Training of the Dynamic Systems Control: A Neural Network or a Learning Algorithm

The dynamic system control problem under conditions of a priori uncertainty regarding the parameters of the controlled object is considered. The properties of controllers typically used in control systems are studied. Among them are a neural network, a proportional–integral–derivative (PID) controll...

Full description

Saved in:
Bibliographic Details
Published inArtificial Intelligence and Applications
Main Authors Kucherov, Dmytro, Myroshnychenko, Ihnat, Khalimon, Natalia, Tkachenko, Valerii
Format Journal Article
LanguageEnglish
Published 15.07.2025
Online AccessGet full text
ISSN2811-0854
2811-0854
DOI10.47852/bonviewAIA52025435

Cover

Abstract The dynamic system control problem under conditions of a priori uncertainty regarding the parameters of the controlled object is considered. The properties of controllers typically used in control systems are studied. Among them are a neural network, a proportional–integral–derivative (PID) controller, and a learning algorithm. The sign-changing input signal is considered in dynamic systems using the minimum time criterion. A dynamic system is represented by the first-order differential equations system, which allows using the state space method in the analysis. A feature of the research is the study of the quality of the system tuning under conditions of parametric uncertainty and the presence of homogeneous non-Gaussian noise in the phase coordinate measurement channels. The system’s reaction results for the studied approaches for the proposed mathematical model are compared. The learning algorithm showed an improvement over conventional methods by at least 40% in the evaluated indicators, in which the influence of interference is leveled by introducing a unique function of the “hysteresis” type. The modeling results are given in support of the conclusions made.   Received: 17 February 2025 | Revised: 26 May 2025 | Accepted: 26 June 2025   Conflicts of Interest The authors declare that they have no conflicts of interest to this work.   Data Availability Statement The data that support the findings of this study are openly available at https://drive.google.com/drive/u/0/folders/1gqzZ6Tla1RDaJAl86rp7yHHbs6Ggj_wp.   Author Contribution Statement Dmytro Kucherov: Conceptualization, Methodology, Formal analysis, Investigation, Supervision, Project administration, Funding acquisition. Natalia Khalimon: Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization. Ihnat Myroshnychenko: Software, Validation. Valerii Tkachenko: Validation.
AbstractList The dynamic system control problem under conditions of a priori uncertainty regarding the parameters of the controlled object is considered. The properties of controllers typically used in control systems are studied. Among them are a neural network, a proportional–integral–derivative (PID) controller, and a learning algorithm. The sign-changing input signal is considered in dynamic systems using the minimum time criterion. A dynamic system is represented by the first-order differential equations system, which allows using the state space method in the analysis. A feature of the research is the study of the quality of the system tuning under conditions of parametric uncertainty and the presence of homogeneous non-Gaussian noise in the phase coordinate measurement channels. The system’s reaction results for the studied approaches for the proposed mathematical model are compared. The learning algorithm showed an improvement over conventional methods by at least 40% in the evaluated indicators, in which the influence of interference is leveled by introducing a unique function of the “hysteresis” type. The modeling results are given in support of the conclusions made.   Received: 17 February 2025 | Revised: 26 May 2025 | Accepted: 26 June 2025   Conflicts of Interest The authors declare that they have no conflicts of interest to this work.   Data Availability Statement The data that support the findings of this study are openly available at https://drive.google.com/drive/u/0/folders/1gqzZ6Tla1RDaJAl86rp7yHHbs6Ggj_wp.   Author Contribution Statement Dmytro Kucherov: Conceptualization, Methodology, Formal analysis, Investigation, Supervision, Project administration, Funding acquisition. Natalia Khalimon: Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization. Ihnat Myroshnychenko: Software, Validation. Valerii Tkachenko: Validation.
Author Kucherov, Dmytro
Tkachenko, Valerii
Khalimon, Natalia
Myroshnychenko, Ihnat
Author_xml – sequence: 1
  givenname: Dmytro
  surname: Kucherov
  fullname: Kucherov, Dmytro
– sequence: 2
  givenname: Ihnat
  surname: Myroshnychenko
  fullname: Myroshnychenko, Ihnat
– sequence: 3
  givenname: Natalia
  surname: Khalimon
  fullname: Khalimon, Natalia
– sequence: 4
  givenname: Valerii
  surname: Tkachenko
  fullname: Tkachenko, Valerii
BookMark eNp1kE9PwjAchhuDiYh8Ai_9AtOua9fW24J_E6Ixcl9-LS00bi3phmTfXgKYcPH0vJfnPTzXaBRisAjd5uSOCcnpvY7hx9td9VZxSihnBb9AYyrzPCOSs9HZvkLTrvOa8LwslRJyjD4XCXzwYYWjw_3a4schQOsN_hq63rYdnsXQp9g84Aq_222CZo9-F9M3jgkDnltIB71qVjH5ft3eoEsHTWenJ07Q4vlpMXvN5h8vb7NqnhmpeCY0MEYd04zYUhphlONFubTUOBC5Ka1TOQUptSiMJUQIrhkshVRKSwVEFBPEjrfbsIFhB01Tb5JvIQ11TupDmPoUBjz8hdlrxVEzKXZdsu5f6yxn8QuMkGvb
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.47852/bonviewAIA52025435
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2811-0854
ExternalDocumentID 10.47852/bonviewaia52025435
10_47852_bonviewAIA52025435
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c895-7ba442f4b40e68c7c9f536de2cfa71c6ef912a88b73ce00775b4ad7899b89a073
IEDL.DBID UNPAY
ISSN 2811-0854
IngestDate Wed Oct 01 16:55:14 EDT 2025
Wed Oct 01 05:45:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c895-7ba442f4b40e68c7c9f536de2cfa71c6ef912a88b73ce00775b4ad7899b89a073
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ojs.bonviewpress.com/index.php/AIA/article/download/5435/1499
ParticipantIDs unpaywall_primary_10_47852_bonviewaia52025435
crossref_primary_10_47852_bonviewAIA52025435
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Artificial Intelligence and Applications
PublicationYear 2025
SSID ssib051669978
ssib058986243
Score 2.2999177
Snippet The dynamic system control problem under conditions of a priori uncertainty regarding the parameters of the controlled object is considered. The properties of...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Training of the Dynamic Systems Control: A Neural Network or a Learning Algorithm
URI https://ojs.bonviewpress.com/index.php/AIA/article/download/5435/1499
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2811-0854
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib051669978
  issn: 2811-0854
  databaseCode: M~E
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMfDfhw8-QMVJzpy8GjXtUuaxluZG1PYUNhgnsZLms7pbMfWIXrwbzdtM5mCB_HS0yOl75W87wsvn4fQhWiCrkqYa4VaG1tEQmSBTiuWYop5klNQIjvv6A-83ojcjum4hDqbuzDJ06ohkjg7Fs8bQfPNOgcHZrQIO7gJbONSO8xo8gmENtUp39ZKn5dR1aNakldQdTS4Cx6ywXJ-fgRISUEcIsynrm1eADOgbn4bnH7LSjvreAFvrzCfb6Wa7l7RErLKCYVZh8lzY52Khnz_wW_891fso10jRnFQGB2gkooP0f3QTI3ASYS1PMTXxdB6bODmuF10t1_hAGdoD73AoOglx8kSAzbE1ikO5tNkOUsfX47QsNsZtnuWGbxgSZ9TiwkgxI2IIE3l-ZJJHtGWFypXRsAc6amIOy74vmAtqXKGniAQMl25CZ-D3jOOUSVOYnWCsC-EE1IutYwIiRJ6YQHghIzrp-c2eQ1dbvw-WRR4jYkuS_IwTYwHtbc2Yaoh6ys2v9pvhfX0j_ZnqJIu1-pc64xU1FG5_9Gpm3_pE7uh2ko
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8NAEIaX2h48-YGKFZU9eDRNk-5ms95CbamCRaGFeiqzH6nVmpQ2RfTXu0m2UgUP4iWnYUNmws47y-wzCF2IJpiqhPmOMtrYIRJiB0xacTTTLJCcghb5ecddP-gNye2Ijiqos74Lkz4vGyJN8mPxohG02KwLcGBOi3Cjm8i1LnVVTpNPQbnUpHzXKH2-hWoBNZK8imrD_n30mA-WC4sjQEpK4hBhIfVd-wKYAvWL2-D0W1baXiVzeH-D2Wwj1XR3y5aQZUEozDtMXhqrTDTkxw9-47-_Yg_tWDGKo9JoH1V0coAeBnZqBE5jbOQhvi6H1mMLN8ftsrv9Ckc4R3uYBfplLzlOFxiwJbZOcDSbpItp9vR6iAbdzqDdc-zgBUeGnDpMACF-TARp6iCUTPKYtgKlfRkD82SgY-75EIaCtaQuGHqCgGKmchMhB7NnHKFqkib6GOFQCE9RLo2MUEQLs7AA8BTj5hn4TV5Hl2u_j-clXmNsypIiTGPrQeOtdZjqyPmKza_2G2E9-aP9Kapmi5U-MzojE-f2L_oEonDZGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+of+the+Dynamic+Systems+Control%3A+A+Neural+Network+or+a+Learning+Algorithm&rft.jtitle=Artificial+Intelligence+and+Applications&rft.au=Kucherov%2C+Dmytro&rft.au=Myroshnychenko%2C+Ihnat&rft.au=Khalimon%2C+Natalia&rft.au=Tkachenko%2C+Valerii&rft.date=2025-07-15&rft.issn=2811-0854&rft.eissn=2811-0854&rft_id=info:doi/10.47852%2FbonviewAIA52025435&rft.externalDBID=n%2Fa&rft.externalDocID=10_47852_bonviewAIA52025435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2811-0854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2811-0854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2811-0854&client=summon