Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip

An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many expe...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 450; no. 7167; pp. 272 - 276
Main Authors Colombe, Yves, Steinmetz, Tilo, Dubois, Guilhem, Linke, Felix, Hunger, David, Reichel, Jakob
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 08.11.2007
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
1476-4679
DOI10.1038/nature06331

Cover

Abstract An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information.
AbstractList An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre- based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information.
An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information. [PUBLICATION ABSTRACT]
An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information.An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information.
An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this strong coupling regime of cavity quantum electrodynamics (cQED) has been the subject of spectacular experimental advances, and great efforts have been made to control the coupling rate by trapping and cooling the atom towards the motional ground state, which has been achieved in one dimension so far. For N atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs), but although first experiments combining BECs and optical cavities have been reported recently, coupling BECs to strong-coupling cavities has remained an elusive goal. Here we report such an experiment, which is made possible by combining a new type of fibre-based cavity with atom chip technology. This allows single-atom cQED experiments with a simplified setup and realizes the new situation of N atoms in a cavity each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field. This gives rise to a controlled, tunable coupling rate, as we confirm experimentally. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting which we attribute to the atomic hyperfine structure.
Audience Academic
Author Steinmetz, Tilo
Colombe, Yves
Linke, Felix
Reichel, Jakob
Dubois, Guilhem
Hunger, David
Author_xml – sequence: 1
  givenname: Yves
  surname: Colombe
  fullname: Colombe, Yves
– sequence: 2
  givenname: Tilo
  surname: Steinmetz
  fullname: Steinmetz, Tilo
– sequence: 3
  givenname: Guilhem
  surname: Dubois
  fullname: Dubois, Guilhem
– sequence: 4
  givenname: Felix
  surname: Linke
  fullname: Linke, Felix
– sequence: 5
  givenname: David
  surname: Hunger
  fullname: Hunger, David
– sequence: 6
  givenname: Jakob
  surname: Reichel
  fullname: Reichel, Jakob
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17994094$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00264333$$DView record in HAL
BookMark eNqNlM1u1DAQgCNURLeFE3cU9QBUKMWO_4_LqtBKK5BoEQcOkeM4W1dZO42dit54B96QJ8HtFpqttt1VDlbG33wzmjjeSbasszpJXkJwAAHi760MfacBRQg-SUYQM5phytlWMgIg5xngiG4nO96fAwAIZPhZsg2ZEBgIPEp-nITO2Vkqg5v_-fW7NrqpUuX6tjExWrsu_eC8jjuHxvqgjY2bttLWy6B9Gl-lTV0bjJJNquSlCVepi8FUnZn2efK0lo3XL27X3eTbx8PTyVE2_fLpeDKeZooLGDJVlYQSUFKMMBScy5xXAEKqGZSIVnkpKcAKE6oAzSUnJSiJxKQGqqZSII12k_2F90w2RduZueyuCidNcTSeFtexOIcoR-gSRvbNgm07d9FrH4q58Uo3jbTa9b5gsQlOGEGRfP0oSTkWnGG8FkQ0J4Dz69pvHwVhLIsFYQitRwHPoUD0xrp3Dz13fWfjwIscYEIEJiJC2QKayUYXxtYudFLNtNWdbOJxqk0Mj6MRM0YE2ZTnggGCb4a1t4JXrbkohtKHoYHpYAUUn0rPjVrZ6mYJgwr7SwmRCfpnmMne--L45OuyfC078L57mB2ffp98XjZvQA_cr24_cl_OdfX_lP_7ke90qnPed7q-Q0BxfU0Ug2si0vAerUyQwcQeOmmalTl_AdkkYiQ
CODEN NATUAS
CitedBy_id crossref_primary_10_1088_1367_2630_10_4_045002
crossref_primary_10_1364_OE_541186
crossref_primary_10_2478_s11534_012_0132_x
crossref_primary_10_1364_OL_42_003952
crossref_primary_10_1088_1674_1056_18_10_028
crossref_primary_10_1103_PhysRevA_96_013832
crossref_primary_10_1103_PhysRevLett_118_083604
crossref_primary_10_1103_PhysRevA_99_013437
crossref_primary_10_1002_adom_202302848
crossref_primary_10_1038_s41598_018_29902_9
crossref_primary_10_1103_PhysRevA_84_051801
crossref_primary_10_1103_PhysRevA_110_012423
crossref_primary_10_1103_PhysRevLett_105_133602
crossref_primary_10_1002_qute_202400524
crossref_primary_10_1007_s11128_011_0298_y
crossref_primary_10_1364_OE_27_029639
crossref_primary_10_1007_s00340_015_6281_z
crossref_primary_10_1103_PhysRevA_79_021804
crossref_primary_10_1364_OE_22_031317
crossref_primary_10_1088_1367_2630_11_4_043009
crossref_primary_10_1103_PhysRevA_96_013821
crossref_primary_10_1088_0953_4075_41_24_245502
crossref_primary_10_7498_aps_67_20180971
crossref_primary_10_1016_j_physleta_2018_12_016
crossref_primary_10_1364_OE_477780
crossref_primary_10_7498_aps_71_20211970
crossref_primary_10_1088_0953_4075_49_7_075302
crossref_primary_10_1103_PhysRevLett_110_243602
crossref_primary_10_1364_OL_34_000259
crossref_primary_10_1103_PhysRevA_85_013817
crossref_primary_10_3367_UFNe_2020_11_038888
crossref_primary_10_1103_PhysRevApplied_11_034044
crossref_primary_10_1103_PhysRevResearch_2_033484
crossref_primary_10_1103_PhysRevA_105_063318
crossref_primary_10_1103_PhysRevA_81_023617
crossref_primary_10_1109_JQE_2015_2509239
crossref_primary_10_1140_epjd_e2008_00074_6
crossref_primary_10_1088_1361_6439_abc0fd
crossref_primary_10_1088_1361_6455_aaca5c
crossref_primary_10_1038_s41598_019_44218_y
crossref_primary_10_1103_PhysRevA_94_062301
crossref_primary_10_1103_PhysRevA_90_053822
crossref_primary_10_1103_PhysRevA_85_032309
crossref_primary_10_1209_0295_5075_82_14001
crossref_primary_10_1063_1_3679721
crossref_primary_10_1103_PhysRevA_82_052315
crossref_primary_10_1007_s11128_020_02928_7
crossref_primary_10_1038_nphys1837
crossref_primary_10_1103_PhysRevA_99_051803
crossref_primary_10_1103_PhysRevLett_107_093601
crossref_primary_10_1364_OE_22_021999
crossref_primary_10_1088_1572_9494_ac81b0
crossref_primary_10_1209_0295_5075_100_20006
crossref_primary_10_1007_s00340_009_3436_9
crossref_primary_10_1103_PhysRevResearch_6_043272
crossref_primary_10_1088_1367_2630_abeb91
crossref_primary_10_1103_PhysRevA_103_023328
crossref_primary_10_1103_PhysRevX_11_021009
crossref_primary_10_7498_aps_71_20221538
crossref_primary_10_1088_1367_2630_12_9_095005
crossref_primary_10_1103_PhysRevLett_124_223602
crossref_primary_10_1140_epjp_s13360_024_05450_2
crossref_primary_10_1088_1361_6455_aa6a74
crossref_primary_10_1103_PhysRevA_89_013803
crossref_primary_10_1038_s41598_021_89652_z
crossref_primary_10_1515_nanoph_2016_0163
crossref_primary_10_1103_PhysRevLett_103_160403
crossref_primary_10_1364_OE_25_008123
crossref_primary_10_7566_JPSJ_90_074602
crossref_primary_10_1364_AO_58_003784
crossref_primary_10_1088_1367_2630_13_8_085004
crossref_primary_10_1103_PhysRevB_103_235430
crossref_primary_10_1103_PhysRevA_82_043605
crossref_primary_10_1140_epjd_e2009_00093_9
crossref_primary_10_1007_s00340_009_3888_y
crossref_primary_10_1038_s41598_017_10686_3
crossref_primary_10_1088_2058_9565_aa868b
crossref_primary_10_1103_PhysRevA_88_013851
crossref_primary_10_7498_aps_70_20201841
crossref_primary_10_1088_0953_4075_44_6_065302
crossref_primary_10_1088_1367_2630_aab2c5
crossref_primary_10_1063_1_4946893
crossref_primary_10_1103_PhysRevA_90_052315
crossref_primary_10_1103_PhysRevLett_104_203602
crossref_primary_10_1103_PhysRevA_98_063619
crossref_primary_10_1088_0031_8949_2009_T137_014001
crossref_primary_10_1103_PhysRevA_98_033801
crossref_primary_10_1007_s11128_016_1298_8
crossref_primary_10_1088_0256_307X_35_11_116401
crossref_primary_10_1103_PhysRevA_110_013312
crossref_primary_10_1038_s41467_021_21256_7
crossref_primary_10_1103_PhysRevA_80_013604
crossref_primary_10_1103_PhysRevLett_118_073602
crossref_primary_10_1007_s10909_013_0943_1
crossref_primary_10_1016_j_optcom_2015_04_016
crossref_primary_10_1103_PhysRevA_104_053313
crossref_primary_10_1142_S021798492050075X
crossref_primary_10_1103_PhysRevLett_108_123603
crossref_primary_10_1016_j_crhy_2011_04_015
crossref_primary_10_3390_e17064293
crossref_primary_10_1088_2040_8986_ad0e85
crossref_primary_10_1103_PhysRevLett_111_100505
crossref_primary_10_1016_j_optcom_2014_05_066
crossref_primary_10_1063_1_4838696
crossref_primary_10_1103_PhysRevA_88_013848
crossref_primary_10_1103_PhysRevA_89_011602
crossref_primary_10_1088_1367_2630_17_1_013053
crossref_primary_10_1103_PhysRevA_81_043407
crossref_primary_10_1063_1_2945893
crossref_primary_10_1103_PhysRevA_96_023855
crossref_primary_10_1103_PhysRevA_89_023812
crossref_primary_10_1103_PhysRevA_89_023811
crossref_primary_10_3788_COL202321_092702
crossref_primary_10_1103_PhysRevA_78_023815
crossref_primary_10_3390_atoms3020182
crossref_primary_10_1364_JOSAB_33_001749
crossref_primary_10_1364_OE_382254
crossref_primary_10_1103_PhysRevLett_112_133605
crossref_primary_10_1007_s00340_016_6362_7
crossref_primary_10_1063_1_3601930
crossref_primary_10_1103_PhysRevA_81_043639
crossref_primary_10_1103_PhysRevA_90_062336
crossref_primary_10_1080_09500340_2012_679706
crossref_primary_10_1103_PhysRevLett_103_163603
crossref_primary_10_1088_1054_660X_23_12_125201
crossref_primary_10_1103_PhysRevA_78_043618
crossref_primary_10_1364_JOSAB_30_002869
crossref_primary_10_1364_JOSAB_31_000503
crossref_primary_10_1103_PhysRevA_87_043817
crossref_primary_10_1103_PhysRevA_106_063720
crossref_primary_10_1088_1555_6611_ab0d14
crossref_primary_10_1103_PhysRevA_102_013304
crossref_primary_10_1364_OE_21_004093
crossref_primary_10_1103_PhysRevA_82_053832
crossref_primary_10_1103_PhysRevLett_103_013602
crossref_primary_10_1364_OL_40_003368
crossref_primary_10_1126_science_1238169
crossref_primary_10_1364_JOSAB_28_002007
crossref_primary_10_1103_PhysRevA_78_033833
crossref_primary_10_1103_PhysRevA_90_043823
crossref_primary_10_1134_S1054660X10050105
crossref_primary_10_1007_s11128_021_03077_1
crossref_primary_10_1103_PhysRevA_80_063834
crossref_primary_10_1002_adom_202102353
crossref_primary_10_1364_JOSAB_30_000238
crossref_primary_10_1088_1367_2630_13_11_113018
crossref_primary_10_1088_1367_2630_acfd54
crossref_primary_10_1103_PhysRevLett_115_163601
crossref_primary_10_1002_lpor_200810046
crossref_primary_10_1364_OE_19_008471
crossref_primary_10_1103_PhysRevA_77_053808
crossref_primary_10_1103_PhysRevA_81_013404
crossref_primary_10_1088_0953_4075_44_5_055302
crossref_primary_10_1103_PhysRevA_100_013611
crossref_primary_10_1103_PhysRevA_77_053811
crossref_primary_10_1209_0295_5075_114_50005
crossref_primary_10_1364_JOSAB_33_001600
crossref_primary_10_1073_pnas_1524117113
crossref_primary_10_1088_1367_2630_aa5b7b
crossref_primary_10_1126_science_1148259
crossref_primary_10_1088_1674_1056_27_3_034205
crossref_primary_10_1103_PhysRevA_88_053812
crossref_primary_10_1103_PhysRevLett_110_090402
crossref_primary_10_1142_S021797921250083X
crossref_primary_10_1364_OE_24_021205
crossref_primary_10_1088_1367_2630_17_4_043012
crossref_primary_10_1007_s00340_012_5319_8
crossref_primary_10_1016_j_ijleo_2014_07_062
crossref_primary_10_1103_PhysRevA_92_042314
crossref_primary_10_1103_PhysRevA_83_043606
crossref_primary_10_1038_nature08988
crossref_primary_10_1103_PhysRevA_90_024301
crossref_primary_10_1103_PhysRevLett_111_043603
crossref_primary_10_1038_nature08865
crossref_primary_10_1103_PhysRevLett_121_173603
crossref_primary_10_1038_s41567_021_01307_y
crossref_primary_10_1364_OE_412273
crossref_primary_10_1142_S0219749911007642
crossref_primary_10_1103_PhysRevA_89_033801
crossref_primary_10_1038_s41598_018_32989_9
crossref_primary_10_1088_1367_2630_11_6_063027
crossref_primary_10_7498_aps_62_013402
crossref_primary_10_1063_1_3456559
crossref_primary_10_1364_OPTICA_4_000424
crossref_primary_10_1038_srep15610
crossref_primary_10_1038_s41598_017_07899_x
crossref_primary_10_1007_s11467_013_0359_z
crossref_primary_10_1103_PhysRevA_86_013828
crossref_primary_10_1109_JQE_2016_2578041
crossref_primary_10_1103_PhysRevA_77_033620
crossref_primary_10_1103_PhysRevApplied_20_014025
crossref_primary_10_1103_PhysRevLett_117_156402
crossref_primary_10_1038_nphys965
crossref_primary_10_1140_epjd_e2009_00001_5
crossref_primary_10_1088_1054_660X_26_5_055502
crossref_primary_10_1103_PhysRevD_89_085041
crossref_primary_10_1103_PhysRevA_98_043616
crossref_primary_10_1209_0295_5075_87_23001
crossref_primary_10_1103_PhysRevA_99_053844
crossref_primary_10_1103_PhysRevA_81_012307
crossref_primary_10_1103_PhysRevA_83_052324
crossref_primary_10_1103_PhysRevLett_122_193605
crossref_primary_10_1007_s00340_016_6577_7
crossref_primary_10_1016_j_aop_2016_09_009
crossref_primary_10_1007_s11467_021_1105_6
crossref_primary_10_1103_PhysRevLett_111_055702
crossref_primary_10_1098_rsta_2010_0333
crossref_primary_10_1103_PhysRevLett_113_233002
crossref_primary_10_1088_0953_4075_42_4_044015
crossref_primary_10_1126_science_1208066
crossref_primary_10_1140_epjd_s10053_023_00700_x
crossref_primary_10_1364_JOSAB_541577
crossref_primary_10_1103_PhysRevA_105_L041302
crossref_primary_10_1103_PhysRevA_105_032210
crossref_primary_10_1016_j_optlastec_2023_109791
crossref_primary_10_1103_PhysRevLett_107_146603
crossref_primary_10_1103_RevModPhys_90_031002
crossref_primary_10_1103_PhysRevA_102_053708
crossref_primary_10_1103_PhysRevA_83_055803
crossref_primary_10_1103_PhysRevE_98_012112
crossref_primary_10_1088_0034_4885_74_10_104401
crossref_primary_10_1364_OE_492686
crossref_primary_10_1103_PhysRevA_77_063408
crossref_primary_10_1109_JLT_2011_2120597
crossref_primary_10_1007_s11128_011_0291_5
crossref_primary_10_1063_1_3109791
crossref_primary_10_1088_1674_1056_22_2_023702
crossref_primary_10_1103_PhysRevA_88_065601
crossref_primary_10_1088_0031_8949_2010_T140_014025
crossref_primary_10_1016_j_aop_2017_02_006
crossref_primary_10_1109_LPT_2012_2188025
crossref_primary_10_1007_s00340_013_5573_4
crossref_primary_10_1103_PhysRevLett_111_220408
crossref_primary_10_1103_PhysRevA_81_032119
crossref_primary_10_1103_PhysRevA_93_033630
crossref_primary_10_1007_s10773_018_3954_5
crossref_primary_10_1103_PhysRevA_100_013801
crossref_primary_10_1063_5_0174384
crossref_primary_10_1126_science_1248905
crossref_primary_10_1142_S021798490901979X
crossref_primary_10_1364_OE_399978
crossref_primary_10_1016_j_optcom_2015_03_048
crossref_primary_10_1103_PhysRevA_88_043820
crossref_primary_10_1016_j_physleta_2011_07_016
crossref_primary_10_1103_PhysRevA_99_062106
crossref_primary_10_1021_acsphotonics_9b00726
crossref_primary_10_1103_PhysRevA_105_043321
crossref_primary_10_1103_PhysRevA_94_053621
crossref_primary_10_1063_1_4878504
crossref_primary_10_1088_1367_2630_12_10_103014
crossref_primary_10_1038_s41598_023_46138_4
crossref_primary_10_1016_j_ijleo_2010_09_022
crossref_primary_10_1038_srep10005
crossref_primary_10_1088_0953_4075_45_10_102001
crossref_primary_10_1103_PhysRevA_93_042329
crossref_primary_10_1103_PhysRevLett_103_083601
crossref_primary_10_1209_0295_5075_112_64002
crossref_primary_10_1103_PhysRevLett_112_143002
crossref_primary_10_1103_PhysRevA_94_040302
crossref_primary_10_1088_1367_2630_17_5_053051
crossref_primary_10_1103_PhysRevB_78_085304
crossref_primary_10_1103_PhysRevA_83_031608
crossref_primary_10_1007_s12648_023_02740_w
crossref_primary_10_1103_PhysRevA_82_033606
crossref_primary_10_1103_PhysRevA_83_053852
crossref_primary_10_1209_0295_5075_83_60004
crossref_primary_10_1103_PhysRevLett_111_243603
crossref_primary_10_1364_OE_422127
crossref_primary_10_1103_PhysRevA_86_034305
crossref_primary_10_1103_PhysRevA_77_033810
crossref_primary_10_1103_PhysRevA_80_012332
crossref_primary_10_1007_s00340_020_07478_5
crossref_primary_10_1088_1367_2630_11_5_055024
crossref_primary_10_1088_1367_2630_13_11_113002
crossref_primary_10_1103_PRXQuantum_2_020319
crossref_primary_10_1103_PhysRevA_79_013630
crossref_primary_10_1088_1361_6455_aa640a
crossref_primary_10_1103_PhysRevA_101_023415
crossref_primary_10_1088_1674_1056_21_10_103701
crossref_primary_10_1103_PhysRevApplied_19_064007
crossref_primary_10_1002_qute_201900060
crossref_primary_10_1088_1367_2630_16_7_073038
crossref_primary_10_1063_1_3632057
crossref_primary_10_1103_PhysRevLett_105_043001
crossref_primary_10_1103_PhysRevResearch_2_013184
crossref_primary_10_1103_PhysRevA_96_053606
crossref_primary_10_3390_atoms4010002
crossref_primary_10_1364_OL_35_002293
crossref_primary_10_1088_1674_1056_26_9_090701
crossref_primary_10_1103_PhysRevLett_102_020403
crossref_primary_10_1088_0253_6102_63_5_588
crossref_primary_10_1103_RevModPhys_85_553
crossref_primary_10_1364_JOSAB_30_002136
crossref_primary_10_1364_OE_19_001207
crossref_primary_10_1364_OE_22_003501
crossref_primary_10_1103_RevModPhys_87_1379
crossref_primary_10_1088_1674_1056_19_11_117402
crossref_primary_10_1103_PhysRevA_110_063320
crossref_primary_10_1038_nature09568
crossref_primary_10_1103_PhysRevA_91_021602
crossref_primary_10_1103_PhysRevA_84_033829
crossref_primary_10_1088_1402_4896_aa6efb
crossref_primary_10_1088_0253_6102_56_6_20
crossref_primary_10_1016_j_scib_2018_04_008
crossref_primary_10_1103_PhysRevA_86_013641
crossref_primary_10_1088_0960_1317_22_12_125011
crossref_primary_10_1103_PhysRevA_93_063818
crossref_primary_10_1038_ncomms5705
crossref_primary_10_1364_OE_25_020932
crossref_primary_10_1209_0295_5075_90_54001
crossref_primary_10_1103_PhysRevA_80_043623
crossref_primary_10_1038_s41598_020_66054_1
crossref_primary_10_1088_1367_2630_aa753c
crossref_primary_10_1364_OE_24_009839
crossref_primary_10_1103_PhysRevA_94_023618
crossref_primary_10_1209_0295_5075_83_13001
crossref_primary_10_1088_1367_2630_10_9_095006
crossref_primary_10_1103_PhysRevLett_110_133604
crossref_primary_10_3390_atoms3030348
crossref_primary_10_1103_PhysRevLett_113_113603
crossref_primary_10_1021_acsphotonics_9b00005
crossref_primary_10_1088_1674_1056_25_12_120304
crossref_primary_10_1103_PhysRevLett_123_243401
crossref_primary_10_1103_PhysRevB_79_075317
crossref_primary_10_1103_PhysRevA_89_053607
crossref_primary_10_1063_5_0066620
crossref_primary_10_1088_1751_8121_aad200
crossref_primary_10_1103_PhysRevA_108_052601
crossref_primary_10_1103_PhysRevA_81_063641
crossref_primary_10_1103_PhysRevA_79_061803
crossref_primary_10_1103_PhysRevA_92_043810
crossref_primary_10_22331_q_2024_10_02_1488
crossref_primary_10_1088_1612_202X_aa7d8f
crossref_primary_10_1103_PhysRevA_84_042305
crossref_primary_10_1038_s41598_017_01245_x
crossref_primary_10_1103_PhysRevLett_105_013601
crossref_primary_10_1103_PhysRevA_89_043815
crossref_primary_10_1103_PhysRevA_90_023622
crossref_primary_10_3390_atoms3030450
crossref_primary_10_1103_PhysRevB_79_201303
crossref_primary_10_1103_PhysRevLett_118_133601
crossref_primary_10_1364_OE_19_018903
crossref_primary_10_1103_PhysRevA_93_012332
crossref_primary_10_1126_science_1163218
crossref_primary_10_1007_s10946_019_09809_0
crossref_primary_10_1103_PhysRevA_80_033604
crossref_primary_10_1103_PhysRevA_84_033843
crossref_primary_10_1103_PhysRevA_77_052111
crossref_primary_10_1063_1_4940715
crossref_primary_10_1103_PhysRevLett_119_063602
crossref_primary_10_1103_PhysRevLett_104_130401
crossref_primary_10_1103_PhysRevA_105_013719
crossref_primary_10_1103_PhysRevA_86_013419
crossref_primary_10_1080_09500340_2010_543957
crossref_primary_10_1103_PhysRevA_80_042319
crossref_primary_10_1103_PhysRevA_96_063615
crossref_primary_10_1103_PhysRevA_87_013616
crossref_primary_10_1103_PhysRevA_98_022109
crossref_primary_10_1038_nphoton_2010_255
crossref_primary_10_1103_PhysRevA_80_033614
crossref_primary_10_1103_PhysRevLett_124_113601
crossref_primary_10_1103_PhysRevLett_124_113602
crossref_primary_10_1021_acs_nanolett_4c04976
crossref_primary_10_1103_PhysRevA_84_055802
crossref_primary_10_1016_j_optcom_2017_05_063
crossref_primary_10_1016_j_aop_2019_04_019
crossref_primary_10_21468_SciPostPhys_15_5_188
crossref_primary_10_1016_j_physleta_2010_07_032
crossref_primary_10_1103_PhysRevA_85_040306
crossref_primary_10_1103_PhysRevA_89_043831
crossref_primary_10_1103_PhysRevA_88_023825
crossref_primary_10_1038_nphys943
crossref_primary_10_1364_OE_523169
crossref_primary_10_2184_lsj_36_493
crossref_primary_10_1038_nature08171
crossref_primary_10_1103_PhysRevLett_102_135301
crossref_primary_10_1088_1367_2630_10_2_023001
crossref_primary_10_1103_PhysRevX_3_031013
crossref_primary_10_1063_1_3245311
crossref_primary_10_1364_JOSAB_434980
crossref_primary_10_1080_00018732_2021_1969727
crossref_primary_10_1038_ncomms1428
crossref_primary_10_1103_PhysRevA_84_053610
crossref_primary_10_1088_0256_307X_34_1_013701
crossref_primary_10_1103_PhysRevA_83_033601
crossref_primary_10_1103_PhysRevA_91_033622
crossref_primary_10_1063_1_5083011
crossref_primary_10_1038_s41598_021_83214_z
crossref_primary_10_1103_PhysRevLett_123_233602
crossref_primary_10_1103_PhysRevA_92_043842
crossref_primary_10_1364_AO_56_006511
crossref_primary_10_1103_PhysRevA_84_043822
crossref_primary_10_1103_PhysRevLett_110_067601
crossref_primary_10_1088_0256_307X_30_8_080303
crossref_primary_10_1007_s11128_011_0300_8
crossref_primary_10_1364_OE_18_015664
crossref_primary_10_1116_5_0185291
crossref_primary_10_1038_s41377_019_0145_y
crossref_primary_10_1103_PhysRevLett_123_243602
crossref_primary_10_1103_PhysRevA_79_013613
crossref_primary_10_1109_JPHOT_2020_3027286
crossref_primary_10_12693_APhysPolA_132_1358
crossref_primary_10_1007_s11128_018_1865_2
crossref_primary_10_1364_OE_400767
crossref_primary_10_1088_1367_2630_14_2_023056
crossref_primary_10_1038_s41598_021_87927_z
crossref_primary_10_1038_nature10225
crossref_primary_10_1063_1_3377919
crossref_primary_10_1103_PhysRevA_85_063606
crossref_primary_10_1016_j_optcom_2014_08_017
crossref_primary_10_1088_0953_4075_47_4_045301
crossref_primary_10_1103_PhysRevA_88_023609
crossref_primary_10_1103_PhysRevA_87_012311
crossref_primary_10_1038_s41467_020_16767_8
crossref_primary_10_1103_PhysRevA_90_012304
crossref_primary_10_1038_s41598_017_11799_5
crossref_primary_10_1063_1_3511743
crossref_primary_10_1103_PhysRevLett_104_243602
crossref_primary_10_1088_0253_6102_55_1_11
crossref_primary_10_1103_PhysRevA_84_043606
crossref_primary_10_1103_PhysRevA_94_023830
crossref_primary_10_1063_1_5024798
crossref_primary_10_1103_PhysRevA_84_043602
crossref_primary_10_7498_aps_69_20200184
crossref_primary_10_1088_0953_4075_46_23_235501
crossref_primary_10_1007_s13320_024_0716_2
crossref_primary_10_1103_PhysRevA_79_033401
crossref_primary_10_1103_PhysRevA_96_033841
crossref_primary_10_1063_1_4959095
crossref_primary_10_1088_1361_6455_aa7592
crossref_primary_10_2184_lsj_41_7_507
crossref_primary_10_1016_j_optcom_2014_06_059
crossref_primary_10_1016_j_physleta_2012_06_037
crossref_primary_10_1007_s11467_009_0016_8
crossref_primary_10_1103_PhysRevA_81_051803
crossref_primary_10_1103_PhysRevA_82_053824
crossref_primary_10_1088_1367_2630_10_3_033011
crossref_primary_10_1080_00107511003602990
crossref_primary_10_1103_PhysRevApplied_4_054010
crossref_primary_10_1088_1751_8113_42_10_105302
crossref_primary_10_1103_PhysRevA_79_023841
crossref_primary_10_1103_PhysRevLett_128_203601
crossref_primary_10_1038_s41598_017_05729_8
crossref_primary_10_1103_PhysRevA_95_013826
crossref_primary_10_1007_s10773_020_04530_0
crossref_primary_10_1103_PhysRevA_80_053810
crossref_primary_10_1103_PhysRevLett_103_063005
crossref_primary_10_1103_RevModPhys_94_041003
crossref_primary_10_1103_PhysRevA_82_053815
crossref_primary_10_1063_1_3463617
crossref_primary_10_1103_PhysRevA_84_023629
crossref_primary_10_1038_srep08416
crossref_primary_10_1038_nphys1302
crossref_primary_10_1016_j_optcom_2014_06_048
crossref_primary_10_3390_e26110926
crossref_primary_10_1088_1367_2630_12_6_065034
crossref_primary_10_1209_0295_5075_91_10001
crossref_primary_10_1364_OPTICA_424258
crossref_primary_10_1063_1_3658391
crossref_primary_10_1063_5_0087155
crossref_primary_10_1103_PhysRevA_111_013517
crossref_primary_10_1007_s11128_024_04587_4
crossref_primary_10_1007_s10909_010_0184_5
crossref_primary_10_1364_AO_56_001546
crossref_primary_10_2139_ssrn_4140062
crossref_primary_10_1103_PhysRevA_87_012101
crossref_primary_10_1103_PhysRevA_91_053829
crossref_primary_10_1038_nphys1435
crossref_primary_10_1103_PhysRevA_80_011604
crossref_primary_10_1103_PhysRevA_80_053608
crossref_primary_10_1002_adma_201700037
crossref_primary_10_1103_PhysRevA_98_051801
crossref_primary_10_1007_s11128_015_1017_x
crossref_primary_10_1364_OPTICA_467440
crossref_primary_10_1364_OE_18_004057
crossref_primary_10_1103_PhysRevLett_110_223003
crossref_primary_10_1364_OE_22_023897
crossref_primary_10_1364_AO_51_002341
crossref_primary_10_1103_PhysRevA_81_043832
crossref_primary_10_1103_PhysRevApplied_12_044052
crossref_primary_10_1364_JOSAB_388154
crossref_primary_10_1364_OE_418986
crossref_primary_10_1088_1367_2630_10_4_043010
crossref_primary_10_1088_0953_4075_42_1_015501
crossref_primary_10_3390_s17081748
crossref_primary_10_1103_PhysRevLett_112_120501
crossref_primary_10_1007_s11467_013_0350_8
crossref_primary_10_1063_1_3671291
crossref_primary_10_1088_1367_2630_18_10_102001
crossref_primary_10_1364_OL_37_001949
crossref_primary_10_1038_nphys1325
crossref_primary_10_1103_PhysRevA_79_013828
crossref_primary_10_1038_nphys1329
crossref_primary_10_1088_1367_2630_18_11_111005
crossref_primary_10_1103_PhysRevLett_102_080401
crossref_primary_10_1103_PhysRevLett_105_023001
crossref_primary_10_1103_PhysRevA_92_063816
crossref_primary_10_1134_S1063739715040101
crossref_primary_10_3390_photonics11010046
crossref_primary_10_1016_j_aop_2012_09_006
crossref_primary_10_1103_PhysRevA_80_062307
crossref_primary_10_1103_PhysRevLett_106_203601
crossref_primary_10_1103_RevModPhys_91_025005
crossref_primary_10_1103_PhysRevA_85_023818
crossref_primary_10_1103_PhysRevResearch_3_043001
crossref_primary_10_1016_j_asr_2010_04_014
crossref_primary_10_1103_Physics_3_80
crossref_primary_10_1103_PhysRevA_87_051604
crossref_primary_10_1038_s41534_020_00338_2
crossref_primary_10_1126_science_1239500
crossref_primary_10_1103_PhysRevA_80_063422
crossref_primary_10_1103_PhysRevA_92_063604
crossref_primary_10_1088_1612_2011_10_5_055402
crossref_primary_10_1103_PhysRevA_81_063821
crossref_primary_10_1088_1402_4896_ad5145
crossref_primary_10_1109_LPT_2020_3003015
crossref_primary_10_1063_1_5008492
crossref_primary_10_1140_epjd_e2014_50134_3
crossref_primary_10_1088_1054_660X_23_1_015501
crossref_primary_10_1007_s11433_013_5308_x
crossref_primary_10_1103_PhysRevLett_103_043603
crossref_primary_10_1364_JOSAB_34_001884
crossref_primary_10_1088_1555_6611_aa5a1a
crossref_primary_10_1103_PhysRevA_84_023822
crossref_primary_10_1103_PhysRevLett_124_013607
crossref_primary_10_1103_PhysRevA_86_043831
crossref_primary_10_1126_science_1246164
crossref_primary_10_1103_PhysRevLett_116_223001
crossref_primary_10_1103_PhysRevLett_100_050401
crossref_primary_10_1364_OE_17_012813
crossref_primary_10_1103_PhysRevA_85_053635
crossref_primary_10_1103_PhysRevA_108_033715
crossref_primary_10_1103_PhysRevLett_123_130601
crossref_primary_10_1134_S1054660X11150163
crossref_primary_10_1073_pnas_1306993110
crossref_primary_10_1103_PhysRevA_94_013617
crossref_primary_10_1140_epjd_e2011_20050_3
crossref_primary_10_1103_PhysRevLett_102_023602
crossref_primary_10_1016_j_aop_2017_07_012
crossref_primary_10_1103_PhysRevA_102_023716
crossref_primary_10_1016_j_physrep_2022_06_001
crossref_primary_10_1007_s11128_017_1549_3
crossref_primary_10_1007_s00340_007_2879_0
crossref_primary_10_1016_j_ijleo_2020_164309
crossref_primary_10_1088_1367_2630_12_9_093017
crossref_primary_10_1103_PhysRevB_93_235309
crossref_primary_10_1007_s10773_018_3980_3
crossref_primary_10_1007_s10773_019_04135_2
crossref_primary_10_1140_epjd_e2013_40357_1
crossref_primary_10_1140_epjd_e2017_70647_3
crossref_primary_10_1007_s00340_022_07752_8
crossref_primary_10_1364_OE_20_014547
crossref_primary_10_1016_j_optcom_2013_10_024
crossref_primary_10_1103_PhysRevA_84_023840
crossref_primary_10_1209_0295_5075_85_20007
crossref_primary_10_1007_s11128_023_04038_6
crossref_primary_10_1364_OE_26_022249
crossref_primary_10_1109_TUFFc_2010_1385
crossref_primary_10_1103_PhysRevB_84_184515
crossref_primary_10_1088_1742_6596_194_1_012063
crossref_primary_10_1103_PhysRevA_86_053838
crossref_primary_10_1088_1367_2630_15_8_083037
crossref_primary_10_1103_PhysRevApplied_3_014008
crossref_primary_10_1002_adfm_202416037
crossref_primary_10_1364_JOSAB_29_001618
crossref_primary_10_1088_0031_8949_91_1_013008
crossref_primary_10_1364_OE_392207
crossref_primary_10_1103_PhysRevLett_131_103603
crossref_primary_10_1364_OE_472022
crossref_primary_10_1038_s41467_021_26719_5
crossref_primary_10_1088_1367_2630_15_9_093019
crossref_primary_10_1103_PhysRevA_94_022343
crossref_primary_10_1103_PhysRevA_78_023634
crossref_primary_10_1016_j_rinp_2023_106447
Cites_doi 10.1103/PhysRevLett.98.053603
10.1238/Physica.Topical.076a00127
10.1209/epl/i2004-10035-7
10.1103/PhysRevLett.98.183601
10.1103/RevModPhys.79.235
10.1103/PhysRevA.51.3896
10.1103/PhysRev.93.99
10.1103/PhysRevA.70.053606
10.1093/acprof:oso/9780198509141.001.0001
10.1038/nature02387
10.1103/PhysRevA.71.053601
10.1038/35006006
10.1103/PhysRevLett.68.1132
10.1103/PhysRevA.67.043609
10.1103/PhysRevLett.97.083602
10.1038/nature00968
10.1038/35106500
10.1063/1.2347892
10.1103/PhysRevLett.83.3398
10.1002/prop.200610325
10.1016/S1049-250X(06)54002-9
10.1103/PhysRevLett.86.4203
10.1103/PhysRev.188.692
10.1038/416211a
10.1364/FIO.2007.PDP_C7
10.1038/nphys571
10.1038/35097032
10.1038/nature06120
10.1038/nature05147
10.1007/s003400200861
10.1103/PhysRevLett.83.4987
10.1103/PhysRevLett.95.090404
10.1126/science.285.5427.571
10.1023/A:1026084606385
ContentType Journal Article
Copyright COPYRIGHT 2007 Nature Publishing Group
Copyright Nature Publishing Group Nov 8, 2007
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: COPYRIGHT 2007 Nature Publishing Group
– notice: Copyright Nature Publishing Group Nov 8, 2007
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7SC
7SP
7SR
7TB
7U5
8BQ
F28
JG9
JQ2
KR7
L7M
L~C
L~D
7X8
1XC
DOI 10.1038/nature06331
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
eLibrary
ProQuest Central - New (Subscription)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Proquest Medical Database
Psychology Database
Research Library (subscription)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
Materials Research Database
Civil Engineering Abstracts
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Materials Research Database
Agricultural Science Database
MEDLINE - Academic

Materials Research Database
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Biology
EISSN 1476-4687
1476-4679
EndPage 276
ExternalDocumentID oai:HAL:hal-00264333v1
1381970001
A193477595
A189705453
17994094
10_1038_nature06331
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
.55
.CO
.GJ
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1CY
1OL
1VR
1VW
29M
2KS
2XV
354
39C
3EH
3O-
4.4
41X
41~
42X
4R4
53G
5RE
663
6TJ
70F
79B
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
9M8
A6W
A7Z
A8Z
AAHBH
AAHTB
AAIKC
AAJYS
AAKAB
AAKAS
AAMNW
AARCD
AASDW
AAVBQ
AAYEP
AAYXX
AAYZH
ABAWZ
ABDBF
ABDPE
ABDQB
ABEFU
ABFSG
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBNA
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACSTC
ACTDY
ACUHS
ACWUS
ADBBV
ADFRT
ADGHP
ADNMO
ADRHT
ADUKH
ADXHL
ADYSU
ADZCM
AENEX
AETEA
AEUYN
AEZWR
AFANA
AFBBN
AFFDN
AFFNX
AFHIU
AFHKK
AFKRA
AFKWF
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGNAY
AGQPQ
AGSOS
AHMBA
AHSBF
AHWEU
AIDAL
AIDUJ
AIXLP
AIYXT
AJUXI
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATHPR
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CITATION
CJ0
CS3
D1I
D1J
D1K
DB5
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESTFP
ESX
EX3
EXGXG
F5P
FA8
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
J5H
K6-
KB.
KOO
L-9
L6V
L7B
LGEZI
LK5
LK8
LOTEE
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
MVM
N4W
N9A
NADUK
NAPCQ
NEJ
NEPJS
NFIDA
NXXTH
O9-
OBC
ODYON
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PHGZM
PHGZT
PJZUB
PM3
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PUEGO
PV9
PYCSY
Q2X
QS-
R05
R4F
RHI
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SKT
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUD
TUS
TWZ
U5U
UBY
UHB
UKHRP
UKR
UMD
UQL
USG
VOH
VVN
WH7
WOW
X7L
X7M
XIH
XKW
XOL
XZL
Y6R
YAE
YFH
YJ6
YNT
YOC
YQI
YQJ
YQT
YR2
YR5
YV5
YXA
YXB
YYP
YYQ
YZZ
ZCA
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~02
~7V
~88
~8M
~G0
~KM
ALIPV
NPM
ABUFD
AAYOK
ACMFV
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
36B
7SC
7SP
7SR
7TB
7U5
8BQ
ABCQX
AFWHJ
AHBCP
AHOSX
AIBTJ
D0L
F28
JG9
JQ2
KR7
L7M
L~C
L~D
NNMJJ
QF4
QM4
QN7
QO4
7X8
1XC
ID FETCH-LOGICAL-c891t-cdb5650b64341988a28d0116e71a36d2ba604c456c062a85b0b5a45f0cf6a93e3
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Tue Oct 14 20:39:21 EDT 2025
Thu Oct 02 13:49:09 EDT 2025
Thu Oct 02 15:22:34 EDT 2025
Thu Oct 02 17:58:12 EDT 2025
Thu Oct 02 12:39:51 EDT 2025
Thu Sep 04 19:50:49 EDT 2025
Sun Oct 26 08:23:42 EDT 2025
Fri Jun 13 01:09:00 EDT 2025
Fri Jun 13 00:44:13 EDT 2025
Tue Jun 10 15:35:45 EDT 2025
Tue Jun 10 15:34:05 EDT 2025
Mon Oct 20 17:20:58 EDT 2025
Mon Oct 20 17:25:54 EDT 2025
Thu Oct 16 14:34:45 EDT 2025
Thu Oct 16 14:13:40 EDT 2025
Thu Oct 16 14:32:14 EDT 2025
Thu Oct 16 13:49:59 EDT 2025
Mon Jul 21 05:52:03 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Wed Oct 01 03:36:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7167
Keywords atom chip
collective coupling
couplage fort
condensate
cavity
résonateur
fiber Fabry Perot
condensat
couplage collectif
resonator
cavité
strong coupling
puce à atomes
Language English
License http://www.springer.com/tdm
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c891t-cdb5650b64341988a28d0116e71a36d2ba604c456c062a85b0b5a45f0cf6a93e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-3420-4178
PMID 17994094
PQID 204559459
PQPubID 23500
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_00264333v1
proquest_miscellaneous_743485753
proquest_miscellaneous_68498744
proquest_miscellaneous_36250881
proquest_miscellaneous_1753495733
proquest_miscellaneous_1082193681
proquest_journals_204559459
gale_infotracgeneralonefile_A193477595
gale_infotracgeneralonefile_A189705453
gale_infotraccpiq_193477595
gale_infotraccpiq_189705453
gale_infotracacademiconefile_A193477595
gale_infotracacademiconefile_A189705453
gale_incontextgauss_ISR_A193477595
gale_incontextgauss_ISR_A189705453
gale_incontextgauss_ATWCN_A193477595
gale_incontextgauss_ATWCN_A189705453
pubmed_primary_17994094
crossref_primary_10_1038_nature06331
crossref_citationtrail_10_1038_nature06331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-11-08
PublicationDateYYYYMMDD 2007-11-08
PublicationDate_xml – month: 11
  year: 2007
  text: 2007-11-08
  day: 08
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Nature
PublicationTitleAlternate Nature
PublicationYear 2007
Publisher Nature Publishing Group
Publisher_xml – name: Nature Publishing Group
References W Hänsel (BFnature06331_CR32) 2001; 413
RH Dicke (BFnature06331_CR14) 1954; 93
T Fischer (BFnature06331_CR26) 2001; 3
S Haroche (BFnature06331_CR2) 2006
T Aoki (BFnature06331_CR23) 2006; 443
SW Du (BFnature06331_CR31) 2004; 70
J Fortágh (BFnature06331_CR11) 2007; 79
IB Mekhov (BFnature06331_CR21) 2007; 3
F Gerbier (BFnature06331_CR24) 2004; 66
DM Harber (BFnature06331_CR34) 2003; 133
S Slama (BFnature06331_CR9) 2007; 98
AD Boozer (BFnature06331_CR5) 2006; 97
BFnature06331_CR12
JE Lye (BFnature06331_CR28) 2003; 67
J Ye (BFnature06331_CR3) 1999; 83
JR Anglin (BFnature06331_CR7) 2002; 416
O Morice (BFnature06331_CR20) 1995; 51
A Öttl (BFnature06331_CR8) 2005; 95
J Simon (BFnature06331_CR16) 2007; 98
J Reichel (BFnature06331_CR33) 1999; 83
J Reichel (BFnature06331_CR35) 2002; 74
PWH Pinkse (BFnature06331_CR4) 2000; 404
T Steinmetz (BFnature06331_CR10) 2006; 89
W Ketterle (BFnature06331_CR18) 2001; 86
BFnature06331_CR27
B Mohring (BFnature06331_CR30) 2005; 71
P Maunz (BFnature06331_CR6) 2004; 428
P Treutlein (BFnature06331_CR22) 2006; 54
HJ Kimble (BFnature06331_CR1) 1998; T76
LM Duan (BFnature06331_CR13) 2001; 414
J Sherson (BFnature06331_CR15) 2006; 54
S Inouye (BFnature06331_CR19) 1999; 285
M Greiner (BFnature06331_CR29) 2002; 419
M Tavis (BFnature06331_CR17) 1969; 188
RJ Thompson (BFnature06331_CR25) 1992; 68
References_xml – volume: 98
  start-page: 053603
  year: 2007
  ident: BFnature06331_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.053603
– volume: T76
  start-page: 127
  year: 1998
  ident: BFnature06331_CR1
  publication-title: Phys. Scr.
  doi: 10.1238/Physica.Topical.076a00127
– volume: 66
  start-page: 771
  year: 2004
  ident: BFnature06331_CR24
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2004-10035-7
– volume: 98
  start-page: 183601
  year: 2007
  ident: BFnature06331_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.183601
– volume: 79
  start-page: 235
  year: 2007
  ident: BFnature06331_CR11
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.235
– volume: 51
  start-page: 3896
  year: 1995
  ident: BFnature06331_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.51.3896
– volume: 93
  start-page: 99
  year: 1954
  ident: BFnature06331_CR14
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.93.99
– volume: 70
  start-page: 053606
  year: 2004
  ident: BFnature06331_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.053606
– volume-title: Exploring the Quantum: Atoms, Cavities and Photons
  year: 2006
  ident: BFnature06331_CR2
  doi: 10.1093/acprof:oso/9780198509141.001.0001
– volume: 428
  start-page: 50
  year: 2004
  ident: BFnature06331_CR6
  publication-title: Nature
  doi: 10.1038/nature02387
– volume: 71
  start-page: 053601
  year: 2005
  ident: BFnature06331_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.053601
– volume: 404
  start-page: 365
  year: 2000
  ident: BFnature06331_CR4
  publication-title: Nature
  doi: 10.1038/35006006
– volume: 68
  start-page: 1132
  year: 1992
  ident: BFnature06331_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1132
– volume: 67
  start-page: 043609
  year: 2003
  ident: BFnature06331_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.67.043609
– volume: 97
  start-page: 083602
  year: 2006
  ident: BFnature06331_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.083602
– volume: 419
  start-page: 51
  year: 2002
  ident: BFnature06331_CR29
  publication-title: Nature
  doi: 10.1038/nature00968
– volume: 414
  start-page: 413
  year: 2001
  ident: BFnature06331_CR13
  publication-title: Nature
  doi: 10.1038/35106500
– volume: 89
  start-page: 111110
  year: 2006
  ident: BFnature06331_CR10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2347892
– volume: 83
  start-page: 3398
  year: 1999
  ident: BFnature06331_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3398
– volume: 54
  start-page: 702
  year: 2006
  ident: BFnature06331_CR22
  publication-title: Fortschr. Phys.
  doi: 10.1002/prop.200610325
– volume: 54
  start-page: 81
  year: 2006
  ident: BFnature06331_CR15
  publication-title: Adv. At. Mol. Opt. Phys.
  doi: 10.1016/S1049-250X(06)54002-9
– volume: 3
  start-page: 11
  year: 2001
  ident: BFnature06331_CR26
  publication-title: N. J. Phys.
– volume: 86
  start-page: 4203
  year: 2001
  ident: BFnature06331_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.4203
– volume: 188
  start-page: 692
  year: 1969
  ident: BFnature06331_CR17
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.188.692
– volume: 416
  start-page: 211
  year: 2002
  ident: BFnature06331_CR7
  publication-title: Nature
  doi: 10.1038/416211a
– ident: BFnature06331_CR27
  doi: 10.1364/FIO.2007.PDP_C7
– volume: 3
  start-page: 319
  year: 2007
  ident: BFnature06331_CR21
  publication-title: Nature Phys.
  doi: 10.1038/nphys571
– volume: 413
  start-page: 498
  year: 2001
  ident: BFnature06331_CR32
  publication-title: Nature
  doi: 10.1038/35097032
– ident: BFnature06331_CR12
  doi: 10.1038/nature06120
– volume: 443
  start-page: 671
  year: 2006
  ident: BFnature06331_CR23
  publication-title: Nature
  doi: 10.1038/nature05147
– volume: 74
  start-page: 469
  year: 2002
  ident: BFnature06331_CR35
  publication-title: Appl. Phys. B
  doi: 10.1007/s003400200861
– volume: 83
  start-page: 4987
  year: 1999
  ident: BFnature06331_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.4987
– volume: 95
  start-page: 090404
  year: 2005
  ident: BFnature06331_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.090404
– volume: 285
  start-page: 571
  year: 1999
  ident: BFnature06331_CR19
  publication-title: Science
  doi: 10.1126/science.285.5427.571
– volume: 133
  start-page: 229
  year: 2003
  ident: BFnature06331_CR34
  publication-title: J. Low Temp. Phys.
  doi: 10.1023/A:1026084606385
SSID ssj0005174
ssj0014407
Score 2.4896586
Snippet An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates...
SourceID hal
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 272
SubjectTerms Atomic structure
Atoms & subatomic particles
Bose-Einstein condensates
Condensates
Cooling
Ground state
Heating
Holes
Joining
Light
Optics
Physics
Quantum electrodynamics
Quantum Physics
Quantum theory
Splitting
Three dimensional
Trapping
Title Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip
URI https://www.ncbi.nlm.nih.gov/pubmed/17994094
https://www.proquest.com/docview/204559459
https://www.proquest.com/docview/1082193681
https://www.proquest.com/docview/1753495733
https://www.proquest.com/docview/36250881
https://www.proquest.com/docview/68498744
https://www.proquest.com/docview/743485753
https://hal.science/hal-00264333
Volume 450
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-4687
  dateEnd: 20151119
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: ABDBF
  dateStart: 19970605
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-4687
  dateEnd: 20151130
  omitProxy: true
  ssIdentifier: ssj0014407
  issn: 0028-0836
  databaseCode: ABDBF
  dateStart: 19990501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20151119
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: A8Z
  dateStart: 19970605
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0014407
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19990501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0014407
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19990501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8FG
  dateStart: 19900104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbWTki8IDZupTAMmrhJ0ZLYju0HhLqqpSBWoV20ipfIcZKuEiQdafn9nJOmN7S2L5Eaf3ViO7Y_-xx_h5BjJqPU8FQ4vjGuw1mkoM-ZxJGGuamrI-WVsotn_aB3xb8NxGCPnM3PwqBb5XxMLAfqOLe4R36CsulCc6E_j28dDBqFxtV5BA1TRVaIP5UKYzWy76MwVp3sn3b6P86XPh__yTJXB_Zcpk5mOpowYTNvbYqqBuraDfpJbiKh5WTUfUgeVCyStmbNfkD2kuyQ3Cu9OW1xSA6qHlvQ95Ws9IdH5PoCd72HFFbZv53ScY1CcfBA7pACc6WneZE4nRHQxWSUQRKGxi2QiVL4aTKaj8ttb2oNhpugOdyk9mY0fkyuup3Lds-pwio4Vmlv4tg4AhbnRsBFuKeVMr6K0RyTSM-wIPYjE7jcArGybuAbJSI3EoaL1LVpYDRL2BNSz_IseUao4Nz6MfBzz0uA2UUmkZGMY6FkykTEvQb5OK_J0Faa4xj64ldY2r6ZCleqvUGOF-DxTGpjAwybJETxigy9Y4ZmWhRh6_K63Q9bntISWKhgO2CacSmFFg3y5i7Y14vztby2gJY5vatAaQ5ltKY63wA1hRJba9ntQi7zbK4h7Xh0G67kc1fq8r9v11KHs-_trtfZAVypK-gFi7ZBYfJe63uI93Apzxljf6F5mvNOElbDYREuOm-DvF6kwjiGximTJfm0QKFamDxZoLwtGFhbw4JeMnjnVxswQMhwzeFtRgSKawz60CB0AwJYNcfItfCYp7Nuvvwgpda4JfJ8azGb5H5pAyjNDy9IffJnmrwE8jqJjkhNDiRcVdvDa_cLXFvq51E1VP0DYxWYuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IQQviI1bKDCDBgykaElsx_EDQmVsalm3B9ZpfQuOk3SVIOlIC-JH8R85J01vqJenPTb-etr4cvzZPv4OIXtMRqnmqbA9rR2bsyiAMacTW2rmpI6KAreUXTw98xsX_EtHdDbI3_FdGAyrHPvE0lHHucE98gOUTReKC_Wxf21j0ig8XB1n0Bj1ipPkz29YsRUfmp-heV973vFR-7BhV0kFbBMod2CbOAIO40QwE3NYcAfaC2I8jEikq5kfe5H2HW6AVhjH93QgIicSmovUMamvFUsY2N0ktzgDVwLDR3bkNKLkP9Hn6jqgw4KDkUon0AHmzk2A1TSweYVRmMsobjnVHd8n9yqOSuujTrVNNpJsh9wuY0VNsUO2K39Q0P1KtPrdA3J5jnvqXQpr-B92GRZHTT7E675dCryYfsqLxD7qARlNehkUYeLdAnkuhY86o3m_3FSnRmMyC5rDQ2quev2H5OJG6vcR2cryLHlCqODceDGwf9dNgDdGOpGRjGMRyJSJiLsWeT-uydBUiuaYWON7WJ6ssyCcqXaL7E3A_ZGQxxIYNkmI0hgZxt509bAownr78vAsrLuBksBxBVsDU4xLKZSwyKtFsOb51zlbK0BTS28rUJrDOxpd3Z6AmkIBrzlz65BTm7U5pOn3rsMZO4tKp999M1faHfW3RX9nDXCmrmAUTNoGZc8b9VaIz3CjgDPGfkHz1MaDJKycbRFOXINFXk5KwUvi0ZfOknxYoAwuTM3MD9wVGFi5c4X6oBbZXYIBuocrGnc5wg-4wpQSFqFLEMDZOebFhZ95PBrm0w4plcINl6crX3OX3Gm0T1thq3l2UiN3y9OG8qDjGdka_Bwmz4EmD6IXpXOi5NtNe8N_F9nKWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF61RSBeEC1XCNAFlVOyYnt3vd4HhELbqKElQrRV82bWazuNBHaKExA_jX_HjO1cKMdTH-P9Mon3mP1mZ3aGkD0mw0TzRFiu1rbFWejDmtOxJTWzE1uFvlOkXfzc8Y7O-aeu6G6Qv-O7MBhWOdaJhaKOMoNn5A1Mmy4UF6qRVFERXw5aHwZXFhaQQkfruJpGOUOO4z-_wXrL37cPYKhfum7r8Gz_yKoKDFjGV87QMlEIfMYOYVfmYHz72vUjdEzE0tHMi9xQezY3QDGM7bnaF6EdCs1FYpvE04rFDORukhuSMYXRhLIrp9El_yWArq4G2sxvlBk7gRowZ24zrLaEzUuMyFxGd4ttr3WX3Kn4Km2WE2ybbMTpDrlZxI2afIdsV7ohp2-qBNZv75GLUzxf71Gw539YRYgcNdkIr_72KHBk-jHLY-uwD8Q07qfQhEV4c-S8FD7qlGaD4oCdGo2FLWgGD6m57A_uk_Nr6d8HZCvN0vgRoYJz40ZgCThODBwy1LEMZRQJXyZMhNypkXfjngxMld0ci2x8DwovO_ODmW6vkb0JeFAm9VgCwyEJME1GijOup0d5HjTPLvY7QdPxlQS-K9gamGJcSqFEjbxYBGuffp2TtQI0lfS6AiUZvKPR1U0K6ClM5jUnbh1yKrM-hzSD_lUwI2dR6_S7r-Zae-V8W_R31gBn-gpWwWRsMAX6UfMkwGd4aMAZY79geOrjRRJUijcPJmqiRp5PWkFjohtMp3E2yjElLmzTzPOdFRiw4rnCXKE1srsEA9QPrRtnOcLzucLyEjVClyCAv3OskQs_87Bc5tMJKZXCw5fHK19zl9wCPRictDvHdXK7cDwUPo8nZGv4cxQ_BcY8DJ8VuomSb9etDP8BVYLOnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+atom-field+coupling+for+Bose-Einstein+condensates+in+an+optical+cavity+on+a+chip&rft.jtitle=Nature+%28London%29&rft.au=Colombe%2C+Yves&rft.au=Steinmetz%2C+Tilo&rft.au=Dubois%2C+Guilhem&rft.au=Linke%2C+Felix&rft.date=2007-11-08&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=450&rft.issue=7167&rft.spage=272&rft_id=info:doi/10.1038%2Fnature06331&rft.externalDBID=ATWCN&rft.externalDocID=A189705453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon