Comparison of Recurrent Neural Network and Naive Bayes Algorithms in Identifying Stunting in Toddlers

Stunting in toddlers is a health issue that affects their quality of life. This study aims to predict stunting status using three classification methods: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gaussian Naive Bayes. The dataset from Kaggle was split into 70% for training a...

Full description

Saved in:
Bibliographic Details
Published inIndonesian Journal of Artificial Intelligence and Data Mining Vol. 8; no. 1; p. 210
Main Authors Sujayanti, Forentina Kerti Pratiwi, Via, Yisti Vita, Haromainy, Muhammad Muharrom Al
Format Journal Article
LanguageEnglish
Published 02.03.2025
Online AccessGet full text
ISSN2614-3372
2614-6150
2614-6150
DOI10.24014/ijaidm.v8i1.33946

Cover

Abstract Stunting in toddlers is a health issue that affects their quality of life. This study aims to predict stunting status using three classification methods: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gaussian Naive Bayes. The dataset from Kaggle was split into 70% for training and 30% for testing to ensure optimal model evaluation. The RNN model was built with three hidden layers of 64 units each, while the LSTM model had four hidden layers with the same number of units. Both models utilized hidden states to capture temporal patterns and employed the tanh activation function to detect complex data patterns. The ADAM optimizer with a learning rate of 0.001 was applied to accelerate convergence. In contrast, the Gaussian Naive Bayes model used a simple probabilistic approach without temporal patterns, making it suitable for simpler datasets. Evaluation using accuracy and RMSE showed that LSTM achieved the highest accuracy (91%), followed by RNN (90%), though both exhibited signs of overfitting. Gaussian Naive Bayes attained 72% accuracy with stable performance. While LSTM and RNN effectively capture complex temporal patterns, they are prone to overfitting, whereas Gaussian Naive Bayes is suitable for initial implementation or simpler datasets, supporting early intervention for stunted toddlers.
AbstractList Stunting in toddlers is a health issue that affects their quality of life. This study aims to predict stunting status using three classification methods: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gaussian Naive Bayes. The dataset from Kaggle was split into 70% for training and 30% for testing to ensure optimal model evaluation. The RNN model was built with three hidden layers of 64 units each, while the LSTM model had four hidden layers with the same number of units. Both models utilized hidden states to capture temporal patterns and employed the tanh activation function to detect complex data patterns. The ADAM optimizer with a learning rate of 0.001 was applied to accelerate convergence. In contrast, the Gaussian Naive Bayes model used a simple probabilistic approach without temporal patterns, making it suitable for simpler datasets. Evaluation using accuracy and RMSE showed that LSTM achieved the highest accuracy (91%), followed by RNN (90%), though both exhibited signs of overfitting. Gaussian Naive Bayes attained 72% accuracy with stable performance. While LSTM and RNN effectively capture complex temporal patterns, they are prone to overfitting, whereas Gaussian Naive Bayes is suitable for initial implementation or simpler datasets, supporting early intervention for stunted toddlers.
Author Haromainy, Muhammad Muharrom Al
Sujayanti, Forentina Kerti Pratiwi
Via, Yisti Vita
Author_xml – sequence: 1
  givenname: Forentina Kerti Pratiwi
  surname: Sujayanti
  fullname: Sujayanti, Forentina Kerti Pratiwi
– sequence: 2
  givenname: Yisti Vita
  surname: Via
  fullname: Via, Yisti Vita
– sequence: 3
  givenname: Muhammad Muharrom Al
  surname: Haromainy
  fullname: Haromainy, Muhammad Muharrom Al
BookMark eNqNkN9OwjAUhxuDiYi8gFd9gWH_sbFLJCokBBPd_dK1Z1jdWtJukL29FXgAr36_nJzvJOe7RyPrLCD0SMmMCULFk_mWRrez48LQGee5SG_QmKVUJCmdk9G1c56xOzQNwVREiCyukXyMYOXag_QmOItdjT9A9d6D7fAOei-bGN3J-R8srcY7aY6An-UAAS-bvfOm-2oDNhZvdERMPRi7x59dH3sscV44rRvw4QHd1rIJML3mBBWvL8VqnWzf3zar5TZRiyxNlOSMSA0ZCKAsz2n8hVcpq5mimZQVFapKMzLPlaILrXWlQDHNBGcVA6U4nyB-OdvbgxxOsmnKgzet9ENJSXl2VV5clX-uyrOrSLELpbwLwUP9H-gXQl10CQ
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.24014/ijaidm.v8i1.33946
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2614-6150
ExternalDocumentID 10.24014/ijaidm.v8i1.33946
10_24014_ijaidm_v8i1_33946
GroupedDBID AAYXX
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c876-ca320ade7e4e129913393b62f2c17aab14cb67059cc18dddbcec2d2432b2ecc33
IEDL.DBID UNPAY
ISSN 2614-3372
2614-6150
IngestDate Sun Sep 28 05:43:14 EDT 2025
Thu Oct 02 04:22:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c876-ca320ade7e4e129913393b62f2c17aab14cb67059cc18dddbcec2d2432b2ecc33
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ejournal.uin-suska.ac.id/index.php/IJAIDM/article/download/33946/pdf
ParticipantIDs unpaywall_primary_10_24014_ijaidm_v8i1_33946
crossref_primary_10_24014_ijaidm_v8i1_33946
PublicationCentury 2000
PublicationDate 2025-03-02
PublicationDateYYYYMMDD 2025-03-02
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-02
  day: 02
PublicationDecade 2020
PublicationTitle Indonesian Journal of Artificial Intelligence and Data Mining
PublicationYear 2025
SSID ssib044739409
Score 1.9038988
Snippet Stunting in toddlers is a health issue that affects their quality of life. This study aims to predict stunting status using three classification methods:...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 210
Title Comparison of Recurrent Neural Network and Naive Bayes Algorithms in Identifying Stunting in Toddlers
URI https://ejournal.uin-suska.ac.id/index.php/IJAIDM/article/download/33946/pdf
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2614-6150
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044739409
  issn: 2614-3372
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZoe-DELgJE0W7lAzdI0sRuHseydLWt1ApBK5VT5FcgtE2qJlnUPexvZ2ynaNkTSNysaGQlnsk8rJnvQ-gtiUYikGHowL-jC5Rh7MQQlRxJqZKKkpAbson5IrxZ0dl6tG7Ho_UsjGqP0G3ywqmaasP0vqAXAx6oESO86Ww8_Tj32pP1pAaVL5n0CElo6O1l1kG9cASZeRf1VotP46-aXw6ikEOI4XIya42DbmdoIKT51Mt_sFzu3Ns4912z0R9x6mlT7NnxJ9tuHwSf6zO0O7227TnZuE3NXXH3CNHxf33XOXrWZql4bIWeoyeqeIEMA4TlLMRlhj_rm3qN7YQ1wAdIL2xHOWaFxAsGXhR_YEdV4fH2W3nI6--7CucFtpPBZroKf6ktUYV-viz1TcmheomW15Pl1Y3TsjQ4AjypIxgJhkyqSFEFuUMCNW9CeBhkgfAjxrhPBQ8jSOKE8GMpJRcKjCOgJOABmA8hr1C3KAv1WndZxckwY8OIE0WTDDwLeIgsgpUKSKZoH707qSTdWyyOFGoYo8DUKjDVCkzNifXR-99a-wvxN_8mfoG69aFRl5CR1HyAOvP7yaA1t1949udm
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66Hjz5QEVFJQdv2nbbZPs4ri9UcBFdQU8lr2p1t122raK_3klSRT0peAtlCG1mOo8w830I7ZKoJwIZhg78O7pA6cZODFHJkZQqqSgJuSGbuBiEpzf0_LZ3245H61kY1R6h2-SFUzXVE9P7gl4MeKBGjPDOzvtnRxdee7Ke1KDyJZMeIQkNvYnMZtFc2IPMvIPmbgaX_TvNLwdRyCHEcDmZtcZBtzM0ENJ86uWPLJdj9znOfdds9C1OzTfFhL2-sNHoS_A5WUTjj9e2PSdPblNzV7z9QHT8r-9aQgttlor7VmgZzahiBRkGCMtZiMsMX-mbeo3thDXAB0gPbEc5ZoXEAwZeFB-wV1Xh_ui-nOb1w7jCeYHtZLCZrsLXtSWq0M-Hpb4pmVaraHhyPDw8dVqWBkeAJ3UEI0GXSRUpqiB3SKDmTQgPgywQfsQY96ngYQRJnBB-LKXkQoFxBJQEPADzIWQNdYqyUOu6yypOuhnrRpwommTgWcBDZBGsVEAyRTfQ3odK0onF4kihhjEKTK0CU63A1JzYBtr_1NovxDf_Jr6FOvW0UduQkdR8pzW0dxEd5jU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Recurrent+Neural+Network+and+Naive+Bayes+Algorithms+in+Identifying+Stunting+in+Toddlers&rft.jtitle=Indonesian+Journal+of+Artificial+Intelligence+and+Data+Mining&rft.au=Sujayanti%2C+Forentina+Kerti+Pratiwi&rft.au=Via%2C+Yisti+Vita&rft.au=Haromainy%2C+Muhammad+Muharrom+Al&rft.date=2025-03-02&rft.issn=2614-3372&rft.eissn=2614-6150&rft.volume=8&rft.issue=1&rft.spage=210&rft_id=info:doi/10.24014%2Fijaidm.v8i1.33946&rft.externalDBID=n%2Fa&rft.externalDocID=10_24014_ijaidm_v8i1_33946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2614-3372&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2614-3372&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2614-3372&client=summon