_020712_164026 crossref_primary_10_3389_fimmu_2021_622064 crossref_primary_10_1186_1471_2164_12_557 crossref_primary_10_1371_journal_pcbi_1009830 crossref_primary_10_1016_j_xgen_2023_100316 crossref_primary_10_1371_journal_pone_0059494 crossref_primary_10_1517_17460441_2016_1143813 crossref_primary_10_1021_acscombsci_5b00106 crossref_primary_10_1186_1471_2229_9_72 crossref_primary_10_1097_FPC_0b013e328352c770 crossref_primary_10_1093_eurheartj_ehq187 crossref_primary_10_1063_1_4825119 crossref_primary_10_1177_2474126416683850 crossref_primary_10_5511_plantbiotechnology_25_413 crossref_primary_10_1371_journal_pone_0187457 crossref_primary_10_1002_gepi_20501 crossref_primary_10_1089_omi_2008_0041 crossref_primary_10_1111_bjh_16102 crossref_primary_10_1080_02648725_2010_10648148 crossref_primary_10_1016_j_ydbio_2013_05_019 crossref_primary_10_1186_bcr2431 crossref_primary_10_1186_s12864_018_4963_8 crossref_primary_10_2217_pgs_13_36 crossref_primary_10_1093_eurheartj_ehs112 crossref_primary_10_1007_s12031_012_9714_8 crossref_primary_10_1093_bfgp_elp010 crossref_primary_10_1101_sqb_2015_80_027623 crossref_primary_10_1177_2374289518766521 crossref_primary_10_1186_1471_2105_12_S1_S53 crossref_primary_10_1371_journal_pone_0017288 crossref_primary_10_1093_bfgp_elp013 crossref_primary_10_1038_leu_2009_66 crossref_primary_10_1038_nbt1485 crossref_primary_10_1093_carcin_bgp273 crossref_primary_10_1098_rstb_2008_0173 crossref_primary_10_3732_ajb_1100419 crossref_primary_10_1038_nbt1486 crossref_primary_10_1002_humu_21078 crossref_primary_10_1016_j_tibtech_2008_10_002 crossref_primary_10_14802_jmd_10001 crossref_primary_10_1186_gb_2011_12_9_228 crossref_primary_10_1093_nar_gks1363 crossref_primary_10_1371_journal_pone_0035062 crossref_primary_10_1152_ajpregu_00645_2010 crossref_primary_10_1093_bfgp_elp040 crossref_primary_10_1111_j_1601_183X_2010_00617_x crossref_primary_10_1586_erd_10_22 crossref_primary_10_1038_nature11236 crossref_primary_10_3171_2009_10_FOCUS09218 crossref_primary_10_1007_s00268_008_9877_1 crossref_primary_10_1371_journal_pone_0052881 crossref_primary_10_1016_j_repce_2013_10_024 crossref_primary_10_1086_720130 crossref_primary_10_1038_nbt1494 crossref_primary_10_1111_j_1755_148X_2010_00691_x crossref_primary_10_1051_medsci_2010265452 crossref_primary_10_1093_ntr_nts207 crossref_primary_10_1186_1471_2105_11_S9_S12 crossref_primary_10_1038_clpt_2009_303 crossref_primary_10_18632_oncotarget_11334 crossref_primary_10_1039_c1cs15049a crossref_primary_10_1371_journal_pone_0171504 crossref_primary_10_1016_j_canlet_2015_09_014 crossref_primary_10_1186_gb_2012_13_4_r31 crossref_primary_10_1093_bib_bbr070 crossref_primary_10_1088_1742_5468_2013_01_P01004 crossref_primary_10_1111_j_1439_0418_2009_01448_x crossref_primary_10_1371_journal_pgen_1000840 crossref_primary_10_1101_gr_235119_118 crossref_primary_10_1016_j_sder_2010_04_006 crossref_primary_10_1534_genetics_117_300078 crossref_primary_10_1371_journal_pone_0010612 crossref_primary_10_1371_journal_pone_0037029 crossref_primary_10_1371_journal_ppat_1000580 crossref_primary_10_1016_j_ajhg_2008_05_017 crossref_primary_10_1371_journal_pgen_1000832 crossref_primary_10_1002_eji_201444669 crossref_primary_10_1007_s11427_013_4441_0 crossref_primary_10_4018_jitr_2012010103 crossref_primary_10_1002_humu_21080 crossref_primary_10_1093_nar_gkq730 crossref_primary_10_1016_j_ejim_2009_11_003 crossref_primary_10_1039_c0lc00145g crossref_primary_10_1073_pnas_1707609114 crossref_primary_10_3390_genes3020233 crossref_primary_10_1038_ncomms11101 crossref_primary_10_1073_pnas_0914638107 crossref_primary_10_1016_j_ajhg_2014_06_014 crossref_primary_10_1016_j_jid_2021_11_042 crossref_primary_10_1016_j_sajb_2013_02_166 crossref_primary_10_1056_NEJMp0808100 crossref_primary_10_1093_hmg_ddp011 crossref_primary_10_1186_1471_2105_10_S15_S3 crossref_primary_10_1586_1744666X_2015_995096 crossref_primary_10_1038_jhg_2011_52 crossref_primary_10_1100_2012_254962 crossref_primary_10_3892_ijmm_2013_1417 crossref_primary_10_1016_j_tig_2009_10_004 crossref_primary_10_1093_gbe_evp041 crossref_primary_10_1109_TMBMC_2016_2537305 crossref_primary_10_1016_j_tig_2011_06_004 crossref_primary_10_1371_journal_ppat_1000560 crossref_primary_10_1101_gr_098947_109 crossref_primary_10_1038_nbt_2122 crossref_primary_10_1161_CIRCRESAHA_114_305243 crossref_primary_10_1016_j_bbamem_2015_09_023 crossref_primary_10_1016_j_jacbts_2020_05_013 crossref_primary_10_1093_bfgp_elr019 crossref_primary_10_1007_BF03256426 crossref_primary_10_1002_elps_201900009 crossref_primary_10_1016_j_cell_2012_06_030 crossref_primary_10_1186_s13071_017_2437_5 crossref_primary_10_1101_gad_1864110 crossref_primary_10_1146_annurev_genet_111212_133501 crossref_primary_10_1109_TITB_2012_2199570 crossref_primary_10_1101_gr_115956_110 crossref_primary_10_1016_j_tibtech_2009_07_002 crossref_primary_10_15857_ksep_2022_00479 crossref_primary_10_1016_S1006_8104_14_60073_8 crossref_primary_10_1186_1471_2105_15_33 crossref_primary_10_1093_nar_gkx585 crossref_primary_10_1002_pauz_200890046 crossref_primary_10_1155_2010_782465 crossref_primary_10_1016_j_jbiosc_2013_05_016 crossref_primary_10_1093_bioinformatics_btw516 crossref_primary_10_1186_1471_2105_15_30 |
| Cites_doi | 10.1371/journal.pgen.0010049 10.1038/nature03959 10.1371/journal.pgen.0030063 10.1038/nature03001 10.1038/nrg2302 10.1038/nature05329 10.1007/978-3-662-02489-8 10.1038/nature04072 10.1016/0888-7543(88)90007-9 10.1002/humu.10212 10.1016/S0168-9525(02)00045-8 10.1056/NEJMcibr067658 10.1126/science.1149504 10.1371/journal.pbio.0050254 10.1101/gr.8.3.186 10.1086/342727 10.1093/nar/gkf493 10.1534/genetics.104.031757 10.1101/gr.2264004 10.1038/ng1094-117 10.1101/gr.3059305 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2008 2008 INIST-CNRS COPYRIGHT 2008 Nature Publishing Group Copyright Nature Publishing Group Apr 17, 2008 |
| Copyright_xml | – notice: The Author(s) 2008 – notice: 2008 INIST-CNRS – notice: COPYRIGHT 2008 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 17, 2008 |
| DBID | C6C AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 7QH 7T7 7UA ADTOC UNPAY |
| DOI | 10.1038/nature06884 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale in Context: Middle School (subscription) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection (subscription) ProQuest Central Essentials Biological Science Database (Proquest) eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (subscription) Research Library (Corporate) Nursing & Allied Health Premium AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Aqualine Industrial and Applied Microbiology Abstracts (Microbiology A) Water Resources Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Aqualine Water Resources Abstracts |
| DatabaseTitleList | Agricultural Science Database Genetics Abstracts MEDLINE - Academic Technology Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Biology |
| EISSN | 1476-4687 1476-4679 |
| EndPage | 876 |
| ExternalDocumentID | 10.1038/nature06884 1464624971 A193474265 A189748577 18421352 20246928 10_1038_nature06884 |
| Genre | Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .GJ .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1VR 29M 2KS 2XV 354 39C 3O- 3V. 4.4 41X 42X 4R4 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYOK AAYZH ABAWZ ABDBF ABDQB ABEFU ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFHKK AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BLC BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 M0K M0L M1P M2M M2O M2P M7P M7R M7S MVM N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7L X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YYP YZZ Z5M ZCA ZGI ZHY ZKB ZKG ~02 ~7V ~88 ~8M ~G0 ~KM 1CY 1OL 1VW 3EH 41~ 663 79B AAJYS AARCD AAVBQ AAYXX ABDPE ABFSG ACBNA ACBTR ACSTC ACTDY ADGHP ADRHT ADXHL AETEA AEZWR AFANA AFBBN AFHIU AFKWF AGQPQ AHWEU AIXLP AJUXI ALPWD ATHPR CITATION ESTFP FA8 FAC HG6 J5H LGEZI LOTEE LSO N4W NADUK NFIDA NXXTH ODYON PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH XOL YJ6 YQI YQJ YV5 YXA YYQ ZCG ZE2 ZY4 IQODW CGR CUY CVF ECM EIF NPM ABUFD ACMFV AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 36B ABCQX AFWHJ AHBCP AHOSX AIBTJ D0L NNMJJ QF4 QM4 QN7 QO4 7X8 7QH 7T7 7UA ADTOC UNPAY |
| ID | FETCH-LOGICAL-c895t-b28f2f04f42e3636e76256f0ec3fbf72821317c077724108d1b564635f6429393 |
| IEDL.DBID | UNPAY |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Aug 19 19:34:04 EDT 2025 Tue Oct 07 09:58:45 EDT 2025 Thu Oct 02 21:19:16 EDT 2025 Tue Oct 07 09:15:47 EDT 2025 Tue Oct 07 05:16:27 EDT 2025 Fri Jun 13 01:08:57 EDT 2025 Fri Jun 13 00:46:53 EDT 2025 Tue Jun 10 15:35:44 EDT 2025 Tue Jun 10 15:34:07 EDT 2025 Mon Oct 20 17:20:57 EDT 2025 Mon Oct 20 17:25:58 EDT 2025 Thu Oct 16 16:12:36 EDT 2025 Thu Oct 16 16:11:13 EDT 2025 Thu Oct 16 16:08:50 EDT 2025 Thu Oct 16 15:58:44 EDT 2025 Wed Feb 19 02:34:51 EST 2025 Mon Jul 21 09:10:34 EDT 2025 Wed Oct 01 03:25:27 EDT 2025 Thu Apr 24 23:12:36 EDT 2025 Fri Feb 21 02:38:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7189 |
| Keywords | Human Genetic variability Nucleotide sequence DNA Method Genome Sequencing Medical application |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-sa/3.0 CC BY 4.0 cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c895t-b28f2f04f42e3636e76256f0ec3fbf72821317c077724108d1b564635f6429393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/nature06884.pdf |
| PMID | 18421352 |
| PQID | 204462643 |
| PQPubID | 23462 |
| PageCount | 5 |
| ParticipantIDs | unpaywall_primary_10_1038_nature06884 proquest_miscellaneous_762278933 proquest_miscellaneous_69115967 proquest_miscellaneous_20844761 proquest_journals_204462643 gale_infotracgeneralonefile_A193474265 gale_infotracgeneralonefile_A189748577 gale_infotraccpiq_193474265 gale_infotraccpiq_189748577 gale_infotracacademiconefile_A193474265 gale_infotracacademiconefile_A189748577 gale_incontextgauss_ISR_A193474265 gale_incontextgauss_ISR_A189748577 gale_incontextgauss_ATWCN_A193474265 gale_incontextgauss_ATWCN_A189748577 pubmed_primary_18421352 pascalfrancis_primary_20246928 crossref_primary_10_1038_nature06884 crossref_citationtrail_10_1038_nature06884 springer_journals_10_1038_nature06884 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-04-17 |
| PublicationDateYYYYMMDD | 2008-04-17 |
| PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-17 day: 17 |
| PublicationDecade | 2000 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2008 |
| Publisher | Nature Publishing Group UK Nature Publishing Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing – name: Nature Publishing Group |
| References | McGuireALCaulfieldTChoMKResearch ethics and the challenge of whole genome sequencingNature Rev. Genet.200891521561:CAS:528:DC%2BD1cXnt1ensg%3D%3D10.1038/nrg2302 EwingBGreenPBase-calling of automated sequencer traces using phred. II. Error probabilitiesGenome Res.199881861941:CAS:528:DyaK1cXitlWlu7g%3D10.1101/gr.8.3.186 The International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004) RichardsSComparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolutionGenome Res.2005151181:CAS:528:DC%2BD2MXlsVSktg%3D%3D10.1101/gr.3059305 The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature437, 69–87 (2005) KiddJMNewmanTLTuzunEKaulREichlerEEPopulation stratification of a common APOBEC gene deletion polymorphismPLOS Genetics200735845921:CAS:528:DC%2BD2sXkvFeksbc%3D10.1371/journal.pgen.0030063 HalliganDLKeightleyPDHow many lethal alleles?Trends Genet.20031957591:CAS:528:DC%2BD3sXkvVyisg%3D%3D10.1016/S0168-9525(02)00045-8 MarguliesMGenome sequencing in microfabricated high-density picolitre reactorsNature20054373763801:CAS:528:DC%2BD2MXpvFOrt7s%3D10.1038/nature039592005Natur.437..376M KorbelJOPaired-end mapping reveals extensive structural variation in the human genomeScience20073184204261:CAS:528:DC%2BD2sXhtFOjtbzL10.1126/science.11495042007Sci...318..420K HavlakPThe Atlas genome assembly systemGenome Res.2004147217321:CAS:528:DC%2BD2cXjt1yjt7Y%3D10.1101/gr.2264004 LevySThe diploid genome sequence of a single individualPLoS Biol.20075e254e28610.1371/journal.pbio.0050254 BennettEAColemanLETsuiCPittardWSDevineSENatural genetic variation caused by transposable elements in humansGenetics20041689339511:CAS:528:DC%2BD2cXhtVKms7rJ10.1534/genetics.104.031757 VogelFMotulskyAGHuman Genetics: Problems and Approaches198648750210.1007/978-3-662-02489-8 StensonPDHuman Gene Mutation Database (HGMD): 2003 updateHum. Mutat.2003215775811:CAS:528:DC%2BD3sXkvVyhtrk%3D10.1002/humu.10212 WeberJLHuman diallelic insertion/deletion polymorphismsAm. J. Hum. Genet.20027185486210.1086/342727 RedonRGlobal variation in copy number in the human genomeNature20064444444541:CAS:528:DC%2BD28Xht1aku7zI10.1038/nature053292006Natur.444..444R RamenskyVBorkPSunyaevSHuman non-synonymous SNPs: server and surveyNucleic Acids Res.200230389439001:CAS:528:DC%2BD38Xms1Klt7k%3D10.1093/nar/gkf493 LupskiJRStructural variation in the human genomeN. Engl. J. Med.2007356116911711:CAS:528:DC%2BD2sXivVKnsL0%3D10.1056/NEJMcibr067658 LupskiJRStankiewiczPGenomic disorders: molecular mechanisms for rearrangements and conveyed phenotypesPLoS Genetics200516276331:CAS:528:DC%2BD28XisVWhsA%3D%3D10.1371/journal.pgen.0010049 LanderESWatermanMSGenomic mapping by fingerprinting random clones: a mathematical analysisGenomics198822312391:CAS:528:DyaL1cXlsVeqs7s%3D10.1016/0888-7543(88)90007-9 BittlesAHNeelJVThe costs of human inbreeding and their implications for variations at the DNA levelNature Genet.199481171211:STN:280:DyaK2M7ksVWltA%3D%3D10.1038/ng1094-117 DL Halligan (BFnature06884_CR12) 2003; 19 ES Lander (BFnature06884_CR21) 1988; 2 BFnature06884_CR5 JL Weber (BFnature06884_CR7) 2002; 71 JR Lupski (BFnature06884_CR10) 2007; 356 R Redon (BFnature06884_CR8) 2006; 444 AL McGuire (BFnature06884_CR17) 2008; 9 F Vogel (BFnature06884_CR14) 1986 P Havlak (BFnature06884_CR18) 2004; 14 B Ewing (BFnature06884_CR20) 1998; 8 M Margulies (BFnature06884_CR3) 2005; 437 BFnature06884_CR1 JR Lupski (BFnature06884_CR6) 2005; 1 V Ramensky (BFnature06884_CR15) 2002; 30 JM Kidd (BFnature06884_CR9) 2007; 3 AH Bittles (BFnature06884_CR13) 1994; 8 S Levy (BFnature06884_CR2) 2007; 5 EA Bennett (BFnature06884_CR4) 2004; 168 JO Korbel (BFnature06884_CR16) 2007; 318 PD Stenson (BFnature06884_CR11) 2003; 21 S Richards (BFnature06884_CR19) 2005; 15 18421337 - Nature. 2008 Apr 17;452(7189):819-20 |
| References_xml | – reference: BittlesAHNeelJVThe costs of human inbreeding and their implications for variations at the DNA levelNature Genet.199481171211:STN:280:DyaK2M7ksVWltA%3D%3D10.1038/ng1094-117 – reference: EwingBGreenPBase-calling of automated sequencer traces using phred. II. Error probabilitiesGenome Res.199881861941:CAS:528:DyaK1cXitlWlu7g%3D10.1101/gr.8.3.186 – reference: HavlakPThe Atlas genome assembly systemGenome Res.2004147217321:CAS:528:DC%2BD2cXjt1yjt7Y%3D10.1101/gr.2264004 – reference: StensonPDHuman Gene Mutation Database (HGMD): 2003 updateHum. Mutat.2003215775811:CAS:528:DC%2BD3sXkvVyhtrk%3D10.1002/humu.10212 – reference: LevySThe diploid genome sequence of a single individualPLoS Biol.20075e254e28610.1371/journal.pbio.0050254 – reference: HalliganDLKeightleyPDHow many lethal alleles?Trends Genet.20031957591:CAS:528:DC%2BD3sXkvVyisg%3D%3D10.1016/S0168-9525(02)00045-8 – reference: RichardsSComparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolutionGenome Res.2005151181:CAS:528:DC%2BD2MXlsVSktg%3D%3D10.1101/gr.3059305 – reference: The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature437, 69–87 (2005) – reference: MarguliesMGenome sequencing in microfabricated high-density picolitre reactorsNature20054373763801:CAS:528:DC%2BD2MXpvFOrt7s%3D10.1038/nature039592005Natur.437..376M – reference: KorbelJOPaired-end mapping reveals extensive structural variation in the human genomeScience20073184204261:CAS:528:DC%2BD2sXhtFOjtbzL10.1126/science.11495042007Sci...318..420K – reference: McGuireALCaulfieldTChoMKResearch ethics and the challenge of whole genome sequencingNature Rev. Genet.200891521561:CAS:528:DC%2BD1cXnt1ensg%3D%3D10.1038/nrg2302 – reference: LupskiJRStructural variation in the human genomeN. Engl. J. Med.2007356116911711:CAS:528:DC%2BD2sXivVKnsL0%3D10.1056/NEJMcibr067658 – reference: LanderESWatermanMSGenomic mapping by fingerprinting random clones: a mathematical analysisGenomics198822312391:CAS:528:DyaL1cXlsVeqs7s%3D10.1016/0888-7543(88)90007-9 – reference: The International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004) – reference: LupskiJRStankiewiczPGenomic disorders: molecular mechanisms for rearrangements and conveyed phenotypesPLoS Genetics200516276331:CAS:528:DC%2BD28XisVWhsA%3D%3D10.1371/journal.pgen.0010049 – reference: VogelFMotulskyAGHuman Genetics: Problems and Approaches198648750210.1007/978-3-662-02489-8 – reference: WeberJLHuman diallelic insertion/deletion polymorphismsAm. J. Hum. Genet.20027185486210.1086/342727 – reference: BennettEAColemanLETsuiCPittardWSDevineSENatural genetic variation caused by transposable elements in humansGenetics20041689339511:CAS:528:DC%2BD2cXhtVKms7rJ10.1534/genetics.104.031757 – reference: RamenskyVBorkPSunyaevSHuman non-synonymous SNPs: server and surveyNucleic Acids Res.200230389439001:CAS:528:DC%2BD38Xms1Klt7k%3D10.1093/nar/gkf493 – reference: RedonRGlobal variation in copy number in the human genomeNature20064444444541:CAS:528:DC%2BD28Xht1aku7zI10.1038/nature053292006Natur.444..444R – reference: KiddJMNewmanTLTuzunEKaulREichlerEEPopulation stratification of a common APOBEC gene deletion polymorphismPLOS Genetics200735845921:CAS:528:DC%2BD2sXkvFeksbc%3D10.1371/journal.pgen.0030063 – volume: 1 start-page: 627 year: 2005 ident: BFnature06884_CR6 publication-title: PLoS Genetics doi: 10.1371/journal.pgen.0010049 – volume: 437 start-page: 376 year: 2005 ident: BFnature06884_CR3 publication-title: Nature doi: 10.1038/nature03959 – volume: 3 start-page: 584 year: 2007 ident: BFnature06884_CR9 publication-title: PLOS Genetics doi: 10.1371/journal.pgen.0030063 – ident: BFnature06884_CR1 doi: 10.1038/nature03001 – volume: 9 start-page: 152 year: 2008 ident: BFnature06884_CR17 publication-title: Nature Rev. Genet. doi: 10.1038/nrg2302 – volume: 444 start-page: 444 year: 2006 ident: BFnature06884_CR8 publication-title: Nature doi: 10.1038/nature05329 – start-page: 487 volume-title: Human Genetics: Problems and Approaches year: 1986 ident: BFnature06884_CR14 doi: 10.1007/978-3-662-02489-8 – ident: BFnature06884_CR5 doi: 10.1038/nature04072 – volume: 2 start-page: 231 year: 1988 ident: BFnature06884_CR21 publication-title: Genomics doi: 10.1016/0888-7543(88)90007-9 – volume: 21 start-page: 577 year: 2003 ident: BFnature06884_CR11 publication-title: Hum. Mutat. doi: 10.1002/humu.10212 – volume: 19 start-page: 57 year: 2003 ident: BFnature06884_CR12 publication-title: Trends Genet. doi: 10.1016/S0168-9525(02)00045-8 – volume: 356 start-page: 1169 year: 2007 ident: BFnature06884_CR10 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMcibr067658 – volume: 318 start-page: 420 year: 2007 ident: BFnature06884_CR16 publication-title: Science doi: 10.1126/science.1149504 – volume: 5 start-page: e254 year: 2007 ident: BFnature06884_CR2 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050254 – volume: 8 start-page: 186 year: 1998 ident: BFnature06884_CR20 publication-title: Genome Res. doi: 10.1101/gr.8.3.186 – volume: 71 start-page: 854 year: 2002 ident: BFnature06884_CR7 publication-title: Am. J. Hum. Genet. doi: 10.1086/342727 – volume: 30 start-page: 3894 year: 2002 ident: BFnature06884_CR15 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf493 – volume: 168 start-page: 933 year: 2004 ident: BFnature06884_CR4 publication-title: Genetics doi: 10.1534/genetics.104.031757 – volume: 14 start-page: 721 year: 2004 ident: BFnature06884_CR18 publication-title: Genome Res. doi: 10.1101/gr.2264004 – volume: 8 start-page: 117 year: 1994 ident: BFnature06884_CR13 publication-title: Nature Genet. doi: 10.1038/ng1094-117 – volume: 15 start-page: 1 year: 2005 ident: BFnature06884_CR19 publication-title: Genome Res. doi: 10.1101/gr.3059305 – reference: 18421337 - Nature. 2008 Apr 17;452(7189):819-20 |
| SSID | ssj0005174 ssj0014407 |
| Score | 2.5306563 |
| Snippet | One man's genome
Next-generation sequencing technologies are revolutionizing human genomics, promising to yield draft genomes cheaply and quickly. One such... The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of... |
| SourceID | unpaywall proquest gale pubmed pascalfrancis crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 872 |
| SubjectTerms | Alleles Biological and medical sciences Biomedical research Cloning Computational Biology Deoxyribonucleic acid Diverse techniques DNA DNA sequencing Electrophoresis Fundamental and applied biological sciences. Psychology Genetic diversity Genetic Predisposition to Disease - genetics Genetic variation Genetic Variation - genetics Genome, Human - genetics Genomics Genomics - economics Genomics - methods Genomics - trends Genotype Human genome Humanities and Social Sciences Humans Individuality letter Male Methods Molecular and cellular biology Molecular biology multidisciplinary Nucleic acids Nucleotide sequencing Oligonucleotide Array Sequence Analysis Physiological aspects Polymorphism, Single Nucleotide - genetics Reproducibility of Results Science Science (multidisciplinary) Sensitivity and Specificity Sequence Alignment Sequence Analysis, DNA - economics Sequence Analysis, DNA - methods Software Technological change |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1tb9MwELZGJwQIITbeymBYaONNikhsx3E-IFTGpg1pFRqb2LfITu1pUpZ2pBXqv-fcOEmD-vI5T6-OfXc-x3fPIbQnAxlzqYQX2hQqJg31YhFIj3MGBxBLWSVsvfNpnx9fsB-X4eUGOq1qYWxaZeUTZ456MEztN3I4pMPBBXZv-nV069mmUfZyteqgIV1nhcGXGcPYHbRJLDFWB21-O-z_PGtyPv6jZXYFez4Vn0seTduChbW2KOeoH45kAZNmym4Xi8LRuavUB-jeJB_J6V-ZZXO71dFj9MiFmbhX6sUW2tD5Nro7S_dMi2205Uy6wB8c7_THJ-gEVAbPUswhkMaWvPVG46HBMsfXddkWVlN8AwE3OMlsii1xeJbpDH_v97DLyoaxPUUXR4fnB8ee67TgpSIOx54iwhDjM8OIppxyDS4y5MbXKTXKRHAsCyDOSP0IYnFYQzEIVMgZxCoGji8xjekz1MmHuX6BcBQaQ5RmRCrJfKVFEGqtFNFKRkoS3UWfqslNUkdDbrthZMnsOpyKZG4lumivBo9K9o0lMLtKieWzyG3CzJWcFEXSO_990E96gYAzkwijaA0spiyCeCXsoreLYCe_zlqyVoAaSe8dyAzhHVPpSh5gpizrVkvcOmQjc6eFTEfXt8mcnEVPm9--az29KjVs0XDWABuJuy3DqFeJQOzHYyJgQJWlJM47Fklty130pn4Kbs3eVclcDycWIhiLeLAcwWGbDmMOY8VLEKDEts6bwt88L220USLBQKVD0kX7ldE2w1uoYfu1Ra_SxJcrX3cH3S_TjZgXRK9QZ_xnol9DTDtWu85T_QNPvJ1X priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgCDGEEBsMwmBYaONLimj8FeexKkwbEn2ATewtsoM9TcrSQlqh_vecEzcfqF159i9X174738l3PyN0qCKVCKVlyF0JFVOWhomMVCgEgwTEUVZJ1-_8dSxOztmXC37hi2hcL0zv_r6i7q4JLt3bKOw2uiNBI91DBSMxais5_iFb9m148PnHzse9g8e73wdTVcJS2PoNi1VBZueC9D66Ny-mavFH5XnnDDp-hB764BEP693eQbdMsYvuVkWcWbmLdryhlvidZ5N-_xidgiLgqnAcwmPsKFmvDZ5YrAp81TRjYb3A1xBGg-vLF9jRgee5yfGn8RD7WmuY2xN0fvz5bHQS-vcTwkwmfBZqIi2xA2YZMVRQYcDxcWEHJqNW2xiSrQiih2wQQ4QNOyN_RpoLBhGIhaQkoQndQ1vFpDDPEI65tUQbRpRWbKCNjLgxWhOjVawVMQH6sFzcNPPk4u6NizytLrmpTDs7EaDDBjytOTXWwNwupY6lonBlMJdqXpbp8OzHaJwOIwmZkORxvAGWUAbZv-ABer0Kdvr9W0_WDaBW0lsPshP4j5nyjQywUo5LqyduE7KVud9DZtOrX2lHzqrR9ts3vdHLWsNWTWcDsJV40DOMZpcIRHQiIRImtLSU1Pu8EgYZg_SY0QC9akbBWbkbKFWYydxBJGOxiNYjBBy-PBEwV7wGAUrsurcp_MzT2kZbJZIMVJqTAB0tjbad3koNO2os-iZNfP6f8vbRdl1OxMIofoG2Zr_n5iXErDN9UHmsv5TOj4o priority: 102 providerName: Springer Nature |
| Title | The complete genome of an individual by massively parallel DNA sequencing |
| URI | https://link.springer.com/article/10.1038/nature06884 https://www.ncbi.nlm.nih.gov/pubmed/18421352 https://www.proquest.com/docview/204462643 https://www.proquest.com/docview/20844761 https://www.proquest.com/docview/69115967 https://www.proquest.com/docview/762278933 https://www.nature.com/articles/nature06884.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 452 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1476-4687 dateEnd: 20151119 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: ABDBF dateStart: 19970605 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1476-4687 dateEnd: 20151130 omitProxy: true ssIdentifier: ssj0014407 issn: 0028-0836 databaseCode: ABDBF dateStart: 19990501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1476-4687 dateEnd: 20151119 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: A8Z dateStart: 19970605 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0014407 issn: 0028-0836 databaseCode: 7X7 dateStart: 19990501 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (ProQuest) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0014407 issn: 0028-0836 databaseCode: BENPR dateStart: 19990501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8FG dateStart: 19900104 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwELa2VggQAjbeyqBYaONNStckjuN8LGVlQ6KqxirKp8jO7GkiSwtphcqv55w4TYraFb5Eavzk6pfz-bF8d0Zon9s8oFwwy9MuVIQr1wqYzS1KCWxAdMoqpuOdP_fp8ZB8GnmjLXRYxMJkTvtZSsvMTBfeYYf5O31DCmlNztU2qlMPyHcN1Yf9QedbNddyFk_kU4tQ5puIvLbLqhKW1iBjie9MeAq9ovLrLFbxzcpZ6W10c5ZM-PwXj-PKctS7hwZFQ3IvlO-t2VS0ot9_5Xj8j5beR3cNNcWdHLKDtmSyi25kLqJRuot2jBlI8RuTq_rtA3QCaoYzt3Qg31gnfL2SeKwwT_DlItQLizm-ApIOhjWeY51sPI5ljD_0O9h4ckNzH6Jh7-ise2yZ2xmsiAXe1BIOU45qE0Uc6VKXSjCrHlVtGblKKB-2cjZwk6jtA3-HcWfntvAoAX6jYMsTuIH7CNWScSKfIOx7SjlCEocLTtpCMtuTUghHCu4L7sgGeleMVxiZ1OX6Bo04zI7QXRZWOq2B9hfgSZ6xYw1MD3yoc2Ak2snmgs_SNOycfe32w47NYJ_FPN_fAAtc4gPH8Rro5SrYyZfTJVnXgEpJrw1IjaGNETdhEtBTOlPXkrhNyFLm3hIymlz-CCtyVpWW375aKr3INWxVdTYAS4nNpbm2GCUH-CINHAYVKiZfaCxqCoWEwOabuA30YlEKplCfb_FEjmcawghMfHs9gsLSDmYD6orXIECJdWy4C3_zOJ_2pRIxAirtOQ10UNiBsnorNexgYSSu08Sn_4jbQ7dyZyVi2f4zVJv-nMnnwIinoom2_ZEPT9a19bP3sYnq74_6g1P41aXdprGSfwC8LbkF |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamITQQQmzcymCz0MpNimhsx3EeEKo2ppZtfYBO9C3YmT1NytKOtJr6o_iPHDe3BvXytOd8PT2xzzU-PgehA-nKgEslHM-WUDFpqBMIVzqcM0hAbMsqYe87n_V455x9H3iDDfS3uAtjyyoLmzgz1BfDyH4jhyQdEhfw3vTr6MaxQ6Ps4WoxQSOTihM9vYWMLf3SPYLtbRJy_K1_2HHyoQJOJAJv7CgiDDEtZhjRlFOuwRp43LR0RI0yPmQgLrjUqOVD2AnsigtXeZyBWzYQqQfU9l4Ci3-PUTAloD7-wK8qSv5r-pxfB2xR8Tnr0mkHvLCaA8zdwKORTGFLTDZLY1GwO3dQ-xBtTZKRnN7KOJ7zhcdP0OM8iMXtTOq20YZOdtD9WTFplO6g7dxgpPhD3tX641PUBYHEswJ2CNOxbQ17rfHQYJngq_JSGFZTfA3hPJjgeIptW_I41jE-6rVxXvMNvD1D53ey5M_RZjJM9EuEfc8YojQjUknWUlq4ntZKEa2kryTRDfSpWNwwypuc21kbcTg7bKcinNuJBjoowaOst8cSmN2l0HbLSGw5zqWcpGnY7v867IVtV0BGJjzfXwMLKPMhGvIa6O0iWPfnjxqtFaCK0vscZIbwjpHML1TAStmeXjVy65AVzd0aMhpd3YRzdBY9rX77rvb0MpOwReysAVYU92qKUe4SgciSB0QAQ4WmhLntTcPSUjTQfvkUjKY9CZOJHk4sRDDmc3c5gkMQ4AUceMVLECDE9hY5hb95keloJUSCgUh7pIGahdJW7C2UsGap0ask8dXK191HW53-2Wl42u2d7KIHWWETc1z_Ndoc_5noNxA9j9XezGZh9PuujeQ_nDHQlg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rb9MwELemIV5CiI1XGWwWWnlJ0ZrYiZ0PCFUr1cqgQrCJfgt2Zk-TsrQjrab-afx3nBsnaVAfn_Y51-vFPv_uLr4HQvvCFWEgJHd8k0JFhSZOyF3hBAGFAMS0rOKm3vlbPzg6pV8G_mAD_S1qYUxaZYGJM6A-G8bmGzkE6RC4gPUmB9pmRXzvdD-NrhwzQMpctBbTNHINOVbTa4jeso-9Dmx10_O6n08Ojxw7YMCJeeiPHelx7ekW1dRTJCCBAmTwA91SMdFSM4hGXDCvcYuBCwqi8zNX-gEFE63Baw-J6cME6H-LERKabEI2YFV2yX8NoG1pYIvwg7xjpxn2QmvG0JqEByORwfbofK7GIsd37tL2Pro7SUdiei2SZM4udh-hh9ahxe1cA7fQhkq30e1ZYmmcbaMtCx4Zfmc7XL9_jHqgnHiWzA4uOzZtYi8VHmosUnxRFohhOcWX4NoDHCdTbFqUJ4lKcKffxjb_G2R7gk5vZMmfos10mKrnCDNfa08q6gkpaEsq7vpKSekpKZgUnmqgD8XiRrFteG7mbiTR7OKd8GhuJxpovyQe5X0-lpCZXYpM54zUKOG5mGRZ1D75ddiP2i6H6Iz7jK0hCwll4Bn5DfR6EVnv548arxVEFae3lkgP4R1jYYsrYKVMf68au3WUFc-dGmU8uriK5vgselr99k3t6XmuYYvEWUNYcdytHYxylzzwMoPQ4yBQcVIii8NZVKJGA-2VTwFAza2YSNVwYkg4pSxwl1ME4BD4YQCy4iUUoMSmopzA3zzLz2ilRJyCSvteAzWLQ1uJt1DDmuWJXqWJL1a-7h66A_AYfe31j3fQvTzHiToue4k2x38m6hU40mO5O4MsjH7fNEb-AzOV1Nk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdGJwQIARuvMhgW2nhJ6fKwHedjNZg2JKoJVm18iuzMniaytJBWqPz1nBOnSVC7wtf6l6sf5_Pv5LszQjvCExETkjvUhFARoQMn4p5wGCPggJiSVdzkO38esMMh-XRGz9bQXpULUwTtFyUtCzNdRYftlb-ZF1JIb3yub6B1RoF8d9D6cHDc_9astVzkE4XMIYyHNiPPDXhTQusMspb47ljkMCu6fM5iEd9s3JXeQbem2VjMfok0bRxHB_fRcTWQMgrle286kb3k9181Hv9jpA_QPUtNcb-EbKA1lW2im0WIaJJvog1rBnL81taqfvcQHYGa4SIsHcg3NgVfrxQeaSwyfDlP9cJyhq-ApINhTWfYFBtPU5XiD4M-tpHcMNxHaHjw8WT_0LGvMzgJj-jEkT7XvnaJJr4KWMAUmFXKtKuSQEsdgivnATdJ3BD4O6w7P_ckZQT4jQaXJwqi4DHqZKNMPUU4pFr7UhFfSEFcqbhHlZLSV1KEUviqi95X6xUntnS5eUEjjYsr9IDHjUnrop05eFxW7FgCMwsfmxoYmQmyuRDTPI_7J6f7g7jvcfCzOA3DFbAoICFwHNpFrxbBjr5-acm6BlRLemNBegRjTIRNk4CZMpW6WuJWIWuZWy1kMr78ETfkLGqtv33dar0oNWxRd1YAa4nbrb02XyUf-CKLfA4dqjZfbC1qDo2EgPNNgi56OW8FU2jut0SmRlMD4QQ2vrccweBoB7MBfcVLEKDEJjc8gL95Um77Wok4AZWmfhftVnag7t5CDdudG4nrNPHZP-K20O0yWIk4XvgcdSY_p-oFMOKJ3LZW8A_9_LP0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complete+genome+of+an+individual+by+massively+parallel+DNA+sequencing&rft.jtitle=Nature+%28London%29&rft.au=Wheelers%2C+David+A&rft.au=Srinivasan%2C+Maithreyan&rft.au=Egholm%2C+Michael&rft.au=Shens%2C+Yufeng&rft.date=2008-04-17&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=452&rft.issue=7189&rft.spage=872&rft_id=info:doi/10.1038%2Fnature06884&rft.externalDocID=A193474265 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |