C^$$-independence for $${\mathbb {Z}}_2$$-graded $$C^$$-algebras
We analyze a notion of $$C^*$$ C ∗ -independence for $${\mathbb {Z}}_2$$ Z 2 -graded $$C^*$$ C ∗ -algebras. We provide other notions of statistical independence for $${\mathbb {Z}}_2$$ Z 2 -graded von Neumann algebras and prove some relationships between them. We provide a characterization for the g...
Saved in:
Published in | Annals of functional analysis Vol. 16; no. 3 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.07.2025
|
Online Access | Get full text |
ISSN | 2639-7390 2008-8752 |
DOI | 10.1007/s43034-025-00434-4 |
Cover
Abstract | We analyze a notion of $$C^*$$ C ∗ -independence for $${\mathbb {Z}}_2$$ Z 2 -graded $$C^*$$ C ∗ -algebras. We provide other notions of statistical independence for $${\mathbb {Z}}_2$$ Z 2 -graded von Neumann algebras and prove some relationships between them. We provide a characterization for the graded nuclearity property. |
---|---|
AbstractList | We analyze a notion of $$C^*$$ C ∗ -independence for $${\mathbb {Z}}_2$$ Z 2 -graded $$C^*$$ C ∗ -algebras. We provide other notions of statistical independence for $${\mathbb {Z}}_2$$ Z 2 -graded von Neumann algebras and prove some relationships between them. We provide a characterization for the graded nuclearity property. |
ArticleNumber | 35 |
Author | Zurlo, Paola Griseta, Maria Elena |
Author_xml | – sequence: 1 givenname: Maria Elena orcidid: 0000-0001-9733-3546 surname: Griseta fullname: Griseta, Maria Elena – sequence: 2 givenname: Paola surname: Zurlo fullname: Zurlo, Paola |
BookMark | eNotkDtPAzEQhC0UJELIH6C64lrD-nE-uwOdeEmRKKBCCMuPvRCU3EU2DYry3zEJW8yONLtTfOdkMowDEnLJ4IoBtNdZChCSAm8ogCxOnpApB9BUtw2fFK-Eoa0wcEbmOX9BGWkaruSU3HQfdU1XQ8QtFhkCVv2YqrrevW_c96f31e5tv7e8HC2TixhLdHhx6yX65PIFOe3dOuP8f8_Iy_3da_dIF88PT93tggbdShqUb03k4FUbtUauPFMmBoMsSuyNUjx6dL1XYJyIACxopmJopEYlTRAzwo-tIY05J-ztNq02Lv1YBvYPgj1CsAWCPUCwUvwCBVlOlA |
Cites_doi | 10.1063/1.531812 10.1142/S0219025701000334 10.1007/s43037-021-00168-0 10.1007/978-3-662-10453-8 10.1007/978-3-662-09089-3 10.1007/978-94-015-9026-6 10.1023/A:1018817204181 10.1007/BF01645488 10.1142/S021902572250028X 10.1063/1.1704187 10.1090/crmm/001 10.1007/s13324-020-00412-0 10.1007/BF01646790 10.1016/0001-8708(77)90085-8 10.1090/fic/012/13 10.1090/memo/0627 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1007/s43034-025-00434-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2008-8752 |
ExternalDocumentID | 10_1007_s43034_025_00434_4 |
GroupedDBID | -~9 0R~ 406 8UJ AACDK AAHNG AAJBT AAOJF AASML AATNV AAUYE AAYXX ABAKF ABBRH ABDBE ABECU ABFSG ABJNI ABMQK ABRTQ ABTEG ABTKH ACAOD ACDTI ACGFO ACHSB ACOKC ACPIV ACSTC ACZOJ ADKNI ADYFF AEEGL AEFQL AEGXH AEMSY AENEX AESKC AEZWR AFBBN AFDZB AFFOW AFHIU AFOHR AFQWF AGMZJ AGQEE AHPBZ AHWEU AIAGR AIGIU AILAN AIXLP AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA BGNMA CITATION DPUIP EBLON EBS EJD FIGPU FNLPD IAO IKXTQ ITC IWAJR J9A JZLTJ KOV LLZTM LO0 M4Y NPVJJ NQJWS NU0 OK1 PT4 PUASD RBF RBV RNS ROL RPE RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR |
ID | FETCH-LOGICAL-c874-c6b79d20b67d88e26b169dc9e1d4ef9662dbeafb609a3d001c816dc548e649c3 |
ISSN | 2639-7390 |
IngestDate | Thu Sep 11 00:00:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c874-c6b79d20b67d88e26b169dc9e1d4ef9662dbeafb609a3d001c816dc548e649c3 |
ORCID | 0000-0001-9733-3546 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s43034-025-00434-4.pdf |
ParticipantIDs | crossref_primary_10_1007_s43034_025_00434_4 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-00 |
PublicationDecade | 2020 |
PublicationTitle | Annals of functional analysis |
PublicationYear | 2025 |
References | M Florig (434_CR7) 1997; 38 R Haag (434_CR9) 1964; 5 R Speicher (434_CR18) 1998 N Muraki (434_CR14) 2001; 4 RY Kadison (434_CR12) 1997 H Roos (434_CR16) 1970; 16 M Takesaki (434_CR20) 2003 434_CR10 RY Kadison (434_CR11) 1997 S Schlieder (434_CR17) 1969; 13 M Rédei (434_CR15) 1998 V Crismale (434_CR5) 2023; 16 S Goldstein (434_CR8) 1999; 29 O Bratteli (434_CR2) 1981 434_CR19 V Crismale (434_CR4) 2022; 16 B Blackadar (434_CR1) 1998 V Crismale (434_CR3) 2021; 11 EG Effros (434_CR6) 1977; 25 S Lang (434_CR13) 2002 DV Voiculescu (434_CR21) 1992 |
References_xml | – volume: 38 start-page: 1318 year: 1997 ident: 434_CR7 publication-title: J. Math. Phys. doi: 10.1063/1.531812 – volume: 4 start-page: 39 issue: 1 year: 2001 ident: 434_CR14 publication-title: Infin. Dimens. Anal. Quantum Probab. Relat. Top. doi: 10.1142/S0219025701000334 – volume: 16 start-page: 17 year: 2022 ident: 434_CR4 publication-title: Banach J. Math. Anal. doi: 10.1007/s43037-021-00168-0 – volume-title: Fundamental of the Theory of Operator Algebras. Volume II, Graduate Studies in Mathematics year: 1997 ident: 434_CR12 – volume-title: Theory of Operator Algebras I year: 2003 ident: 434_CR20 doi: 10.1007/978-3-662-10453-8 – volume-title: Operator Algebras and Quantum Statistical Mechanics I year: 1981 ident: 434_CR2 doi: 10.1007/978-3-662-09089-3 – volume-title: Quantum Logic in Algebraic Approach, Fundamental Theories of Physics year: 1998 ident: 434_CR15 doi: 10.1007/978-94-015-9026-6 – volume: 29 start-page: 79 year: 1999 ident: 434_CR8 publication-title: Found. Phys. doi: 10.1023/A:1018817204181 – volume: 13 start-page: 216 year: 1969 ident: 434_CR17 publication-title: Commun. Math. Phys. doi: 10.1007/BF01645488 – volume: 16 start-page: 1 year: 2023 ident: 434_CR5 publication-title: Infin. Dimens. Anal. Quantum Probab. Relat. Top. doi: 10.1142/S021902572250028X – volume: 5 start-page: 848 issue: 7 year: 1964 ident: 434_CR9 publication-title: J. Math. Phys. doi: 10.1063/1.1704187 – volume-title: Free Random Variables, CRM Monograph Ser. year: 1992 ident: 434_CR21 doi: 10.1090/crmm/001 – volume: 11 start-page: 11 year: 2021 ident: 434_CR3 publication-title: Anal. Math. Phys. doi: 10.1007/s13324-020-00412-0 – volume: 16 start-page: 238 year: 1970 ident: 434_CR16 publication-title: Commun. Math. Phys. doi: 10.1007/BF01646790 – volume-title: K-theory for Operator Algebras, Volume 5 of Mathematical Sciences Research Institute Publications year: 1998 ident: 434_CR1 – volume: 25 start-page: 1 year: 1977 ident: 434_CR6 publication-title: Adv. Math. doi: 10.1016/0001-8708(77)90085-8 – ident: 434_CR10 – ident: 434_CR19 doi: 10.1090/fic/012/13 – volume-title: Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory year: 1998 ident: 434_CR18 doi: 10.1090/memo/0627 – volume-title: Fundamental of the Theory of Operator Algebras. Volume I, Graduate Studies in Mathematics year: 1997 ident: 434_CR11 – volume-title: Algebra, 3rd edn, Graduate Texts in Mathematics year: 2002 ident: 434_CR13 |
SSID | ssj0000495264 |
Score | 2.3154457 |
Snippet | We analyze a notion of $$C^*$$ C ∗ -independence for $${\mathbb {Z}}_2$$ Z 2 -graded $$C^*$$ C ∗ -algebras. We provide other notions of statistical... |
SourceID | crossref |
SourceType | Index Database |
Title | C^$$-independence for $${\mathbb {Z}}_2$$-graded $$C^$$-algebras |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdd-rI9jLbb2Edb_GA_BRVbliXrbU2aUgYthXVQwpjRl9tCSUeSvqz0f9_ZUmR362AtGGMr0iXO79D9Tr47IRRTamXGLMFS5Cmmgha4LAXDYApkKo0mSrXVPk_Y0Tf65bw479IV2-ySpdrTvx7NK3kOqtAGuDZZsk9ANgiFBrgGfOEMCMP5vzAeJ8UkIRQOfBW2s9WujLdrT_goKcbASi-VGsLNNOEHcFTED7uYS2ON79wT1-z-AX70os9du1rLjTH0a4jSFzXp4niuFtYx0mNww-VwAmYtTP3T27l71XMqb65lf8WBFCE61U9MBFgN5rnb5nPPurYmjAJ8n4czK-tpUP7ohO1iNBYULCnF7XelFK5oZ55Wr-T_sFohljDUXW5lVCCjamVU9AVaJxwY1QCt7x-ORidh7Q28ooK0lcXCo_h8qjar8q8f0-MsPfJxtoFee68h2ncqsInW7GwLvToOJXcXb9Dn8Y84fqAGEahBFMd33x380d30_r4i0MmBDh-1Q1ZQv0VfDydn4yPst8fAuuQUa6a4MCRVjJuytISpjAmjhc0MtTV4scQoK2vFUiFzA2xElxkzGjxUy6jQ-Ts0mN3M7HsUZSavmaiFIk1aNk9BKgxKLa9TpovMfEDD1eNXP10NlOrf__rHJ_X-hF52KraNBsv5rd0BmrdUux613-ZsQYU |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=C%5E%24%24-independence+for+%24%24%7B%5Cmathbb+%7BZ%7D%7D_2%24%24-graded+%24%24C%5E%24%24-algebras&rft.jtitle=Annals+of+functional+analysis&rft.au=Griseta%2C+Maria+Elena&rft.au=Zurlo%2C+Paola&rft.date=2025-07-01&rft.issn=2639-7390&rft.eissn=2008-8752&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1007%2Fs43034-025-00434-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43034_025_00434_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2639-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2639-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2639-7390&client=summon |