QSAR Study on Aromatic Disulfide Compounds as SARS-CoV Mpro Inhibitor Using Genetic Algorithm-Support Vector Machine

COVID-19 is a type of pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This virus causes severe acute respiratory syndrome and 2 million active cases of COVID-19 have been found worldwide. A new strain of the SARS-CoV-2 virus emerged that proved to be more virule...

Full description

Saved in:
Bibliographic Details
Published inKinetik (Malang)
Main Authors Hakim, Rizki Amanullah, Aditsania, Annisa, Kurniawan, Isman
Format Journal Article
LanguageEnglish
Published 21.06.2022
Online AccessGet full text
ISSN2503-2259
2503-2267
2503-2267
DOI10.22219/kinetik.v7i2.1428

Cover

Abstract COVID-19 is a type of pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This virus causes severe acute respiratory syndrome and 2 million active cases of COVID-19 have been found worldwide. A new strain of the SARS-CoV-2 virus emerged that proved to be more virulent than its predecessor. Regarding the design of a new inhibitor for this strain, SARS-CoV Main Protease (Mpro) was used as the target inhibitor. In the in silico development, the Quantitative Structure-Activity Relationship (QSAR) method is commonly used to predict the biological activity of unknown compounds to improve the process of drug design of a disease, including COVID-19. In this study, we aim to develop a QSAR model to predict the activity of aromatic disulfide compounds as SARS-CoV Mpro inhibitors using Genetic Algorithm (GA) – Support Vector Machine (SVM). GA was used for feature selection, while SVM was used for model prediction. The used dataset is set of features of aromatic disulfide compounds, along with information on the toxicity activity. We found that the best SVM model was obtained through the implementation of the polynomial kernel with the value of R2­­train and R2test­ scores are 0.952 and 0.676, respectively.
AbstractList COVID-19 is a type of pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This virus causes severe acute respiratory syndrome and 2 million active cases of COVID-19 have been found worldwide. A new strain of the SARS-CoV-2 virus emerged that proved to be more virulent than its predecessor. Regarding the design of a new inhibitor for this strain, SARS-CoV Main Protease (Mpro) was used as the target inhibitor. In the in silico development, the Quantitative Structure-Activity Relationship (QSAR) method is commonly used to predict the biological activity of unknown compounds to improve the process of drug design of a disease, including COVID-19. In this study, we aim to develop a QSAR model to predict the activity of aromatic disulfide compounds as SARS-CoV Mpro inhibitors using Genetic Algorithm (GA) – Support Vector Machine (SVM). GA was used for feature selection, while SVM was used for model prediction. The used dataset is set of features of aromatic disulfide compounds, along with information on the toxicity activity. We found that the best SVM model was obtained through the implementation of the polynomial kernel with the value of R2­­train and R2test­ scores are 0.952 and 0.676, respectively.
Author Kurniawan, Isman
Aditsania, Annisa
Hakim, Rizki Amanullah
Author_xml – sequence: 1
  givenname: Rizki Amanullah
  surname: Hakim
  fullname: Hakim, Rizki Amanullah
– sequence: 2
  givenname: Annisa
  surname: Aditsania
  fullname: Aditsania, Annisa
– sequence: 3
  givenname: Isman
  surname: Kurniawan
  fullname: Kurniawan, Isman
BookMark eNqNkMtOwzAQRS1UJErpD7DyD6Q4zsteRgFKpVYIUrqNHMdurSZ2ZCdU_XsSWrFmNbO4Z3Tn3IOJNloA8OijBcbYp09HpUWnjovvROGFH2JyA6Y4QoGHcZxM_vaI3oG5c6pEYZhEKIniKeg-8vQT5l1fnaHRMLWmYZ3i8Fm5vpaqEjAzTWt6XTnIHBzCuZeZHdy01sCVPqhSdcbCL6f0Hi7F2IPDtN4bq7pD4-V92xrbwZ3gY2zD-GHo-gBuJaudmF_nDGxfX7bZm7d-X66ydO1xkhCPs1jwkEaYUYZLThhiJBIkoEyQuAwEwZIwn1cSC86H74hMOPXjuESIUyJkMAPB5WyvW3Y-sbouWqsaZs-Fj4pfdcVVXTGqK0Z1A4UvFLfGOSvkf6AfR_Z5Tw
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.22219/kinetik.v7i2.1428
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2503-2267
ExternalDocumentID 10.22219/kinetik.v7i2.1428
10_22219_kinetik_v7i2_1428
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c878-ca6ec4952a9a2bc8a0a85e839ae86b3e82f8a1cdf2ecc2258f7c9166b00c98ef3
IEDL.DBID UNPAY
ISSN 2503-2259
2503-2267
IngestDate Wed Oct 01 15:39:46 EDT 2025
Tue Jul 01 04:02:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c878-ca6ec4952a9a2bc8a0a85e839ae86b3e82f8a1cdf2ecc2258f7c9166b00c98ef3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://kinetik.umm.ac.id/index.php/kinetik/article/download/1428/124124311
ParticipantIDs unpaywall_primary_10_22219_kinetik_v7i2_1428
crossref_primary_10_22219_kinetik_v7i2_1428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-21
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-21
  day: 21
PublicationDecade 2020
PublicationTitle Kinetik (Malang)
PublicationYear 2022
SSID ssib044750756
ssib056857220
ssj0002013728
Score 2.1885562
Snippet COVID-19 is a type of pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This virus causes severe acute respiratory syndrome...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title QSAR Study on Aromatic Disulfide Compounds as SARS-CoV Mpro Inhibitor Using Genetic Algorithm-Support Vector Machine
URI https://kinetik.umm.ac.id/index.php/kinetik/article/download/1428/124124311
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2503-2267
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044750756
  issn: 2503-2259
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLdYOXBagTGtCJAP3Jj7kdSufawKCJCKYHyInSLbsUfULKnaFFQO_O28l6Zs4wTSpBwi5dmx_bPeR_L8e4TsazACYFgs4xB8sa4OQqZsrJgyvBN2hRbc4qeB4bk4ueme3fG7qhwQnoUZgW9VJKMmoIAdAiAlayBSRSyftao1bcVIJ5_ruIWsYS0wVHCFeM53VXBwzGtk9eb8ov8Ty8vxdshg56o_96K3OEID9rGjXl_70EuCJnb3j5lam2VjPX_UafqX7Tmuk3Q56kXKCYy6ME379IbQ8T9Na518rnxU2l9IbpAVl22S-rL-A63UwRdSXF71f1DMRJzTPAP5vOR_pYfJdJb6JHYU22DdpinVUwrCV2yQ39IhTISeZveJAXUyoWXWAkX-a2zcT3_lk6S4_82w4CgEB_S2_LFAh2Xap9si18dH14MTVlVxYFZChGq1cBaisEArHRgrdVtL7sAt004KEzoZeKk7NvYBbCaASPqeBZdVgDqwSjoffiW1LM_cN0I9KIuAG-V5YCHs5RJg9q6tvBSh8cY1yMESs2i84OqIIMYpEY6qVY4Q4QhXtkG-v8L6DvHtj4nvkFoxmbld8FgKs0c-DZ-P9qr9-AJ5zvDD
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA4yHjy5i4pKDt40s7STTHIcXFBhxB09lSRNnGJtZaaj6K_3vU7H7aQg9FDoS5rkC29pX75HyLYGIwCGxTIOwRdr6yBkysaKKcNbYVtowS1-GuidiqPr9sktv63KAeFZmAfwrYrkoQ4oYIcASMkaiFQRk2eNak0bMdLJ5zpuIGtYAwwVXCGe850WHBzzGpm-Pj3r3mF5Od4MGexc9XkvOuMjNGAfW-rjtc-dJKhjd9_M1Mwoe9KvLzpNv9iewzmSTkY9TjmBURembt9-EDr-07TmyWzlo9LuWHKBTLlskcxN6j_QSh0skeL8sntBMRPxleYZyOcl_yvdT4aj1Cexo9gG6zYNqR5SEL5ke_kN7cFE6HHWTwyokwEtsxYo8l9j4256nw-Sov_IsOAoBAf0pvyxQHtl2qdbJleHB1d7R6yq4sCshAjVauEsRGGBVjowVuqmltyBW6adFCZ0MvBSt2zsA9hMAJH0HQsuqwB1YJV0PlwhtSzP3CqhHpRFwI3yPLAQ9nIJMHvXVF6K0Hjj1sjOBLPoaczVEUGMUyIcVascIcIRruwa2f2A9Rfi638T3yC1YjBym-CxFGar2onv2bjvkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QSAR+Study+on+Aromatic+Disulfide+Compounds+as+SARS-CoV+Mpro+Inhibitor+Using+Genetic+Algorithm-Support+Vector+Machine&rft.jtitle=Kinetik+%28Malang%29&rft.au=Hakim%2C+Rizki+Amanullah&rft.au=Aditsania%2C+Annisa&rft.au=Kurniawan%2C+Isman&rft.date=2022-06-21&rft.issn=2503-2259&rft.eissn=2503-2267&rft_id=info:doi/10.22219%2Fkinetik.v7i2.1428&rft.externalDBID=n%2Fa&rft.externalDocID=10_22219_kinetik_v7i2_1428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2503-2259&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2503-2259&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2503-2259&client=summon