Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip
An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many expe...
Saved in:
| Published in | Nature Vol. 450; no. 7167; pp. 272 - 276 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Nature Publishing Group
08.11.2007
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0028-0836 1476-4687 1476-4687 1476-4679 |
| DOI | 10.1038/nature06331 |
Cover
| Abstract | An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information. |
|---|---|
| AbstractList | An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre- based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information. An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information. [PUBLICATION ABSTRACT] An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information.An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this 'strong coupling regime' of cavity quantum electrodynamics has been the subject of many experimental advances. Efforts have been made to control the coupling rate by trapping the atom and cooling it towards the motional ground state; the latter has been achieved in one dimension so far. For systems of many atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs). Although experiments combining BECs and optical cavities have been reported recently, coupling BECs to cavities that are in the strong-coupling regime for single atoms has remained an elusive goal. Here we report such an experiment, made possible by combining a fibre-based cavity with atom-chip technology. This enables single-atom cavity quantum electrodynamics experiments with a simplified set-up and realizes the situation of many atoms in a cavity, each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field; we demonstrate that this gives rise to a controlled, tunable coupling rate. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting, which we attribute to the atomic hyperfine structure. We anticipate that the system will be suitable as a light-matter quantum interface for quantum information. An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates of the system. For single atoms, this strong coupling regime of cavity quantum electrodynamics (cQED) has been the subject of spectacular experimental advances, and great efforts have been made to control the coupling rate by trapping and cooling the atom towards the motional ground state, which has been achieved in one dimension so far. For N atoms, the three-dimensional ground state of motion is routinely achieved in atomic Bose-Einstein condensates (BECs), but although first experiments combining BECs and optical cavities have been reported recently, coupling BECs to strong-coupling cavities has remained an elusive goal. Here we report such an experiment, which is made possible by combining a new type of fibre-based cavity with atom chip technology. This allows single-atom cQED experiments with a simplified setup and realizes the new situation of N atoms in a cavity each of which is identically and strongly coupled to the cavity mode. Moreover, the BEC can be positioned deterministically anywhere within the cavity and localized entirely within a single antinode of the standing-wave cavity field. This gives rise to a controlled, tunable coupling rate, as we confirm experimentally. We study the heating rate caused by a cavity transmission measurement as a function of the coupling rate and find no measurable heating for strongly coupled BECs. The spectrum of the coupled atoms-cavity system, which we map out over a wide range of atom numbers and cavity-atom detunings, shows vacuum Rabi splittings exceeding 20 gigahertz, as well as an unpredicted additional splitting which we attribute to the atomic hyperfine structure. |
| Audience | Academic |
| Author | Steinmetz, Tilo Colombe, Yves Linke, Felix Reichel, Jakob Dubois, Guilhem Hunger, David |
| Author_xml | – sequence: 1 givenname: Yves surname: Colombe fullname: Colombe, Yves – sequence: 2 givenname: Tilo surname: Steinmetz fullname: Steinmetz, Tilo – sequence: 3 givenname: Guilhem surname: Dubois fullname: Dubois, Guilhem – sequence: 4 givenname: Felix surname: Linke fullname: Linke, Felix – sequence: 5 givenname: David surname: Hunger fullname: Hunger, David – sequence: 6 givenname: Jakob surname: Reichel fullname: Reichel, Jakob |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17994094$$D View this record in MEDLINE/PubMed https://hal.science/hal-00264333$$DView record in HAL |
| BookMark | eNqNlM1u1DAQgCNURLeFE3cU9QBUKMWO_4_LqtBKK5BoEQcOkeM4W1dZO42dit54B96QJ8HtFpqttt1VDlbG33wzmjjeSbasszpJXkJwAAHi760MfacBRQg-SUYQM5phytlWMgIg5xngiG4nO96fAwAIZPhZsg2ZEBgIPEp-nITO2Vkqg5v_-fW7NrqpUuX6tjExWrsu_eC8jjuHxvqgjY2bttLWy6B9Gl-lTV0bjJJNquSlCVepi8FUnZn2efK0lo3XL27X3eTbx8PTyVE2_fLpeDKeZooLGDJVlYQSUFKMMBScy5xXAEKqGZSIVnkpKcAKE6oAzSUnJSiJxKQGqqZSII12k_2F90w2RduZueyuCidNcTSeFtexOIcoR-gSRvbNgm07d9FrH4q58Uo3jbTa9b5gsQlOGEGRfP0oSTkWnGG8FkQ0J4Dz69pvHwVhLIsFYQitRwHPoUD0xrp3Dz13fWfjwIscYEIEJiJC2QKayUYXxtYudFLNtNWdbOJxqk0Mj6MRM0YE2ZTnggGCb4a1t4JXrbkohtKHoYHpYAUUn0rPjVrZ6mYJgwr7SwmRCfpnmMne--L45OuyfC078L57mB2ffp98XjZvQA_cr24_cl_OdfX_lP_7ke90qnPed7q-Q0BxfU0Ug2si0vAerUyQwcQeOmmalTl_AdkkYiQ |
| CODEN | NATUAS |
| CitedBy_id | crossref_primary_10_1088_1367_2630_10_4_045002 crossref_primary_10_1364_OE_541186 crossref_primary_10_2478_s11534_012_0132_x crossref_primary_10_1364_OL_42_003952 crossref_primary_10_1088_1674_1056_18_10_028 crossref_primary_10_1103_PhysRevA_96_013832 crossref_primary_10_1103_PhysRevLett_118_083604 crossref_primary_10_1103_PhysRevA_99_013437 crossref_primary_10_1002_adom_202302848 crossref_primary_10_1038_s41598_018_29902_9 crossref_primary_10_1103_PhysRevA_84_051801 crossref_primary_10_1103_PhysRevA_110_012423 crossref_primary_10_1103_PhysRevLett_105_133602 crossref_primary_10_1002_qute_202400524 crossref_primary_10_1007_s11128_011_0298_y crossref_primary_10_1364_OE_27_029639 crossref_primary_10_1007_s00340_015_6281_z crossref_primary_10_1103_PhysRevA_79_021804 crossref_primary_10_1364_OE_22_031317 crossref_primary_10_1088_1367_2630_11_4_043009 crossref_primary_10_1103_PhysRevA_96_013821 crossref_primary_10_1088_0953_4075_41_24_245502 crossref_primary_10_7498_aps_67_20180971 crossref_primary_10_1016_j_physleta_2018_12_016 crossref_primary_10_1364_OE_477780 crossref_primary_10_7498_aps_71_20211970 crossref_primary_10_1088_0953_4075_49_7_075302 crossref_primary_10_1103_PhysRevLett_110_243602 crossref_primary_10_1364_OL_34_000259 crossref_primary_10_1103_PhysRevA_85_013817 crossref_primary_10_3367_UFNe_2020_11_038888 crossref_primary_10_1103_PhysRevApplied_11_034044 crossref_primary_10_1103_PhysRevResearch_2_033484 crossref_primary_10_1103_PhysRevA_105_063318 crossref_primary_10_1103_PhysRevA_81_023617 crossref_primary_10_1109_JQE_2015_2509239 crossref_primary_10_1140_epjd_e2008_00074_6 crossref_primary_10_1088_1361_6439_abc0fd crossref_primary_10_1088_1361_6455_aaca5c crossref_primary_10_1038_s41598_019_44218_y crossref_primary_10_1103_PhysRevA_94_062301 crossref_primary_10_1103_PhysRevA_90_053822 crossref_primary_10_1103_PhysRevA_85_032309 crossref_primary_10_1209_0295_5075_82_14001 crossref_primary_10_1063_1_3679721 crossref_primary_10_1103_PhysRevA_82_052315 crossref_primary_10_1007_s11128_020_02928_7 crossref_primary_10_1038_nphys1837 crossref_primary_10_1103_PhysRevA_99_051803 crossref_primary_10_1103_PhysRevLett_107_093601 crossref_primary_10_1364_OE_22_021999 crossref_primary_10_1088_1572_9494_ac81b0 crossref_primary_10_1209_0295_5075_100_20006 crossref_primary_10_1007_s00340_009_3436_9 crossref_primary_10_1103_PhysRevResearch_6_043272 crossref_primary_10_1088_1367_2630_abeb91 crossref_primary_10_1103_PhysRevA_103_023328 crossref_primary_10_1103_PhysRevX_11_021009 crossref_primary_10_7498_aps_71_20221538 crossref_primary_10_1088_1367_2630_12_9_095005 crossref_primary_10_1103_PhysRevLett_124_223602 crossref_primary_10_1140_epjp_s13360_024_05450_2 crossref_primary_10_1088_1361_6455_aa6a74 crossref_primary_10_1103_PhysRevA_89_013803 crossref_primary_10_1038_s41598_021_89652_z crossref_primary_10_1515_nanoph_2016_0163 crossref_primary_10_1103_PhysRevLett_103_160403 crossref_primary_10_1364_OE_25_008123 crossref_primary_10_7566_JPSJ_90_074602 crossref_primary_10_1364_AO_58_003784 crossref_primary_10_1088_1367_2630_13_8_085004 crossref_primary_10_1103_PhysRevB_103_235430 crossref_primary_10_1103_PhysRevA_82_043605 crossref_primary_10_1140_epjd_e2009_00093_9 crossref_primary_10_1007_s00340_009_3888_y crossref_primary_10_1038_s41598_017_10686_3 crossref_primary_10_1088_2058_9565_aa868b crossref_primary_10_1103_PhysRevA_88_013851 crossref_primary_10_7498_aps_70_20201841 crossref_primary_10_1088_0953_4075_44_6_065302 crossref_primary_10_1088_1367_2630_aab2c5 crossref_primary_10_1063_1_4946893 crossref_primary_10_1103_PhysRevA_90_052315 crossref_primary_10_1103_PhysRevLett_104_203602 crossref_primary_10_1103_PhysRevA_98_063619 crossref_primary_10_1088_0031_8949_2009_T137_014001 crossref_primary_10_1103_PhysRevA_98_033801 crossref_primary_10_1007_s11128_016_1298_8 crossref_primary_10_1088_0256_307X_35_11_116401 crossref_primary_10_1103_PhysRevA_110_013312 crossref_primary_10_1038_s41467_021_21256_7 crossref_primary_10_1103_PhysRevA_80_013604 crossref_primary_10_1103_PhysRevLett_118_073602 crossref_primary_10_1007_s10909_013_0943_1 crossref_primary_10_1016_j_optcom_2015_04_016 crossref_primary_10_1103_PhysRevA_104_053313 crossref_primary_10_1142_S021798492050075X crossref_primary_10_1103_PhysRevLett_108_123603 crossref_primary_10_1016_j_crhy_2011_04_015 crossref_primary_10_3390_e17064293 crossref_primary_10_1088_2040_8986_ad0e85 crossref_primary_10_1103_PhysRevLett_111_100505 crossref_primary_10_1016_j_optcom_2014_05_066 crossref_primary_10_1063_1_4838696 crossref_primary_10_1103_PhysRevA_88_013848 crossref_primary_10_1103_PhysRevA_89_011602 crossref_primary_10_1088_1367_2630_17_1_013053 crossref_primary_10_1103_PhysRevA_81_043407 crossref_primary_10_1063_1_2945893 crossref_primary_10_1103_PhysRevA_96_023855 crossref_primary_10_1103_PhysRevA_89_023812 crossref_primary_10_1103_PhysRevA_89_023811 crossref_primary_10_3788_COL202321_092702 crossref_primary_10_1103_PhysRevA_78_023815 crossref_primary_10_3390_atoms3020182 crossref_primary_10_1364_JOSAB_33_001749 crossref_primary_10_1364_OE_382254 crossref_primary_10_1103_PhysRevLett_112_133605 crossref_primary_10_1007_s00340_016_6362_7 crossref_primary_10_1063_1_3601930 crossref_primary_10_1103_PhysRevA_81_043639 crossref_primary_10_1103_PhysRevA_90_062336 crossref_primary_10_1080_09500340_2012_679706 crossref_primary_10_1103_PhysRevLett_103_163603 crossref_primary_10_1088_1054_660X_23_12_125201 crossref_primary_10_1103_PhysRevA_78_043618 crossref_primary_10_1364_JOSAB_30_002869 crossref_primary_10_1364_JOSAB_31_000503 crossref_primary_10_1103_PhysRevA_87_043817 crossref_primary_10_1103_PhysRevA_106_063720 crossref_primary_10_1088_1555_6611_ab0d14 crossref_primary_10_1103_PhysRevA_102_013304 crossref_primary_10_1364_OE_21_004093 crossref_primary_10_1103_PhysRevA_82_053832 crossref_primary_10_1103_PhysRevLett_103_013602 crossref_primary_10_1364_OL_40_003368 crossref_primary_10_1126_science_1238169 crossref_primary_10_1364_JOSAB_28_002007 crossref_primary_10_1103_PhysRevA_78_033833 crossref_primary_10_1103_PhysRevA_90_043823 crossref_primary_10_1134_S1054660X10050105 crossref_primary_10_1007_s11128_021_03077_1 crossref_primary_10_1103_PhysRevA_80_063834 crossref_primary_10_1002_adom_202102353 crossref_primary_10_1364_JOSAB_30_000238 crossref_primary_10_1088_1367_2630_13_11_113018 crossref_primary_10_1088_1367_2630_acfd54 crossref_primary_10_1103_PhysRevLett_115_163601 crossref_primary_10_1002_lpor_200810046 crossref_primary_10_1364_OE_19_008471 crossref_primary_10_1103_PhysRevA_77_053808 crossref_primary_10_1103_PhysRevA_81_013404 crossref_primary_10_1088_0953_4075_44_5_055302 crossref_primary_10_1103_PhysRevA_100_013611 crossref_primary_10_1103_PhysRevA_77_053811 crossref_primary_10_1209_0295_5075_114_50005 crossref_primary_10_1364_JOSAB_33_001600 crossref_primary_10_1073_pnas_1524117113 crossref_primary_10_1088_1367_2630_aa5b7b crossref_primary_10_1126_science_1148259 crossref_primary_10_1088_1674_1056_27_3_034205 crossref_primary_10_1103_PhysRevA_88_053812 crossref_primary_10_1103_PhysRevLett_110_090402 crossref_primary_10_1142_S021797921250083X crossref_primary_10_1364_OE_24_021205 crossref_primary_10_1088_1367_2630_17_4_043012 crossref_primary_10_1007_s00340_012_5319_8 crossref_primary_10_1016_j_ijleo_2014_07_062 crossref_primary_10_1103_PhysRevA_92_042314 crossref_primary_10_1103_PhysRevA_83_043606 crossref_primary_10_1038_nature08988 crossref_primary_10_1103_PhysRevA_90_024301 crossref_primary_10_1103_PhysRevLett_111_043603 crossref_primary_10_1038_nature08865 crossref_primary_10_1103_PhysRevLett_121_173603 crossref_primary_10_1038_s41567_021_01307_y crossref_primary_10_1364_OE_412273 crossref_primary_10_1142_S0219749911007642 crossref_primary_10_1103_PhysRevA_89_033801 crossref_primary_10_1038_s41598_018_32989_9 crossref_primary_10_1088_1367_2630_11_6_063027 crossref_primary_10_7498_aps_62_013402 crossref_primary_10_1063_1_3456559 crossref_primary_10_1364_OPTICA_4_000424 crossref_primary_10_1038_srep15610 crossref_primary_10_1038_s41598_017_07899_x crossref_primary_10_1007_s11467_013_0359_z crossref_primary_10_1103_PhysRevA_86_013828 crossref_primary_10_1109_JQE_2016_2578041 crossref_primary_10_1103_PhysRevA_77_033620 crossref_primary_10_1103_PhysRevApplied_20_014025 crossref_primary_10_1103_PhysRevLett_117_156402 crossref_primary_10_1038_nphys965 crossref_primary_10_1140_epjd_e2009_00001_5 crossref_primary_10_1088_1054_660X_26_5_055502 crossref_primary_10_1103_PhysRevD_89_085041 crossref_primary_10_1103_PhysRevA_98_043616 crossref_primary_10_1209_0295_5075_87_23001 crossref_primary_10_1103_PhysRevA_99_053844 crossref_primary_10_1103_PhysRevA_81_012307 crossref_primary_10_1103_PhysRevA_83_052324 crossref_primary_10_1103_PhysRevLett_122_193605 crossref_primary_10_1007_s00340_016_6577_7 crossref_primary_10_1016_j_aop_2016_09_009 crossref_primary_10_1007_s11467_021_1105_6 crossref_primary_10_1103_PhysRevLett_111_055702 crossref_primary_10_1098_rsta_2010_0333 crossref_primary_10_1103_PhysRevLett_113_233002 crossref_primary_10_1088_0953_4075_42_4_044015 crossref_primary_10_1126_science_1208066 crossref_primary_10_1140_epjd_s10053_023_00700_x crossref_primary_10_1364_JOSAB_541577 crossref_primary_10_1103_PhysRevA_105_L041302 crossref_primary_10_1103_PhysRevA_105_032210 crossref_primary_10_1016_j_optlastec_2023_109791 crossref_primary_10_1103_PhysRevLett_107_146603 crossref_primary_10_1103_RevModPhys_90_031002 crossref_primary_10_1103_PhysRevA_102_053708 crossref_primary_10_1103_PhysRevA_83_055803 crossref_primary_10_1103_PhysRevE_98_012112 crossref_primary_10_1088_0034_4885_74_10_104401 crossref_primary_10_1364_OE_492686 crossref_primary_10_1103_PhysRevA_77_063408 crossref_primary_10_1109_JLT_2011_2120597 crossref_primary_10_1007_s11128_011_0291_5 crossref_primary_10_1063_1_3109791 crossref_primary_10_1088_1674_1056_22_2_023702 crossref_primary_10_1103_PhysRevA_88_065601 crossref_primary_10_1088_0031_8949_2010_T140_014025 crossref_primary_10_1016_j_aop_2017_02_006 crossref_primary_10_1109_LPT_2012_2188025 crossref_primary_10_1007_s00340_013_5573_4 crossref_primary_10_1103_PhysRevLett_111_220408 crossref_primary_10_1103_PhysRevA_81_032119 crossref_primary_10_1103_PhysRevA_93_033630 crossref_primary_10_1007_s10773_018_3954_5 crossref_primary_10_1103_PhysRevA_100_013801 crossref_primary_10_1063_5_0174384 crossref_primary_10_1126_science_1248905 crossref_primary_10_1142_S021798490901979X crossref_primary_10_1364_OE_399978 crossref_primary_10_1016_j_optcom_2015_03_048 crossref_primary_10_1103_PhysRevA_88_043820 crossref_primary_10_1016_j_physleta_2011_07_016 crossref_primary_10_1103_PhysRevA_99_062106 crossref_primary_10_1021_acsphotonics_9b00726 crossref_primary_10_1103_PhysRevA_105_043321 crossref_primary_10_1103_PhysRevA_94_053621 crossref_primary_10_1063_1_4878504 crossref_primary_10_1088_1367_2630_12_10_103014 crossref_primary_10_1038_s41598_023_46138_4 crossref_primary_10_1016_j_ijleo_2010_09_022 crossref_primary_10_1038_srep10005 crossref_primary_10_1088_0953_4075_45_10_102001 crossref_primary_10_1103_PhysRevA_93_042329 crossref_primary_10_1103_PhysRevLett_103_083601 crossref_primary_10_1209_0295_5075_112_64002 crossref_primary_10_1103_PhysRevLett_112_143002 crossref_primary_10_1103_PhysRevA_94_040302 crossref_primary_10_1088_1367_2630_17_5_053051 crossref_primary_10_1103_PhysRevB_78_085304 crossref_primary_10_1103_PhysRevA_83_031608 crossref_primary_10_1007_s12648_023_02740_w crossref_primary_10_1103_PhysRevA_82_033606 crossref_primary_10_1103_PhysRevA_83_053852 crossref_primary_10_1209_0295_5075_83_60004 crossref_primary_10_1103_PhysRevLett_111_243603 crossref_primary_10_1364_OE_422127 crossref_primary_10_1103_PhysRevA_86_034305 crossref_primary_10_1103_PhysRevA_77_033810 crossref_primary_10_1103_PhysRevA_80_012332 crossref_primary_10_1007_s00340_020_07478_5 crossref_primary_10_1088_1367_2630_11_5_055024 crossref_primary_10_1088_1367_2630_13_11_113002 crossref_primary_10_1103_PRXQuantum_2_020319 crossref_primary_10_1103_PhysRevA_79_013630 crossref_primary_10_1088_1361_6455_aa640a crossref_primary_10_1103_PhysRevA_101_023415 crossref_primary_10_1088_1674_1056_21_10_103701 crossref_primary_10_1103_PhysRevApplied_19_064007 crossref_primary_10_1002_qute_201900060 crossref_primary_10_1088_1367_2630_16_7_073038 crossref_primary_10_1063_1_3632057 crossref_primary_10_1103_PhysRevLett_105_043001 crossref_primary_10_1103_PhysRevResearch_2_013184 crossref_primary_10_1103_PhysRevA_96_053606 crossref_primary_10_3390_atoms4010002 crossref_primary_10_1364_OL_35_002293 crossref_primary_10_1088_1674_1056_26_9_090701 crossref_primary_10_1103_PhysRevLett_102_020403 crossref_primary_10_1088_0253_6102_63_5_588 crossref_primary_10_1103_RevModPhys_85_553 crossref_primary_10_1364_JOSAB_30_002136 crossref_primary_10_1364_OE_19_001207 crossref_primary_10_1364_OE_22_003501 crossref_primary_10_1103_RevModPhys_87_1379 crossref_primary_10_1088_1674_1056_19_11_117402 crossref_primary_10_1103_PhysRevA_110_063320 crossref_primary_10_1038_nature09568 crossref_primary_10_1103_PhysRevA_91_021602 crossref_primary_10_1103_PhysRevA_84_033829 crossref_primary_10_1088_1402_4896_aa6efb crossref_primary_10_1088_0253_6102_56_6_20 crossref_primary_10_1016_j_scib_2018_04_008 crossref_primary_10_1103_PhysRevA_86_013641 crossref_primary_10_1088_0960_1317_22_12_125011 crossref_primary_10_1103_PhysRevA_93_063818 crossref_primary_10_1038_ncomms5705 crossref_primary_10_1364_OE_25_020932 crossref_primary_10_1209_0295_5075_90_54001 crossref_primary_10_1103_PhysRevA_80_043623 crossref_primary_10_1038_s41598_020_66054_1 crossref_primary_10_1088_1367_2630_aa753c crossref_primary_10_1364_OE_24_009839 crossref_primary_10_1103_PhysRevA_94_023618 crossref_primary_10_1209_0295_5075_83_13001 crossref_primary_10_1088_1367_2630_10_9_095006 crossref_primary_10_1103_PhysRevLett_110_133604 crossref_primary_10_3390_atoms3030348 crossref_primary_10_1103_PhysRevLett_113_113603 crossref_primary_10_1021_acsphotonics_9b00005 crossref_primary_10_1088_1674_1056_25_12_120304 crossref_primary_10_1103_PhysRevLett_123_243401 crossref_primary_10_1103_PhysRevB_79_075317 crossref_primary_10_1103_PhysRevA_89_053607 crossref_primary_10_1063_5_0066620 crossref_primary_10_1088_1751_8121_aad200 crossref_primary_10_1103_PhysRevA_108_052601 crossref_primary_10_1103_PhysRevA_81_063641 crossref_primary_10_1103_PhysRevA_79_061803 crossref_primary_10_1103_PhysRevA_92_043810 crossref_primary_10_22331_q_2024_10_02_1488 crossref_primary_10_1088_1612_202X_aa7d8f crossref_primary_10_1103_PhysRevA_84_042305 crossref_primary_10_1038_s41598_017_01245_x crossref_primary_10_1103_PhysRevLett_105_013601 crossref_primary_10_1103_PhysRevA_89_043815 crossref_primary_10_1103_PhysRevA_90_023622 crossref_primary_10_3390_atoms3030450 crossref_primary_10_1103_PhysRevB_79_201303 crossref_primary_10_1103_PhysRevLett_118_133601 crossref_primary_10_1364_OE_19_018903 crossref_primary_10_1103_PhysRevA_93_012332 crossref_primary_10_1126_science_1163218 crossref_primary_10_1007_s10946_019_09809_0 crossref_primary_10_1103_PhysRevA_80_033604 crossref_primary_10_1103_PhysRevA_84_033843 crossref_primary_10_1103_PhysRevA_77_052111 crossref_primary_10_1063_1_4940715 crossref_primary_10_1103_PhysRevLett_119_063602 crossref_primary_10_1103_PhysRevLett_104_130401 crossref_primary_10_1103_PhysRevA_105_013719 crossref_primary_10_1103_PhysRevA_86_013419 crossref_primary_10_1080_09500340_2010_543957 crossref_primary_10_1103_PhysRevA_80_042319 crossref_primary_10_1103_PhysRevA_96_063615 crossref_primary_10_1103_PhysRevA_87_013616 crossref_primary_10_1103_PhysRevA_98_022109 crossref_primary_10_1038_nphoton_2010_255 crossref_primary_10_1103_PhysRevA_80_033614 crossref_primary_10_1103_PhysRevLett_124_113601 crossref_primary_10_1103_PhysRevLett_124_113602 crossref_primary_10_1021_acs_nanolett_4c04976 crossref_primary_10_1103_PhysRevA_84_055802 crossref_primary_10_1016_j_optcom_2017_05_063 crossref_primary_10_1016_j_aop_2019_04_019 crossref_primary_10_21468_SciPostPhys_15_5_188 crossref_primary_10_1016_j_physleta_2010_07_032 crossref_primary_10_1103_PhysRevA_85_040306 crossref_primary_10_1103_PhysRevA_89_043831 crossref_primary_10_1103_PhysRevA_88_023825 crossref_primary_10_1038_nphys943 crossref_primary_10_1364_OE_523169 crossref_primary_10_2184_lsj_36_493 crossref_primary_10_1038_nature08171 crossref_primary_10_1103_PhysRevLett_102_135301 crossref_primary_10_1088_1367_2630_10_2_023001 crossref_primary_10_1103_PhysRevX_3_031013 crossref_primary_10_1063_1_3245311 crossref_primary_10_1364_JOSAB_434980 crossref_primary_10_1080_00018732_2021_1969727 crossref_primary_10_1038_ncomms1428 crossref_primary_10_1103_PhysRevA_84_053610 crossref_primary_10_1088_0256_307X_34_1_013701 crossref_primary_10_1103_PhysRevA_83_033601 crossref_primary_10_1103_PhysRevA_91_033622 crossref_primary_10_1063_1_5083011 crossref_primary_10_1038_s41598_021_83214_z crossref_primary_10_1103_PhysRevLett_123_233602 crossref_primary_10_1103_PhysRevA_92_043842 crossref_primary_10_1364_AO_56_006511 crossref_primary_10_1103_PhysRevA_84_043822 crossref_primary_10_1103_PhysRevLett_110_067601 crossref_primary_10_1088_0256_307X_30_8_080303 crossref_primary_10_1007_s11128_011_0300_8 crossref_primary_10_1364_OE_18_015664 crossref_primary_10_1116_5_0185291 crossref_primary_10_1038_s41377_019_0145_y crossref_primary_10_1103_PhysRevLett_123_243602 crossref_primary_10_1103_PhysRevA_79_013613 crossref_primary_10_1109_JPHOT_2020_3027286 crossref_primary_10_12693_APhysPolA_132_1358 crossref_primary_10_1007_s11128_018_1865_2 crossref_primary_10_1364_OE_400767 crossref_primary_10_1088_1367_2630_14_2_023056 crossref_primary_10_1038_s41598_021_87927_z crossref_primary_10_1038_nature10225 crossref_primary_10_1063_1_3377919 crossref_primary_10_1103_PhysRevA_85_063606 crossref_primary_10_1016_j_optcom_2014_08_017 crossref_primary_10_1088_0953_4075_47_4_045301 crossref_primary_10_1103_PhysRevA_88_023609 crossref_primary_10_1103_PhysRevA_87_012311 crossref_primary_10_1038_s41467_020_16767_8 crossref_primary_10_1103_PhysRevA_90_012304 crossref_primary_10_1038_s41598_017_11799_5 crossref_primary_10_1063_1_3511743 crossref_primary_10_1103_PhysRevLett_104_243602 crossref_primary_10_1088_0253_6102_55_1_11 crossref_primary_10_1103_PhysRevA_84_043606 crossref_primary_10_1103_PhysRevA_94_023830 crossref_primary_10_1063_1_5024798 crossref_primary_10_1103_PhysRevA_84_043602 crossref_primary_10_7498_aps_69_20200184 crossref_primary_10_1088_0953_4075_46_23_235501 crossref_primary_10_1007_s13320_024_0716_2 crossref_primary_10_1103_PhysRevA_79_033401 crossref_primary_10_1103_PhysRevA_96_033841 crossref_primary_10_1063_1_4959095 crossref_primary_10_1088_1361_6455_aa7592 crossref_primary_10_2184_lsj_41_7_507 crossref_primary_10_1016_j_optcom_2014_06_059 crossref_primary_10_1016_j_physleta_2012_06_037 crossref_primary_10_1007_s11467_009_0016_8 crossref_primary_10_1103_PhysRevA_81_051803 crossref_primary_10_1103_PhysRevA_82_053824 crossref_primary_10_1088_1367_2630_10_3_033011 crossref_primary_10_1080_00107511003602990 crossref_primary_10_1103_PhysRevApplied_4_054010 crossref_primary_10_1088_1751_8113_42_10_105302 crossref_primary_10_1103_PhysRevA_79_023841 crossref_primary_10_1103_PhysRevLett_128_203601 crossref_primary_10_1038_s41598_017_05729_8 crossref_primary_10_1103_PhysRevA_95_013826 crossref_primary_10_1007_s10773_020_04530_0 crossref_primary_10_1103_PhysRevA_80_053810 crossref_primary_10_1103_PhysRevLett_103_063005 crossref_primary_10_1103_RevModPhys_94_041003 crossref_primary_10_1103_PhysRevA_82_053815 crossref_primary_10_1063_1_3463617 crossref_primary_10_1103_PhysRevA_84_023629 crossref_primary_10_1038_srep08416 crossref_primary_10_1038_nphys1302 crossref_primary_10_1016_j_optcom_2014_06_048 crossref_primary_10_3390_e26110926 crossref_primary_10_1088_1367_2630_12_6_065034 crossref_primary_10_1209_0295_5075_91_10001 crossref_primary_10_1364_OPTICA_424258 crossref_primary_10_1063_1_3658391 crossref_primary_10_1063_5_0087155 crossref_primary_10_1103_PhysRevA_111_013517 crossref_primary_10_1007_s11128_024_04587_4 crossref_primary_10_1007_s10909_010_0184_5 crossref_primary_10_1364_AO_56_001546 crossref_primary_10_2139_ssrn_4140062 crossref_primary_10_1103_PhysRevA_87_012101 crossref_primary_10_1103_PhysRevA_91_053829 crossref_primary_10_1038_nphys1435 crossref_primary_10_1103_PhysRevA_80_011604 crossref_primary_10_1103_PhysRevA_80_053608 crossref_primary_10_1002_adma_201700037 crossref_primary_10_1103_PhysRevA_98_051801 crossref_primary_10_1007_s11128_015_1017_x crossref_primary_10_1364_OPTICA_467440 crossref_primary_10_1364_OE_18_004057 crossref_primary_10_1103_PhysRevLett_110_223003 crossref_primary_10_1364_OE_22_023897 crossref_primary_10_1364_AO_51_002341 crossref_primary_10_1103_PhysRevA_81_043832 crossref_primary_10_1103_PhysRevApplied_12_044052 crossref_primary_10_1364_JOSAB_388154 crossref_primary_10_1364_OE_418986 crossref_primary_10_1088_1367_2630_10_4_043010 crossref_primary_10_1088_0953_4075_42_1_015501 crossref_primary_10_3390_s17081748 crossref_primary_10_1103_PhysRevLett_112_120501 crossref_primary_10_1007_s11467_013_0350_8 crossref_primary_10_1063_1_3671291 crossref_primary_10_1088_1367_2630_18_10_102001 crossref_primary_10_1364_OL_37_001949 crossref_primary_10_1038_nphys1325 crossref_primary_10_1103_PhysRevA_79_013828 crossref_primary_10_1038_nphys1329 crossref_primary_10_1088_1367_2630_18_11_111005 crossref_primary_10_1103_PhysRevLett_102_080401 crossref_primary_10_1103_PhysRevLett_105_023001 crossref_primary_10_1103_PhysRevA_92_063816 crossref_primary_10_1134_S1063739715040101 crossref_primary_10_3390_photonics11010046 crossref_primary_10_1016_j_aop_2012_09_006 crossref_primary_10_1103_PhysRevA_80_062307 crossref_primary_10_1103_PhysRevLett_106_203601 crossref_primary_10_1103_RevModPhys_91_025005 crossref_primary_10_1103_PhysRevA_85_023818 crossref_primary_10_1103_PhysRevResearch_3_043001 crossref_primary_10_1016_j_asr_2010_04_014 crossref_primary_10_1103_Physics_3_80 crossref_primary_10_1103_PhysRevA_87_051604 crossref_primary_10_1038_s41534_020_00338_2 crossref_primary_10_1126_science_1239500 crossref_primary_10_1103_PhysRevA_80_063422 crossref_primary_10_1103_PhysRevA_92_063604 crossref_primary_10_1088_1612_2011_10_5_055402 crossref_primary_10_1103_PhysRevA_81_063821 crossref_primary_10_1088_1402_4896_ad5145 crossref_primary_10_1109_LPT_2020_3003015 crossref_primary_10_1063_1_5008492 crossref_primary_10_1140_epjd_e2014_50134_3 crossref_primary_10_1088_1054_660X_23_1_015501 crossref_primary_10_1007_s11433_013_5308_x crossref_primary_10_1103_PhysRevLett_103_043603 crossref_primary_10_1364_JOSAB_34_001884 crossref_primary_10_1088_1555_6611_aa5a1a crossref_primary_10_1103_PhysRevA_84_023822 crossref_primary_10_1103_PhysRevLett_124_013607 crossref_primary_10_1103_PhysRevA_86_043831 crossref_primary_10_1126_science_1246164 crossref_primary_10_1103_PhysRevLett_116_223001 crossref_primary_10_1103_PhysRevLett_100_050401 crossref_primary_10_1364_OE_17_012813 crossref_primary_10_1103_PhysRevA_85_053635 crossref_primary_10_1103_PhysRevA_108_033715 crossref_primary_10_1103_PhysRevLett_123_130601 crossref_primary_10_1134_S1054660X11150163 crossref_primary_10_1073_pnas_1306993110 crossref_primary_10_1103_PhysRevA_94_013617 crossref_primary_10_1140_epjd_e2011_20050_3 crossref_primary_10_1103_PhysRevLett_102_023602 crossref_primary_10_1016_j_aop_2017_07_012 crossref_primary_10_1103_PhysRevA_102_023716 crossref_primary_10_1016_j_physrep_2022_06_001 crossref_primary_10_1007_s11128_017_1549_3 crossref_primary_10_1007_s00340_007_2879_0 crossref_primary_10_1016_j_ijleo_2020_164309 crossref_primary_10_1088_1367_2630_12_9_093017 crossref_primary_10_1103_PhysRevB_93_235309 crossref_primary_10_1007_s10773_018_3980_3 crossref_primary_10_1007_s10773_019_04135_2 crossref_primary_10_1140_epjd_e2013_40357_1 crossref_primary_10_1140_epjd_e2017_70647_3 crossref_primary_10_1007_s00340_022_07752_8 crossref_primary_10_1364_OE_20_014547 crossref_primary_10_1016_j_optcom_2013_10_024 crossref_primary_10_1103_PhysRevA_84_023840 crossref_primary_10_1209_0295_5075_85_20007 crossref_primary_10_1007_s11128_023_04038_6 crossref_primary_10_1364_OE_26_022249 crossref_primary_10_1109_TUFFc_2010_1385 crossref_primary_10_1103_PhysRevB_84_184515 crossref_primary_10_1088_1742_6596_194_1_012063 crossref_primary_10_1103_PhysRevA_86_053838 crossref_primary_10_1088_1367_2630_15_8_083037 crossref_primary_10_1103_PhysRevApplied_3_014008 crossref_primary_10_1002_adfm_202416037 crossref_primary_10_1364_JOSAB_29_001618 crossref_primary_10_1088_0031_8949_91_1_013008 crossref_primary_10_1364_OE_392207 crossref_primary_10_1103_PhysRevLett_131_103603 crossref_primary_10_1364_OE_472022 crossref_primary_10_1038_s41467_021_26719_5 crossref_primary_10_1088_1367_2630_15_9_093019 crossref_primary_10_1103_PhysRevA_94_022343 crossref_primary_10_1103_PhysRevA_78_023634 crossref_primary_10_1016_j_rinp_2023_106447 |
| Cites_doi | 10.1103/PhysRevLett.98.053603 10.1238/Physica.Topical.076a00127 10.1209/epl/i2004-10035-7 10.1103/PhysRevLett.98.183601 10.1103/RevModPhys.79.235 10.1103/PhysRevA.51.3896 10.1103/PhysRev.93.99 10.1103/PhysRevA.70.053606 10.1093/acprof:oso/9780198509141.001.0001 10.1038/nature02387 10.1103/PhysRevA.71.053601 10.1038/35006006 10.1103/PhysRevLett.68.1132 10.1103/PhysRevA.67.043609 10.1103/PhysRevLett.97.083602 10.1038/nature00968 10.1038/35106500 10.1063/1.2347892 10.1103/PhysRevLett.83.3398 10.1002/prop.200610325 10.1016/S1049-250X(06)54002-9 10.1103/PhysRevLett.86.4203 10.1103/PhysRev.188.692 10.1038/416211a 10.1364/FIO.2007.PDP_C7 10.1038/nphys571 10.1038/35097032 10.1038/nature06120 10.1038/nature05147 10.1007/s003400200861 10.1103/PhysRevLett.83.4987 10.1103/PhysRevLett.95.090404 10.1126/science.285.5427.571 10.1023/A:1026084606385 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2007 Nature Publishing Group Copyright Nature Publishing Group Nov 8, 2007 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: COPYRIGHT 2007 Nature Publishing Group – notice: Copyright Nature Publishing Group Nov 8, 2007 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7SC 7SP 7SR 7TB 7U5 8BQ F28 JG9 JQ2 KR7 L7M L~C L~D 7X8 1XC |
| DOI | 10.1038/nature06331 |
| DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Database eLibrary ProQuest Central - New (Subscription) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Proquest Medical Database Psychology Database Research Library (subscription) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) Materials Research Database Civil Engineering Abstracts Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database Materials Research Database Agricultural Science Database MEDLINE - Academic Materials Research Database Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Biology |
| EISSN | 1476-4687 1476-4679 |
| EndPage | 276 |
| ExternalDocumentID | oai:HAL:hal-00264333v1 1381970001 A193477595 A189705453 17994094 10_1038_nature06331 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --Z -DZ -ET -~X .-4 .55 .CO .GJ .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1CY 1OL 1VR 1VW 29M 2KS 2XV 354 39C 3EH 3O- 4.4 41X 41~ 42X 4R4 53G 5RE 663 6TJ 70F 79B 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L 9M8 A6W A7Z A8Z AAHBH AAHTB AAIKC AAJYS AAKAB AAKAS AAMNW AARCD AASDW AAVBQ AAYEP AAYXX AAYZH ABAWZ ABDBF ABDPE ABDQB ABEFU ABFSG ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBNA ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACSTC ACTDY ACUHS ACWUS ADBBV ADFRT ADGHP ADNMO ADRHT ADUKH ADXHL ADYSU ADZCM AENEX AETEA AEUYN AEZWR AFANA AFBBN AFFDN AFFNX AFHIU AFHKK AFKRA AFKWF AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGNAY AGQPQ AGSOS AHMBA AHSBF AHWEU AIDAL AIDUJ AIXLP AIYXT AJUXI ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CITATION CJ0 CS3 D1I D1J D1K DB5 DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESTFP ESX EX3 EXGXG F5P FA8 FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC J5H K6- KB. KOO L-9 L6V L7B LGEZI LK5 LK8 LOTEE LSO M0K M1P M2M M2O M2P M7P M7R M7S MVM N4W N9A NADUK NAPCQ NEJ NEPJS NFIDA NXXTH O9- OBC ODYON OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PJZUB PM3 PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PUEGO PV9 PYCSY Q2X QS- R05 R4F RHI RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SKT SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUD TUS TWZ U5U UBY UHB UKHRP UKR UMD UQL USG VOH VVN WH7 WOW X7L X7M XIH XKW XOL XZL Y6R YAE YFH YJ6 YNT YOC YQI YQJ YQT YR2 YR5 YV5 YXA YXB YYP YYQ YZZ ZCA ZCG ZE2 ZGI ZHY ZKB ZY4 ~02 ~7V ~88 ~8M ~G0 ~KM ALIPV NPM ABUFD AAYOK ACMFV AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 36B 7SC 7SP 7SR 7TB 7U5 8BQ ABCQX AFWHJ AHBCP AHOSX AIBTJ D0L F28 JG9 JQ2 KR7 L7M L~C L~D NNMJJ QF4 QM4 QN7 QO4 7X8 1XC |
| ID | FETCH-LOGICAL-c891t-cdb5650b64341988a28d0116e71a36d2ba604c456c062a85b0b5a45f0cf6a93e3 |
| IEDL.DBID | BENPR |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Oct 14 20:39:21 EDT 2025 Thu Oct 02 13:49:09 EDT 2025 Thu Oct 02 15:22:34 EDT 2025 Thu Oct 02 17:58:12 EDT 2025 Thu Oct 02 12:39:51 EDT 2025 Thu Sep 04 19:50:49 EDT 2025 Sun Oct 26 08:23:42 EDT 2025 Fri Jun 13 01:09:00 EDT 2025 Fri Jun 13 00:44:13 EDT 2025 Tue Jun 10 15:35:45 EDT 2025 Tue Jun 10 15:34:05 EDT 2025 Mon Oct 20 17:20:58 EDT 2025 Mon Oct 20 17:25:54 EDT 2025 Thu Oct 16 14:34:45 EDT 2025 Thu Oct 16 14:13:40 EDT 2025 Thu Oct 16 14:32:14 EDT 2025 Thu Oct 16 13:49:59 EDT 2025 Mon Jul 21 05:52:03 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Wed Oct 01 03:36:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7167 |
| Keywords | atom chip collective coupling couplage fort condensate cavity résonateur fiber Fabry Perot condensat couplage collectif resonator cavité strong coupling puce à atomes |
| Language | English |
| License | http://www.springer.com/tdm Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c891t-cdb5650b64341988a28d0116e71a36d2ba604c456c062a85b0b5a45f0cf6a93e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0003-3420-4178 |
| PMID | 17994094 |
| PQID | 204559459 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00264333v1 proquest_miscellaneous_743485753 proquest_miscellaneous_68498744 proquest_miscellaneous_36250881 proquest_miscellaneous_1753495733 proquest_miscellaneous_1082193681 proquest_journals_204559459 gale_infotracgeneralonefile_A193477595 gale_infotracgeneralonefile_A189705453 gale_infotraccpiq_193477595 gale_infotraccpiq_189705453 gale_infotracacademiconefile_A193477595 gale_infotracacademiconefile_A189705453 gale_incontextgauss_ISR_A193477595 gale_incontextgauss_ISR_A189705453 gale_incontextgauss_ATWCN_A193477595 gale_incontextgauss_ATWCN_A189705453 pubmed_primary_17994094 crossref_primary_10_1038_nature06331 crossref_citationtrail_10_1038_nature06331 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-11-08 |
| PublicationDateYYYYMMDD | 2007-11-08 |
| PublicationDate_xml | – month: 11 year: 2007 text: 2007-11-08 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2007 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| References | W Hänsel (BFnature06331_CR32) 2001; 413 RH Dicke (BFnature06331_CR14) 1954; 93 T Fischer (BFnature06331_CR26) 2001; 3 S Haroche (BFnature06331_CR2) 2006 T Aoki (BFnature06331_CR23) 2006; 443 SW Du (BFnature06331_CR31) 2004; 70 J Fortágh (BFnature06331_CR11) 2007; 79 IB Mekhov (BFnature06331_CR21) 2007; 3 F Gerbier (BFnature06331_CR24) 2004; 66 DM Harber (BFnature06331_CR34) 2003; 133 S Slama (BFnature06331_CR9) 2007; 98 AD Boozer (BFnature06331_CR5) 2006; 97 BFnature06331_CR12 JE Lye (BFnature06331_CR28) 2003; 67 J Ye (BFnature06331_CR3) 1999; 83 JR Anglin (BFnature06331_CR7) 2002; 416 O Morice (BFnature06331_CR20) 1995; 51 A Öttl (BFnature06331_CR8) 2005; 95 J Simon (BFnature06331_CR16) 2007; 98 J Reichel (BFnature06331_CR33) 1999; 83 J Reichel (BFnature06331_CR35) 2002; 74 PWH Pinkse (BFnature06331_CR4) 2000; 404 T Steinmetz (BFnature06331_CR10) 2006; 89 W Ketterle (BFnature06331_CR18) 2001; 86 BFnature06331_CR27 B Mohring (BFnature06331_CR30) 2005; 71 P Maunz (BFnature06331_CR6) 2004; 428 P Treutlein (BFnature06331_CR22) 2006; 54 HJ Kimble (BFnature06331_CR1) 1998; T76 LM Duan (BFnature06331_CR13) 2001; 414 J Sherson (BFnature06331_CR15) 2006; 54 S Inouye (BFnature06331_CR19) 1999; 285 M Greiner (BFnature06331_CR29) 2002; 419 M Tavis (BFnature06331_CR17) 1969; 188 RJ Thompson (BFnature06331_CR25) 1992; 68 |
| References_xml | – volume: 98 start-page: 053603 year: 2007 ident: BFnature06331_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.053603 – volume: T76 start-page: 127 year: 1998 ident: BFnature06331_CR1 publication-title: Phys. Scr. doi: 10.1238/Physica.Topical.076a00127 – volume: 66 start-page: 771 year: 2004 ident: BFnature06331_CR24 publication-title: Europhys. Lett. doi: 10.1209/epl/i2004-10035-7 – volume: 98 start-page: 183601 year: 2007 ident: BFnature06331_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.183601 – volume: 79 start-page: 235 year: 2007 ident: BFnature06331_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.235 – volume: 51 start-page: 3896 year: 1995 ident: BFnature06331_CR20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.51.3896 – volume: 93 start-page: 99 year: 1954 ident: BFnature06331_CR14 publication-title: Phys. Rev. doi: 10.1103/PhysRev.93.99 – volume: 70 start-page: 053606 year: 2004 ident: BFnature06331_CR31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.053606 – volume-title: Exploring the Quantum: Atoms, Cavities and Photons year: 2006 ident: BFnature06331_CR2 doi: 10.1093/acprof:oso/9780198509141.001.0001 – volume: 428 start-page: 50 year: 2004 ident: BFnature06331_CR6 publication-title: Nature doi: 10.1038/nature02387 – volume: 71 start-page: 053601 year: 2005 ident: BFnature06331_CR30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.053601 – volume: 404 start-page: 365 year: 2000 ident: BFnature06331_CR4 publication-title: Nature doi: 10.1038/35006006 – volume: 68 start-page: 1132 year: 1992 ident: BFnature06331_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1132 – volume: 67 start-page: 043609 year: 2003 ident: BFnature06331_CR28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.67.043609 – volume: 97 start-page: 083602 year: 2006 ident: BFnature06331_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.083602 – volume: 419 start-page: 51 year: 2002 ident: BFnature06331_CR29 publication-title: Nature doi: 10.1038/nature00968 – volume: 414 start-page: 413 year: 2001 ident: BFnature06331_CR13 publication-title: Nature doi: 10.1038/35106500 – volume: 89 start-page: 111110 year: 2006 ident: BFnature06331_CR10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2347892 – volume: 83 start-page: 3398 year: 1999 ident: BFnature06331_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3398 – volume: 54 start-page: 702 year: 2006 ident: BFnature06331_CR22 publication-title: Fortschr. Phys. doi: 10.1002/prop.200610325 – volume: 54 start-page: 81 year: 2006 ident: BFnature06331_CR15 publication-title: Adv. At. Mol. Opt. Phys. doi: 10.1016/S1049-250X(06)54002-9 – volume: 3 start-page: 11 year: 2001 ident: BFnature06331_CR26 publication-title: N. J. Phys. – volume: 86 start-page: 4203 year: 2001 ident: BFnature06331_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.4203 – volume: 188 start-page: 692 year: 1969 ident: BFnature06331_CR17 publication-title: Phys. Rev. doi: 10.1103/PhysRev.188.692 – volume: 416 start-page: 211 year: 2002 ident: BFnature06331_CR7 publication-title: Nature doi: 10.1038/416211a – ident: BFnature06331_CR27 doi: 10.1364/FIO.2007.PDP_C7 – volume: 3 start-page: 319 year: 2007 ident: BFnature06331_CR21 publication-title: Nature Phys. doi: 10.1038/nphys571 – volume: 413 start-page: 498 year: 2001 ident: BFnature06331_CR32 publication-title: Nature doi: 10.1038/35097032 – ident: BFnature06331_CR12 doi: 10.1038/nature06120 – volume: 443 start-page: 671 year: 2006 ident: BFnature06331_CR23 publication-title: Nature doi: 10.1038/nature05147 – volume: 74 start-page: 469 year: 2002 ident: BFnature06331_CR35 publication-title: Appl. Phys. B doi: 10.1007/s003400200861 – volume: 83 start-page: 4987 year: 1999 ident: BFnature06331_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.4987 – volume: 95 start-page: 090404 year: 2005 ident: BFnature06331_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.090404 – volume: 285 start-page: 571 year: 1999 ident: BFnature06331_CR19 publication-title: Science doi: 10.1126/science.285.5427.571 – volume: 133 start-page: 229 year: 2003 ident: BFnature06331_CR34 publication-title: J. Low Temp. Phys. doi: 10.1023/A:1026084606385 |
| SSID | ssj0005174 ssj0014407 |
| Score | 2.4896586 |
| Snippet | An optical cavity enhances the interaction between atoms and light, and the rate of coherent atom-photon coupling can be made larger than all decoherence rates... |
| SourceID | hal proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 272 |
| SubjectTerms | Atomic structure Atoms & subatomic particles Bose-Einstein condensates Condensates Cooling Ground state Heating Holes Joining Light Optics Physics Quantum electrodynamics Quantum Physics Quantum theory Splitting Three dimensional Trapping |
| Title | Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17994094 https://www.proquest.com/docview/204559459 https://www.proquest.com/docview/1082193681 https://www.proquest.com/docview/1753495733 https://www.proquest.com/docview/36250881 https://www.proquest.com/docview/68498744 https://www.proquest.com/docview/743485753 https://hal.science/hal-00264333 |
| Volume | 450 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1476-4687 dateEnd: 20151119 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: ABDBF dateStart: 19970605 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1476-4687 dateEnd: 20151130 omitProxy: true ssIdentifier: ssj0014407 issn: 0028-0836 databaseCode: ABDBF dateStart: 19990501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1476-4687 dateEnd: 20151119 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: A8Z dateStart: 19970605 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0014407 issn: 0028-0836 databaseCode: 7X7 dateStart: 19990501 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-4687 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0014407 issn: 0028-0836 databaseCode: BENPR dateStart: 19990501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8FG dateStart: 19900104 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbWTki8IDZupTAMmrhJ0ZLYju0HhLqqpSBWoV20ipfIcZKuEiQdafn9nJOmN7S2L5Eaf3ViO7Y_-xx_h5BjJqPU8FQ4vjGuw1mkoM-ZxJGGuamrI-WVsotn_aB3xb8NxGCPnM3PwqBb5XxMLAfqOLe4R36CsulCc6E_j28dDBqFxtV5BA1TRVaIP5UKYzWy76MwVp3sn3b6P86XPh__yTJXB_Zcpk5mOpowYTNvbYqqBuraDfpJbiKh5WTUfUgeVCyStmbNfkD2kuyQ3Cu9OW1xSA6qHlvQ95Ws9IdH5PoCd72HFFbZv53ScY1CcfBA7pACc6WneZE4nRHQxWSUQRKGxi2QiVL4aTKaj8ttb2oNhpugOdyk9mY0fkyuup3Lds-pwio4Vmlv4tg4AhbnRsBFuKeVMr6K0RyTSM-wIPYjE7jcArGybuAbJSI3EoaL1LVpYDRL2BNSz_IseUao4Nz6MfBzz0uA2UUmkZGMY6FkykTEvQb5OK_J0Faa4xj64ldY2r6ZCleqvUGOF-DxTGpjAwybJETxigy9Y4ZmWhRh6_K63Q9bntISWKhgO2CacSmFFg3y5i7Y14vztby2gJY5vatAaQ5ltKY63wA1hRJba9ntQi7zbK4h7Xh0G67kc1fq8r9v11KHs-_trtfZAVypK-gFi7ZBYfJe63uI93Apzxljf6F5mvNOElbDYREuOm-DvF6kwjiGximTJfm0QKFamDxZoLwtGFhbw4JeMnjnVxswQMhwzeFtRgSKawz60CB0AwJYNcfItfCYp7Nuvvwgpda4JfJ8azGb5H5pAyjNDy9IffJnmrwE8jqJjkhNDiRcVdvDa_cLXFvq51E1VP0DYxWYuQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2IQQviI1bKDCDBgykaElsx_EDQmVsalm3B9ZpfQuOk3SVIOlIC-JH8R85J01vqJenPTb-etr4cvzZPv4OIXtMRqnmqbA9rR2bsyiAMacTW2rmpI6KAreUXTw98xsX_EtHdDbI3_FdGAyrHPvE0lHHucE98gOUTReKC_Wxf21j0ig8XB1n0Bj1ipPkz29YsRUfmp-heV973vFR-7BhV0kFbBMod2CbOAIO40QwE3NYcAfaC2I8jEikq5kfe5H2HW6AVhjH93QgIicSmovUMamvFUsY2N0ktzgDVwLDR3bkNKLkP9Hn6jqgw4KDkUon0AHmzk2A1TSweYVRmMsobjnVHd8n9yqOSuujTrVNNpJsh9wuY0VNsUO2K39Q0P1KtPrdA3J5jnvqXQpr-B92GRZHTT7E675dCryYfsqLxD7qARlNehkUYeLdAnkuhY86o3m_3FSnRmMyC5rDQ2quev2H5OJG6vcR2cryLHlCqODceDGwf9dNgDdGOpGRjGMRyJSJiLsWeT-uydBUiuaYWON7WJ6ssyCcqXaL7E3A_ZGQxxIYNkmI0hgZxt509bAownr78vAsrLuBksBxBVsDU4xLKZSwyKtFsOb51zlbK0BTS28rUJrDOxpd3Z6AmkIBrzlz65BTm7U5pOn3rsMZO4tKp999M1faHfW3RX9nDXCmrmAUTNoGZc8b9VaIz3CjgDPGfkHz1MaDJKycbRFOXINFXk5KwUvi0ZfOknxYoAwuTM3MD9wVGFi5c4X6oBbZXYIBuocrGnc5wg-4wpQSFqFLEMDZOebFhZ95PBrm0w4plcINl6crX3OX3Gm0T1thq3l2UiN3y9OG8qDjGdka_Bwmz4EmD6IXpXOi5NtNe8N_F9nKWg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF61RSBeEC1XCNAFlVOyYnt3vd4HhELbqKElQrRV82bWazuNBHaKExA_jX_HjO1cKMdTH-P9Mon3mP1mZ3aGkD0mw0TzRFiu1rbFWejDmtOxJTWzE1uFvlOkXfzc8Y7O-aeu6G6Qv-O7MBhWOdaJhaKOMoNn5A1Mmy4UF6qRVFERXw5aHwZXFhaQQkfruJpGOUOO4z-_wXrL37cPYKhfum7r8Gz_yKoKDFjGV87QMlEIfMYOYVfmYHz72vUjdEzE0tHMi9xQezY3QDGM7bnaF6EdCs1FYpvE04rFDORukhuSMYXRhLIrp9El_yWArq4G2sxvlBk7gRowZ24zrLaEzUuMyFxGd4ttr3WX3Kn4Km2WE2ybbMTpDrlZxI2afIdsV7ohp2-qBNZv75GLUzxf71Gw539YRYgcNdkIr_72KHBk-jHLY-uwD8Q07qfQhEV4c-S8FD7qlGaD4oCdGo2FLWgGD6m57A_uk_Nr6d8HZCvN0vgRoYJz40ZgCThODBwy1LEMZRQJXyZMhNypkXfjngxMld0ci2x8DwovO_ODmW6vkb0JeFAm9VgCwyEJME1GijOup0d5HjTPLvY7QdPxlQS-K9gamGJcSqFEjbxYBGuffp2TtQI0lfS6AiUZvKPR1U0K6ClM5jUnbh1yKrM-hzSD_lUwI2dR6_S7r-Zae-V8W_R31gBn-gpWwWRsMAX6UfMkwGd4aMAZY79geOrjRRJUijcPJmqiRp5PWkFjohtMp3E2yjElLmzTzPOdFRiw4rnCXKE1srsEA9QPrRtnOcLzucLyEjVClyCAv3OskQs_87Bc5tMJKZXCw5fHK19zl9wCPRictDvHdXK7cDwUPo8nZGv4cxQ_BcY8DJ8VuomSb9etDP8BVYLOnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+atom-field+coupling+for+Bose-Einstein+condensates+in+an+optical+cavity+on+a+chip&rft.jtitle=Nature+%28London%29&rft.au=Colombe%2C+Yves&rft.au=Steinmetz%2C+Tilo&rft.au=Dubois%2C+Guilhem&rft.au=Linke%2C+Felix&rft.date=2007-11-08&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=450&rft.issue=7167&rft.spage=272&rft_id=info:doi/10.1038%2Fnature06331&rft.externalDBID=ATWCN&rft.externalDocID=A189705453 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |