re-evaluation of random-effects meta-analysis
Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressin...
Saved in:
Published in | Journal of the Royal Statistical Society. Series A, Statistics in society Vol. 172; no. 1; pp. 137 - 159 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.01.2009
Blackwell Publishing Ltd Blackwell Publishing Blackwell Royal Statistical Society Oxford University Press |
Series | Journal of the Royal Statistical Society Series A |
Subjects | |
Online Access | Get full text |
ISSN | 0964-1998 1467-985X |
DOI | 10.1111/j.1467-985X.2008.00552.x |
Cover
Abstract | Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. |
---|---|
AbstractList | Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of ‘set shifting’ ability in people with eating disorders. Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of ‘set shifting’ ability in people with eating disorders. Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders.Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. [PUBLICATION ABSTRACT] Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to "a priori" judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. Copyright Journal compilation (c) 2009 Royal Statistical Society. Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. Reprinted by permission of Blackwell Publishers |
Author | Higgins, Julian P. T. Thompson, Simon G. Spiegelhalter, David J. |
Author_xml | – sequence: 1 givenname: Julian P. T. surname: Higgins fullname: Higgins, Julian P. T. – sequence: 2 givenname: Simon G. surname: Thompson fullname: Thompson, Simon G. – sequence: 3 givenname: David J. surname: Spiegelhalter fullname: Spiegelhalter, David J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20981093$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19381330$$D View this record in MEDLINE/PubMed http://econpapers.repec.org/article/blajorssa/v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137-159.htm$$DView record in RePEc |
BookMark | eNqNkl1v0zAUhiM0xLrCTwAqJBA3Kf6KPy5AmgYUtGlIKxPcHTmJsyVL4mKnpf33OMvIgAs2S86xcp7z2jrnPYj2WtuaKJphNMdhvanmmHERK5l8nxOE5ByhJCHz7YNoMib2oglSnMVYKbkfHXhfoX4J8Sjax4pKTCmaRLEzsdnoeq270rYzW8ycbnPbxKYoTNb5WWM6HetW1ztf-sfRw0LX3jy5idPo_OOHr0ef4pMvi89HhydxJgUlMU8LkaYMc8NJZrBO81xQk0sanklyTniGmE6JQUVBmDKhBCHDNTFFxjFHCZ1G7wbd1TptTJ6ZtnO6hpUrG-12YHUJf2fa8hIu7AYI54JiEgRe3Qg4-2NtfAdN6TNT17o1du2BSSyFEHeDVCCmuOJ3g5QJxgkL4Ov_gljShAVV2qMv_kEru3ah1x6kIEKJJExpGh0PkDMrk409SGtdWee9hg1QjQUJ313YoZUqhLL_Gfaqj1QAThRcdk1Qe_ZnZ0e5344IwMsbQPtM10WwQ1b6kSNISYwUDZwcuMxZ750pbqUQ9CaFCnovQu9F6E0K1yaF7e10x9Ks7K79F2ZZ1vcReDsI_Cxrs7v3xXC2XB6GU6h_OtRXvrNurKcIUy5Yb794yJe-M9sxr90VBHuJBL6dLuD0mJ-x5P0C-jk-H_hCW9AXLvTrfEmCGsJJMDdV9Be4KB_w |
CitedBy_id | crossref_primary_10_3390_pharmaceutics14102050 crossref_primary_10_1007_s00296_019_04244_5 crossref_primary_10_1186_s12916_023_02874_y crossref_primary_10_2188_jea_JE20200376 crossref_primary_10_3389_fmed_2022_843262 crossref_primary_10_1007_s00784_023_05227_4 crossref_primary_10_1186_s12859_018_2491_9 crossref_primary_10_1088_1681_7575_abb064 crossref_primary_10_1186_s12916_015_0379_3 crossref_primary_10_1016_j_ebiom_2024_105434 crossref_primary_10_3389_fmed_2022_1077806 crossref_primary_10_1007_s00415_020_09709_3 crossref_primary_10_1155_2013_741639 crossref_primary_10_1002_ece3_4522 crossref_primary_10_1016_j_eswa_2019_112956 crossref_primary_10_1111_cpsp_12282 crossref_primary_10_1136_bmjopen_2021_055336 crossref_primary_10_1016_j_cpr_2024_102501 crossref_primary_10_4094_chnr_2023_29_1_24 crossref_primary_10_1007_s40279_023_01896_z crossref_primary_10_1016_j_fertnstert_2024_09_023 crossref_primary_10_1002_sim_5591 crossref_primary_10_1016_j_jdermsci_2016_09_003 crossref_primary_10_4103_eus_eus_18_19 crossref_primary_10_1186_s12874_021_01397_5 crossref_primary_10_1177_1094428117741966 crossref_primary_10_1080_20008066_2024_2415267 crossref_primary_10_1161_CIRCOUTCOMES_111_960724 crossref_primary_10_1007_s10654_013_9863_2 crossref_primary_10_1097_JS9_0000000000001719 crossref_primary_10_1002_14651858_CD004655_pub3 crossref_primary_10_1097_MCG_0000000000001958 crossref_primary_10_1158_1055_9965_EPI_13_0665 crossref_primary_10_1186_s12978_018_0635_z crossref_primary_10_3390_nu15132982 crossref_primary_10_46497_ArchRheumatol_2024_10131 crossref_primary_10_1177_0149206314551964 crossref_primary_10_1186_s12874_022_01809_0 crossref_primary_10_1002_14651858_CD006298_pub2 crossref_primary_10_1111_bcp_14310 crossref_primary_10_1016_j_bbr_2022_113834 crossref_primary_10_1016_j_numecd_2015_03_008 crossref_primary_10_1177_0962280217718867 crossref_primary_10_1007_s12471_018_1104_6 crossref_primary_10_1016_j_ajodo_2019_12_011 crossref_primary_10_1002_14651858_CD004098_pub2 crossref_primary_10_1186_s12874_016_0219_y crossref_primary_10_1136_bmjopen_2021_057977 crossref_primary_10_1093_nutrit_nuaa016 crossref_primary_10_1093_rheumatology_keaf078 crossref_primary_10_1002_14651858_CD010964_pub2 crossref_primary_10_1038_s41562_018_0461_x crossref_primary_10_1080_19466315_2015_1096823 crossref_primary_10_1111_rssa_12677 crossref_primary_10_1016_j_ajp_2023_103550 crossref_primary_10_1007_s11606_016_3603_8 crossref_primary_10_1136_bmjopen_2019_030596 crossref_primary_10_1016_j_jclinepi_2014_11_017 crossref_primary_10_1002_ijc_28452 crossref_primary_10_1016_j_jclinepi_2019_05_023 crossref_primary_10_1371_journal_pone_0273800 crossref_primary_10_1186_s12885_024_13027_6 crossref_primary_10_9778_cmajo_20160087 crossref_primary_10_1002_sim_9985 crossref_primary_10_3389_fpubh_2024_1371497 crossref_primary_10_1097_XEB_0000000000000058 crossref_primary_10_1080_08995605_2024_2377884 crossref_primary_10_1161_CIRCEP_118_007005 crossref_primary_10_1002_sim_6471 crossref_primary_10_1097_MD_0000000000001944 crossref_primary_10_1055_a_1236_3350 crossref_primary_10_1140_epjc_s10052_023_11973_2 crossref_primary_10_1002_14651858_CD012008 crossref_primary_10_1002_14651858_CD012483 crossref_primary_10_1177_12034754221130969 crossref_primary_10_1177_1536867X1101100206 crossref_primary_10_1080_19396368_2019_1655813 crossref_primary_10_1002_14651858_CD004549_pub3 crossref_primary_10_1080_10543406_2022_2105345 crossref_primary_10_3390_nu13072284 crossref_primary_10_1016_j_pan_2021_09_007 crossref_primary_10_1093_ibd_izac153 crossref_primary_10_1093_ageing_afv190 crossref_primary_10_1016_j_jclinepi_2013_09_018 crossref_primary_10_1097_MCG_0000000000001913 crossref_primary_10_1007_s10654_020_00618_3 crossref_primary_10_1002_bimj_201900184 crossref_primary_10_1177_0272989X18788537 crossref_primary_10_1186_s12939_019_1036_9 crossref_primary_10_1016_j_joms_2023_08_168 crossref_primary_10_1002_sim_6493 crossref_primary_10_1016_j_neuropsychologia_2011_04_033 crossref_primary_10_1186_1471_2474_15_121 crossref_primary_10_1080_00365521_2020_1868568 crossref_primary_10_1111_clr_13759 crossref_primary_10_1111_clr_12428 crossref_primary_10_1016_j_wneu_2024_01_110 crossref_primary_10_1097_MD_0000000000035718 crossref_primary_10_1186_1741_7015_12_41 crossref_primary_10_1016_j_prevetmed_2013_11_009 crossref_primary_10_1177_09622802221125913 crossref_primary_10_1002_14651858_CD010286 crossref_primary_10_1002_psp4_12041 crossref_primary_10_1186_s12889_017_4691_z crossref_primary_10_2106_JBJS_N_00642 crossref_primary_10_1016_j_joca_2023_11_017 crossref_primary_10_1136_bmjmed_2022_000184 crossref_primary_10_1161_JAHA_121_023061 crossref_primary_10_1002_14651858_CD012436 crossref_primary_10_1002_14651858_CD011102 crossref_primary_10_1177_0962280220948085 crossref_primary_10_1038_srep15995 crossref_primary_10_1002_bimj_201900161 crossref_primary_10_1371_journal_pone_0047939 crossref_primary_10_1042_BSR20180177 crossref_primary_10_3389_fpsyg_2021_664160 crossref_primary_10_1136_bmjopen_2020_046519 crossref_primary_10_1016_j_jebdp_2023_101898 crossref_primary_10_1177_0962280216682532 crossref_primary_10_1007_s00384_024_04729_1 crossref_primary_10_1093_aje_kwad184 crossref_primary_10_1089_ten_teb_2012_0130 crossref_primary_10_1136_bmjopen_2019_030162 crossref_primary_10_1371_journal_pone_0308628 crossref_primary_10_1007_s11336_013_9328_2 crossref_primary_10_1002_14651858_CD010025_pub2 crossref_primary_10_1002_14651858_CD011590 crossref_primary_10_1002_jwmg_591 crossref_primary_10_1111_joor_13779 crossref_primary_10_1080_03007995_2019_1649378 crossref_primary_10_1136_bmjopen_2016_015395 crossref_primary_10_1371_journal_pone_0079998 crossref_primary_10_1097_MD_0000000000003312 crossref_primary_10_1371_journal_pone_0266252 crossref_primary_10_17275_per_22_57_9_3 crossref_primary_10_1007_s40263_016_0382_z crossref_primary_10_1007_s12144_023_05604_y crossref_primary_10_1002_14651858_CD010736_pub2 crossref_primary_10_1136_bmj_l4292 crossref_primary_10_1186_s40001_024_02267_8 crossref_primary_10_1002_uog_15900 crossref_primary_10_1080_00461520_2021_1897009 crossref_primary_10_5662_wjm_v2_i4_27 crossref_primary_10_1016_j_urology_2021_04_058 crossref_primary_10_1177_2047487318817662 crossref_primary_10_1016_j_ajhg_2011_04_014 crossref_primary_10_1002_14651858_CD009128_pub3 crossref_primary_10_3389_fsurg_2024_1436366 crossref_primary_10_1002_jrsm_1626 crossref_primary_10_1214_22_AOAS1710 crossref_primary_10_2340_17453674_2024_40948 crossref_primary_10_1007_s15010_023_02156_y crossref_primary_10_1016_j_vaccine_2023_09_012 crossref_primary_10_1007_s10620_024_08467_w crossref_primary_10_1155_2014_926836 crossref_primary_10_1111_1468_0009_12451 crossref_primary_10_1111_eci_14295 crossref_primary_10_1177_0272989X13485157 crossref_primary_10_1177_0272989X13485156 crossref_primary_10_1016_j_jclinepi_2024_111492 crossref_primary_10_1177_0272989X13485155 crossref_primary_10_1186_s12916_020_01774_9 crossref_primary_10_1093_ibd_izaa353 crossref_primary_10_1158_1078_0432_CCR_13_2024 crossref_primary_10_1002_jrsm_1633 crossref_primary_10_1002_ijc_29388 crossref_primary_10_1094_PDIS_09_21_2018_RE crossref_primary_10_1371_journal_pone_0108940 crossref_primary_10_1016_j_optom_2022_07_003 crossref_primary_10_1111_j_1600_051X_2011_01840_x crossref_primary_10_1007_s10198_022_01468_4 crossref_primary_10_1016_j_brs_2025_01_022 crossref_primary_10_4103_0366_6999_213968 crossref_primary_10_4073_csr_2014_10 crossref_primary_10_4073_csr_2014_11 crossref_primary_10_1002_sim_5543 crossref_primary_10_1016_j_cpr_2011_11_003 crossref_primary_10_1016_j_envpol_2022_119309 crossref_primary_10_1136_oemed_2024_109533 crossref_primary_10_1055_a_2284_7334 crossref_primary_10_1002_14651858_CD000984_pub2 crossref_primary_10_1002_14651858_CD000984_pub3 crossref_primary_10_1016_j_rbmo_2023_103337 crossref_primary_10_1016_S2215_0366_20_30130_9 crossref_primary_10_1016_S2666_5247_23_00096_4 crossref_primary_10_1093_jac_dkr368 crossref_primary_10_1002_14651858_CD012885 crossref_primary_10_1093_ejo_cju071 crossref_primary_10_1002_bimj_201000151 crossref_primary_10_1016_j_jclinepi_2017_11_025 crossref_primary_10_1002_ebch_885 crossref_primary_10_1002_14651858_CD011281_pub2 crossref_primary_10_3390_cancers11111801 crossref_primary_10_1002_14651858_CD008407_pub2 crossref_primary_10_1016_j_envint_2022_107106 crossref_primary_10_1002_14651858_CD008407_pub3 crossref_primary_10_1016_j_placenta_2021_10_009 crossref_primary_10_1097_MCG_0000000000001524 crossref_primary_10_1002_jrsm_1651 crossref_primary_10_1016_j_eclinm_2023_102341 crossref_primary_10_1177_17470218231156849 crossref_primary_10_1016_j_jclinane_2025_111786 crossref_primary_10_1007_s10620_023_08017_w crossref_primary_10_1093_ije_dys124 crossref_primary_10_1080_17453674_2019_1577014 crossref_primary_10_1002_14651858_CD011012_pub2 crossref_primary_10_1016_j_ypmed_2024_107969 crossref_primary_10_1002_14651858_CD010093_pub2 crossref_primary_10_1016_j_avsg_2012_06_010 crossref_primary_10_3390_cancers12010076 crossref_primary_10_1016_j_cgh_2019_08_047 crossref_primary_10_1016_j_arthro_2019_03_047 crossref_primary_10_1093_cid_ciad552 crossref_primary_10_3389_fendo_2018_00494 crossref_primary_10_2106_JBJS_RVW_24_00115 crossref_primary_10_1097_MD_0000000000013547 crossref_primary_10_1093_eurjpc_zwab018 crossref_primary_10_1186_s13104_021_05501_2 crossref_primary_10_1371_journal_pone_0194127 crossref_primary_10_1111_apt_16924 crossref_primary_10_3390_jcm12062402 crossref_primary_10_3390_humans3030017 crossref_primary_10_1080_07853890_2018_1500703 crossref_primary_10_1080_13645579_2013_806115 crossref_primary_10_1002_jrsm_1678 crossref_primary_10_1038_s41598_023_27606_3 crossref_primary_10_1111_add_15316 crossref_primary_10_1093_eurjcn_zvac114 crossref_primary_10_1186_s13643_017_0540_5 crossref_primary_10_1007_s40336_016_0219_2 crossref_primary_10_1186_s12874_015_0024_z crossref_primary_10_1016_j_jad_2020_08_082 crossref_primary_10_1093_advances_nmac084 crossref_primary_10_1007_s12561_016_9179_3 crossref_primary_10_3758_s13428_023_02132_2 crossref_primary_10_1136_acupmed_2013_010364 crossref_primary_10_1210_jc_2014_1162 crossref_primary_10_3389_fneur_2021_628520 crossref_primary_10_1097_MD_0000000000001089 crossref_primary_10_1038_s41598_019_53920_w crossref_primary_10_1002_bjs5_50314 crossref_primary_10_1038_tp_2017_172 crossref_primary_10_1002_cl2_1262 crossref_primary_10_1136_bmjopen_2015_010247 crossref_primary_10_1007_s10484_023_09593_3 crossref_primary_10_1038_s41398_022_02009_6 crossref_primary_10_1080_19439342_2016_1160947 crossref_primary_10_1097_LGT_0000000000000527 crossref_primary_10_1080_00206814_2014_908420 crossref_primary_10_1016_j_advnut_2023_06_007 crossref_primary_10_1097_01_aids_0000434936_57880_cd crossref_primary_10_1097_MCG_0000000000002010 crossref_primary_10_1002_jrsm_1217 crossref_primary_10_1016_j_autrev_2019_03_005 crossref_primary_10_1161_SVIN_122_000707 crossref_primary_10_1097_MCG_0000000000001167 crossref_primary_10_1371_journal_pone_0252492 crossref_primary_10_1080_08998280_2017_11929568 crossref_primary_10_1016_j_euo_2022_04_007 crossref_primary_10_1002_sim_8197 crossref_primary_10_1002_brb3_70131 crossref_primary_10_1136_bmjopen_2017_016592 crossref_primary_10_1016_j_bja_2023_02_040 crossref_primary_10_3390_agronomy10040560 crossref_primary_10_1177_1747493019873594 crossref_primary_10_1186_s12903_018_0695_z crossref_primary_10_1016_j_vaccine_2021_04_039 crossref_primary_10_1016_S2214_109X_17_30298_X crossref_primary_10_1053_j_ajkd_2013_02_357 crossref_primary_10_1158_1055_9965_EPI_21_1286 crossref_primary_10_1016_j_japh_2021_02_005 crossref_primary_10_12788_jhm_3182 crossref_primary_10_2139_ssrn_4826030 crossref_primary_10_1002_jrsm_1236 crossref_primary_10_1177_1536867X1501500403 crossref_primary_10_1177_1536867X1501500402 crossref_primary_10_1177_0962280218785504 crossref_primary_10_1093_aje_kwz261 crossref_primary_10_1093_pm_pnaf002 crossref_primary_10_1002_jrsm_1230 crossref_primary_10_1186_s13054_020_03251_4 crossref_primary_10_1111_ene_14366 crossref_primary_10_1080_17476348_2021_1920927 crossref_primary_10_1186_s12984_023_01256_y crossref_primary_10_1186_s12944_021_01516_7 crossref_primary_10_1186_s13643_015_0177_1 crossref_primary_10_1002_pst_1632 crossref_primary_10_1016_j_jhin_2021_10_020 crossref_primary_10_1097_MD_0000000000028980 crossref_primary_10_1002_rth2_12834 crossref_primary_10_1182_bloodadvances_2019000614 crossref_primary_10_1007_s10620_021_07132_w crossref_primary_10_1002_jrsm_1240 crossref_primary_10_1002_14651858_CD010622 crossref_primary_10_1002_jrsm_1244 crossref_primary_10_1016_j_gie_2022_11_003 crossref_primary_10_1007_s10620_024_08654_9 crossref_primary_10_1080_02699052_2018_1438665 crossref_primary_10_1111_add_16616 crossref_primary_10_1016_j_clinre_2024_102433 crossref_primary_10_3389_fonc_2020_01248 crossref_primary_10_1002_14651858_CD010445_pub2 crossref_primary_10_1002_14651858_CD010370_pub2 crossref_primary_10_1097_HJH_0000000000001443 crossref_primary_10_1007_s40618_023_02225_x crossref_primary_10_1002_jrsm_1253 crossref_primary_10_1161_JAHA_118_011245 crossref_primary_10_1016_j_jad_2020_06_055 crossref_primary_10_1161_SVIN_123_001084 crossref_primary_10_1111_bjd_12002 crossref_primary_10_3390_jcm9020326 crossref_primary_10_1007_s10397_015_0894_4 crossref_primary_10_1017_S0033291722003270 crossref_primary_10_2337_dc20_0204 crossref_primary_10_3390_ijerph13030302 crossref_primary_10_1007_s10143_024_03005_8 crossref_primary_10_1186_s12962_018_0098_7 crossref_primary_10_1179_1465313314Y_0000000111 crossref_primary_10_1016_j_jcf_2023_04_020 crossref_primary_10_1177_2340944420916310 crossref_primary_10_1016_j_neubiorev_2024_105933 crossref_primary_10_4073_csr_2014_1 crossref_primary_10_1111_jcpe_12026 crossref_primary_10_1007_s00127_018_1485_2 crossref_primary_10_1016_j_gie_2021_09_039 crossref_primary_10_1177_1526602816668305 crossref_primary_10_1212_WNL_0000000000009443 crossref_primary_10_1002_jrsm_1260 crossref_primary_10_1080_09602011_2013_819021 crossref_primary_10_1111_jcpp_13943 crossref_primary_10_1136_heartjnl_2019_314931 crossref_primary_10_1177_1759720X20975927 crossref_primary_10_1371_journal_pone_0198447 crossref_primary_10_1002_nau_24536 crossref_primary_10_1002_14651858_CD012906_pub2 crossref_primary_10_1007_s11336_016_9507_z crossref_primary_10_1177_1557988319892464 crossref_primary_10_3390_biomedinformatics1020005 crossref_primary_10_1002_jrsm_1278 crossref_primary_10_3758_s13428_014_0527_2 crossref_primary_10_3390_jcm11216363 crossref_primary_10_1097_MCG_0000000000002078 crossref_primary_10_1002_uog_18959 crossref_primary_10_1002_sim_9422 crossref_primary_10_1002_14651858_CD012151_pub2 crossref_primary_10_1002_ptr_7973 crossref_primary_10_1186_s12916_017_0845_1 crossref_primary_10_2214_AJR_18_19515 crossref_primary_10_1002_14651858_CD011919 crossref_primary_10_1016_j_ijid_2020_12_018 crossref_primary_10_1002_jrsm_1285 crossref_primary_10_1111_clr_13859 crossref_primary_10_1111_hepr_12554 crossref_primary_10_1016_j_jhep_2010_03_023 crossref_primary_10_3390_life14101249 crossref_primary_10_1002_14651858_CD007803_pub2 crossref_primary_10_1007_s00784_015_1473_9 crossref_primary_10_1007_s11695_020_04729_4 crossref_primary_10_1016_j_ajog_2019_12_266 crossref_primary_10_1017_S0007114519002241 crossref_primary_10_1002_14651858_CD010576_pub2 crossref_primary_10_1111_rssa_12572 crossref_primary_10_1002_jrsm_1296 crossref_primary_10_1017_rsm_2024_12 crossref_primary_10_1002_jrsm_1297 crossref_primary_10_1002_ohn_621 crossref_primary_10_1097_GCO_0000000000000430 crossref_primary_10_1111_bjd_15552 crossref_primary_10_1017_S0033291716000957 crossref_primary_10_12968_bjca_2018_13_11_539 crossref_primary_10_1016_j_jacadv_2023_100555 crossref_primary_10_1136_bmjopen_2023_073397 crossref_primary_10_1186_1471_2474_13_177 crossref_primary_10_1016_j_jenvman_2019_109651 crossref_primary_10_1186_s13643_017_0490_y crossref_primary_10_1002_14651858_CD005525_pub3 crossref_primary_10_1093_advances_nmab142 crossref_primary_10_3758_s13423_021_01918_9 crossref_primary_10_1002_ajpa_24425 crossref_primary_10_1016_j_pscychresns_2023_111720 crossref_primary_10_1214_23_AOAS1806 crossref_primary_10_1016_j_arth_2022_01_017 crossref_primary_10_1038_s41598_017_19096_x crossref_primary_10_1080_1354750X_2023_2227361 crossref_primary_10_1097_MS9_0000000000002215 crossref_primary_10_1016_j_ophtha_2013_04_010 crossref_primary_10_1177_0962280218773520 crossref_primary_10_1371_journal_pone_0215487 crossref_primary_10_1016_j_scitotenv_2023_162773 crossref_primary_10_1111_head_14376 crossref_primary_10_1002_cl2_1212 crossref_primary_10_1186_s13643_019_1018_4 crossref_primary_10_1016_j_rvsc_2011_05_001 crossref_primary_10_4103_eus_eus_63_18 crossref_primary_10_1136_jnis_2022_019489 crossref_primary_10_1016_j_jvs_2019_11_061 crossref_primary_10_3389_fsurg_2021_723065 crossref_primary_10_1177_0962280216631361 crossref_primary_10_1093_ibd_izae260 crossref_primary_10_1158_1055_9965_EPI_09_0981 crossref_primary_10_1177_1088868316656701 crossref_primary_10_1002_pam_22236 crossref_primary_10_1002_14651858_CD008903_pub2 crossref_primary_10_1080_17474124_2023_2284825 crossref_primary_10_1016_j_jad_2019_03_036 crossref_primary_10_1002_14651858_CD003054_pub4 crossref_primary_10_1002_14651858_CD012661_pub2 crossref_primary_10_1007_s00784_016_2044_4 crossref_primary_10_1016_j_soard_2019_03_006 crossref_primary_10_1111_j_1467_842X_2012_00647_x crossref_primary_10_1186_s12884_022_04600_7 crossref_primary_10_1016_j_jcrimjus_2021_101796 crossref_primary_10_1093_cid_ciz539 crossref_primary_10_1111_iwj_12313 crossref_primary_10_5114_cipp_190893 crossref_primary_10_14474_ptrs_2023_12_1_62 crossref_primary_10_3389_fphar_2021_698008 crossref_primary_10_1007_s00787_018_1182_4 crossref_primary_10_1002_sim_10001 crossref_primary_10_1002_14651858_CD012799_pub2 crossref_primary_10_1186_s12916_015_0371_y crossref_primary_10_1097_EDE_0000000000001526 crossref_primary_10_1016_j_knee_2021_04_005 crossref_primary_10_1007_s10654_020_00698_1 crossref_primary_10_1002_sim_3718 crossref_primary_10_3390_ijerph18073492 crossref_primary_10_1186_s12992_021_00670_y crossref_primary_10_1002_sim_8169 crossref_primary_10_1080_02786826_2022_2128986 crossref_primary_10_1002_ehf2_12861 crossref_primary_10_1055_a_1401_9880 crossref_primary_10_1007_s00266_020_01743_w crossref_primary_10_1016_j_thromres_2020_02_018 crossref_primary_10_1186_1471_2431_14_225 crossref_primary_10_1098_rsbl_2018_0840 crossref_primary_10_1186_s12936_024_04995_y crossref_primary_10_1111_jog_14890 crossref_primary_10_1093_aje_kws394 crossref_primary_10_1002_sim_4372 crossref_primary_10_1002_14651858_CD010088_pub2 crossref_primary_10_1097_XEB_0000000000000130 crossref_primary_10_1002_14651858_CD010088_pub3 crossref_primary_10_1016_j_ssci_2018_08_030 crossref_primary_10_1186_s12874_018_0618_3 crossref_primary_10_3103_S1066530720040043 crossref_primary_10_1097_eus_0000000000000017 crossref_primary_10_1136_ebmental_2019_300117 crossref_primary_10_1371_journal_pwat_0000291 crossref_primary_10_1093_ageing_afaa049 crossref_primary_10_1016_j_cpr_2012_12_001 crossref_primary_10_1093_ije_dyp157 crossref_primary_10_1111_anae_14705 crossref_primary_10_3389_fspor_2023_1197883 crossref_primary_10_3389_fneur_2021_693524 crossref_primary_10_1002_mnfr_201500042 crossref_primary_10_1016_j_conctc_2017_11_012 crossref_primary_10_1002_sim_7411 crossref_primary_10_1016_j_apmr_2018_06_019 crossref_primary_10_1080_02664763_2012_700448 crossref_primary_10_3389_fcvm_2021_632318 crossref_primary_10_1016_S2215_0366_20_30312_6 crossref_primary_10_1016_j_ahj_2010_02_008 crossref_primary_10_1002_14651858_CD013228 crossref_primary_10_1002_14651858_CD013227 crossref_primary_10_1002_jac5_1439 crossref_primary_10_1016_j_envint_2021_106932 crossref_primary_10_1371_journal_pone_0087896 crossref_primary_10_1007_s13164_020_00503_8 crossref_primary_10_1097_eus_0000000000000031 crossref_primary_10_1016_j_psyneuen_2017_06_010 crossref_primary_10_1016_j_amjmed_2020_05_028 crossref_primary_10_1097_QAD_0000000000002487 crossref_primary_10_1016_j_jchirv_2017_11_010 crossref_primary_10_3389_fmed_2021_693927 crossref_primary_10_1002_lt_26250 crossref_primary_10_1080_17476348_2020_1816468 crossref_primary_10_1542_peds_2015_2423 crossref_primary_10_3310_hta21410 crossref_primary_10_1111_ctr_14520 crossref_primary_10_1007_s10260_022_00660_3 crossref_primary_10_3109_00207454_2012_660586 crossref_primary_10_1111_apt_15592 crossref_primary_10_1007_s40336_015_0120_4 crossref_primary_10_1016_j_jclinepi_2018_11_023 crossref_primary_10_1017_S0033291722001581 crossref_primary_10_1002_uog_21884 crossref_primary_10_1007_s40279_021_01639_y crossref_primary_10_1177_0269881118805496 crossref_primary_10_1002_14651858_CD013205 crossref_primary_10_1002_14651858_CD013688 crossref_primary_10_1055_a_1287_9621 crossref_primary_10_1136_bmj_2021_069881 crossref_primary_10_1016_j_jclinepi_2010_03_016 crossref_primary_10_1097_eus_0000000000000055 crossref_primary_10_1093_nutrit_nuaa101 crossref_primary_10_1186_s12875_017_0695_0 crossref_primary_10_1080_0020739X_2019_1640398 crossref_primary_10_1002_uog_17381 crossref_primary_10_1080_0886022X_2021_2021237 crossref_primary_10_18632_oncotarget_17741 crossref_primary_10_1016_j_rasd_2023_102207 crossref_primary_10_1111_jcpt_12372 crossref_primary_10_5964_meth_13549 crossref_primary_10_1002_14651858_CD012368 crossref_primary_10_1002_14651858_CD012885_pub2 crossref_primary_10_1002_sim_8301 crossref_primary_10_1088_1681_7575_ab1559 crossref_primary_10_1111_ocr_12048 crossref_primary_10_3390_su142215019 crossref_primary_10_1002_bimj_202300387 crossref_primary_10_1111_apt_14201 crossref_primary_10_1136_archdischild_2017_314435 crossref_primary_10_3389_fpls_2021_620786 crossref_primary_10_1016_j_euf_2023_10_023 crossref_primary_10_1016_S0140_6736_14_60685_1 crossref_primary_10_1016_j_scispo_2021_11_002 crossref_primary_10_1136_bmjopen_2021_056340 crossref_primary_10_1016_j_cpr_2020_101886 crossref_primary_10_1016_j_critrevonc_2022_103845 crossref_primary_10_1136_bmjopen_2019_034854 crossref_primary_10_1371_journal_pone_0144976 crossref_primary_10_1080_10543406_2021_1946692 crossref_primary_10_1002_sim_6131 crossref_primary_10_1039_D1FO03094A crossref_primary_10_1053_j_ajkd_2014_08_017 crossref_primary_10_1186_s12874_020_01113_9 crossref_primary_10_1016_j_cmi_2022_09_002 crossref_primary_10_1016_j_jspi_2009_09_017 crossref_primary_10_1080_17437199_2012_701060 crossref_primary_10_1016_j_xnsj_2024_100312 crossref_primary_10_1002_micr_31081 crossref_primary_10_1007_s00464_020_07758_3 crossref_primary_10_1371_journal_pone_0210186 crossref_primary_10_1055_a_1906_4967 crossref_primary_10_1093_neuros_nyaa027 crossref_primary_10_1007_s40881_020_00084_3 crossref_primary_10_1136_bmjopen_2018_024752 crossref_primary_10_1016_j_jaad_2020_12_029 crossref_primary_10_1111_1471_0528_17769 crossref_primary_10_1002_14651858_CD012799 crossref_primary_10_1016_j_jinf_2020_01_008 crossref_primary_10_1002_14651858_CD012796 crossref_primary_10_1177_0272989X211029556 crossref_primary_10_1016_j_rehab_2023_101791 crossref_primary_10_1007_s00520_022_06856_3 crossref_primary_10_1111_j_1467_9868_2012_01047_x crossref_primary_10_1002_jgh3_12856 crossref_primary_10_1186_1745_6215_15_346 crossref_primary_10_1186_s12966_023_01542_x crossref_primary_10_1016_j_clnu_2018_05_019 crossref_primary_10_1111_jcpe_12365 crossref_primary_10_1002_14651858_CD010912_pub4 crossref_primary_10_1016_j_envpol_2023_123159 crossref_primary_10_1002_14651858_CD010912_pub5 crossref_primary_10_1002_14651858_CD013656 crossref_primary_10_1093_annonc_mdx819 crossref_primary_10_1155_2012_985902 crossref_primary_10_1371_journal_pone_0136082 crossref_primary_10_1097_MCG_0000000000001668 crossref_primary_10_1016_j_annepidem_2015_08_004 crossref_primary_10_1093_bib_bbac600 crossref_primary_10_3390_pharmaceutics17010059 crossref_primary_10_1111_acps_12847 crossref_primary_10_1016_j_ijcard_2022_04_084 crossref_primary_10_3390_jcm9020394 crossref_primary_10_1371_journal_pone_0161051 crossref_primary_10_3168_jds_2008_1741 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105579 crossref_primary_10_1097_MD_0000000000029820 crossref_primary_10_1016_j_vaccine_2020_12_061 crossref_primary_10_1002_14651858_CD013516_pub2 crossref_primary_10_1016_j_jmva_2024_105376 crossref_primary_10_1158_1055_9965_EPI_17_1175 crossref_primary_10_1017_iop_2017_26 crossref_primary_10_1016_j_jaac_2017_07_780 crossref_primary_10_1093_europace_euaa005 crossref_primary_10_1378_chest_13_2926 crossref_primary_10_1002_14651858_CD011688_pub2 crossref_primary_10_1016_j_jclinepi_2023_03_004 crossref_primary_10_1186_cc9182 crossref_primary_10_1002_sim_4326 crossref_primary_10_1111_jcpe_12340 crossref_primary_10_1002_sim_4327 crossref_primary_10_1007_s10620_021_07364_w crossref_primary_10_2217_pgs_2018_0142 crossref_primary_10_1002_14651858_CD014965 crossref_primary_10_1002_14651858_CD012845_pub2 crossref_primary_10_1097_MJT_0000000000001295 crossref_primary_10_1186_s12944_024_02005_3 crossref_primary_10_1093_eurheartj_ehaa739 crossref_primary_10_1002_14651858_CD005195_pub3 crossref_primary_10_1002_14651858_CD005195_pub4 crossref_primary_10_3389_fams_2017_00012 crossref_primary_10_1016_j_jad_2019_12_014 crossref_primary_10_1016_j_nutres_2017_11_004 crossref_primary_10_1016_j_cct_2015_05_009 crossref_primary_10_1002_14651858_CD010574 crossref_primary_10_1016_j_aap_2018_03_026 crossref_primary_10_1097_EDE_0000000000001177 crossref_primary_10_1186_s12931_021_01841_6 crossref_primary_10_1002_jrsm_1750 crossref_primary_10_1200_JCO_2011_38_4818 crossref_primary_10_3390_epidemiologia5030031 crossref_primary_10_3390_jcm8060819 crossref_primary_10_1111_add_14944 crossref_primary_10_1002_puh2_145 crossref_primary_10_1186_s12889_024_18907_x crossref_primary_10_1186_2046_4053_1_34 crossref_primary_10_1002_14651858_CD010063_pub2 crossref_primary_10_4103_jopp_jopp_21_22 crossref_primary_10_1080_24733938_2021_1942538 crossref_primary_10_1097_QAD_0b013e328359ab0c crossref_primary_10_1002_cl2_70016 crossref_primary_10_1097_MCA_0000000000000578 crossref_primary_10_1186_s12966_017_0471_5 crossref_primary_10_1093_ajcn_nqz071 crossref_primary_10_3389_fneur_2023_1233408 crossref_primary_10_1016_j_cmi_2022_07_008 crossref_primary_10_1177_20552076231177497 crossref_primary_10_1093_ije_dyq063 crossref_primary_10_1002_lt_26216 crossref_primary_10_1177_01461672211046808 crossref_primary_10_1186_s12954_020_00437_5 crossref_primary_10_1097_j_pain_0000000000003071 crossref_primary_10_1007_s11926_020_00975_8 crossref_primary_10_1177_0269216320929548 crossref_primary_10_1186_1471_2288_14_79 crossref_primary_10_1038_s41598_018_31598_w crossref_primary_10_1007_s10072_023_07106_y crossref_primary_10_1002_14651858_CD011469_pub2 crossref_primary_10_1111_insr_12037 crossref_primary_10_1186_s13643_018_0804_8 crossref_primary_10_1016_j_cct_2015_05_010 crossref_primary_10_1080_19466315_2024_2429415 crossref_primary_10_1177_0193841X12442673 crossref_primary_10_1097_XEB_0000000000000125 crossref_primary_10_6028_jres_126_007 crossref_primary_10_1080_13546805_2023_2266872 crossref_primary_10_1007_s11160_020_09612_0 crossref_primary_10_1093_sxmrev_qeac003 crossref_primary_10_1002_jrsm_1310 crossref_primary_10_1016_j_ijlp_2019_04_007 crossref_primary_10_1002_bimj_70034 crossref_primary_10_1016_j_mycmed_2022_101310 crossref_primary_10_1371_journal_pone_0243865 crossref_primary_10_1097_MD_0000000000020947 crossref_primary_10_1002_sim_9142 crossref_primary_10_2139_ssrn_4104366 crossref_primary_10_1007_s00415_024_12672_y crossref_primary_10_1007_s10648_017_9419_1 crossref_primary_10_1002_14651858_CD012720 crossref_primary_10_1016_j_jcin_2016_03_025 crossref_primary_10_1093_ofid_ofac568 crossref_primary_10_1016_j_patter_2022_100452 crossref_primary_10_1002_pds_5631 crossref_primary_10_1007_s00180_017_0728_0 crossref_primary_10_1002_jrsm_1319 crossref_primary_10_1192_bjp_2020_144 crossref_primary_10_1007_s13593_022_00822_3 crossref_primary_10_1002_jrsm_1336 crossref_primary_10_1111_jcpe_13264 crossref_primary_10_1093_ejo_cjv034 crossref_primary_10_1002_jrsm_1331 crossref_primary_10_1016_j_arth_2017_06_041 crossref_primary_10_1016_j_thromres_2019_08_005 crossref_primary_10_1002_dmrr_3365 crossref_primary_10_1016_j_eclinm_2024_103007 crossref_primary_10_1002_sim_3861 crossref_primary_10_1111_jch_13876 crossref_primary_10_1016_j_tmrv_2011_10_001 crossref_primary_10_1089_thy_2018_0244 crossref_primary_10_1093_pnasnexus_pgae082 crossref_primary_10_1002_jrsm_1345 crossref_primary_10_1002_jrsm_1346 crossref_primary_10_1080_13510347_2022_2109016 crossref_primary_10_3389_fpubh_2023_1206988 crossref_primary_10_1097_MCG_0000000000002146 crossref_primary_10_1002_14651858_CD011853 crossref_primary_10_1016_j_jval_2011_05_042 crossref_primary_10_1186_s12874_024_02378_0 crossref_primary_10_1111_apt_13857 crossref_primary_10_1002_hed_26537 crossref_primary_10_1007_s12672_021_00402_z crossref_primary_10_1186_1741_7015_11_123 crossref_primary_10_3168_jds_2024_25718 crossref_primary_10_1002_sim_9170 crossref_primary_10_1016_j_dld_2023_02_022 crossref_primary_10_1136_bmjopen_2017_019512 crossref_primary_10_1186_s40360_024_00791_1 crossref_primary_10_5662_wjm_v12_i3_92 crossref_primary_10_1093_aje_kwr408 crossref_primary_10_1073_pnas_2015367118 crossref_primary_10_1016_j_jaac_2023_04_017 crossref_primary_10_3390_jcm13072033 crossref_primary_10_1002_14651858_CD011844_pub2 crossref_primary_10_1016_j_ijchp_2024_100446 crossref_primary_10_1186_s12916_018_1101_z crossref_primary_10_1007_BF03449157 crossref_primary_10_1186_s12874_021_01290_1 crossref_primary_10_1002_jrsm_1353 crossref_primary_10_1146_annurev_nutr_062322_020650 crossref_primary_10_1002_jmv_27457 crossref_primary_10_1038_mp_2015_138 crossref_primary_10_1016_j_janxdis_2022_102559 crossref_primary_10_1080_02699931_2022_2099349 crossref_primary_10_12968_jowc_2021_30_Sup4_S28 crossref_primary_10_1016_j_ijnurstu_2025_104997 crossref_primary_10_1158_1055_9965_EPI_21_0287 crossref_primary_10_1002_14651858_CD003925_pub3 crossref_primary_10_1136_bmjopen_2015_009183 crossref_primary_10_1093_rheumatology_keae645 crossref_primary_10_1080_01621459_2014_937487 crossref_primary_10_1093_rheumatology_keae646 crossref_primary_10_1080_14653125_2017_1316902 crossref_primary_10_1097_MCG_0000000000001228 crossref_primary_10_1161_SVIN_123_001177 crossref_primary_10_1128_AAC_01377_20 crossref_primary_10_1002_14651858_CD010622_pub2 crossref_primary_10_5664_jcsm_9642 crossref_primary_10_1002_pst_1741 crossref_primary_10_1017_S0950268817002242 crossref_primary_10_1002_jrsm_1370 crossref_primary_10_1016_j_atherosclerosis_2015_08_038 crossref_primary_10_1186_s11689_021_09362_5 crossref_primary_10_1111_eos_12250 crossref_primary_10_1371_journal_pone_0129824 crossref_primary_10_1007_s00464_018_6431_6 crossref_primary_10_1371_journal_pmed_1003987 crossref_primary_10_3390_ijerph14010003 crossref_primary_10_1002_jrsm_1388 crossref_primary_10_1080_13811118_2018_1486251 crossref_primary_10_1016_j_jval_2011_05_001 crossref_primary_10_1016_j_jdent_2018_12_015 crossref_primary_10_1002_jrsm_1384 crossref_primary_10_1080_00273171_2019_1689348 crossref_primary_10_1136_heartjnl_2017_311983 crossref_primary_10_1097_SLA_0000000000002880 crossref_primary_10_3390_epidemiologia5010004 crossref_primary_10_1016_j_java_2015_02_002 crossref_primary_10_1192_bjo_2021_4 crossref_primary_10_1016_j_gie_2018_10_018 crossref_primary_10_1002_14651858_CD008383_pub2 crossref_primary_10_1016_j_arbres_2024_03_010 crossref_primary_10_1177_00033197211070908 crossref_primary_10_1111_obr_12682 crossref_primary_10_1186_s13005_024_00415_3 crossref_primary_10_1080_02640414_2020_1775990 crossref_primary_10_1007_s00127_020_01885_x crossref_primary_10_1002_art_38290 crossref_primary_10_1371_journal_pone_0273688 crossref_primary_10_1177_0962280212451882 crossref_primary_10_1210_clinem_dgae821 crossref_primary_10_1016_j_edurev_2020_100357 crossref_primary_10_1139_cjfas_2023_0222 crossref_primary_10_2519_jospt_2022_10671 crossref_primary_10_1016_j_amjcard_2023_06_066 crossref_primary_10_48175_IJARSCT_22724 crossref_primary_10_1002_14651858_CD006483_pub2 crossref_primary_10_1515_ijb_2022_0121 crossref_primary_10_1186_1471_2288_11_160 crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0085_R2 crossref_primary_10_1016_j_jclinepi_2011_09_012 crossref_primary_10_1016_j_gie_2020_06_015 crossref_primary_10_1016_j_egyai_2023_100235 crossref_primary_10_1186_s12955_022_02046_1 crossref_primary_10_1007_s12664_023_01495_w crossref_primary_10_1016_j_csda_2016_08_007 crossref_primary_10_1016_j_gie_2022_07_033 crossref_primary_10_3390_su14031173 crossref_primary_10_1002_14651858_CD008363_pub2 crossref_primary_10_1177_0272989X13480130 crossref_primary_10_1177_17585732221075037 crossref_primary_10_1038_s44220_024_00356_5 crossref_primary_10_1002_14651858_CD013138_pub2 crossref_primary_10_1136_emermed_2019_209294 crossref_primary_10_1007_s44197_024_00300_x crossref_primary_10_1177_0962280215583568 crossref_primary_10_1186_s12891_020_03733_0 crossref_primary_10_1177_25152459211031256 crossref_primary_10_4103_eus_eus_27_19 crossref_primary_10_1016_j_ijcard_2024_132269 crossref_primary_10_1111_j_1399_0039_2011_01754_x crossref_primary_10_3389_fmolb_2021_687105 crossref_primary_10_3390_nu16162748 crossref_primary_10_1002_14651858_CD009122_pub2 crossref_primary_10_1002_14651858_CD009283_pub2 crossref_primary_10_1002_ohn_724 crossref_primary_10_3389_fnagi_2022_931016 crossref_primary_10_1016_j_canep_2011_01_007 crossref_primary_10_3390_jcm12124150 crossref_primary_10_1017_ehs_2020_22 crossref_primary_10_1177_00368504231179062 crossref_primary_10_1002_14651858_CD013164 crossref_primary_10_1038_ng_3508 crossref_primary_10_1016_j_cmi_2020_08_022 crossref_primary_10_1111_rssc_12453 crossref_primary_10_1186_s12885_024_12641_8 crossref_primary_10_1161_STROKEAHA_116_011707 crossref_primary_10_1002_14651858_CD013166 crossref_primary_10_1016_j_gie_2020_06_048 crossref_primary_10_1111_jebm_12236 crossref_primary_10_1007_s10741_021_10086_w crossref_primary_10_1111_resp_12783 crossref_primary_10_1002_14651858_CD007786_pub3 crossref_primary_10_1038_s41598_019_38853_8 crossref_primary_10_1186_s40359_017_0200_5 crossref_primary_10_3389_fspor_2024_1386967 crossref_primary_10_1371_journal_pone_0215372 crossref_primary_10_1002_cpp_2874 crossref_primary_10_1097_j_pain_0000000000002636 crossref_primary_10_1002_14651858_CD003298_pub3 crossref_primary_10_1016_S2666_7568_24_00094_1 crossref_primary_10_1093_biostatistics_kxq046 crossref_primary_10_1002_jrsm_26 crossref_primary_10_1016_j_techsoc_2024_102798 crossref_primary_10_1136_jnnp_2019_322575 crossref_primary_10_1002_14651858_CD013178 crossref_primary_10_1016_j_arr_2021_101257 crossref_primary_10_1080_19439342_2024_2436186 crossref_primary_10_1007_s00167_023_07328_9 crossref_primary_10_1111_jebm_12228 crossref_primary_10_1038_tp_2016_279 crossref_primary_10_1177_0003319715599863 crossref_primary_10_1186_s12957_015_0681_8 crossref_primary_10_1007_s40520_022_02336_0 crossref_primary_10_1002_sim_9125 crossref_primary_10_1016_j_ajodo_2013_08_007 crossref_primary_10_1016_j_heliyon_2024_e29741 crossref_primary_10_1002_14651858_CD012298 crossref_primary_10_1007_s11695_022_05950_z crossref_primary_10_1111_rssa_12005 crossref_primary_10_1348_000711010X522687 crossref_primary_10_1055_a_2378_9533 crossref_primary_10_1371_journal_pone_0272327 crossref_primary_10_1097_MPA_0000000000002155 crossref_primary_10_1177_0706743718779933 crossref_primary_10_1002_sim_8289 crossref_primary_10_1136_bjsports_2018_100461 crossref_primary_10_1002_14651858_CD013178_pub2 crossref_primary_10_1094_PHYTO_12_15_0342_RVW crossref_primary_10_1007_s00228_021_03097_x crossref_primary_10_1002_jrsm_45 crossref_primary_10_1097_MD_0000000000033345 crossref_primary_10_1002_14651858_CD010787_pub2 crossref_primary_10_1186_1471_2288_11_19 crossref_primary_10_1016_j_archger_2024_105601 crossref_primary_10_1016_j_jscai_2024_102449 crossref_primary_10_1002_wps_20490 crossref_primary_10_1097_GOX_0000000000002625 crossref_primary_10_1148_radiol_242505 crossref_primary_10_23736_S1973_9087_19_05814_3 crossref_primary_10_1186_s13643_021_01726_1 crossref_primary_10_1093_ejo_cjab037 crossref_primary_10_1371_journal_pone_0076654 crossref_primary_10_1371_journal_pone_0187177 crossref_primary_10_1016_j_ijantimicag_2018_07_021 crossref_primary_10_1093_ageing_afac104 crossref_primary_10_1097_BOT_0000000000000455 crossref_primary_10_1016_j_ajog_2021_07_009 crossref_primary_10_3390_jcm12052025 crossref_primary_10_3389_fmed_2023_1204849 crossref_primary_10_1002_14651858_CD013138 crossref_primary_10_1016_j_eja_2020_126127 crossref_primary_10_1155_2011_125485 crossref_primary_10_1111_dom_12827 crossref_primary_10_2214_AJR_17_19495 crossref_primary_10_1289_ehp_1206187 crossref_primary_10_1371_journal_pone_0158604 crossref_primary_10_1177_15248380231179133 crossref_primary_10_1007_s00198_014_2636_2 crossref_primary_10_1177_0272989X12453504 crossref_primary_10_1002_sim_7549 crossref_primary_10_1111_nmo_14698 crossref_primary_10_1017_S0266462313000676 crossref_primary_10_1111_apt_16335 crossref_primary_10_3390_microorganisms12122430 crossref_primary_10_1016_j_jpsychires_2022_03_013 crossref_primary_10_3390_nu15040940 crossref_primary_10_1186_1471_2288_11_41 crossref_primary_10_1038_s41598_021_88041_w crossref_primary_10_1371_journal_pone_0156891 crossref_primary_10_1080_13697137_2020_1767571 crossref_primary_10_1002_14651858_CD012268 crossref_primary_10_1016_j_parkreldis_2015_12_008 crossref_primary_10_1186_1741_7015_10_62 crossref_primary_10_5946_ce_2019_211 crossref_primary_10_2196_21156 crossref_primary_10_1002_14651858_CD012260 crossref_primary_10_1002_14651858_CD013591 crossref_primary_10_1002_sim_6225 crossref_primary_10_1007_s10549_020_05637_y crossref_primary_10_1016_j_arthro_2019_02_051 crossref_primary_10_1136_bmjopen_2017_018900 crossref_primary_10_3390_nu15194161 crossref_primary_10_1097_RLU_0000000000000914 crossref_primary_10_3389_fphys_2017_00325 crossref_primary_10_1136_bmjebm_2019_111191 crossref_primary_10_1002_ccd_30017 crossref_primary_10_1002_14651858_CD013561 crossref_primary_10_1186_cc9406 crossref_primary_10_1016_j_jviscsurg_2018_03_014 crossref_primary_10_1186_1741_7015_9_74 crossref_primary_10_1177_1740774509356002 crossref_primary_10_1111_sms_14212 crossref_primary_10_1007_s00405_024_09003_2 crossref_primary_10_1016_j_critrevonc_2021_103414 crossref_primary_10_1016_j_diabet_2016_10_006 crossref_primary_10_1007_s00784_024_05684_5 crossref_primary_10_1016_j_jclinepi_2010_08_002 crossref_primary_10_1016_j_arr_2020_101118 crossref_primary_10_1016_j_medcli_2013_06_013 crossref_primary_10_1002_sim_8422 crossref_primary_10_3390_jcm12062267 crossref_primary_10_1002_14651858_CD013576 crossref_primary_10_1111_jcpt_13598 crossref_primary_10_1186_s13643_018_0812_8 crossref_primary_10_1002_sim_7578 crossref_primary_10_1088_1681_7575_aa6c0e crossref_primary_10_1155_2012_840935 crossref_primary_10_1097_MD_0000000000024812 crossref_primary_10_1136_bmjopen_2019_031220 crossref_primary_10_3892_etm_2021_9631 crossref_primary_10_1055_a_1352_2944 crossref_primary_10_1177_2047487316659573 crossref_primary_10_3310_hta19200 crossref_primary_10_1016_j_eap_2023_05_024 crossref_primary_10_1186_s12887_021_02821_x crossref_primary_10_1002_lt_26183 crossref_primary_10_1016_j_euo_2024_04_011 crossref_primary_10_1002_14651858_CD012691 crossref_primary_10_1002_sim_7588 crossref_primary_10_12688_f1000research_53874_1 crossref_primary_10_3389_fpsyt_2022_991085 crossref_primary_10_1002_14651858_CD012211 crossref_primary_10_1002_sim_7589 crossref_primary_10_12688_f1000research_53874_2 crossref_primary_10_1016_j_parepi_2024_e00388 crossref_primary_10_1002_14651858_CD011677_pub2 crossref_primary_10_1002_14651858_CD011740_pub2 crossref_primary_10_1016_j_treng_2022_100158 crossref_primary_10_1038_s41598_018_21226_y crossref_primary_10_1097_SLA_0b013e31826cc8da crossref_primary_10_1002_14651858_CD011668_pub2 crossref_primary_10_3390_nu13020404 crossref_primary_10_1002_sim_4088 crossref_primary_10_1007_s10648_022_09683_4 crossref_primary_10_1002_14651858_CD014881 crossref_primary_10_1016_j_jaci_2024_10_030 crossref_primary_10_1186_s12916_015_0529_7 crossref_primary_10_1111_eos_12827 crossref_primary_10_3390_microorganisms13040723 crossref_primary_10_1007_s00228_020_03037_1 crossref_primary_10_1007_s42978_023_00263_8 crossref_primary_10_1007_s40519_022_01393_8 crossref_primary_10_1016_j_tsc_2022_101139 crossref_primary_10_1016_j_ajodo_2015_09_022 crossref_primary_10_1016_j_bj_2023_100609 crossref_primary_10_1002_da_20829 crossref_primary_10_1016_j_tube_2022_102166 crossref_primary_10_1002_14651858_CD011340 crossref_primary_10_1002_ejsp_2508 crossref_primary_10_1016_j_phymed_2020_153359 crossref_primary_10_1136_rapm_2024_105776 crossref_primary_10_1002_14651858_CD012720_pub2 crossref_primary_10_1007_s40279_021_01566_y crossref_primary_10_1038_nutd_2015_10 crossref_primary_10_1016_j_cortex_2022_07_008 crossref_primary_10_3389_fphar_2023_1163908 crossref_primary_10_1007_s11695_020_05084_0 crossref_primary_10_1016_j_spinee_2014_01_026 crossref_primary_10_1186_s13102_024_01038_6 crossref_primary_10_3390_jcm12247508 crossref_primary_10_3390_medicina57060546 crossref_primary_10_1136_bmjopen_2023_080263 crossref_primary_10_1183_13993003_00736_2016 crossref_primary_10_1186_s12916_024_03284_4 crossref_primary_10_1016_j_cpr_2018_09_001 crossref_primary_10_1186_2046_4053_2_16 crossref_primary_10_1111_jcpe_12698 crossref_primary_10_1186_2046_4053_3_146 crossref_primary_10_3390_pediatric15030047 crossref_primary_10_1080_00952990_2020_1771723 crossref_primary_10_1097_HJH_0000000000000435 crossref_primary_10_1016_j_ajhg_2009_10_017 crossref_primary_10_1002_sim_7948 crossref_primary_10_1093_ajcn_nqac074 crossref_primary_10_3389_fnut_2021_647122 crossref_primary_10_1080_17453674_2017_1368884 crossref_primary_10_1016_j_jhazmat_2025_137832 crossref_primary_10_3389_fpsyg_2024_1470817 crossref_primary_10_1016_j_jad_2018_12_082 crossref_primary_10_1016_j_fm_2022_104089 crossref_primary_10_1016_j_eclinm_2023_102137 crossref_primary_10_3390_ani12141811 crossref_primary_10_1002_14651858_CD013516 crossref_primary_10_2105_AJPH_2018_304855 crossref_primary_10_1016_j_ctim_2022_102818 crossref_primary_10_1053_j_ajkd_2012_02_332 crossref_primary_10_1002_14651858_CD012661 crossref_primary_10_1002_14651858_CD011361_pub2 crossref_primary_10_1007_s00296_023_05500_5 crossref_primary_10_1007_s12032_017_0951_0 crossref_primary_10_1002_14651858_CD003319_pub2 crossref_primary_10_1016_j_jclinepi_2011_10_009 crossref_primary_10_1002_hep4_1491 crossref_primary_10_1016_j_actatropica_2015_09_023 crossref_primary_10_1097_XEB_0000000000000207 crossref_primary_10_1016_j_jocrd_2020_100527 crossref_primary_10_1186_s12890_015_0140_x crossref_primary_10_3390_ijms25094760 crossref_primary_10_1016_j_ijintrel_2023_101780 crossref_primary_10_1111_biom_13716 crossref_primary_10_1016_j_taap_2024_117160 crossref_primary_10_11124_JBIES_20_00170 crossref_primary_10_1186_s12874_022_01779_3 crossref_primary_10_1186_s41512_024_00167_3 crossref_primary_10_1016_j_jad_2022_03_062 crossref_primary_10_1016_j_smrv_2013_01_004 crossref_primary_10_1002_sim_6631 crossref_primary_10_1016_j_eclinm_2024_102852 crossref_primary_10_1097_JTE_0000000000000075 crossref_primary_10_1055_a_1236_3187 crossref_primary_10_1186_1471_2334_11_122 crossref_primary_10_1016_j_neubiorev_2022_104761 crossref_primary_10_7759_cureus_59215 crossref_primary_10_1002_jrsm_1401 crossref_primary_10_1002_jrsm_1404 crossref_primary_10_1007_s10654_020_00714_4 crossref_primary_10_1080_14616734_2023_2187852 crossref_primary_10_1016_S2213_2600_19_30057_8 crossref_primary_10_1097_FBP_0000000000000044 crossref_primary_10_1111_j_1420_9101_2009_01915_x crossref_primary_10_3390_vaccines12050500 crossref_primary_10_1002_bimj_201900351 crossref_primary_10_1053_j_ajkd_2021_07_003 crossref_primary_10_1002_sim_7974 crossref_primary_10_1111_sms_14603 crossref_primary_10_1097_ADM_0000000000000338 crossref_primary_10_1080_23308249_2019_1583166 crossref_primary_10_1007_s00464_019_07135_9 crossref_primary_10_1111_eos_12409 crossref_primary_10_1016_j_neubiorev_2022_104751 crossref_primary_10_1002_jrsm_1410 crossref_primary_10_1016_j_amjcard_2021_05_028 crossref_primary_10_1093_ejo_cjw048 crossref_primary_10_1002_jrsm_1415 crossref_primary_10_1111_jre_12514 crossref_primary_10_1093_jac_dkr112 crossref_primary_10_1093_ejo_cjw041 crossref_primary_10_1136_bmjopen_2017_019819 crossref_primary_10_14283_jpad_2024_100 crossref_primary_10_1002_14651858_CD011296_pub2 crossref_primary_10_1094_PHYTO_03_10_0069 crossref_primary_10_3390_vaccines12091021 crossref_primary_10_1111_idh_12483 crossref_primary_10_1111_j_1440_1754_2011_02211_x crossref_primary_10_1002_mar_21657 crossref_primary_10_1111_apa_17059 crossref_primary_10_1136_bmjopen_2017_017644 crossref_primary_10_1007_s12560_022_09530_3 crossref_primary_10_1007_s10654_022_00961_7 crossref_primary_10_1093_ejcts_ezx115 crossref_primary_10_1093_ejo_cjw035 crossref_primary_10_1007_s40279_018_01051_z crossref_primary_10_1186_s12245_022_00435_3 crossref_primary_10_1080_17453674_2021_1975398 crossref_primary_10_1097_PCC_0000000000001113 crossref_primary_10_1111_andr_12403 crossref_primary_10_3389_fneur_2021_759759 crossref_primary_10_1097_HJH_0b013e328338e2bb crossref_primary_10_1093_aje_kwac013 crossref_primary_10_1002_sim_7090 crossref_primary_10_1007_s40279_017_0838_4 crossref_primary_10_1371_journal_pone_0307145 crossref_primary_10_1002_14651858_CD011740 crossref_primary_10_1016_j_aap_2015_12_022 crossref_primary_10_1007_s40520_019_01292_6 crossref_primary_10_1186_s13643_017_0466_y crossref_primary_10_1016_j_amjms_2024_12_003 crossref_primary_10_1007_s40279_018_0917_1 crossref_primary_10_1002_sim_9261 crossref_primary_10_1186_s13643_021_01787_2 crossref_primary_10_1038_s41598_024_54170_1 crossref_primary_10_1136_eb_2015_102275 crossref_primary_10_1002_14651858_CD011759 crossref_primary_10_1136_bmjmed_2022_000339 crossref_primary_10_1007_s00423_016_1418_z crossref_primary_10_1136_bjo_2022_322325 crossref_primary_10_1002_jrsm_1442 crossref_primary_10_1186_s13643_018_0763_0 crossref_primary_10_1016_j_cct_2023_107083 crossref_primary_10_1002_hep4_1513 crossref_primary_10_1177_0272989X18759488 crossref_primary_10_1186_s12916_021_02020_6 crossref_primary_10_1136_jnnp_2014_307659 crossref_primary_10_1007_s00404_012_2681_z crossref_primary_10_1111_obr_12759 crossref_primary_10_1093_ilar_ilu042 crossref_primary_10_1186_s12916_016_0692_5 crossref_primary_10_1007_s10995_013_1403_x crossref_primary_10_1371_journal_pone_0280718 crossref_primary_10_1136_bmjopen_2023_076264 crossref_primary_10_1002_14651858_CD010491_pub2 crossref_primary_10_1111_bju_16613 crossref_primary_10_62347_YBJN2231 crossref_primary_10_1016_j_jclinepi_2009_03_007 crossref_primary_10_1038_s41598_021_84573_3 crossref_primary_10_1080_19466315_2020_1865195 crossref_primary_10_1111_1756_185X_13356 crossref_primary_10_7189_jogh_10_020701 crossref_primary_10_1016_j_jad_2022_05_089 crossref_primary_10_1080_15332276_2024_2414180 crossref_primary_10_1002_jrsm_1479 crossref_primary_10_3390_v16091498 crossref_primary_10_1177_2041386614535131 crossref_primary_10_1007_s00198_023_06942_0 crossref_primary_10_1002_jrsm_1475 crossref_primary_10_1093_cid_cix975 crossref_primary_10_1038_s41598_023_44932_8 crossref_primary_10_3389_fnut_2021_670411 crossref_primary_10_1001_jamanetworkopen_2024_24802 crossref_primary_10_1111_ijpo_12692 crossref_primary_10_1017_S0033291719001855 crossref_primary_10_1002_jrsm_1488 crossref_primary_10_1177_1479973119901234 crossref_primary_10_2139_ssrn_3585640 crossref_primary_10_1016_j_comppsych_2019_152135 crossref_primary_10_3389_fphar_2023_1221069 crossref_primary_10_1136_bmjopen_2021_060590 crossref_primary_10_1016_j_brat_2013_08_005 crossref_primary_10_1016_j_jad_2019_04_026 crossref_primary_10_1136_bmjopen_2018_026002 crossref_primary_10_1093_nar_gkw797 crossref_primary_10_1111_ene_14134 crossref_primary_10_1016_j_humov_2011_01_001 crossref_primary_10_1002_14651858_CD006992_pub2 crossref_primary_10_12688_wellcomeopenres_18657_2 crossref_primary_10_1016_j_ijsu_2022_106678 crossref_primary_10_1186_s13643_024_02457_9 crossref_primary_10_12688_wellcomeopenres_18657_1 crossref_primary_10_1016_j_ijcard_2018_06_114 crossref_primary_10_1136_bmjgh_2018_000858 crossref_primary_10_3390_jcm11247289 crossref_primary_10_1016_j_gie_2016_01_039 crossref_primary_10_1002_jrsm_1490 crossref_primary_10_1002_jrsm_1491 crossref_primary_10_1111_imj_14325 crossref_primary_10_1007_s00198_016_3578_7 crossref_primary_10_1016_j_xkme_2021_03_014 crossref_primary_10_1177_0962280215597260 crossref_primary_10_7189_jogh_15_04072 crossref_primary_10_1002_sim_5726 crossref_primary_10_1002_14651858_CD013656_pub2 crossref_primary_10_1017_S003329171800421X crossref_primary_10_1111_iju_12070 crossref_primary_10_3389_fnmol_2018_00450 crossref_primary_10_1002_jso_25410 crossref_primary_10_1371_journal_pone_0078073 crossref_primary_10_1111_dme_14170 crossref_primary_10_1002_ptr_7759 crossref_primary_10_1016_j_sapharm_2021_06_002 crossref_primary_10_1136_bmjopen_2017_017248 crossref_primary_10_1186_s40697_015_0040_2 crossref_primary_10_1136_heartjnl_2013_304394 crossref_primary_10_33206_mjss_810834 crossref_primary_10_1016_j_joca_2020_10_004 crossref_primary_10_1136_ebnurs_2020_103318 crossref_primary_10_1002_sim_5730 crossref_primary_10_1002_jcsm_13477 crossref_primary_10_1016_S1474_4422_14_70267_4 crossref_primary_10_1002_jrsm_1037 crossref_primary_10_3310_phr09080 crossref_primary_10_1002_jrsm_1039 crossref_primary_10_1371_journal_pone_0263760 crossref_primary_10_1016_j_clml_2024_07_008 crossref_primary_10_1097_PSY_0000000000001333 crossref_primary_10_1016_j_wneu_2021_07_034 crossref_primary_10_1016_j_nutres_2022_09_006 crossref_primary_10_1136_bmjopen_2020_037478 crossref_primary_10_1371_journal_pone_0184065 crossref_primary_10_1016_j_ajog_2022_04_023 crossref_primary_10_1002_jrsm_1049 crossref_primary_10_1002_jrsm_1045 crossref_primary_10_1038_s41598_023_40009_8 crossref_primary_10_1016_j_jadr_2023_100465 crossref_primary_10_1002_sim_7491 crossref_primary_10_1007_s40725_022_00175_w crossref_primary_10_1002_sim_6163 crossref_primary_10_1016_j_thromres_2023_12_009 crossref_primary_10_3390_children10091481 crossref_primary_10_1007_s12529_016_9596_1 crossref_primary_10_1016_j_asjsur_2019_03_019 crossref_primary_10_1002_jrsm_1053 crossref_primary_10_1111_eci_13536 crossref_primary_10_1097_SLA_0b013e3182864fd6 crossref_primary_10_1002_14651858_CD013064 crossref_primary_10_1080_10669817_2023_2252187 crossref_primary_10_1186_1756_0500_7_139 crossref_primary_10_1042_BSR20192721 crossref_primary_10_1093_ejo_cjs033 crossref_primary_10_5127_jep_009610 crossref_primary_10_1002_csr_1716 crossref_primary_10_1016_j_envint_2021_106663 crossref_primary_10_1097_PSY_0000000000001321 crossref_primary_10_1183_23120541_00231_2018 crossref_primary_10_3390_cancers11111699 crossref_primary_10_1002_jrsm_1065 crossref_primary_10_1002_jrsm_1066 crossref_primary_10_1093_advances_nmaa055 crossref_primary_10_1111_eci_13524 crossref_primary_10_1002_sim_6188 crossref_primary_10_1002_cl2_1443 crossref_primary_10_1002_sim_8362 crossref_primary_10_1016_j_heliyon_2023_e19956 crossref_primary_10_1094_PHYTO_02_21_0056_R crossref_primary_10_1002_14651858_CD013071 crossref_primary_10_1002_sim_8360 crossref_primary_10_1186_s12872_021_02349_z crossref_primary_10_1016_j_apmr_2024_06_015 crossref_primary_10_3310_DABW4814 crossref_primary_10_1016_j_aap_2018_08_001 crossref_primary_10_1080_01635581_2020_1733625 crossref_primary_10_1016_j_cardfail_2021_08_012 crossref_primary_10_1136_bmjopen_2018_021636 crossref_primary_10_3390_cancers14112785 crossref_primary_10_1002_sim_6191 crossref_primary_10_1016_j_jclinepi_2021_06_011 crossref_primary_10_1016_j_diabres_2019_107924 crossref_primary_10_1136_bmjos_2021_100272 crossref_primary_10_1002_clc_23508 crossref_primary_10_1016_j_jshs_2020_06_009 crossref_primary_10_1016_j_jclinepi_2015_05_030 crossref_primary_10_1038_s41380_023_02347_x crossref_primary_10_1136_bmj_k4738 crossref_primary_10_1002_pits_22100 crossref_primary_10_1097_j_pain_0000000000002753 crossref_primary_10_1634_theoncologist_2018_0358 crossref_primary_10_1002_jrsm_1081 crossref_primary_10_1002_ptr_6833 crossref_primary_10_1007_s10072_025_08016_x crossref_primary_10_1136_bmjopen_2016_011271 crossref_primary_10_12793_jkscpt_2012_20_1_17 crossref_primary_10_1002_14651858_CD007153_pub2 crossref_primary_10_1177_2047487314566758 crossref_primary_10_1136_bmjopen_2016_011258 crossref_primary_10_1016_j_jhin_2023_12_014 crossref_primary_10_3390_s21020479 crossref_primary_10_1016_j_jclinepi_2015_05_009 crossref_primary_10_1111_obr_12714 crossref_primary_10_1002_ijc_34199 crossref_primary_10_1111_jgs_13835 crossref_primary_10_1214_13_BA806 crossref_primary_10_1016_j_socscimed_2014_12_034 crossref_primary_10_1016_j_lungcan_2021_06_004 crossref_primary_10_1136_bmjopen_2022_068313 crossref_primary_10_3310_hta20120 crossref_primary_10_1161_JAHA_120_019291 crossref_primary_10_1002_ijgo_14334 crossref_primary_10_1007_s00464_024_11019_y crossref_primary_10_1002_14651858_CD005061_pub3 crossref_primary_10_1136_bmjopen_2020_042828 crossref_primary_10_1136_bmjopen_2017_021344 crossref_primary_10_1002_14651858_CD013035 crossref_primary_10_1016_S2215_0366_19_30181_6 crossref_primary_10_1016_j_jinf_2019_07_012 crossref_primary_10_1111_trf_16952 crossref_primary_10_1245_s10434_021_10759_8 crossref_primary_10_1002_14651858_CD013007 crossref_primary_10_1210_jc_2012_3682 crossref_primary_10_1016_j_jspi_2018_12_003 crossref_primary_10_1111_jvh_12846 crossref_primary_10_1080_14760584_2023_2289566 crossref_primary_10_1007_s12016_023_08964_2 crossref_primary_10_1016_j_jad_2020_03_024 crossref_primary_10_1093_bib_bbr020 crossref_primary_10_1136_bmjos_2020_100074 crossref_primary_10_1111_bdi_12490 crossref_primary_10_1038_s44271_024_00124_2 crossref_primary_10_1080_07853890_2020_1790643 crossref_primary_10_1016_j_smrv_2022_101682 crossref_primary_10_1016_j_jhazmat_2024_135067 crossref_primary_10_1136_bmjopen_2018_028066 crossref_primary_10_1002_sim_5471 crossref_primary_10_1093_ehjqcco_qcab075 crossref_primary_10_1002_14651858_CD012161 crossref_primary_10_1002_sim_8981 crossref_primary_10_1002_14651858_CD013498 crossref_primary_10_1002_clc_22333 crossref_primary_10_1183_13993003_02964_2020 crossref_primary_10_3390_youth3010010 crossref_primary_10_1136_eb_2014_101795 crossref_primary_10_1007_s40279_020_01348_y crossref_primary_10_1146_annurev_statistics_010814_020249 crossref_primary_10_1016_j_apm_2020_12_037 crossref_primary_10_1080_00949655_2017_1402331 crossref_primary_10_1371_journal_pone_0129181 crossref_primary_10_1016_j_ejso_2020_06_037 crossref_primary_10_1161_CIR_0000000000000523 crossref_primary_10_1002_sim_8516 crossref_primary_10_4103_EUS_D_20_00198 crossref_primary_10_1002_14651858_CD005613_pub4 crossref_primary_10_2139_ssrn_4868762 crossref_primary_10_1002_sim_7665 crossref_primary_10_1016_j_rehab_2024_101894 crossref_primary_10_1186_s13075_015_0533_5 crossref_primary_10_1080_13811118_2020_1804024 crossref_primary_10_3389_fonc_2023_1194718 crossref_primary_10_1186_s12916_020_01766_9 crossref_primary_10_1186_s12874_019_0676_1 crossref_primary_10_1002_14651858_CD010888_pub2 crossref_primary_10_1007_s13194_021_00348_7 crossref_primary_10_1111_biom_12998 crossref_primary_10_1097_MD_0000000000010116 crossref_primary_10_1111_acps_13088 crossref_primary_10_1371_journal_pone_0025164 crossref_primary_10_1002_14651858_CD011296 crossref_primary_10_1177_0962280217705678 crossref_primary_10_1093_dote_doy130 crossref_primary_10_1186_s12966_017_0558_z crossref_primary_10_1111_jocn_17554 crossref_primary_10_1371_journal_pbio_3002667 crossref_primary_10_1519_JSC_0000000000004570 crossref_primary_10_1186_1471_2288_12_34 crossref_primary_10_1002_bimj_201800071 crossref_primary_10_3389_fneur_2021_780080 crossref_primary_10_1002_sim_4172 crossref_primary_10_1016_j_jclinepi_2015_03_008 crossref_primary_10_1016_j_jclinepi_2024_111543 crossref_primary_10_1111_acps_13066 crossref_primary_10_1136_bmjsem_2022_001312 crossref_primary_10_1371_journal_pone_0090897 crossref_primary_10_1093_ajcn_nqx082 crossref_primary_10_1371_journal_pone_0249831 crossref_primary_10_1007_s10682_012_9555_5 crossref_primary_10_1002_14651858_CD007651_pub3 crossref_primary_10_2106_JBJS_RVW_24_00067 crossref_primary_10_1007_s00167_022_07304_9 crossref_primary_10_1080_01621459_2017_1385465 crossref_primary_10_1055_a_1341_0788 crossref_primary_10_1371_journal_pone_0099682 crossref_primary_10_1186_s13643_020_01476_6 crossref_primary_10_1093_jnci_djad135 crossref_primary_10_1016_j_jclinepi_2021_03_010 crossref_primary_10_1002_cam4_3051 crossref_primary_10_1017_S104161021700271X crossref_primary_10_1186_1471_2288_12_56 crossref_primary_10_1159_000525406 crossref_primary_10_1159_000441457 crossref_primary_10_1016_S2215_0366_19_30511_5 crossref_primary_10_1002_sim_8555 crossref_primary_10_1080_19466315_2022_2050291 crossref_primary_10_1111_jcpt_13442 crossref_primary_10_1111_1471_0528_16683 crossref_primary_10_1002_jcla_24759 crossref_primary_10_1002_glia_23962 crossref_primary_10_1002_14651858_CD012796_pub2 crossref_primary_10_1002_14651858_CD012105 crossref_primary_10_1080_20445911_2023_2260050 crossref_primary_10_1094_PDIS_09_20_2046_RE crossref_primary_10_1186_s12879_015_0872_5 crossref_primary_10_1186_s12891_016_0919_9 crossref_primary_10_1002_14651858_CD013591_pub2 crossref_primary_10_1002_14651858_CD012581 crossref_primary_10_1542_peds_2022_056540 crossref_primary_10_1002_14651858_CD011800_pub2 crossref_primary_10_1016_j_jaac_2017_03_013 crossref_primary_10_1146_annurev_orgpsych_031921_021922 crossref_primary_10_1002_sim_6381 crossref_primary_10_1186_1471_2288_14_120 crossref_primary_10_1080_00401706_2014_962707 crossref_primary_10_1177_1088868314544223 crossref_primary_10_1002_bimj_201700266 crossref_primary_10_1007_s00520_018_4216_z crossref_primary_10_1002_bimj_201700265 crossref_primary_10_1016_j_jpsychires_2015_01_004 crossref_primary_10_1002_14651858_CD010371 crossref_primary_10_1055_a_1483_9406 crossref_primary_10_1007_s10658_013_0365_6 crossref_primary_10_1016_j_avsg_2016_06_030 crossref_primary_10_3390_epidemiologia5020016 crossref_primary_10_2337_dci23_0031 crossref_primary_10_2903_j_efsa_2017_4971 crossref_primary_10_1016_j_gie_2022_10_009 crossref_primary_10_1177_17562848241255295 crossref_primary_10_1214_24_BA1465 crossref_primary_10_1371_journal_pntd_0010610 crossref_primary_10_3390_ijms25105374 crossref_primary_10_1016_j_ajpc_2024_100874 crossref_primary_10_1016_j_ctim_2022_102913 crossref_primary_10_1016_j_jclinepi_2018_04_017 crossref_primary_10_1214_22_AOAS1600 crossref_primary_10_1002_14651858_CD011688 crossref_primary_10_1016_j_jvb_2020_103397 crossref_primary_10_1016_j_cmi_2015_06_022 crossref_primary_10_1093_ije_dys041 crossref_primary_10_1155_2013_783103 crossref_primary_10_1016_j_cortex_2017_08_008 crossref_primary_10_1016_j_apmr_2021_12_019 crossref_primary_10_1016_j_ypmed_2009_09_018 crossref_primary_10_1111_crj_12278 crossref_primary_10_14309_ajg_0000000000001614 crossref_primary_10_1002_14651858_CD011697 crossref_primary_10_2196_54324 crossref_primary_10_1016_j_jbi_2014_07_018 crossref_primary_10_1136_bmj_k4597 crossref_primary_10_3390_vaccines12060640 crossref_primary_10_1016_j_igie_2024_02_003 crossref_primary_10_1016_j_igie_2023_07_003 crossref_primary_10_1016_j_nut_2020_110960 crossref_primary_10_1016_j_psychres_2024_116118 crossref_primary_10_1177_09622802241309750 crossref_primary_10_1002_jmv_29343 crossref_primary_10_1097_CM9_0000000000001892 crossref_primary_10_1007_s10648_013_9244_0 crossref_primary_10_1016_j_diabres_2018_01_004 crossref_primary_10_1186_1471_2407_13_538 crossref_primary_10_1007_s13253_021_00485_9 crossref_primary_10_1016_j_bone_2012_11_031 crossref_primary_10_1186_s12874_017_0315_7 crossref_primary_10_1176_appi_ps_201700114 crossref_primary_10_1186_s13063_016_1720_7 crossref_primary_10_1007_s10067_019_04590_6 crossref_primary_10_1371_journal_pone_0114023 crossref_primary_10_1097_MCG_0000000000001860 crossref_primary_10_1002_14651858_CD012512 crossref_primary_10_3109_02699052_2015_1118764 crossref_primary_10_1002_14651858_CD011667 crossref_primary_10_1002_14651858_CD011668 crossref_primary_10_1111_j_1467_985X_2008_00593_x crossref_primary_10_1177_1740774518755122 crossref_primary_10_12688_f1000research_129182_2 crossref_primary_10_12688_f1000research_129182_1 crossref_primary_10_3389_fnagi_2020_00184 crossref_primary_10_1002_14651858_CD011462_pub2 crossref_primary_10_1002_14651858_CD010751_pub2 crossref_primary_10_1177_2632084320957207 crossref_primary_10_1016_j_jadohealth_2024_10_032 crossref_primary_10_1093_annonc_mdu106 crossref_primary_10_1002_jrsm_1526 crossref_primary_10_2217_imt_2023_0001 crossref_primary_10_1177_00368504221101636 crossref_primary_10_1002_14651858_CD013858 crossref_primary_10_1080_00273171_2023_2229310 crossref_primary_10_1002_jrsm_1517 crossref_primary_10_1177_02655322221112364 crossref_primary_10_1186_s12885_018_4163_6 crossref_primary_10_1002_14651858_CD013828 crossref_primary_10_1002_14651858_CD010319 crossref_primary_10_1016_j_jclinepi_2014_08_012 crossref_primary_10_1002_sim_7625 crossref_primary_10_1002_ijc_29044 crossref_primary_10_1007_s11739_019_02204_2 crossref_primary_10_1002_sim_9808 crossref_primary_10_1002_sim_8959 crossref_primary_10_1111_idh_12364 crossref_primary_10_1002_14651858_CD012368_pub2 crossref_primary_10_1111_ocr_12237 crossref_primary_10_1016_j_envint_2016_02_013 crossref_primary_10_3390_diseases11030103 crossref_primary_10_1016_S1470_2045_18_30535_7 crossref_primary_10_3390_ijerph19116479 crossref_primary_10_1016_j_amjsurg_2025_116245 crossref_primary_10_3390_bs14100939 crossref_primary_10_4073_csr_2018_6 crossref_primary_10_1002_14651858_CD011658 crossref_primary_10_1002_sim_9817 crossref_primary_10_1097_NCC_0000000000001348 crossref_primary_10_1016_j_parkreldis_2018_08_017 crossref_primary_10_1002_mds_25898 crossref_primary_10_1002_sim_5453 crossref_primary_10_1371_journal_pone_0171028 crossref_primary_10_1007_s10648_023_09831_4 crossref_primary_10_1111_ene_13905 crossref_primary_10_5183_jjscs_1212001_203 crossref_primary_10_1007_s11764_024_01579_2 crossref_primary_10_1177_17562848251324227 crossref_primary_10_1002_14651858_CD011629 crossref_primary_10_1016_j_gie_2022_04_004 crossref_primary_10_1108_JADEE_02_2022_0028 crossref_primary_10_1002_jrsm_6 crossref_primary_10_1007_s00056_018_0123_7 crossref_primary_10_1177_0962280211432512 crossref_primary_10_1016_j_jpsychires_2018_05_020 crossref_primary_10_1002_sim_8057 crossref_primary_10_3413_Nukmed_0808_16_03 crossref_primary_10_1002_14651858_CD011919_pub2 crossref_primary_10_1002_14651858_CD012581_pub2 crossref_primary_10_1002_14651858_CD011840_pub2 crossref_primary_10_1002_jrsm_1566 crossref_primary_10_3389_fgene_2022_807466 crossref_primary_10_1007_s00784_023_04881_y crossref_primary_10_1214_22_AOAS1699 crossref_primary_10_1016_j_ejvs_2015_05_002 crossref_primary_10_1016_j_jhsa_2018_06_120 crossref_primary_10_1002_14651858_CD010787 crossref_primary_10_1002_jrsm_1562 crossref_primary_10_1093_ejo_cjt064 crossref_primary_10_1111_jcpe_13050 crossref_primary_10_1002_cl2_1381 crossref_primary_10_1371_journal_pone_0151537 crossref_primary_10_1007_s10654_012_9738_y crossref_primary_10_1111_ipd_12963 crossref_primary_10_1002_jrsm_4 crossref_primary_10_1002_pst_532 crossref_primary_10_3390_jpm12040545 crossref_primary_10_1016_j_sleep_2015_08_012 crossref_primary_10_1016_j_xnsj_2021_100086 crossref_primary_10_1016_S2214_109X_24_00003_2 crossref_primary_10_1002_jrsm_1576 crossref_primary_10_1097_ICL_0000000000000327 crossref_primary_10_1007_s00464_019_06819_6 crossref_primary_10_1038_s41598_017_18296_9 crossref_primary_10_1186_s13643_017_0443_5 crossref_primary_10_1371_journal_pone_0060650 crossref_primary_10_1097_CRD_0000000000000453 crossref_primary_10_1007_s42001_024_00290_7 crossref_primary_10_1002_14651858_CD006424_pub3 crossref_primary_10_1007_s10899_022_10140_8 crossref_primary_10_3109_07420528_2016_1149486 crossref_primary_10_1111_tri_13863 crossref_primary_10_3390_nu13061908 crossref_primary_10_1093_jnci_djz111 crossref_primary_10_1002_pst_1915 crossref_primary_10_3389_fped_2022_851700 crossref_primary_10_1371_journal_pone_0232947 crossref_primary_10_1016_j_gie_2018_11_019 crossref_primary_10_1016_S2213_8587_19_30422_X crossref_primary_10_1016_j_jalz_2016_07_152 crossref_primary_10_1155_2018_9312650 crossref_primary_10_1136_bmjopen_2018_027666 crossref_primary_10_1097_MD_0000000000020718 crossref_primary_10_1111_1471_0528_14971 crossref_primary_10_1016_j_neubiorev_2013_12_004 crossref_primary_10_1002_14651858_CD010736 crossref_primary_10_1002_jrsm_1117 crossref_primary_10_1016_j_jinf_2018_08_017 crossref_primary_10_1002_jrsm_1119 crossref_primary_10_1017_S0266462312000517 crossref_primary_10_1590_s1984_29612024040 crossref_primary_10_1002_sim_5821 crossref_primary_10_1097_HJH_0000000000003727 crossref_primary_10_1093_ofid_ofad233 crossref_primary_10_1016_j_prevetmed_2021_105433 crossref_primary_10_1186_2046_4053_2_80 crossref_primary_10_23736_S0375_9393_22_16775_1 crossref_primary_10_1007_s40279_022_01806_9 crossref_primary_10_1016_j_jrp_2020_103982 crossref_primary_10_4103_EUS_D_21_00268 crossref_primary_10_1007_s00228_021_03212_y crossref_primary_10_1136_bmjopen_2020_038085 crossref_primary_10_1136_bmjopen_2017_017144 crossref_primary_10_1016_j_ophtha_2012_04_020 crossref_primary_10_1186_1471_2288_14_5 crossref_primary_10_1186_s12874_021_01381_z crossref_primary_10_1093_ije_dyad134 crossref_primary_10_3109_0886022X_2016_1172468 crossref_primary_10_1002_jrsm_1122 crossref_primary_10_1016_j_jclinepi_2019_01_002 crossref_primary_10_1007_s00125_012_2677_z crossref_primary_10_1177_0956797616684682 crossref_primary_10_7717_peerj_19060 crossref_primary_10_3389_fimmu_2021_550670 crossref_primary_10_1371_journal_pone_0250385 crossref_primary_10_1088_0026_1394_53_1_S17 crossref_primary_10_1007_s11060_023_04528_8 crossref_primary_10_3389_fped_2021_695610 crossref_primary_10_1371_journal_pmed_1003731 crossref_primary_10_1159_000504170 crossref_primary_10_4103_1673_5374_213551 crossref_primary_10_1002_14651858_CD012106_pub2 crossref_primary_10_1016_j_jval_2025_01_005 crossref_primary_10_1088_1748_605X_acc99a crossref_primary_10_1097_MCG_0000000000001484 crossref_primary_10_3389_fpsyg_2024_1516815 crossref_primary_10_1007_s40273_018_0681_y crossref_primary_10_1093_jpepsy_jsae097 crossref_primary_10_1002_14651858_CD012906 crossref_primary_10_1016_j_suronc_2019_05_014 crossref_primary_10_1177_0962280216659896 crossref_primary_10_1007_s11605_022_05473_z crossref_primary_10_1002_jrsm_1141 crossref_primary_10_1016_j_ejogrb_2024_06_037 crossref_primary_10_1177_17585732221098738 crossref_primary_10_1016_j_jamda_2019_08_009 crossref_primary_10_1007_s40120_020_00213_4 crossref_primary_10_1002_sim_5851 crossref_primary_10_1021_acsbiomaterials_1c01307 crossref_primary_10_1016_j_dld_2019_08_016 crossref_primary_10_1371_journal_pmed_1003750 crossref_primary_10_1136_bmjopen_2019_034298 crossref_primary_10_1371_journal_pone_0155050 crossref_primary_10_1016_j_jmig_2020_11_025 crossref_primary_10_1055_a_1324_7919 crossref_primary_10_1016_j_apmr_2019_09_003 crossref_primary_10_1016_j_jclinepi_2015_10_010 crossref_primary_10_1093_advances_nmab037 crossref_primary_10_1192_bjp_200_5_429 crossref_primary_10_1016_j_igie_2023_03_003 crossref_primary_10_1136_bjsports_2018_099643 crossref_primary_10_1002_14651858_CD012204_pub2 crossref_primary_10_1371_journal_pone_0302408 crossref_primary_10_1016_j_ejim_2022_09_021 crossref_primary_10_1136_eb_2016_102491 crossref_primary_10_1186_s41512_017_0016_z crossref_primary_10_1214_09_STS290 crossref_primary_10_1002_jrsm_1162 crossref_primary_10_1177_17423953231167378 crossref_primary_10_1017_S109285292000156X crossref_primary_10_3389_fphar_2023_1050412 crossref_primary_10_14812_cuefd_1292823 crossref_primary_10_1016_j_imr_2023_101014 crossref_primary_10_1007_s10654_022_00891_4 crossref_primary_10_1542_peds_2018_0134 crossref_primary_10_1080_10543406_2014_919930 crossref_primary_10_1016_j_clnu_2011_11_011 crossref_primary_10_1186_s12916_023_03171_4 crossref_primary_10_1097_PXH_0000000000000023 crossref_primary_10_3389_fvets_2020_00011 crossref_primary_10_1111_jeb_12950 crossref_primary_10_1038_s41598_021_99716_9 crossref_primary_10_1038_s43247_021_00291_8 crossref_primary_10_1002_sim_7140 crossref_primary_10_1002_sim_7141 crossref_primary_10_1093_sleep_zsw011 crossref_primary_10_1002_cl2_1316 crossref_primary_10_1177_1559827620988839 crossref_primary_10_1002_14651858_CD012483_pub2 crossref_primary_10_1002_sim_7156 crossref_primary_10_1016_j_cct_2016_01_008 crossref_primary_10_1053_j_sodo_2013_03_006 crossref_primary_10_1136_bmjopen_2018_022811 crossref_primary_10_1371_journal_pone_0095323 crossref_primary_10_1186_s12916_025_03948_9 crossref_primary_10_12788_jhm_3655 crossref_primary_10_1016_j_clinimag_2021_06_039 crossref_primary_10_1177_2047487318767199 crossref_primary_10_1053_j_jvca_2024_04_030 crossref_primary_10_1038_s41562_024_01994_6 crossref_primary_10_1093_eurjpc_zwae080 crossref_primary_10_1002_jrsm_1193 crossref_primary_10_1186_s12874_017_0376_7 crossref_primary_10_1002_jrsm_1196 crossref_primary_10_1111_rssa_12275 crossref_primary_10_1002_jrsm_1198 crossref_primary_10_1007_s10654_019_00579_2 crossref_primary_10_1002_14651858_CD012076 crossref_primary_10_1016_j_ijcha_2024_101494 crossref_primary_10_1038_s42003_021_01812_z crossref_primary_10_1161_CIRCGENETICS_115_001302 crossref_primary_10_1097_CORR_0000000000000946 crossref_primary_10_1055_a_1490_8493 crossref_primary_10_1136_bmj_2023_077310 crossref_primary_10_1016_j_arr_2019_02_003 crossref_primary_10_1186_s12885_017_3687_5 crossref_primary_10_1089_chi_2020_0056 crossref_primary_10_1111_jfpp_14061 crossref_primary_10_1186_s40798_024_00772_y crossref_primary_10_1016_j_phrs_2021_105418 crossref_primary_10_1055_s_0042_1744541 crossref_primary_10_1002_sim_9354 crossref_primary_10_1136_spcare_2022_003861 crossref_primary_10_1016_j_jdent_2024_105451 crossref_primary_10_1016_j_euroneuro_2013_03_006 crossref_primary_10_1097_CND_0000000000000353 crossref_primary_10_1016_j_joca_2018_10_009 crossref_primary_10_18632_oncotarget_17928 crossref_primary_10_5334_joc_389 crossref_primary_10_1097_QAD_0000000000000027 crossref_primary_10_7314_APJCP_2014_15_13_5229 crossref_primary_10_1111_rssb_12227 crossref_primary_10_1186_s12966_023_01535_w crossref_primary_10_1186_s12874_018_0531_9 crossref_primary_10_3389_fpubh_2023_1144012 crossref_primary_10_3390_ijms25095045 crossref_primary_10_1055_a_1774_4736 crossref_primary_10_1038_s41562_019_0787_z crossref_primary_10_1128_AAC_00424_13 crossref_primary_10_1016_j_clinph_2021_05_015 crossref_primary_10_1007_s41999_019_00233_w crossref_primary_10_1007_s00508_020_01702_0 crossref_primary_10_1136_bmjopen_2017_020381 crossref_primary_10_3390_nu8120747 crossref_primary_10_1080_13697137_2016_1221919 crossref_primary_10_1016_j_jad_2021_05_020 crossref_primary_10_1186_s12879_020_05133_0 crossref_primary_10_1055_a_1765_4035 |
Cites_doi | 10.1136/bmj.317.7153.235 10.1002/0470854200 10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9 10.1002/sim.4780122405 10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G 10.1002/sim.4780142408 10.1093/oxfordjournals.aje.a117644 10.1136/bmj.323.7303.42 10.2307/2530862 10.1080/00401706.2000.10485740 10.1002/sim.1009 10.1016/0197-2456(86)90046-2 10.1002/sim.2528 10.1002/sim.4780101105 10.1016/j.cct.2006.04.004 10.1002/sim.791 10.1111/j.1467-985X.2004.00349.x 10.1002/sim.4780100604 10.1177/0272989X05282643 10.1198/016214504000001024 10.1214/aos/1176346239 10.1002/sim.4780140406 10.1002/9780470316870 10.1055/s-0038-1633931 10.1080/00031305.1998.10480567 10.1002/sim.2897 10.1002/sim.1186 10.1002/sim.1189 10.1201/9780429258411 10.1002/sim.1586 10.1002/sim.1375 10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A 10.1002/sim.2514 10.7326/0003-4819-130-12-199906150-00019 10.1111/j.0006-341X.1999.00732.x 10.1002/bimj.4710320316 10.1002/sim.4780090808 10.1016/0895-4356(94)00110-C 10.1002/sim.1183 10.1002/sim.4780121305 10.1136/bmj.315.7109.629 10.1002/sim.4780060304 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0 10.1080/01621459.1983.10477920 10.1016/0895-4356(92)90085-2 10.3102/10769986010002075 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2343::AID-SIM260>3.0.CO;2-3 10.1002/sim.2666 10.1002/(SICI)1097-0258(19970730)16:14<1645::AID-SIM596>3.0.CO;2-G 10.1002/sim.4780060327 10.1111/j.0006-341X.1999.00129.x 10.1016/0895-4356(94)00084-4 10.1136/bmj.309.6965.1351 10.1002/sim.1187 10.1017/S0033291707009877 10.2307/2531491 10.1002/sim.2112 10.1002/bimj.200510175 10.1093/biomet/80.1.127 10.1093/biostatistics/2.4.463 10.1111/1467-9868.00353 10.1080/01621459.1995.10476572 10.1002/sim.4780060333 10.1258/1355819021927674 10.1080/01621459.1978.10480103 10.1002/sim.4780060306 10.1111/j.0006-341X.1999.00117.x |
ContentType | Journal Article |
Copyright | Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd. Journal compilation © 2009 Royal Statistical Society 2009 INIST-CNRS Copyright Blackwell Publishing Ltd. Jan 2009 2009 The Royal Statistical Society and Blackwell Publishing Ltd 2009 |
Copyright_xml | – notice: Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd. – notice: Journal compilation © 2009 Royal Statistical Society – notice: 2009 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Jan 2009 – notice: 2009 The Royal Statistical Society and Blackwell Publishing Ltd 2009 |
DBID | FBQ BSCLL 24P AAYXX CITATION IQODW NPM DKI X2L 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7X8 7S9 L.6 5PM |
DOI | 10.1111/j.1467-985X.2008.00552.x |
DatabaseName | AGRIS Istex Wiley Online Library Open Access CrossRef Pascal-Francis PubMed RePEc IDEAS RePEc Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef PubMed Computer and Information Systems Abstracts AGRICOLA MEDLINE - Academic International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-985X |
EndPage | 159 |
ExternalDocumentID | PMC2667312 1968618891 blajorssa_v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137_159_htm 19381330 20981093 10_1111_j_1467_985X_2008_00552_x RSSA552 30136745 ark_67375_WNG_NK6R45DG_4 US201301573239 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: British Heart Foundation grantid: RG/08/014/24067 – fundername: Medical Research Council grantid: MC_U105260557 – fundername: Medical Research Council grantid: MC_U105285807 |
GroupedDBID | -~X .3N .GA .Y3 05W 07C 0R~ 10A 1OB 1OC 1OL 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 66C 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAGJQ AAHHS AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABFAN ABHUG ABIVO ABPFR ABPTD ABWST ABYAD ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVGU AFVYC AFXHP AFXKK AFZJQ AGJLS AIHXQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ANFBD ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EFSUC EJD EMK EOH F00 F5P FBQ FEDTE FVMVE G-S G.N GODZA H.T H.X HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 NF~ O66 O9- OJZSN OWPYF P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SAMSI SUPJJ TH9 TN5 UB1 VUG W8V W99 WBKPD WIH WIK WOHZO WQJ WYISQ XBAML XG1 YF5 YQT ZGI ZL0 ZZTAW ~IA ~WT AANHP AARHZ AAUAY AAWIL ABAWQ ABDFA ABPQH ABXSQ ACHJO ACRPL ACYXJ ADNMO ADZMN AGLNM AGQPQ AHQJS AIHAF AJNCP ALRMG ALUQN AMVHM ATGXG BCRHZ BSCLL H13 IPSME NU- OIG 24P AAYXX CITATION IQODW NPM 08R 0R 31 3N AS DKI FSPIC GA HZ IA IPNFZ MEWTI NF P4A PQEST RIG WRC WT X X2L Y3 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c8732-6bf7bb416e62ce1abdd73ed830052d626c04ab2e0ff249e73200e6a2efc616053 |
IEDL.DBID | 24P |
ISSN | 0964-1998 |
IngestDate | Thu Aug 21 14:09:59 EDT 2025 Sun Sep 28 01:33:58 EDT 2025 Thu Sep 04 15:47:26 EDT 2025 Sun Sep 28 01:38:18 EDT 2025 Thu Sep 04 23:32:46 EDT 2025 Sat Sep 06 22:21:29 EDT 2025 Fri Oct 15 12:32:05 EDT 2021 Mon Jul 21 05:29:33 EDT 2025 Mon Jul 21 09:13:55 EDT 2025 Thu Apr 24 22:54:51 EDT 2025 Tue Jul 01 00:50:54 EDT 2025 Tue Sep 09 05:09:26 EDT 2025 Thu Jul 03 21:08:00 EDT 2025 Sun Sep 21 06:26:26 EDT 2025 Wed Dec 27 19:15:20 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bayes estimation Random-effects models Prediction Gaussian distribution Prediction theory Non parametric estimation Statistical estimation Multivariate analysis Random distribution Stochastic process Mean estimation Prediction interval Meta-analysis Statistical method Hypothesis test Heterogeneity Statistical test Distribution function Systematic reviews Random effect Filtering theory Application |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c8732-6bf7bb416e62ce1abdd73ed830052d626c04ab2e0ff249e73200e6a2efc616053 |
Notes | http://dx.doi.org/10.1111/j.1467-985X.2008.00552.x istex:34D4527B2E6B62007442A43B1C8EE9B0DCC5B8AB ark:/67375/WNG-NK6R45DG-4 ArticleID:RSSA552 Re‐use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-985X.2008.00552.x |
PMID | 19381330 |
PQID | 872797581 |
PQPubID | 105636 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2667312 proquest_miscellaneous_48187772 proquest_miscellaneous_37049696 proquest_miscellaneous_33474624 proquest_miscellaneous_1835470434 proquest_journals_872797581 repec_primary_blajorssa_v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137_159_htm pubmed_primary_19381330 pascalfrancis_primary_20981093 crossref_primary_10_1111_j_1467_985X_2008_00552_x crossref_citationtrail_10_1111_j_1467_985X_2008_00552_x wiley_primary_10_1111_j_1467_985X_2008_00552_x_RSSA552 jstor_primary_30136745 istex_primary_ark_67375_WNG_NK6R45DG_4 fao_agris_US201301573239 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2009 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: January 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationSeriesTitle | Journal of the Royal Statistical Society Series A |
PublicationTitle | Journal of the Royal Statistical Society. Series A, Statistics in society |
PublicationTitleAlternate | J R Stat Soc Ser A Stat Soc |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Publishing Blackwell Royal Statistical Society Oxford University Press |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell – name: Royal Statistical Society – name: Oxford University Press |
References | O'Hagan, A. (1994) Kendall's Advanced Theory of Statistics, vol. 2B, Bayesian Inference. London: Arnold. Thompson, S. G. (1994) Why sources of heterogeneity in meta-analysis should be investigated. Br. Med. J., 309, 1351-1355. Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. London: Academic Press. Louis, T. A. (1991) Using Empirical Bayes methods in biopharmaceutical research. Statist. Med., 10, 811-829. Bailey, K. R. (1987) Inter-study differences-how should they influence the interpretation and analysis of results. Statist. Med., 6, 351-360. Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R. and Jones, D. R. (2005) How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statist. Med., 24, 2401-2428. Whitehead, A. (2002) Meta-analysis of Controlled Clinical Trials. Chichester: Wiley. Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. (2008) Bias modelling in evidence synthesis. J. R. Statist. Soc. A, to be published. Tjur, T. (1998) Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models. Am. Statistn, 52, 222-227. Eddy, D. M., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method. San Diego: Academic Press. Spiegelhalter, D. J. and Best, N. G. (2003) Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Statist. Med., 22, 3687-3709. Burr, D., Doss, H., Cooke, G. E. and Goldschmidt-Clermont, P. J. (2003) A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease. Statist. Med., 22, 1741-1760. Welton, N. J., Ades, A. E., Carlin, J. B., Altman, D. G. and Sterne, J. A. C. (2008) Models for potentially biased evidence in meta-analysis using empirically based priors. J. R. Statist. Soc. A, to be published. Greenland, S. and O'Rourke, K. (2001) On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions. Biostatistics, 2, 463-471. Knapp, G., Biggerstaff, B. J. and Hartung, J. (2006) Assessing the amount of heterogeneity in random-effects meta-analysis. Biometr. J., 48, 271-285. Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayes. Anal., 1, 515-533. Smith, T. C., Spiegelhalter, D. J. and Thomas, A. (1995) Bayesian approaches to random-effects meta-analysis: a comparative study. Statist. Med., 14, 2685-2699. Lee, K. J. and Thompson, S. G. (2007) Flexible parametric models for random-effects distributions. Statist. Med., 27, 418-434. Hedges, L. V. (1987) Commentary. Statist. Med., 6, 381-385. Warn, D. E., Thompson, S. G. and Spiegelhalter, D. J. (2002) Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Statist. Med., 21, 1601-1623. Light, R. J. (1987) Accumulating evidence from independent studies-what we can win and what we can lose. Statist. Med., 6, 221-231. Viechtbauer, W. (2007) Confidence intervals for the amount of heterogeneity in meta-analysis. Statist. Med., 26, 37-52. Anello, C. and Fleiss, J. L. (1995) Exploratory or analytic meta-analysis: should we distinguish between them? J. Clin. Epidem., 48, 109-116. Biggerstaff, B. J. and Tweedie, R. L. (1997) Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statist. Med., 16, 753-768. DerSimonian, R. and Kacker, R. (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp. Clin. Trials, 28, 105-114. Kass, R. E. and Raftery, A. E. (1995) Bayes Factors. J. Am. Statist. Ass., 90, 773-795. Higgins, J. P. T. and Whitehead, A. (1996) Borrowing strength from external trials in a meta-analysis. Statist. Med., 15, 2733-2749. Gelman, A. B., Carlin, J. S., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis. Boca Raton: Chapman and Hall-CRC. Pan, G. H. and Wolfe, D. A. (1997) Test for qualitative interaction of clinical significance. Statist. Med., 16, 1645-1652. Colditz, G. A., Burdick, E. and Mosteller, F. (1995) Heterogeneity in meta-analysis of data from epidemiologic studies: Commentary. Am. J. Epidem., 142, 371-382. Detsky, A. S., Naylor, C. D., O'Rourke, K., McGeer, A. J. and Labbe, K. A. (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J. Clin. Epidem., 45, 255-265. Laird, N. and Louis, T. A. (1989) Empirical Bayes confidence intervals for a series of related experiments. Biometrics, 45, 481-495. Robbins, H. (1983) Some thoughts on empirical Bayes estimation. Ann. Statist., 11, 713-723. Goodman, S. N. (1999) Toward evidence-based medical statistics, 2: the Bayes factor. Ann. Intern. Med., 130, 1005-1013. Hardy, R. J. and Thompson, S. G. (1998) Detecting and describing heterogeneity in meta-analysis. Statist. Med., 17, 841-856. Raudenbush, S. W. and Bryk, A. S. (1985) Empirical Bayes meta-analysis. J. Educ. Statist., 10, 75-98. Laird, N. (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Statist. Ass., 73, 805-811. Böhning, D. (2005) Meta-analysis: a unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality. Meth. Inform. Med., 44, 127-135. Morris, C. N. and Normand, S. L. (1992) Hierachical models for combining information and for meta-analysis. Bayes. Statist., 4, 321-344. Follmann, D. A. and Proschan, M. A. (1999) Valid inference in random effects meta-analysis. Biometrics, 55, 732-737. Gail, M. and Simon, R. (1985) Testing for qualitative interaction between treatment effects and patient subsets. Biometrics, 41, 361-372. Feinstein, A. R. (1995) Meta-analysis: statistical alchemy for the 21st century. J. Clin. Epidem., 48, 71-79. Thompson, S. G. and Higgins, J. P. T. (2002) How should meta-regression analyses be undertaken and interpreted? Statist. Med., 21, 1559-1574. Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003) WinBUGS User Manual, Version 1.4. Cambridge: Medical Research Council Biostatistics Unit. Burr, D. and Doss, H. (2005) A Bayesian semiparametric model for random-effects meta-analysis. J. Am. Statist. Ass., 100, 242-251. Aitkin, M. (1999a) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 117-128. Glasziou, P. P. and Sanders, S. L. (2002) Investigating causes of heterogeneity in systematic reviews. Statist. Med., 21, 1503-1511. Abrams, K. R. and Sanso, B. (1998) Approximate Bayesian inference in random effects meta-analysis. Statist. Med., 17, 201-218. Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chichester: Wiley. Greenland, S. (2005) Multiple-bias modelling for analysis of observational data. J. R. Statist. Soc. A, 168, 267-291. Hartung, J. and Knapp, G. (2001a) A refined method for the meta-analysis of controlled clinical trials with binary outcome. Statist. Med., 20, 3875-3889. Morris, C. N. (1983) Parametric empirical Bayes inference: theory and applications. J. Am. Statist. Ass., 78, 47-65. Skene, A. M. and Wakefield, J. C. (1990) Hierarchical models for multicentre binary response studies. Statist. Med., 9, 919-929. DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Contr. Clin. Trials, 7, 177-188. Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. Br. Med. J., 315, 629-634. Aitkin, M. (1999b) Meta-analysis by random effect modelling in generalized linear models. Statist. Med., 18, 2343-2351. Berkey, C. S., Hoaglin, D. C., Mosteller, F. and Colditz, G. A. (1995) A random-effects regression model for meta-analysis. Statist. Med., 14, 395-411. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639. Peto, R. (1987) Why do we need systematic overviews of randomised trials? Statist. Med., 6, 233-240. Vangel, M. G. and Rukhin, A. L. (1999) Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies. Biometrics, 55, 129-136. Bradburn, M. J., Deeks, J. J., Berlin, J. A. and Localio, A. R. (2006) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statist. Med., 26, 53-77. Hardy, R. J. and Thompson, S. G. (1996) A likelihood approach to meta-analysis with random effects. Statist. Med., 15, 619-629. Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. Br. Med. J., 317, 235-240. Van Houwelingen, H. C., Zwinderman, K. H. and Stijnen, T. (1993) A bivariate approach to meta-analysis. Statist. Med., 12, 2273-2284. Whitehead, A. and Whitehead, J. (1991) A general parametric approach to the meta-analysis of randomised clinical trials. Statist. Med., 10, 1665-1677. Stijnen, T. and Van Houwelingen, J. C. (1990) Empirical Bayes methods in clinical trials meta-analysis. Biometr. J., 32, 335-346. Raghunathan, T. E. and Ii, Y. C. (1993) Analysis of binary data from a multicenter clinical-trial. Biometrika, 80, 127-139. Roberts, M. E., Tchanturia, K., Stahl, D., Southgate, L. and Treasure, J. (2007) A systematic review and meta-analysis of set-shifting ability in eating disorders. Psychol. Med., 37, 1075-1084. Ohlssen, D. I., Sharples, L. D. and Spiegelhalter, D. J. (2007) Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Statist. Med., 26, 2088-2112. Hartung, J. and Knapp, G. (2001b) On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statist. Med., 20, 1771-1782. Piantadosi, S. and Gail, M. H. (1993) A comparison of the power of two tests for qualitative interactions. Statist. Med., 12, 1239-1248. Böhning, D. (2000) Computer-assisted Analysis 1997; 315 1999b; 18 1989; 45 1991; 10 1999a; 55 1978; 73 1987; 6 1998; 317 2001a; 20 2001b; 20 2005; 24 1983; 11 2007; 37 2005; 25 2007; 28 1998; 17 1986; 7 2000 2005; 100 2006; 26 1999; 55 1985 1997; 16 1999; 130 1993; 80 1998; 52 1992; 45 1985; 10 1989 1992; 4 2007; 26 1994; 309 2007; 27 1990; 32 1995; 90 1995; 14 2002; 7 1998 2008 2006 1995 1994 1985; 41 1992 2006; 1 2003 2002 1996; 15 2005; 44 2001; 323 1956 1983; 78 1993; 12 2002; 64 1995; 48 2005; 168 2002; 21 2006; 48 2001; 2 1995; 142 1990; 9 2003; 22 Hardy (2023032309081474300_) 1996; 15 Raudenbush (2023032309081474300_) 1985; 10 Egger (2023032309081474300_) 1997; 315 Pauler (2023032309081474300_) 2000 Aitkin (2023032309081474300_) 1999; 18 Anello (2023032309081474300_) 1995; 48 Eddy (2023032309081474300_) 1992 Ades (2023032309081474300_) 2005; 25 Aitkin (2023032309081474300_) 1999; 55 Cochrane Injuries Group Albumin Reviewers (2023032309081474300_) 1998; 317 Goodman (2023032309081474300_) 1999; 130 Greenland (2023032309081474300_) 2001; 2 Follmann (2023032309081474300_) 1999; 55 Berkey (2023032309081474300_) 1995; 14 Louis (2023032309081474300_) 1991; 10 DerSimonian (2023032309081474300_) 1986; 7 Skene (2023032309081474300_) 1990; 9 Morris (2023032309081474300_) 1992; 4 Smith (2023032309081474300_) 1995; 14 Böhning (2023032309081474300_) 2005; 44 Gelman (2023032309081474300_) 2006; 1 Welton (2023032309081474300_) 2008 Raghunathan (2023032309081474300_) 1993; 80 Larholt (2023032309081474300_) 1989 Böhning (2023032309081474300_) 2000 Feinstein (2023032309081474300_) 1995; 48 Higgins (2023032309081474300_) 1996; 15 Turner (2023032309081474300_) 2008 Morris (2023032309081474300_) 1983; 78 Higgins (2023032309081474300_) 2002; 7 Hartung (2023032309081474300_) 2001; 20 Burr (2023032309081474300_) 2005; 100 Thompson (2023032309081474300_) 1994; 309 Spiegelhalter (2023032309081474300_) 2002; 64 Whitehead (2023032309081474300_) 2002 Kass (2023032309081474300_) 1995; 90 Spiegelhalter (2023032309081474300_) 2003; 22 Tjur (2023032309081474300_) 1998; 52 Whitehead (2023032309081474300_) 1991; 10 Thompson (2023032309081474300_) 2002; 21 Detsky (2023032309081474300_) 1992; 45 Bailey (2023032309081474300_) 1987; 6 Jüni (2023032309081474300_) 2001; 323 Vangel (2023032309081474300_) 1999; 55 Light (2023032309081474300_) 1987; 6 Biggerstaff (2023032309081474300_) 1997; 16 Knapp (2023032309081474300_) 2006; 48 Spiegelhalter (2023032309081474300_) 2003 Cox (2023032309081474300_) 2006 Bradburn (2023032309081474300_) 2006; 26 Lee (2023032309081474300_) 2007; 27 Thompson (2023032309081474300_) 1998 Gail (2023032309081474300_) 1985; 41 Pan (2023032309081474300_) 1997; 16 Glasziou (2023032309081474300_) 2002; 21 Stijnen (2023032309081474300_) 1990; 32 DuMouchel (2023032309081474300_) 1994 DerSimonian (2023032309081474300_) 2007; 28 Higgins (2023032309081474300_) 2002; 21 Viechtbauer (2023032309081474300_) 2007; 26 Greenland (2023032309081474300_) 2005; 168 Hardy (2023032309081474300_) 1998; 17 Van Houwelingen (2023032309081474300_) 1993; 12 O’Hagan (2023032309081474300_) 1994 Peto (2023032309081474300_) 1987; 6 Laird (2023032309081474300_) 1989; 45 Robbins (2023032309081474300_) 1983; 11 Gelman (2023032309081474300_) 1995 Piantadosi (2023032309081474300_) 1993; 12 Lambert (2023032309081474300_) 2005; 24 Roberts (2023032309081474300_) 2007; 37 Bernardo (2023032309081474300_) 1994 Stein (2023032309081474300_) 1956 Laird (2023032309081474300_) 1978; 73 Colditz (2023032309081474300_) 1995; 142 Hedges (2023032309081474300_) 1985 Ohlssen (2023032309081474300_) 2007; 26 DuMouchel (2023032309081474300_) 2000 Hedges (2023032309081474300_) 1987; 6 Burr (2023032309081474300_) 2003; 22 Abrams (2023032309081474300_) 1998; 17 Warn (2023032309081474300_) 2002; 21 |
References_xml | – reference: Stijnen, T. and Van Houwelingen, J. C. (1990) Empirical Bayes methods in clinical trials meta-analysis. Biometr. J., 32, 335-346. – reference: Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. Br. Med. J., 317, 235-240. – reference: Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. Br. Med. J., 315, 629-634. – reference: Hartung, J. and Knapp, G. (2001a) A refined method for the meta-analysis of controlled clinical trials with binary outcome. Statist. Med., 20, 3875-3889. – reference: Higgins, J. P. T. and Whitehead, A. (1996) Borrowing strength from external trials in a meta-analysis. Statist. Med., 15, 2733-2749. – reference: Roberts, M. E., Tchanturia, K., Stahl, D., Southgate, L. and Treasure, J. (2007) A systematic review and meta-analysis of set-shifting ability in eating disorders. Psychol. Med., 37, 1075-1084. – reference: Higgins, J. P. T. and Thompson, S. G. (2002) Quantifying heterogeneity in a meta-analysis. Statist. Med., 21, 1539-1558. – reference: Hedges, L. V. (1987) Commentary. Statist. Med., 6, 381-385. – reference: O'Hagan, A. (1994) Kendall's Advanced Theory of Statistics, vol. 2B, Bayesian Inference. London: Arnold. – reference: Smith, T. C., Spiegelhalter, D. J. and Thomas, A. (1995) Bayesian approaches to random-effects meta-analysis: a comparative study. Statist. Med., 14, 2685-2699. – reference: Goodman, S. N. (1999) Toward evidence-based medical statistics, 2: the Bayes factor. Ann. Intern. Med., 130, 1005-1013. – reference: Whitehead, A. (2002) Meta-analysis of Controlled Clinical Trials. Chichester: Wiley. – reference: DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Contr. Clin. Trials, 7, 177-188. – reference: Burr, D., Doss, H., Cooke, G. E. and Goldschmidt-Clermont, P. J. (2003) A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease. Statist. Med., 22, 1741-1760. – reference: Hardy, R. J. and Thompson, S. G. (1996) A likelihood approach to meta-analysis with random effects. Statist. Med., 15, 619-629. – reference: Whitehead, A. and Whitehead, J. (1991) A general parametric approach to the meta-analysis of randomised clinical trials. Statist. Med., 10, 1665-1677. – reference: Abrams, K. R. and Sanso, B. (1998) Approximate Bayesian inference in random effects meta-analysis. Statist. Med., 17, 201-218. – reference: Knapp, G., Biggerstaff, B. J. and Hartung, J. (2006) Assessing the amount of heterogeneity in random-effects meta-analysis. Biometr. J., 48, 271-285. – reference: Eddy, D. M., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method. San Diego: Academic Press. – reference: Higgins, J., Thompson, S., Deeks, J. and Altman, D. (2002) Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J. Hlth Serv. Res. Poly, 7, 51-61. – reference: Jüni, P., Altman, D. G. and Egger, M. (2001) Assessing the quality of controlled clinical trials. Br. Med. J., 323, 42-46. – reference: Peto, R. (1987) Why do we need systematic overviews of randomised trials? Statist. Med., 6, 233-240. – reference: Thompson, S. G. and Higgins, J. P. T. (2002) How should meta-regression analyses be undertaken and interpreted? Statist. Med., 21, 1559-1574. – reference: Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. (2008) Bias modelling in evidence synthesis. J. R. Statist. Soc. A, to be published. – reference: Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639. – reference: Louis, T. A. (1991) Using Empirical Bayes methods in biopharmaceutical research. Statist. Med., 10, 811-829. – reference: Burr, D. and Doss, H. (2005) A Bayesian semiparametric model for random-effects meta-analysis. J. Am. Statist. Ass., 100, 242-251. – reference: Viechtbauer, W. (2007) Confidence intervals for the amount of heterogeneity in meta-analysis. Statist. Med., 26, 37-52. – reference: Bradburn, M. J., Deeks, J. J., Berlin, J. A. and Localio, A. R. (2006) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statist. Med., 26, 53-77. – reference: Morris, C. N. (1983) Parametric empirical Bayes inference: theory and applications. J. Am. Statist. Ass., 78, 47-65. – reference: Warn, D. E., Thompson, S. G. and Spiegelhalter, D. J. (2002) Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Statist. Med., 21, 1601-1623. – reference: Vangel, M. G. and Rukhin, A. L. (1999) Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies. Biometrics, 55, 129-136. – reference: Follmann, D. A. and Proschan, M. A. (1999) Valid inference in random effects meta-analysis. Biometrics, 55, 732-737. – reference: Bailey, K. R. (1987) Inter-study differences-how should they influence the interpretation and analysis of results. Statist. Med., 6, 351-360. – reference: Laird, N. and Louis, T. A. (1989) Empirical Bayes confidence intervals for a series of related experiments. Biometrics, 45, 481-495. – reference: Anello, C. and Fleiss, J. L. (1995) Exploratory or analytic meta-analysis: should we distinguish between them? J. Clin. Epidem., 48, 109-116. – reference: Feinstein, A. R. (1995) Meta-analysis: statistical alchemy for the 21st century. J. Clin. Epidem., 48, 71-79. – reference: Greenland, S. (2005) Multiple-bias modelling for analysis of observational data. J. R. Statist. Soc. A, 168, 267-291. – reference: Greenland, S. and O'Rourke, K. (2001) On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions. Biostatistics, 2, 463-471. – reference: Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chichester: Wiley. – reference: Robbins, H. (1983) Some thoughts on empirical Bayes estimation. Ann. Statist., 11, 713-723. – reference: Colditz, G. A., Burdick, E. and Mosteller, F. (1995) Heterogeneity in meta-analysis of data from epidemiologic studies: Commentary. Am. J. Epidem., 142, 371-382. – reference: Böhning, D. (2005) Meta-analysis: a unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality. Meth. Inform. Med., 44, 127-135. – reference: Raudenbush, S. W. and Bryk, A. S. (1985) Empirical Bayes meta-analysis. J. Educ. Statist., 10, 75-98. – reference: DerSimonian, R. and Kacker, R. (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp. Clin. Trials, 28, 105-114. – reference: Ades, A. E., Lu, G. and Higgins, J. P. T. (2005) The interpretation of random-effects meta-analysis in decision models. Med. Decsn Mak., 25, 646-654. – reference: Biggerstaff, B. J. and Tweedie, R. L. (1997) Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statist. Med., 16, 753-768. – reference: Skene, A. M. and Wakefield, J. C. (1990) Hierarchical models for multicentre binary response studies. Statist. Med., 9, 919-929. – reference: Aitkin, M. (1999a) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 117-128. – reference: Detsky, A. S., Naylor, C. D., O'Rourke, K., McGeer, A. J. and Labbe, K. A. (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J. Clin. Epidem., 45, 255-265. – reference: Glasziou, P. P. and Sanders, S. L. (2002) Investigating causes of heterogeneity in systematic reviews. Statist. Med., 21, 1503-1511. – reference: Kass, R. E. and Raftery, A. E. (1995) Bayes Factors. J. Am. Statist. Ass., 90, 773-795. – reference: Raghunathan, T. E. and Ii, Y. C. (1993) Analysis of binary data from a multicenter clinical-trial. Biometrika, 80, 127-139. – reference: Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003) WinBUGS User Manual, Version 1.4. Cambridge: Medical Research Council Biostatistics Unit. – reference: Hardy, R. J. and Thompson, S. G. (1998) Detecting and describing heterogeneity in meta-analysis. Statist. Med., 17, 841-856. – reference: Laird, N. (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Statist. Ass., 73, 805-811. – reference: Morris, C. N. and Normand, S. L. (1992) Hierachical models for combining information and for meta-analysis. Bayes. Statist., 4, 321-344. – reference: Ohlssen, D. I., Sharples, L. D. and Spiegelhalter, D. J. (2007) Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Statist. Med., 26, 2088-2112. – reference: Gail, M. and Simon, R. (1985) Testing for qualitative interaction between treatment effects and patient subsets. Biometrics, 41, 361-372. – reference: Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. London: Academic Press. – reference: Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayes. Anal., 1, 515-533. – reference: Hartung, J. and Knapp, G. (2001b) On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statist. Med., 20, 1771-1782. – reference: Lee, K. J. and Thompson, S. G. (2007) Flexible parametric models for random-effects distributions. Statist. Med., 27, 418-434. – reference: Pan, G. H. and Wolfe, D. A. (1997) Test for qualitative interaction of clinical significance. Statist. Med., 16, 1645-1652. – reference: Light, R. J. (1987) Accumulating evidence from independent studies-what we can win and what we can lose. Statist. Med., 6, 221-231. – reference: Aitkin, M. (1999b) Meta-analysis by random effect modelling in generalized linear models. Statist. Med., 18, 2343-2351. – reference: Gelman, A. B., Carlin, J. S., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis. Boca Raton: Chapman and Hall-CRC. – reference: Piantadosi, S. and Gail, M. H. (1993) A comparison of the power of two tests for qualitative interactions. Statist. Med., 12, 1239-1248. – reference: Tjur, T. (1998) Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models. Am. Statistn, 52, 222-227. – reference: Thompson, S. G. (1994) Why sources of heterogeneity in meta-analysis should be investigated. Br. Med. J., 309, 1351-1355. – reference: Böhning, D. (2000) Computer-assisted Analysis of Mixtures and Applications: Meta-analysis, Disease Mapping and Others. Boca Raton: Chapman and Hall-CRC. – reference: Van Houwelingen, H. C., Zwinderman, K. H. and Stijnen, T. (1993) A bivariate approach to meta-analysis. Statist. Med., 12, 2273-2284. – reference: Welton, N. J., Ades, A. E., Carlin, J. B., Altman, D. G. and Sterne, J. A. C. (2008) Models for potentially biased evidence in meta-analysis using empirically based priors. J. R. Statist. Soc. A, to be published. – reference: Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R. and Jones, D. R. (2005) How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statist. Med., 24, 2401-2428. – reference: Spiegelhalter, D. J. and Best, N. G. (2003) Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Statist. Med., 22, 3687-3709. – reference: Berkey, C. S., Hoaglin, D. C., Mosteller, F. and Colditz, G. A. (1995) A random-effects regression model for meta-analysis. Statist. Med., 14, 395-411. – year: 1985 – volume: 52 start-page: 222 year: 1998 end-page: 227 article-title: Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models publication-title: Am. Statistn – volume: 100 start-page: 242 year: 2005 end-page: 251 article-title: A Bayesian semiparametric model for random‐effects meta‐analysis publication-title: J. Am. Statist. Ass. – volume: 28 start-page: 105 year: 2007 end-page: 114 article-title: Random‐effects model for meta‐analysis of clinical trials: an update publication-title: Contemp. Clin. Trials – volume: 1 start-page: 515 year: 2006 end-page: 533 article-title: Prior distributions for variance parameters in hierarchical models publication-title: Bayes. Anal. – volume: 309 start-page: 1351 year: 1994 end-page: 1355 article-title: Why sources of heterogeneity in meta‐analysis should be investigated publication-title: Br. Med. J. – volume: 130 start-page: 1005 year: 1999 end-page: 1013 article-title: Toward evidence‐based medical statistics, 2: the Bayes factor publication-title: Ann. Intern. Med. – year: 1989 – volume: 41 start-page: 361 year: 1985 end-page: 372 article-title: Testing for qualitative interaction between treatment effects and patient subsets publication-title: Biometrics – start-page: 2570 year: 1998 end-page: 2579 – volume: 142 start-page: 371 year: 1995 end-page: 382 article-title: Heterogeneity in meta‐analysis of data from epidemiologic studies: Commentary publication-title: Am. J. Epidem. – volume: 7 start-page: 177 year: 1986 end-page: 188 article-title: Meta‐analysis in clinical trials publication-title: Contr. Clin. Trials – start-page: 127 year: 2000 end-page: 178 – volume: 64 start-page: 583 year: 2002 end-page: 639 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Statist. Soc. B – volume: 73 start-page: 805 year: 1978 end-page: 811 article-title: Nonparametric maximum likelihood estimation of a mixing distribution publication-title: J. Am. Statist. Ass. – start-page: 197 year: 1956 end-page: 206 – volume: 22 start-page: 1741 year: 2003 end-page: 1760 article-title: A meta‐analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease publication-title: Statist. Med. – volume: 2 start-page: 463 year: 2001 end-page: 471 article-title: On the bias produced by quality scores in meta‐analysis, and a hierarchical view of proposed solutions publication-title: Biostatistics – year: 1994 – volume: 15 start-page: 2733 year: 1996 end-page: 2749 article-title: Borrowing strength from external trials in a meta‐analysis publication-title: Statist. Med. – volume: 317 start-page: 235 year: 1998 end-page: 240 article-title: Human albumin administration in critically ill patients: systematic review of randomised controlled trials publication-title: Br. Med. J. – volume: 37 start-page: 1075 year: 2007 end-page: 1084 article-title: A systematic review and meta‐analysis of set‐shifting ability in eating disorders publication-title: Psychol. Med. – volume: 21 start-page: 1539 year: 2002 end-page: 1558 article-title: Quantifying heterogeneity in a meta‐analysis publication-title: Statist. Med. – volume: 32 start-page: 335 year: 1990 end-page: 346 article-title: Empirical Bayes methods in clinical trials meta‐analysis publication-title: Biometr. J. – volume: 26 start-page: 37 year: 2007 end-page: 52 article-title: Confidence intervals for the amount of heterogeneity in meta‐analysis publication-title: Statist. Med. – volume: 16 start-page: 753 year: 1997 end-page: 768 article-title: Incorporating variability in estimates of heterogeneity in the random effects model in meta‐analysis publication-title: Statist. Med. – volume: 55 start-page: 117 year: 1999a end-page: 128 article-title: A general maximum likelihood analysis of variance components in generalized linear models publication-title: Biometrics – volume: 6 start-page: 351 year: 1987 end-page: 360 article-title: Inter‐study differences—how should they influence the interpretation and analysis of results publication-title: Statist. Med. – year: 2008 article-title: Models for potentially biased evidence in meta‐analysis using empirically based priors publication-title: J. R. Statist. Soc. A – volume: 25 start-page: 646 year: 2005 end-page: 654 article-title: The interpretation of random‐effects meta‐analysis in decision models publication-title: Med. Decsn Mak. – volume: 21 start-page: 1559 year: 2002 end-page: 1574 article-title: How should meta‐regression analyses be undertaken and interpreted? publication-title: Statist. Med. – volume: 4 start-page: 321 year: 1992 end-page: 344 article-title: Hierachical models for combining information and for meta‐analysis publication-title: Bayes. Statist. – volume: 45 start-page: 255 year: 1992 end-page: 265 article-title: Incorporating variations in the quality of individual randomized trials into meta‐analysis publication-title: J. Clin. Epidem. – volume: 48 start-page: 271 year: 2006 end-page: 285 article-title: Assessing the amount of heterogeneity in random‐effects meta‐analysis publication-title: Biometr. J. – volume: 9 start-page: 919 year: 1990 end-page: 929 article-title: Hierarchical models for multicentre binary response studies publication-title: Statist. Med. – start-page: 205 year: 2000 end-page: 230 – year: 2008 article-title: Bias modelling in evidence synthesis publication-title: J. R. Statist. Soc. A – volume: 315 start-page: 629 year: 1997 end-page: 634 article-title: Bias in meta‐analysis detected by a simple, graphical test publication-title: Br. Med. J. – volume: 17 start-page: 841 year: 1998 end-page: 856 article-title: Detecting and describing heterogeneity in meta‐analysis publication-title: Statist. Med. – volume: 12 start-page: 1239 year: 1993 end-page: 1248 article-title: A comparison of the power of two tests for qualitative interactions publication-title: Statist. Med. – volume: 55 start-page: 732 year: 1999 end-page: 737 article-title: Valid inference in random effects meta‐analysis publication-title: Biometrics – volume: 6 start-page: 381 year: 1987 end-page: 385 article-title: Commentary publication-title: Statist. Med. – volume: 7 start-page: 51 year: 2002 end-page: 61 article-title: Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice publication-title: J. Hlth Serv. Res. Poly – volume: 44 start-page: 127 year: 2005 end-page: 135 article-title: Meta‐analysis: a unifying meta‐likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality publication-title: Meth. Inform. Med. – volume: 20 start-page: 1771 year: 2001b end-page: 1782 article-title: On tests of the overall treatment effect in meta‐analysis with normally distributed responses publication-title: Statist. Med. – start-page: 1074 year: 2006 end-page: 1081 – volume: 6 start-page: 233 year: 1987 end-page: 240 article-title: Why do we need systematic overviews of randomised trials? publication-title: Statist. Med. – volume: 26 start-page: 53 year: 2006 end-page: 77 article-title: Much ado about nothing: a comparison of the performance of meta‐analytical methods with rare events publication-title: Statist. Med. – volume: 45 start-page: 481 year: 1989 end-page: 495 article-title: Empirical Bayes confidence intervals for a series of related experiments publication-title: Biometrics – volume: 26 start-page: 2088 year: 2007 end-page: 2112 article-title: Flexible random‐effects models using Bayesian semi‐parametric models: applications to institutional comparisons publication-title: Statist. Med. – volume: 48 start-page: 71 year: 1995 end-page: 79 article-title: Meta‐analysis: statistical alchemy for the 21st century publication-title: J. Clin. Epidem. – volume: 78 start-page: 47 year: 1983 end-page: 65 article-title: Parametric empirical Bayes inference: theory and applications publication-title: J. Am. Statist. Ass. – volume: 48 start-page: 109 year: 1995 end-page: 116 article-title: Exploratory or analytic meta‐analysis: should we distinguish between them? publication-title: J. Clin. Epidem. – year: 2003 – year: 2000 – volume: 15 start-page: 619 year: 1996 end-page: 629 article-title: A likelihood approach to meta‐analysis with random effects publication-title: Statist. Med. – volume: 10 start-page: 75 year: 1985 end-page: 98 article-title: Empirical Bayes meta‐analysis publication-title: J. Educ. Statist. – volume: 14 start-page: 2685 year: 1995 end-page: 2699 article-title: Bayesian approaches to random‐effects meta‐analysis: a comparative study publication-title: Statist. Med. – volume: 10 start-page: 811 year: 1991 end-page: 829 article-title: Using Empirical Bayes methods in biopharmaceutical research publication-title: Statist. Med. – volume: 21 start-page: 1601 year: 2002 end-page: 1623 article-title: Bayesian random effects meta‐analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales publication-title: Statist. Med. – volume: 168 start-page: 267 year: 2005 end-page: 291 article-title: Multiple‐bias modelling for analysis of observational data publication-title: J. R. Statist. Soc. A – year: 1992 – volume: 12 start-page: 2273 year: 1993 end-page: 2284 article-title: A bivariate approach to meta‐analysis publication-title: Statist. Med. – volume: 10 start-page: 1665 year: 1991 end-page: 1677 article-title: A general parametric approach to the meta‐analysis of randomised clinical trials publication-title: Statist. Med. – volume: 17 start-page: 201 year: 1998 end-page: 218 article-title: Approximate Bayesian inference in random effects meta‐analysis publication-title: Statist. Med. – volume: 24 start-page: 2401 year: 2005 end-page: 2428 article-title: How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS publication-title: Statist. Med. – volume: 80 start-page: 127 year: 1993 end-page: 139 article-title: Analysis of binary data from a multicenter clinical‐trial publication-title: Biometrika – volume: 20 start-page: 3875 year: 2001a end-page: 3889 article-title: A refined method for the meta‐analysis of controlled clinical trials with binary outcome publication-title: Statist. Med. – volume: 27 start-page: 418 year: 2007 end-page: 434 article-title: Flexible parametric models for random‐effects distributions publication-title: Statist. Med. – volume: 16 start-page: 1645 year: 1997 end-page: 1652 article-title: Test for qualitative interaction of clinical significance publication-title: Statist. Med. – volume: 323 start-page: 42 year: 2001 end-page: 46 article-title: Assessing the quality of controlled clinical trials publication-title: Br. Med. J. – year: 2002 – volume: 90 start-page: 773 year: 1995 end-page: 795 article-title: Bayes Factors publication-title: J. Am. Statist. Ass. – volume: 11 start-page: 713 year: 1983 end-page: 723 article-title: Some thoughts on empirical Bayes estimation publication-title: Ann. Statist. – volume: 22 start-page: 3687 year: 2003 end-page: 3709 article-title: Bayesian approaches to multiple sources of evidence and uncertainty in complex cost‐effectiveness modelling publication-title: Statist. Med. – volume: 55 start-page: 129 year: 1999 end-page: 136 article-title: Maximum likelihood analysis for heteroscedastic one‐way random effects ANOVA in interlaboratory studies publication-title: Biometrics – year: 1995 – volume: 18 start-page: 2343 year: 1999b end-page: 2351 article-title: Meta‐analysis by random effect modelling in generalized linear models publication-title: Statist. Med. – volume: 21 start-page: 1503 year: 2002 end-page: 1511 article-title: Investigating causes of heterogeneity in systematic reviews publication-title: Statist. Med. – volume: 6 start-page: 221 year: 1987 end-page: 231 article-title: Accumulating evidence from independent studies—what we can win and what we can lose publication-title: Statist. Med. – volume: 14 start-page: 395 year: 1995 end-page: 411 article-title: A random‐effects regression model for meta‐analysis publication-title: Statist. Med. – volume: 317 start-page: 235 year: 1998 ident: 2023032309081474300_ article-title: Human albumin administration in critically ill patients: systematic review of randomised controlled trials publication-title: Br. Med. J. doi: 10.1136/bmj.317.7153.235 – volume-title: Statistical Methods for Meta-analysis year: 1985 ident: 2023032309081474300_ – volume-title: Meta-analysis of Controlled Clinical Trials year: 2002 ident: 2023032309081474300_ doi: 10.1002/0470854200 – volume: 17 start-page: 201 year: 1998 ident: 2023032309081474300_ article-title: Approximate Bayesian inference in random effects meta-analysis publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9 – volume: 12 start-page: 2273 year: 1993 ident: 2023032309081474300_ article-title: A bivariate approach to meta-analysis publication-title: Statist. Med. doi: 10.1002/sim.4780122405 – volume: 17 start-page: 841 year: 1998 ident: 2023032309081474300_ article-title: Detecting and describing heterogeneity in meta-analysis publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D – volume: 16 start-page: 753 year: 1997 ident: 2023032309081474300_ article-title: Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G – volume: 14 start-page: 2685 year: 1995 ident: 2023032309081474300_ article-title: Bayesian approaches to random-effects meta-analysis: a comparative study publication-title: Statist. Med. doi: 10.1002/sim.4780142408 – volume: 142 start-page: 371 year: 1995 ident: 2023032309081474300_ article-title: Heterogeneity in meta-analysis of data from epidemiologic studies: Commentary publication-title: Am. J. Epidem. doi: 10.1093/oxfordjournals.aje.a117644 – volume: 323 start-page: 42 year: 2001 ident: 2023032309081474300_ article-title: Assessing the quality of controlled clinical trials publication-title: Br. Med. J. doi: 10.1136/bmj.323.7303.42 – volume: 41 start-page: 361 year: 1985 ident: 2023032309081474300_ article-title: Testing for qualitative interaction between treatment effects and patient subsets publication-title: Biometrics doi: 10.2307/2530862 – volume-title: Computer-assisted Analysis of Mixtures and Applications: Meta-analysis, Disease Mapping and Others year: 2000 ident: 2023032309081474300_ doi: 10.1080/00401706.2000.10485740 – volume: 20 start-page: 3875 year: 2001 ident: 2023032309081474300_ article-title: A refined method for the meta-analysis of controlled clinical trials with binary outcome publication-title: Statist. Med. doi: 10.1002/sim.1009 – volume: 7 start-page: 177 year: 1986 ident: 2023032309081474300_ article-title: Meta-analysis in clinical trials publication-title: Contr. Clin. Trials doi: 10.1016/0197-2456(86)90046-2 – volume: 26 start-page: 53 year: 2006 ident: 2023032309081474300_ article-title: Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events publication-title: Statist. Med. doi: 10.1002/sim.2528 – volume: 10 start-page: 1665 year: 1991 ident: 2023032309081474300_ article-title: A general parametric approach to the meta-analysis of randomised clinical trials publication-title: Statist. Med. doi: 10.1002/sim.4780101105 – volume: 28 start-page: 105 year: 2007 ident: 2023032309081474300_ article-title: Random-effects model for meta-analysis of clinical trials: an update publication-title: Contemp. Clin. Trials doi: 10.1016/j.cct.2006.04.004 – volume: 20 start-page: 1771 year: 2001 ident: 2023032309081474300_ article-title: On tests of the overall treatment effect in meta-analysis with normally distributed responses publication-title: Statist. Med. doi: 10.1002/sim.791 – volume: 168 start-page: 267 year: 2005 ident: 2023032309081474300_ article-title: Multiple-bias modelling for analysis of observational data publication-title: J. R. Statist. Soc. A doi: 10.1111/j.1467-985X.2004.00349.x – year: 2008 ident: 2023032309081474300_ article-title: Bias modelling in evidence synthesis publication-title: J. R. Statist. Soc. A – volume: 10 start-page: 811 year: 1991 ident: 2023032309081474300_ article-title: Using Empirical Bayes methods in biopharmaceutical research publication-title: Statist. Med. doi: 10.1002/sim.4780100604 – volume: 25 start-page: 646 year: 2005 ident: 2023032309081474300_ article-title: The interpretation of random-effects meta-analysis in decision models publication-title: Med. Decsn Mak. doi: 10.1177/0272989X05282643 – volume: 100 start-page: 242 year: 2005 ident: 2023032309081474300_ article-title: A Bayesian semiparametric model for random-effects meta-analysis publication-title: J. Am. Statist. Ass. doi: 10.1198/016214504000001024 – volume: 11 start-page: 713 year: 1983 ident: 2023032309081474300_ article-title: Some thoughts on empirical Bayes estimation publication-title: Ann. Statist. doi: 10.1214/aos/1176346239 – volume: 14 start-page: 395 year: 1995 ident: 2023032309081474300_ article-title: A random-effects regression model for meta-analysis publication-title: Statist. Med. doi: 10.1002/sim.4780140406 – volume-title: Hierarchical Bayes linear models for meta-analysis year: 1994 ident: 2023032309081474300_ – volume-title: Bayesian Theory year: 1994 ident: 2023032309081474300_ doi: 10.1002/9780470316870 – volume: 44 start-page: 127 year: 2005 ident: 2023032309081474300_ article-title: Meta-analysis: a unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality publication-title: Meth. Inform. Med. doi: 10.1055/s-0038-1633931 – volume: 52 start-page: 222 year: 1998 ident: 2023032309081474300_ article-title: Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models publication-title: Am. Statistn doi: 10.1080/00031305.1998.10480567 – volume: 27 start-page: 418 year: 2007 ident: 2023032309081474300_ article-title: Flexible parametric models for random-effects distributions publication-title: Statist. Med. doi: 10.1002/sim.2897 – volume: 21 start-page: 1539 year: 2002 ident: 2023032309081474300_ article-title: Quantifying heterogeneity in a meta-analysis publication-title: Statist. Med. doi: 10.1002/sim.1186 – volume: 21 start-page: 1601 year: 2002 ident: 2023032309081474300_ article-title: Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales publication-title: Statist. Med. doi: 10.1002/sim.1189 – start-page: 2570 volume-title: Encyclopedia of Biostatistics year: 1998 ident: 2023032309081474300_ – volume-title: Bayesian Data Analysis year: 1995 ident: 2023032309081474300_ doi: 10.1201/9780429258411 – volume: 1 start-page: 515 year: 2006 ident: 2023032309081474300_ article-title: Prior distributions for variance parameters in hierarchical models publication-title: Bayes. Anal. – volume: 22 start-page: 3687 year: 2003 ident: 2023032309081474300_ article-title: Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling publication-title: Statist. Med. doi: 10.1002/sim.1586 – volume: 22 start-page: 1741 year: 2003 ident: 2023032309081474300_ article-title: A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease publication-title: Statist. Med. doi: 10.1002/sim.1375 – volume: 15 start-page: 619 year: 1996 ident: 2023032309081474300_ article-title: A likelihood approach to meta-analysis with random effects publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A – volume-title: Statistical methods and heterogeneity in meta-analysis year: 1989 ident: 2023032309081474300_ – volume: 26 start-page: 37 year: 2007 ident: 2023032309081474300_ article-title: Confidence intervals for the amount of heterogeneity in meta-analysis publication-title: Statist. Med. doi: 10.1002/sim.2514 – volume: 130 start-page: 1005 year: 1999 ident: 2023032309081474300_ article-title: Toward evidence-based medical statistics, 2: the Bayes factor publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-130-12-199906150-00019 – volume: 55 start-page: 732 year: 1999 ident: 2023032309081474300_ article-title: Valid inference in random effects meta-analysis publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00732.x – volume: 4 start-page: 321 year: 1992 ident: 2023032309081474300_ article-title: Hierachical models for combining information and for meta-analysis publication-title: Bayes. Statist. – volume-title: Kendall’s Advanced Theory of Statistics, vol. 2B, Bayesian Inference year: 1994 ident: 2023032309081474300_ – volume: 32 start-page: 335 year: 1990 ident: 2023032309081474300_ article-title: Empirical Bayes methods in clinical trials meta-analysis publication-title: Biometr. J. doi: 10.1002/bimj.4710320316 – volume: 9 start-page: 919 year: 1990 ident: 2023032309081474300_ article-title: Hierarchical models for multicentre binary response studies publication-title: Statist. Med. doi: 10.1002/sim.4780090808 – volume: 48 start-page: 71 year: 1995 ident: 2023032309081474300_ article-title: Meta-analysis: statistical alchemy for the 21st century publication-title: J. Clin. Epidem. doi: 10.1016/0895-4356(94)00110-C – volume: 21 start-page: 1503 year: 2002 ident: 2023032309081474300_ article-title: Investigating causes of heterogeneity in systematic reviews publication-title: Statist. Med. doi: 10.1002/sim.1183 – volume: 12 start-page: 1239 year: 1993 ident: 2023032309081474300_ article-title: A comparison of the power of two tests for qualitative interactions publication-title: Statist. Med. doi: 10.1002/sim.4780121305 – volume: 315 start-page: 629 year: 1997 ident: 2023032309081474300_ article-title: Bias in meta-analysis detected by a simple, graphical test publication-title: Br. Med. J. doi: 10.1136/bmj.315.7109.629 – volume: 6 start-page: 221 year: 1987 ident: 2023032309081474300_ article-title: Accumulating evidence from independent studies—what we can win and what we can lose publication-title: Statist. Med. doi: 10.1002/sim.4780060304 – volume: 15 start-page: 2733 year: 1996 ident: 2023032309081474300_ article-title: Borrowing strength from external trials in a meta-analysis publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0 – volume: 78 start-page: 47 year: 1983 ident: 2023032309081474300_ article-title: Parametric empirical Bayes inference: theory and applications publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1983.10477920 – volume: 45 start-page: 255 year: 1992 ident: 2023032309081474300_ article-title: Incorporating variations in the quality of individual randomized trials into meta-analysis publication-title: J. Clin. Epidem. doi: 10.1016/0895-4356(92)90085-2 – volume: 10 start-page: 75 year: 1985 ident: 2023032309081474300_ article-title: Empirical Bayes meta-analysis publication-title: J. Educ. Statist. doi: 10.3102/10769986010002075 – volume: 18 start-page: 2343 year: 1999 ident: 2023032309081474300_ article-title: Meta-analysis by random effect modelling in generalized linear models publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2343::AID-SIM260>3.0.CO;2-3 – volume: 26 start-page: 2088 year: 2007 ident: 2023032309081474300_ article-title: Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons publication-title: Statist. Med. doi: 10.1002/sim.2666 – volume: 16 start-page: 1645 year: 1997 ident: 2023032309081474300_ article-title: Test for qualitative interaction of clinical significance publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19970730)16:14<1645::AID-SIM596>3.0.CO;2-G – volume: 6 start-page: 351 year: 1987 ident: 2023032309081474300_ article-title: Inter-study differences—how should they influence the interpretation and analysis of results publication-title: Statist. Med. doi: 10.1002/sim.4780060327 – volume-title: WinBUGS User Manual, Version 1.4 year: 2003 ident: 2023032309081474300_ – volume: 55 start-page: 129 year: 1999 ident: 2023032309081474300_ article-title: Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00129.x – year: 2008 ident: 2023032309081474300_ article-title: Models for potentially biased evidence in meta-analysis using empirically based priors publication-title: J. R. Statist. Soc. A – volume: 48 start-page: 109 year: 1995 ident: 2023032309081474300_ article-title: Exploratory or analytic meta-analysis: should we distinguish between them? publication-title: J. Clin. Epidem. doi: 10.1016/0895-4356(94)00084-4 – volume: 309 start-page: 1351 year: 1994 ident: 2023032309081474300_ article-title: Why sources of heterogeneity in meta-analysis should be investigated publication-title: Br. Med. J. doi: 10.1136/bmj.309.6965.1351 – volume: 21 start-page: 1559 year: 2002 ident: 2023032309081474300_ article-title: How should meta-regression analyses be undertaken and interpreted? publication-title: Statist. Med. doi: 10.1002/sim.1187 – volume: 37 start-page: 1075 year: 2007 ident: 2023032309081474300_ article-title: A systematic review and meta-analysis of set-shifting ability in eating disorders publication-title: Psychol. Med. doi: 10.1017/S0033291707009877 – volume: 45 start-page: 481 year: 1989 ident: 2023032309081474300_ article-title: Empirical Bayes confidence intervals for a series of related experiments publication-title: Biometrics doi: 10.2307/2531491 – volume: 24 start-page: 2401 year: 2005 ident: 2023032309081474300_ article-title: How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS publication-title: Statist. Med. doi: 10.1002/sim.2112 – start-page: 1074 volume-title: Encyclopedia of Statistical Sciences year: 2006 ident: 2023032309081474300_ – volume: 48 start-page: 271 year: 2006 ident: 2023032309081474300_ article-title: Assessing the amount of heterogeneity in random-effects meta-analysis publication-title: Biometr. J. doi: 10.1002/bimj.200510175 – volume: 80 start-page: 127 year: 1993 ident: 2023032309081474300_ article-title: Analysis of binary data from a multicenter clinical-trial publication-title: Biometrika doi: 10.1093/biomet/80.1.127 – volume: 2 start-page: 463 year: 2001 ident: 2023032309081474300_ article-title: On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions publication-title: Biostatistics doi: 10.1093/biostatistics/2.4.463 – start-page: 197 volume-title: Proc. 3rd Berkeley Symp year: 1956 ident: 2023032309081474300_ – volume: 64 start-page: 583 year: 2002 ident: 2023032309081474300_ article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Statist. Soc. B doi: 10.1111/1467-9868.00353 – start-page: 127 volume-title: Statistical Methodology in the Pharmaceutical Sciences year: 2000 ident: 2023032309081474300_ – volume: 90 start-page: 773 year: 1995 ident: 2023032309081474300_ article-title: Bayes Factors publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1995.10476572 – volume: 6 start-page: 381 year: 1987 ident: 2023032309081474300_ article-title: Commentary publication-title: Statist. Med. doi: 10.1002/sim.4780060333 – volume: 7 start-page: 51 year: 2002 ident: 2023032309081474300_ article-title: Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice publication-title: J. Hlth Serv. Res. Poly doi: 10.1258/1355819021927674 – volume: 73 start-page: 805 year: 1978 ident: 2023032309081474300_ article-title: Nonparametric maximum likelihood estimation of a mixing distribution publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1978.10480103 – volume: 6 start-page: 233 year: 1987 ident: 2023032309081474300_ article-title: Why do we need systematic overviews of randomised trials? publication-title: Statist. Med. doi: 10.1002/sim.4780060306 – volume-title: Meta-analysis by the Confidence Profile Method year: 1992 ident: 2023032309081474300_ – start-page: 205 volume-title: Meta-analysis in Medicine and Health Policy year: 2000 ident: 2023032309081474300_ – volume: 55 start-page: 117 year: 1999 ident: 2023032309081474300_ article-title: A general maximum likelihood analysis of variance components in generalized linear models publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00117.x |
SSID | ssj0000077 |
Score | 2.495292 |
Snippet | Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different... Meta‐analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random‐effects model, in which the effects underlying different... |
SourceID | pubmedcentral proquest repec pubmed pascalfrancis crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Analysis Applications Bayesian analysis Bayesian method Confidence interval Degrees of freedom Distribution theory Eating disorders Exact sciences and technology Forecasts Gaussian distributions General topics Hypothesis Hypothesis testing Inference Justification Mathematical intervals Mathematics Meta analysis Methodology Modeling Normal distribution Null hypothesis Original Prediction Predictions Probability and statistics Probability theory and stochastic processes Random-effects models Sciences and techniques of general use Standard error Statistical methods Statistical variance Statistics Stochastic processes Systematic reviews Uncertainty |
Title | re-evaluation of random-effects meta-analysis |
URI | https://api.istex.fr/ark:/67375/WNG-NK6R45DG-4/fulltext.pdf https://www.jstor.org/stable/30136745 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-985X.2008.00552.x https://www.ncbi.nlm.nih.gov/pubmed/19381330 http://econpapers.repec.org/article/blajorssa/v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137-159.htm https://www.proquest.com/docview/872797581 https://www.proquest.com/docview/1835470434 https://www.proquest.com/docview/33474624 https://www.proquest.com/docview/37049696 https://www.proquest.com/docview/48187772 https://pubmed.ncbi.nlm.nih.gov/PMC2667312 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgexkPEwzGssEIEuItKPGfOHmsKNtgWoVaKvpm2Ym9Ddamajq0Rz4Cn5FPwl2SZkTb0MRDkzQ5u5HvbP_Ovv6OkDfOSkuZc4EUuFpFcxEYl6aBcBrGyQScDIvrkCeD-GjMP03EpIl_wv_C1PwQ7YIb9oxqvMYOrk15s5OniZisQiKFoO8AT64Dxmdo7ZR__gsKV1kYAbFzDK5IulE9t9bUmaoeOl0AgMW2v1rFLmIgpS6hLV2dBOM2lHoz2HJ9Yec264LhajY7eEw2Gxjq92q7eUIe2NkWeXTScriWW2QDcWhN4_yUiJ6_sL9__romB_cL58P75MUUb9dRIf7ULjV81Q3TyTMyPvjw5f1R0GRcCLJEMhrExkljAKPZmGY20ibPJbN5gpz2NAffJwu5NtSGzoHbZqFIGNpYU-uyOALHiG2TtVkxszvED50JY-tobm3KdZabDKCSg9lPiMxE0nhErhpXZQ0dOWbFuFAdt0QqVEuTLBPVoq48ErUl5zUlxz3K7ID-lD6FkVONRxT3ayMB789Sj7ytlNrWpRffMdpNCvV1cKgGx_GQi_6h4h7ZrrTeCrKK744Lj-x3zKAVoGGaIF2XR_ZWdqGaIaJUCSDHFLy1yCOv26fQt3HDRs9scVmqCFflZMgZ_ParO2QY45LH9F8SUANyIN0twQG1SXCzPPK8ttXrdk0B0TEWgrY6VtwKIDt598ns_KxiKaeYUDaCOvuVvbclzIX-VizKUqsfimkwCjhCW2rcpoPTOd6EzxzPTCqA2-psOfVIXHWXe2tcDUejHlzt_m_BPbJR7xzictsLsrZcXNqXAECXZr8aWeDYP_6IxyH9A3EAebI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NctMwENZAe6Ac-CmUmkIbZhhuydiSZdnHDKUNtMkhaYbcNJIttaVJnIkTpsOJR-AZeRJ2bcfFtGU6DIfEib1SkvWu9K20-ZaQt9YIQ5m1TcFxtYomvKltFDW5VTBOhhBkGFyH7PaCztD_NOKjshwQ_hem4IeoFtzQM_LxGh0cF6Sve3kU8tEqJ5Jz2gJAuZ5v1yFC6v_GJeXmZRgBsvuYXRHW03pu7Kk2V923KgUEi8q_XCUvYialykCZtqiCcRNMvZ5tuT43MxPX0XA-nR08JuOVIooslovWcqFb8bc_OCL_k6aekEcl7G20Czt9Su6Z6SZ52K04Y7NNsoG4t6CNfkZ4uzE3P7__uCIjb6S2AT8_SSd4ushCaUzMQsFbVTKrPCfDgw8n7zvNssJDMw4Fo81AW6E1YEIT0Nh4SieJYCYJkUOfJhBrxa6vNDWutRAmGmjiuiZQ1Ng48CAQY1tkbZpOzTZpuFa7gbE0MSbyVZzoGKCZhdmW81h7QjtErO6ljEv6c6zCMZa1MEhI1FJZnBO1JC8d4lUtZwUFyB3abIO5SHUKI7UcDijuD3scvj-LHPIut6GqLzW_wOw6weXn3qHsHQV9n-8fSt8hW7mRVYIs59fzuUN2a1ZXCVA3CpEezCE7KzOU5ZCUyRCQagTRoeeQN9VVGEtwg0hNTbrMpIergML1GXz23i0yjPnCD-jfJKAH5Fy6XcIHlCggrHPIi8I1rvQaAYJkzIW7VXOaSgDZ0OtXpudnOSs6xQK2HvS5n7tX1UKP1Zd0nmVKfpVMgVHAM-hS4bYgHM7xJDxmeGRCAryXZ4uJQ4Lcpe58x2V_MGjDq5f_2nCPPOicdI_l8cfe0Q7ZKHYtcanvFVlbzJfmNYDfhd7NB7VfGLWe8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgk9B4QDDYFgZbkBBvQYn_xMljRekGY9W0UrE3y05sNlibqunQHvkIfEY-CXdJmhFtQxMPTZrk7Ea-s_07-_o7Ql47Ky1lzgVS4GoVzUVgXJoGwmkYJxNwMiyuQx4O4_0x_3giTpr4J_wvTM0P0S64Yc-oxmvs4LPcXe_kaSJOliGRQtC3gCdXOZghWjvlR39B4SoLIyB2jsEVSTeq58aaOlPVfacLALDY9pfL2EUMpNQltKWrk2DchFKvB1uuzu3MZl0wXM1mg8fkUQND_V5tN0_IPTtdJw8PWw7Xcp2sIQ6taZyfEtHz5_b3z19X5OB-4Xx4n7yY4O06KsSf2IWGS90wnTwj48H7z-_2gybjQpAlktEgNk4aAxjNxjSzkTZ5LpnNE-S0pzn4PlnItaE2dA7cNgtFwtDGmlqXxRE4RmyDrEyLqd0ifuhMGFtHc2tTrrPcZACVHMx-QmQmksYjctm4KmvoyDErxrnquCVSoVqaZJmoFnXpkagtOaspOe5QZgv0p_RXGDnVeERxvzYS8P4s9cibSqltXXr-HaPdpFBfhntqeBAfc9HfU9wjG5XWW0FW8d1x4ZGdjhm0AjRME6Tr8sj20i5UM0SUKgHkmIK3FnnkVfsU-jZu2OipLS5KFeGqnAw5g9_evUWGMS55TP8lATUgB9LtEhxQmwQ3yyObta1etWsKiI6xELTVseJWANnJu0-mZ6cVSznFhLIR1Nmv7L0tYc71t2Jellr9UEyDUcAR2lLjNh2czvAmfGZ4ZlIB3Fani4lH4qq73Fnj6ng06sG35_9bcJc8OOoP1KcPw4NtslZvIuLK2wuysphf2JeARRdmpxpk_gBdsHpx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Re-Evaluation+of+Random-Effects+Meta-Analysis&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Higgins%2C+Julian+P.+T.&rft.au=Thompson%2C+Simon+G.&rft.au=Spiegelhalter%2C+David+J.&rft.date=2009-01-01&rft.pub=Blackwell+Publishing&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=172&rft.issue=1&rft.spage=137&rft.epage=159&rft_id=info:doi/10.1111%2Fj.1467-985X.2008.00552.x&rft.externalDocID=30136745 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon |