re-evaluation of random-effects meta-analysis

Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressin...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series A, Statistics in society Vol. 172; no. 1; pp. 137 - 159
Main Authors Higgins, Julian P. T., Thompson, Simon G., Spiegelhalter, David J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.01.2009
Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Royal Statistical Society
Oxford University Press
SeriesJournal of the Royal Statistical Society Series A
Subjects
Online AccessGet full text
ISSN0964-1998
1467-985X
DOI10.1111/j.1467-985X.2008.00552.x

Cover

Abstract Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders.
AbstractList Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of ‘set shifting’ ability in people with eating disorders.
Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of ‘set shifting’ ability in people with eating disorders.
Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders.Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders.
Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. [PUBLICATION ABSTRACT]
Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to "a priori" judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. Copyright Journal compilation (c) 2009 Royal Statistical Society.
Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different studies are assumed to be drawn from a normal distribution. Here we discuss the justification and interpretation of such models, by addressing in turn the aims of estimation, prediction and hypothesis testing. A particular issue that we consider is the distinction between inference on the mean of the random-effects distribution and inference on the whole distribution. We suggest that random-effects meta-analyses as currently conducted often fail to provide the key results, and we investigate the extent to which distribution-free, classical and Bayesian approaches can provide satisfactory methods. We conclude that the Bayesian approach has the advantage of naturally allowing for full uncertainty, especially for prediction. However, it is not without problems, including computational intensity and sensitivity to a priori judgements. We propose a simple prediction interval for classical meta-analysis and offer extensions to standard practice of Bayesian meta-analysis, making use of an example of studies of 'set shifting' ability in people with eating disorders. Reprinted by permission of Blackwell Publishers
Author Higgins, Julian P. T.
Thompson, Simon G.
Spiegelhalter, David J.
Author_xml – sequence: 1
  givenname: Julian P. T.
  surname: Higgins
  fullname: Higgins, Julian P. T.
– sequence: 2
  givenname: Simon G.
  surname: Thompson
  fullname: Thompson, Simon G.
– sequence: 3
  givenname: David J.
  surname: Spiegelhalter
  fullname: Spiegelhalter, David J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20981093$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19381330$$D View this record in MEDLINE/PubMed
http://econpapers.repec.org/article/blajorssa/v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137-159.htm$$DView record in RePEc
BookMark eNqNkl1v0zAUhiM0xLrCTwAqJBA3Kf6KPy5AmgYUtGlIKxPcHTmJsyVL4mKnpf33OMvIgAs2S86xcp7z2jrnPYj2WtuaKJphNMdhvanmmHERK5l8nxOE5ByhJCHz7YNoMib2oglSnMVYKbkfHXhfoX4J8Sjax4pKTCmaRLEzsdnoeq270rYzW8ycbnPbxKYoTNb5WWM6HetW1ztf-sfRw0LX3jy5idPo_OOHr0ef4pMvi89HhydxJgUlMU8LkaYMc8NJZrBO81xQk0sanklyTniGmE6JQUVBmDKhBCHDNTFFxjFHCZ1G7wbd1TptTJ6ZtnO6hpUrG-12YHUJf2fa8hIu7AYI54JiEgRe3Qg4-2NtfAdN6TNT17o1du2BSSyFEHeDVCCmuOJ3g5QJxgkL4Ov_gljShAVV2qMv_kEru3ah1x6kIEKJJExpGh0PkDMrk409SGtdWee9hg1QjQUJ313YoZUqhLL_Gfaqj1QAThRcdk1Qe_ZnZ0e5344IwMsbQPtM10WwQ1b6kSNISYwUDZwcuMxZ750pbqUQ9CaFCnovQu9F6E0K1yaF7e10x9Ks7K79F2ZZ1vcReDsI_Cxrs7v3xXC2XB6GU6h_OtRXvrNurKcIUy5Yb794yJe-M9sxr90VBHuJBL6dLuD0mJ-x5P0C-jk-H_hCW9AXLvTrfEmCGsJJMDdV9Be4KB_w
CitedBy_id crossref_primary_10_3390_pharmaceutics14102050
crossref_primary_10_1007_s00296_019_04244_5
crossref_primary_10_1186_s12916_023_02874_y
crossref_primary_10_2188_jea_JE20200376
crossref_primary_10_3389_fmed_2022_843262
crossref_primary_10_1007_s00784_023_05227_4
crossref_primary_10_1186_s12859_018_2491_9
crossref_primary_10_1088_1681_7575_abb064
crossref_primary_10_1186_s12916_015_0379_3
crossref_primary_10_1016_j_ebiom_2024_105434
crossref_primary_10_3389_fmed_2022_1077806
crossref_primary_10_1007_s00415_020_09709_3
crossref_primary_10_1155_2013_741639
crossref_primary_10_1002_ece3_4522
crossref_primary_10_1016_j_eswa_2019_112956
crossref_primary_10_1111_cpsp_12282
crossref_primary_10_1136_bmjopen_2021_055336
crossref_primary_10_1016_j_cpr_2024_102501
crossref_primary_10_4094_chnr_2023_29_1_24
crossref_primary_10_1007_s40279_023_01896_z
crossref_primary_10_1016_j_fertnstert_2024_09_023
crossref_primary_10_1002_sim_5591
crossref_primary_10_1016_j_jdermsci_2016_09_003
crossref_primary_10_4103_eus_eus_18_19
crossref_primary_10_1186_s12874_021_01397_5
crossref_primary_10_1177_1094428117741966
crossref_primary_10_1080_20008066_2024_2415267
crossref_primary_10_1161_CIRCOUTCOMES_111_960724
crossref_primary_10_1007_s10654_013_9863_2
crossref_primary_10_1097_JS9_0000000000001719
crossref_primary_10_1002_14651858_CD004655_pub3
crossref_primary_10_1097_MCG_0000000000001958
crossref_primary_10_1158_1055_9965_EPI_13_0665
crossref_primary_10_1186_s12978_018_0635_z
crossref_primary_10_3390_nu15132982
crossref_primary_10_46497_ArchRheumatol_2024_10131
crossref_primary_10_1177_0149206314551964
crossref_primary_10_1186_s12874_022_01809_0
crossref_primary_10_1002_14651858_CD006298_pub2
crossref_primary_10_1111_bcp_14310
crossref_primary_10_1016_j_bbr_2022_113834
crossref_primary_10_1016_j_numecd_2015_03_008
crossref_primary_10_1177_0962280217718867
crossref_primary_10_1007_s12471_018_1104_6
crossref_primary_10_1016_j_ajodo_2019_12_011
crossref_primary_10_1002_14651858_CD004098_pub2
crossref_primary_10_1186_s12874_016_0219_y
crossref_primary_10_1136_bmjopen_2021_057977
crossref_primary_10_1093_nutrit_nuaa016
crossref_primary_10_1093_rheumatology_keaf078
crossref_primary_10_1002_14651858_CD010964_pub2
crossref_primary_10_1038_s41562_018_0461_x
crossref_primary_10_1080_19466315_2015_1096823
crossref_primary_10_1111_rssa_12677
crossref_primary_10_1016_j_ajp_2023_103550
crossref_primary_10_1007_s11606_016_3603_8
crossref_primary_10_1136_bmjopen_2019_030596
crossref_primary_10_1016_j_jclinepi_2014_11_017
crossref_primary_10_1002_ijc_28452
crossref_primary_10_1016_j_jclinepi_2019_05_023
crossref_primary_10_1371_journal_pone_0273800
crossref_primary_10_1186_s12885_024_13027_6
crossref_primary_10_9778_cmajo_20160087
crossref_primary_10_1002_sim_9985
crossref_primary_10_3389_fpubh_2024_1371497
crossref_primary_10_1097_XEB_0000000000000058
crossref_primary_10_1080_08995605_2024_2377884
crossref_primary_10_1161_CIRCEP_118_007005
crossref_primary_10_1002_sim_6471
crossref_primary_10_1097_MD_0000000000001944
crossref_primary_10_1055_a_1236_3350
crossref_primary_10_1140_epjc_s10052_023_11973_2
crossref_primary_10_1002_14651858_CD012008
crossref_primary_10_1002_14651858_CD012483
crossref_primary_10_1177_12034754221130969
crossref_primary_10_1177_1536867X1101100206
crossref_primary_10_1080_19396368_2019_1655813
crossref_primary_10_1002_14651858_CD004549_pub3
crossref_primary_10_1080_10543406_2022_2105345
crossref_primary_10_3390_nu13072284
crossref_primary_10_1016_j_pan_2021_09_007
crossref_primary_10_1093_ibd_izac153
crossref_primary_10_1093_ageing_afv190
crossref_primary_10_1016_j_jclinepi_2013_09_018
crossref_primary_10_1097_MCG_0000000000001913
crossref_primary_10_1007_s10654_020_00618_3
crossref_primary_10_1002_bimj_201900184
crossref_primary_10_1177_0272989X18788537
crossref_primary_10_1186_s12939_019_1036_9
crossref_primary_10_1016_j_joms_2023_08_168
crossref_primary_10_1002_sim_6493
crossref_primary_10_1016_j_neuropsychologia_2011_04_033
crossref_primary_10_1186_1471_2474_15_121
crossref_primary_10_1080_00365521_2020_1868568
crossref_primary_10_1111_clr_13759
crossref_primary_10_1111_clr_12428
crossref_primary_10_1016_j_wneu_2024_01_110
crossref_primary_10_1097_MD_0000000000035718
crossref_primary_10_1186_1741_7015_12_41
crossref_primary_10_1016_j_prevetmed_2013_11_009
crossref_primary_10_1177_09622802221125913
crossref_primary_10_1002_14651858_CD010286
crossref_primary_10_1002_psp4_12041
crossref_primary_10_1186_s12889_017_4691_z
crossref_primary_10_2106_JBJS_N_00642
crossref_primary_10_1016_j_joca_2023_11_017
crossref_primary_10_1136_bmjmed_2022_000184
crossref_primary_10_1161_JAHA_121_023061
crossref_primary_10_1002_14651858_CD012436
crossref_primary_10_1002_14651858_CD011102
crossref_primary_10_1177_0962280220948085
crossref_primary_10_1038_srep15995
crossref_primary_10_1002_bimj_201900161
crossref_primary_10_1371_journal_pone_0047939
crossref_primary_10_1042_BSR20180177
crossref_primary_10_3389_fpsyg_2021_664160
crossref_primary_10_1136_bmjopen_2020_046519
crossref_primary_10_1016_j_jebdp_2023_101898
crossref_primary_10_1177_0962280216682532
crossref_primary_10_1007_s00384_024_04729_1
crossref_primary_10_1093_aje_kwad184
crossref_primary_10_1089_ten_teb_2012_0130
crossref_primary_10_1136_bmjopen_2019_030162
crossref_primary_10_1371_journal_pone_0308628
crossref_primary_10_1007_s11336_013_9328_2
crossref_primary_10_1002_14651858_CD010025_pub2
crossref_primary_10_1002_14651858_CD011590
crossref_primary_10_1002_jwmg_591
crossref_primary_10_1111_joor_13779
crossref_primary_10_1080_03007995_2019_1649378
crossref_primary_10_1136_bmjopen_2016_015395
crossref_primary_10_1371_journal_pone_0079998
crossref_primary_10_1097_MD_0000000000003312
crossref_primary_10_1371_journal_pone_0266252
crossref_primary_10_17275_per_22_57_9_3
crossref_primary_10_1007_s40263_016_0382_z
crossref_primary_10_1007_s12144_023_05604_y
crossref_primary_10_1002_14651858_CD010736_pub2
crossref_primary_10_1136_bmj_l4292
crossref_primary_10_1186_s40001_024_02267_8
crossref_primary_10_1002_uog_15900
crossref_primary_10_1080_00461520_2021_1897009
crossref_primary_10_5662_wjm_v2_i4_27
crossref_primary_10_1016_j_urology_2021_04_058
crossref_primary_10_1177_2047487318817662
crossref_primary_10_1016_j_ajhg_2011_04_014
crossref_primary_10_1002_14651858_CD009128_pub3
crossref_primary_10_3389_fsurg_2024_1436366
crossref_primary_10_1002_jrsm_1626
crossref_primary_10_1214_22_AOAS1710
crossref_primary_10_2340_17453674_2024_40948
crossref_primary_10_1007_s15010_023_02156_y
crossref_primary_10_1016_j_vaccine_2023_09_012
crossref_primary_10_1007_s10620_024_08467_w
crossref_primary_10_1155_2014_926836
crossref_primary_10_1111_1468_0009_12451
crossref_primary_10_1111_eci_14295
crossref_primary_10_1177_0272989X13485157
crossref_primary_10_1177_0272989X13485156
crossref_primary_10_1016_j_jclinepi_2024_111492
crossref_primary_10_1177_0272989X13485155
crossref_primary_10_1186_s12916_020_01774_9
crossref_primary_10_1093_ibd_izaa353
crossref_primary_10_1158_1078_0432_CCR_13_2024
crossref_primary_10_1002_jrsm_1633
crossref_primary_10_1002_ijc_29388
crossref_primary_10_1094_PDIS_09_21_2018_RE
crossref_primary_10_1371_journal_pone_0108940
crossref_primary_10_1016_j_optom_2022_07_003
crossref_primary_10_1111_j_1600_051X_2011_01840_x
crossref_primary_10_1007_s10198_022_01468_4
crossref_primary_10_1016_j_brs_2025_01_022
crossref_primary_10_4103_0366_6999_213968
crossref_primary_10_4073_csr_2014_10
crossref_primary_10_4073_csr_2014_11
crossref_primary_10_1002_sim_5543
crossref_primary_10_1016_j_cpr_2011_11_003
crossref_primary_10_1016_j_envpol_2022_119309
crossref_primary_10_1136_oemed_2024_109533
crossref_primary_10_1055_a_2284_7334
crossref_primary_10_1002_14651858_CD000984_pub2
crossref_primary_10_1002_14651858_CD000984_pub3
crossref_primary_10_1016_j_rbmo_2023_103337
crossref_primary_10_1016_S2215_0366_20_30130_9
crossref_primary_10_1016_S2666_5247_23_00096_4
crossref_primary_10_1093_jac_dkr368
crossref_primary_10_1002_14651858_CD012885
crossref_primary_10_1093_ejo_cju071
crossref_primary_10_1002_bimj_201000151
crossref_primary_10_1016_j_jclinepi_2017_11_025
crossref_primary_10_1002_ebch_885
crossref_primary_10_1002_14651858_CD011281_pub2
crossref_primary_10_3390_cancers11111801
crossref_primary_10_1002_14651858_CD008407_pub2
crossref_primary_10_1016_j_envint_2022_107106
crossref_primary_10_1002_14651858_CD008407_pub3
crossref_primary_10_1016_j_placenta_2021_10_009
crossref_primary_10_1097_MCG_0000000000001524
crossref_primary_10_1002_jrsm_1651
crossref_primary_10_1016_j_eclinm_2023_102341
crossref_primary_10_1177_17470218231156849
crossref_primary_10_1016_j_jclinane_2025_111786
crossref_primary_10_1007_s10620_023_08017_w
crossref_primary_10_1093_ije_dys124
crossref_primary_10_1080_17453674_2019_1577014
crossref_primary_10_1002_14651858_CD011012_pub2
crossref_primary_10_1016_j_ypmed_2024_107969
crossref_primary_10_1002_14651858_CD010093_pub2
crossref_primary_10_1016_j_avsg_2012_06_010
crossref_primary_10_3390_cancers12010076
crossref_primary_10_1016_j_cgh_2019_08_047
crossref_primary_10_1016_j_arthro_2019_03_047
crossref_primary_10_1093_cid_ciad552
crossref_primary_10_3389_fendo_2018_00494
crossref_primary_10_2106_JBJS_RVW_24_00115
crossref_primary_10_1097_MD_0000000000013547
crossref_primary_10_1093_eurjpc_zwab018
crossref_primary_10_1186_s13104_021_05501_2
crossref_primary_10_1371_journal_pone_0194127
crossref_primary_10_1111_apt_16924
crossref_primary_10_3390_jcm12062402
crossref_primary_10_3390_humans3030017
crossref_primary_10_1080_07853890_2018_1500703
crossref_primary_10_1080_13645579_2013_806115
crossref_primary_10_1002_jrsm_1678
crossref_primary_10_1038_s41598_023_27606_3
crossref_primary_10_1111_add_15316
crossref_primary_10_1093_eurjcn_zvac114
crossref_primary_10_1186_s13643_017_0540_5
crossref_primary_10_1007_s40336_016_0219_2
crossref_primary_10_1186_s12874_015_0024_z
crossref_primary_10_1016_j_jad_2020_08_082
crossref_primary_10_1093_advances_nmac084
crossref_primary_10_1007_s12561_016_9179_3
crossref_primary_10_3758_s13428_023_02132_2
crossref_primary_10_1136_acupmed_2013_010364
crossref_primary_10_1210_jc_2014_1162
crossref_primary_10_3389_fneur_2021_628520
crossref_primary_10_1097_MD_0000000000001089
crossref_primary_10_1038_s41598_019_53920_w
crossref_primary_10_1002_bjs5_50314
crossref_primary_10_1038_tp_2017_172
crossref_primary_10_1002_cl2_1262
crossref_primary_10_1136_bmjopen_2015_010247
crossref_primary_10_1007_s10484_023_09593_3
crossref_primary_10_1038_s41398_022_02009_6
crossref_primary_10_1080_19439342_2016_1160947
crossref_primary_10_1097_LGT_0000000000000527
crossref_primary_10_1080_00206814_2014_908420
crossref_primary_10_1016_j_advnut_2023_06_007
crossref_primary_10_1097_01_aids_0000434936_57880_cd
crossref_primary_10_1097_MCG_0000000000002010
crossref_primary_10_1002_jrsm_1217
crossref_primary_10_1016_j_autrev_2019_03_005
crossref_primary_10_1161_SVIN_122_000707
crossref_primary_10_1097_MCG_0000000000001167
crossref_primary_10_1371_journal_pone_0252492
crossref_primary_10_1080_08998280_2017_11929568
crossref_primary_10_1016_j_euo_2022_04_007
crossref_primary_10_1002_sim_8197
crossref_primary_10_1002_brb3_70131
crossref_primary_10_1136_bmjopen_2017_016592
crossref_primary_10_1016_j_bja_2023_02_040
crossref_primary_10_3390_agronomy10040560
crossref_primary_10_1177_1747493019873594
crossref_primary_10_1186_s12903_018_0695_z
crossref_primary_10_1016_j_vaccine_2021_04_039
crossref_primary_10_1016_S2214_109X_17_30298_X
crossref_primary_10_1053_j_ajkd_2013_02_357
crossref_primary_10_1158_1055_9965_EPI_21_1286
crossref_primary_10_1016_j_japh_2021_02_005
crossref_primary_10_12788_jhm_3182
crossref_primary_10_2139_ssrn_4826030
crossref_primary_10_1002_jrsm_1236
crossref_primary_10_1177_1536867X1501500403
crossref_primary_10_1177_1536867X1501500402
crossref_primary_10_1177_0962280218785504
crossref_primary_10_1093_aje_kwz261
crossref_primary_10_1093_pm_pnaf002
crossref_primary_10_1002_jrsm_1230
crossref_primary_10_1186_s13054_020_03251_4
crossref_primary_10_1111_ene_14366
crossref_primary_10_1080_17476348_2021_1920927
crossref_primary_10_1186_s12984_023_01256_y
crossref_primary_10_1186_s12944_021_01516_7
crossref_primary_10_1186_s13643_015_0177_1
crossref_primary_10_1002_pst_1632
crossref_primary_10_1016_j_jhin_2021_10_020
crossref_primary_10_1097_MD_0000000000028980
crossref_primary_10_1002_rth2_12834
crossref_primary_10_1182_bloodadvances_2019000614
crossref_primary_10_1007_s10620_021_07132_w
crossref_primary_10_1002_jrsm_1240
crossref_primary_10_1002_14651858_CD010622
crossref_primary_10_1002_jrsm_1244
crossref_primary_10_1016_j_gie_2022_11_003
crossref_primary_10_1007_s10620_024_08654_9
crossref_primary_10_1080_02699052_2018_1438665
crossref_primary_10_1111_add_16616
crossref_primary_10_1016_j_clinre_2024_102433
crossref_primary_10_3389_fonc_2020_01248
crossref_primary_10_1002_14651858_CD010445_pub2
crossref_primary_10_1002_14651858_CD010370_pub2
crossref_primary_10_1097_HJH_0000000000001443
crossref_primary_10_1007_s40618_023_02225_x
crossref_primary_10_1002_jrsm_1253
crossref_primary_10_1161_JAHA_118_011245
crossref_primary_10_1016_j_jad_2020_06_055
crossref_primary_10_1161_SVIN_123_001084
crossref_primary_10_1111_bjd_12002
crossref_primary_10_3390_jcm9020326
crossref_primary_10_1007_s10397_015_0894_4
crossref_primary_10_1017_S0033291722003270
crossref_primary_10_2337_dc20_0204
crossref_primary_10_3390_ijerph13030302
crossref_primary_10_1007_s10143_024_03005_8
crossref_primary_10_1186_s12962_018_0098_7
crossref_primary_10_1179_1465313314Y_0000000111
crossref_primary_10_1016_j_jcf_2023_04_020
crossref_primary_10_1177_2340944420916310
crossref_primary_10_1016_j_neubiorev_2024_105933
crossref_primary_10_4073_csr_2014_1
crossref_primary_10_1111_jcpe_12026
crossref_primary_10_1007_s00127_018_1485_2
crossref_primary_10_1016_j_gie_2021_09_039
crossref_primary_10_1177_1526602816668305
crossref_primary_10_1212_WNL_0000000000009443
crossref_primary_10_1002_jrsm_1260
crossref_primary_10_1080_09602011_2013_819021
crossref_primary_10_1111_jcpp_13943
crossref_primary_10_1136_heartjnl_2019_314931
crossref_primary_10_1177_1759720X20975927
crossref_primary_10_1371_journal_pone_0198447
crossref_primary_10_1002_nau_24536
crossref_primary_10_1002_14651858_CD012906_pub2
crossref_primary_10_1007_s11336_016_9507_z
crossref_primary_10_1177_1557988319892464
crossref_primary_10_3390_biomedinformatics1020005
crossref_primary_10_1002_jrsm_1278
crossref_primary_10_3758_s13428_014_0527_2
crossref_primary_10_3390_jcm11216363
crossref_primary_10_1097_MCG_0000000000002078
crossref_primary_10_1002_uog_18959
crossref_primary_10_1002_sim_9422
crossref_primary_10_1002_14651858_CD012151_pub2
crossref_primary_10_1002_ptr_7973
crossref_primary_10_1186_s12916_017_0845_1
crossref_primary_10_2214_AJR_18_19515
crossref_primary_10_1002_14651858_CD011919
crossref_primary_10_1016_j_ijid_2020_12_018
crossref_primary_10_1002_jrsm_1285
crossref_primary_10_1111_clr_13859
crossref_primary_10_1111_hepr_12554
crossref_primary_10_1016_j_jhep_2010_03_023
crossref_primary_10_3390_life14101249
crossref_primary_10_1002_14651858_CD007803_pub2
crossref_primary_10_1007_s00784_015_1473_9
crossref_primary_10_1007_s11695_020_04729_4
crossref_primary_10_1016_j_ajog_2019_12_266
crossref_primary_10_1017_S0007114519002241
crossref_primary_10_1002_14651858_CD010576_pub2
crossref_primary_10_1111_rssa_12572
crossref_primary_10_1002_jrsm_1296
crossref_primary_10_1017_rsm_2024_12
crossref_primary_10_1002_jrsm_1297
crossref_primary_10_1002_ohn_621
crossref_primary_10_1097_GCO_0000000000000430
crossref_primary_10_1111_bjd_15552
crossref_primary_10_1017_S0033291716000957
crossref_primary_10_12968_bjca_2018_13_11_539
crossref_primary_10_1016_j_jacadv_2023_100555
crossref_primary_10_1136_bmjopen_2023_073397
crossref_primary_10_1186_1471_2474_13_177
crossref_primary_10_1016_j_jenvman_2019_109651
crossref_primary_10_1186_s13643_017_0490_y
crossref_primary_10_1002_14651858_CD005525_pub3
crossref_primary_10_1093_advances_nmab142
crossref_primary_10_3758_s13423_021_01918_9
crossref_primary_10_1002_ajpa_24425
crossref_primary_10_1016_j_pscychresns_2023_111720
crossref_primary_10_1214_23_AOAS1806
crossref_primary_10_1016_j_arth_2022_01_017
crossref_primary_10_1038_s41598_017_19096_x
crossref_primary_10_1080_1354750X_2023_2227361
crossref_primary_10_1097_MS9_0000000000002215
crossref_primary_10_1016_j_ophtha_2013_04_010
crossref_primary_10_1177_0962280218773520
crossref_primary_10_1371_journal_pone_0215487
crossref_primary_10_1016_j_scitotenv_2023_162773
crossref_primary_10_1111_head_14376
crossref_primary_10_1002_cl2_1212
crossref_primary_10_1186_s13643_019_1018_4
crossref_primary_10_1016_j_rvsc_2011_05_001
crossref_primary_10_4103_eus_eus_63_18
crossref_primary_10_1136_jnis_2022_019489
crossref_primary_10_1016_j_jvs_2019_11_061
crossref_primary_10_3389_fsurg_2021_723065
crossref_primary_10_1177_0962280216631361
crossref_primary_10_1093_ibd_izae260
crossref_primary_10_1158_1055_9965_EPI_09_0981
crossref_primary_10_1177_1088868316656701
crossref_primary_10_1002_pam_22236
crossref_primary_10_1002_14651858_CD008903_pub2
crossref_primary_10_1080_17474124_2023_2284825
crossref_primary_10_1016_j_jad_2019_03_036
crossref_primary_10_1002_14651858_CD003054_pub4
crossref_primary_10_1002_14651858_CD012661_pub2
crossref_primary_10_1007_s00784_016_2044_4
crossref_primary_10_1016_j_soard_2019_03_006
crossref_primary_10_1111_j_1467_842X_2012_00647_x
crossref_primary_10_1186_s12884_022_04600_7
crossref_primary_10_1016_j_jcrimjus_2021_101796
crossref_primary_10_1093_cid_ciz539
crossref_primary_10_1111_iwj_12313
crossref_primary_10_5114_cipp_190893
crossref_primary_10_14474_ptrs_2023_12_1_62
crossref_primary_10_3389_fphar_2021_698008
crossref_primary_10_1007_s00787_018_1182_4
crossref_primary_10_1002_sim_10001
crossref_primary_10_1002_14651858_CD012799_pub2
crossref_primary_10_1186_s12916_015_0371_y
crossref_primary_10_1097_EDE_0000000000001526
crossref_primary_10_1016_j_knee_2021_04_005
crossref_primary_10_1007_s10654_020_00698_1
crossref_primary_10_1002_sim_3718
crossref_primary_10_3390_ijerph18073492
crossref_primary_10_1186_s12992_021_00670_y
crossref_primary_10_1002_sim_8169
crossref_primary_10_1080_02786826_2022_2128986
crossref_primary_10_1002_ehf2_12861
crossref_primary_10_1055_a_1401_9880
crossref_primary_10_1007_s00266_020_01743_w
crossref_primary_10_1016_j_thromres_2020_02_018
crossref_primary_10_1186_1471_2431_14_225
crossref_primary_10_1098_rsbl_2018_0840
crossref_primary_10_1186_s12936_024_04995_y
crossref_primary_10_1111_jog_14890
crossref_primary_10_1093_aje_kws394
crossref_primary_10_1002_sim_4372
crossref_primary_10_1002_14651858_CD010088_pub2
crossref_primary_10_1097_XEB_0000000000000130
crossref_primary_10_1002_14651858_CD010088_pub3
crossref_primary_10_1016_j_ssci_2018_08_030
crossref_primary_10_1186_s12874_018_0618_3
crossref_primary_10_3103_S1066530720040043
crossref_primary_10_1097_eus_0000000000000017
crossref_primary_10_1136_ebmental_2019_300117
crossref_primary_10_1371_journal_pwat_0000291
crossref_primary_10_1093_ageing_afaa049
crossref_primary_10_1016_j_cpr_2012_12_001
crossref_primary_10_1093_ije_dyp157
crossref_primary_10_1111_anae_14705
crossref_primary_10_3389_fspor_2023_1197883
crossref_primary_10_3389_fneur_2021_693524
crossref_primary_10_1002_mnfr_201500042
crossref_primary_10_1016_j_conctc_2017_11_012
crossref_primary_10_1002_sim_7411
crossref_primary_10_1016_j_apmr_2018_06_019
crossref_primary_10_1080_02664763_2012_700448
crossref_primary_10_3389_fcvm_2021_632318
crossref_primary_10_1016_S2215_0366_20_30312_6
crossref_primary_10_1016_j_ahj_2010_02_008
crossref_primary_10_1002_14651858_CD013228
crossref_primary_10_1002_14651858_CD013227
crossref_primary_10_1002_jac5_1439
crossref_primary_10_1016_j_envint_2021_106932
crossref_primary_10_1371_journal_pone_0087896
crossref_primary_10_1007_s13164_020_00503_8
crossref_primary_10_1097_eus_0000000000000031
crossref_primary_10_1016_j_psyneuen_2017_06_010
crossref_primary_10_1016_j_amjmed_2020_05_028
crossref_primary_10_1097_QAD_0000000000002487
crossref_primary_10_1016_j_jchirv_2017_11_010
crossref_primary_10_3389_fmed_2021_693927
crossref_primary_10_1002_lt_26250
crossref_primary_10_1080_17476348_2020_1816468
crossref_primary_10_1542_peds_2015_2423
crossref_primary_10_3310_hta21410
crossref_primary_10_1111_ctr_14520
crossref_primary_10_1007_s10260_022_00660_3
crossref_primary_10_3109_00207454_2012_660586
crossref_primary_10_1111_apt_15592
crossref_primary_10_1007_s40336_015_0120_4
crossref_primary_10_1016_j_jclinepi_2018_11_023
crossref_primary_10_1017_S0033291722001581
crossref_primary_10_1002_uog_21884
crossref_primary_10_1007_s40279_021_01639_y
crossref_primary_10_1177_0269881118805496
crossref_primary_10_1002_14651858_CD013205
crossref_primary_10_1002_14651858_CD013688
crossref_primary_10_1055_a_1287_9621
crossref_primary_10_1136_bmj_2021_069881
crossref_primary_10_1016_j_jclinepi_2010_03_016
crossref_primary_10_1097_eus_0000000000000055
crossref_primary_10_1093_nutrit_nuaa101
crossref_primary_10_1186_s12875_017_0695_0
crossref_primary_10_1080_0020739X_2019_1640398
crossref_primary_10_1002_uog_17381
crossref_primary_10_1080_0886022X_2021_2021237
crossref_primary_10_18632_oncotarget_17741
crossref_primary_10_1016_j_rasd_2023_102207
crossref_primary_10_1111_jcpt_12372
crossref_primary_10_5964_meth_13549
crossref_primary_10_1002_14651858_CD012368
crossref_primary_10_1002_14651858_CD012885_pub2
crossref_primary_10_1002_sim_8301
crossref_primary_10_1088_1681_7575_ab1559
crossref_primary_10_1111_ocr_12048
crossref_primary_10_3390_su142215019
crossref_primary_10_1002_bimj_202300387
crossref_primary_10_1111_apt_14201
crossref_primary_10_1136_archdischild_2017_314435
crossref_primary_10_3389_fpls_2021_620786
crossref_primary_10_1016_j_euf_2023_10_023
crossref_primary_10_1016_S0140_6736_14_60685_1
crossref_primary_10_1016_j_scispo_2021_11_002
crossref_primary_10_1136_bmjopen_2021_056340
crossref_primary_10_1016_j_cpr_2020_101886
crossref_primary_10_1016_j_critrevonc_2022_103845
crossref_primary_10_1136_bmjopen_2019_034854
crossref_primary_10_1371_journal_pone_0144976
crossref_primary_10_1080_10543406_2021_1946692
crossref_primary_10_1002_sim_6131
crossref_primary_10_1039_D1FO03094A
crossref_primary_10_1053_j_ajkd_2014_08_017
crossref_primary_10_1186_s12874_020_01113_9
crossref_primary_10_1016_j_cmi_2022_09_002
crossref_primary_10_1016_j_jspi_2009_09_017
crossref_primary_10_1080_17437199_2012_701060
crossref_primary_10_1016_j_xnsj_2024_100312
crossref_primary_10_1002_micr_31081
crossref_primary_10_1007_s00464_020_07758_3
crossref_primary_10_1371_journal_pone_0210186
crossref_primary_10_1055_a_1906_4967
crossref_primary_10_1093_neuros_nyaa027
crossref_primary_10_1007_s40881_020_00084_3
crossref_primary_10_1136_bmjopen_2018_024752
crossref_primary_10_1016_j_jaad_2020_12_029
crossref_primary_10_1111_1471_0528_17769
crossref_primary_10_1002_14651858_CD012799
crossref_primary_10_1016_j_jinf_2020_01_008
crossref_primary_10_1002_14651858_CD012796
crossref_primary_10_1177_0272989X211029556
crossref_primary_10_1016_j_rehab_2023_101791
crossref_primary_10_1007_s00520_022_06856_3
crossref_primary_10_1111_j_1467_9868_2012_01047_x
crossref_primary_10_1002_jgh3_12856
crossref_primary_10_1186_1745_6215_15_346
crossref_primary_10_1186_s12966_023_01542_x
crossref_primary_10_1016_j_clnu_2018_05_019
crossref_primary_10_1111_jcpe_12365
crossref_primary_10_1002_14651858_CD010912_pub4
crossref_primary_10_1016_j_envpol_2023_123159
crossref_primary_10_1002_14651858_CD010912_pub5
crossref_primary_10_1002_14651858_CD013656
crossref_primary_10_1093_annonc_mdx819
crossref_primary_10_1155_2012_985902
crossref_primary_10_1371_journal_pone_0136082
crossref_primary_10_1097_MCG_0000000000001668
crossref_primary_10_1016_j_annepidem_2015_08_004
crossref_primary_10_1093_bib_bbac600
crossref_primary_10_3390_pharmaceutics17010059
crossref_primary_10_1111_acps_12847
crossref_primary_10_1016_j_ijcard_2022_04_084
crossref_primary_10_3390_jcm9020394
crossref_primary_10_1371_journal_pone_0161051
crossref_primary_10_3168_jds_2008_1741
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105579
crossref_primary_10_1097_MD_0000000000029820
crossref_primary_10_1016_j_vaccine_2020_12_061
crossref_primary_10_1002_14651858_CD013516_pub2
crossref_primary_10_1016_j_jmva_2024_105376
crossref_primary_10_1158_1055_9965_EPI_17_1175
crossref_primary_10_1017_iop_2017_26
crossref_primary_10_1016_j_jaac_2017_07_780
crossref_primary_10_1093_europace_euaa005
crossref_primary_10_1378_chest_13_2926
crossref_primary_10_1002_14651858_CD011688_pub2
crossref_primary_10_1016_j_jclinepi_2023_03_004
crossref_primary_10_1186_cc9182
crossref_primary_10_1002_sim_4326
crossref_primary_10_1111_jcpe_12340
crossref_primary_10_1002_sim_4327
crossref_primary_10_1007_s10620_021_07364_w
crossref_primary_10_2217_pgs_2018_0142
crossref_primary_10_1002_14651858_CD014965
crossref_primary_10_1002_14651858_CD012845_pub2
crossref_primary_10_1097_MJT_0000000000001295
crossref_primary_10_1186_s12944_024_02005_3
crossref_primary_10_1093_eurheartj_ehaa739
crossref_primary_10_1002_14651858_CD005195_pub3
crossref_primary_10_1002_14651858_CD005195_pub4
crossref_primary_10_3389_fams_2017_00012
crossref_primary_10_1016_j_jad_2019_12_014
crossref_primary_10_1016_j_nutres_2017_11_004
crossref_primary_10_1016_j_cct_2015_05_009
crossref_primary_10_1002_14651858_CD010574
crossref_primary_10_1016_j_aap_2018_03_026
crossref_primary_10_1097_EDE_0000000000001177
crossref_primary_10_1186_s12931_021_01841_6
crossref_primary_10_1002_jrsm_1750
crossref_primary_10_1200_JCO_2011_38_4818
crossref_primary_10_3390_epidemiologia5030031
crossref_primary_10_3390_jcm8060819
crossref_primary_10_1111_add_14944
crossref_primary_10_1002_puh2_145
crossref_primary_10_1186_s12889_024_18907_x
crossref_primary_10_1186_2046_4053_1_34
crossref_primary_10_1002_14651858_CD010063_pub2
crossref_primary_10_4103_jopp_jopp_21_22
crossref_primary_10_1080_24733938_2021_1942538
crossref_primary_10_1097_QAD_0b013e328359ab0c
crossref_primary_10_1002_cl2_70016
crossref_primary_10_1097_MCA_0000000000000578
crossref_primary_10_1186_s12966_017_0471_5
crossref_primary_10_1093_ajcn_nqz071
crossref_primary_10_3389_fneur_2023_1233408
crossref_primary_10_1016_j_cmi_2022_07_008
crossref_primary_10_1177_20552076231177497
crossref_primary_10_1093_ije_dyq063
crossref_primary_10_1002_lt_26216
crossref_primary_10_1177_01461672211046808
crossref_primary_10_1186_s12954_020_00437_5
crossref_primary_10_1097_j_pain_0000000000003071
crossref_primary_10_1007_s11926_020_00975_8
crossref_primary_10_1177_0269216320929548
crossref_primary_10_1186_1471_2288_14_79
crossref_primary_10_1038_s41598_018_31598_w
crossref_primary_10_1007_s10072_023_07106_y
crossref_primary_10_1002_14651858_CD011469_pub2
crossref_primary_10_1111_insr_12037
crossref_primary_10_1186_s13643_018_0804_8
crossref_primary_10_1016_j_cct_2015_05_010
crossref_primary_10_1080_19466315_2024_2429415
crossref_primary_10_1177_0193841X12442673
crossref_primary_10_1097_XEB_0000000000000125
crossref_primary_10_6028_jres_126_007
crossref_primary_10_1080_13546805_2023_2266872
crossref_primary_10_1007_s11160_020_09612_0
crossref_primary_10_1093_sxmrev_qeac003
crossref_primary_10_1002_jrsm_1310
crossref_primary_10_1016_j_ijlp_2019_04_007
crossref_primary_10_1002_bimj_70034
crossref_primary_10_1016_j_mycmed_2022_101310
crossref_primary_10_1371_journal_pone_0243865
crossref_primary_10_1097_MD_0000000000020947
crossref_primary_10_1002_sim_9142
crossref_primary_10_2139_ssrn_4104366
crossref_primary_10_1007_s00415_024_12672_y
crossref_primary_10_1007_s10648_017_9419_1
crossref_primary_10_1002_14651858_CD012720
crossref_primary_10_1016_j_jcin_2016_03_025
crossref_primary_10_1093_ofid_ofac568
crossref_primary_10_1016_j_patter_2022_100452
crossref_primary_10_1002_pds_5631
crossref_primary_10_1007_s00180_017_0728_0
crossref_primary_10_1002_jrsm_1319
crossref_primary_10_1192_bjp_2020_144
crossref_primary_10_1007_s13593_022_00822_3
crossref_primary_10_1002_jrsm_1336
crossref_primary_10_1111_jcpe_13264
crossref_primary_10_1093_ejo_cjv034
crossref_primary_10_1002_jrsm_1331
crossref_primary_10_1016_j_arth_2017_06_041
crossref_primary_10_1016_j_thromres_2019_08_005
crossref_primary_10_1002_dmrr_3365
crossref_primary_10_1016_j_eclinm_2024_103007
crossref_primary_10_1002_sim_3861
crossref_primary_10_1111_jch_13876
crossref_primary_10_1016_j_tmrv_2011_10_001
crossref_primary_10_1089_thy_2018_0244
crossref_primary_10_1093_pnasnexus_pgae082
crossref_primary_10_1002_jrsm_1345
crossref_primary_10_1002_jrsm_1346
crossref_primary_10_1080_13510347_2022_2109016
crossref_primary_10_3389_fpubh_2023_1206988
crossref_primary_10_1097_MCG_0000000000002146
crossref_primary_10_1002_14651858_CD011853
crossref_primary_10_1016_j_jval_2011_05_042
crossref_primary_10_1186_s12874_024_02378_0
crossref_primary_10_1111_apt_13857
crossref_primary_10_1002_hed_26537
crossref_primary_10_1007_s12672_021_00402_z
crossref_primary_10_1186_1741_7015_11_123
crossref_primary_10_3168_jds_2024_25718
crossref_primary_10_1002_sim_9170
crossref_primary_10_1016_j_dld_2023_02_022
crossref_primary_10_1136_bmjopen_2017_019512
crossref_primary_10_1186_s40360_024_00791_1
crossref_primary_10_5662_wjm_v12_i3_92
crossref_primary_10_1093_aje_kwr408
crossref_primary_10_1073_pnas_2015367118
crossref_primary_10_1016_j_jaac_2023_04_017
crossref_primary_10_3390_jcm13072033
crossref_primary_10_1002_14651858_CD011844_pub2
crossref_primary_10_1016_j_ijchp_2024_100446
crossref_primary_10_1186_s12916_018_1101_z
crossref_primary_10_1007_BF03449157
crossref_primary_10_1186_s12874_021_01290_1
crossref_primary_10_1002_jrsm_1353
crossref_primary_10_1146_annurev_nutr_062322_020650
crossref_primary_10_1002_jmv_27457
crossref_primary_10_1038_mp_2015_138
crossref_primary_10_1016_j_janxdis_2022_102559
crossref_primary_10_1080_02699931_2022_2099349
crossref_primary_10_12968_jowc_2021_30_Sup4_S28
crossref_primary_10_1016_j_ijnurstu_2025_104997
crossref_primary_10_1158_1055_9965_EPI_21_0287
crossref_primary_10_1002_14651858_CD003925_pub3
crossref_primary_10_1136_bmjopen_2015_009183
crossref_primary_10_1093_rheumatology_keae645
crossref_primary_10_1080_01621459_2014_937487
crossref_primary_10_1093_rheumatology_keae646
crossref_primary_10_1080_14653125_2017_1316902
crossref_primary_10_1097_MCG_0000000000001228
crossref_primary_10_1161_SVIN_123_001177
crossref_primary_10_1128_AAC_01377_20
crossref_primary_10_1002_14651858_CD010622_pub2
crossref_primary_10_5664_jcsm_9642
crossref_primary_10_1002_pst_1741
crossref_primary_10_1017_S0950268817002242
crossref_primary_10_1002_jrsm_1370
crossref_primary_10_1016_j_atherosclerosis_2015_08_038
crossref_primary_10_1186_s11689_021_09362_5
crossref_primary_10_1111_eos_12250
crossref_primary_10_1371_journal_pone_0129824
crossref_primary_10_1007_s00464_018_6431_6
crossref_primary_10_1371_journal_pmed_1003987
crossref_primary_10_3390_ijerph14010003
crossref_primary_10_1002_jrsm_1388
crossref_primary_10_1080_13811118_2018_1486251
crossref_primary_10_1016_j_jval_2011_05_001
crossref_primary_10_1016_j_jdent_2018_12_015
crossref_primary_10_1002_jrsm_1384
crossref_primary_10_1080_00273171_2019_1689348
crossref_primary_10_1136_heartjnl_2017_311983
crossref_primary_10_1097_SLA_0000000000002880
crossref_primary_10_3390_epidemiologia5010004
crossref_primary_10_1016_j_java_2015_02_002
crossref_primary_10_1192_bjo_2021_4
crossref_primary_10_1016_j_gie_2018_10_018
crossref_primary_10_1002_14651858_CD008383_pub2
crossref_primary_10_1016_j_arbres_2024_03_010
crossref_primary_10_1177_00033197211070908
crossref_primary_10_1111_obr_12682
crossref_primary_10_1186_s13005_024_00415_3
crossref_primary_10_1080_02640414_2020_1775990
crossref_primary_10_1007_s00127_020_01885_x
crossref_primary_10_1002_art_38290
crossref_primary_10_1371_journal_pone_0273688
crossref_primary_10_1177_0962280212451882
crossref_primary_10_1210_clinem_dgae821
crossref_primary_10_1016_j_edurev_2020_100357
crossref_primary_10_1139_cjfas_2023_0222
crossref_primary_10_2519_jospt_2022_10671
crossref_primary_10_1016_j_amjcard_2023_06_066
crossref_primary_10_48175_IJARSCT_22724
crossref_primary_10_1002_14651858_CD006483_pub2
crossref_primary_10_1515_ijb_2022_0121
crossref_primary_10_1186_1471_2288_11_160
crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0085_R2
crossref_primary_10_1016_j_jclinepi_2011_09_012
crossref_primary_10_1016_j_gie_2020_06_015
crossref_primary_10_1016_j_egyai_2023_100235
crossref_primary_10_1186_s12955_022_02046_1
crossref_primary_10_1007_s12664_023_01495_w
crossref_primary_10_1016_j_csda_2016_08_007
crossref_primary_10_1016_j_gie_2022_07_033
crossref_primary_10_3390_su14031173
crossref_primary_10_1002_14651858_CD008363_pub2
crossref_primary_10_1177_0272989X13480130
crossref_primary_10_1177_17585732221075037
crossref_primary_10_1038_s44220_024_00356_5
crossref_primary_10_1002_14651858_CD013138_pub2
crossref_primary_10_1136_emermed_2019_209294
crossref_primary_10_1007_s44197_024_00300_x
crossref_primary_10_1177_0962280215583568
crossref_primary_10_1186_s12891_020_03733_0
crossref_primary_10_1177_25152459211031256
crossref_primary_10_4103_eus_eus_27_19
crossref_primary_10_1016_j_ijcard_2024_132269
crossref_primary_10_1111_j_1399_0039_2011_01754_x
crossref_primary_10_3389_fmolb_2021_687105
crossref_primary_10_3390_nu16162748
crossref_primary_10_1002_14651858_CD009122_pub2
crossref_primary_10_1002_14651858_CD009283_pub2
crossref_primary_10_1002_ohn_724
crossref_primary_10_3389_fnagi_2022_931016
crossref_primary_10_1016_j_canep_2011_01_007
crossref_primary_10_3390_jcm12124150
crossref_primary_10_1017_ehs_2020_22
crossref_primary_10_1177_00368504231179062
crossref_primary_10_1002_14651858_CD013164
crossref_primary_10_1038_ng_3508
crossref_primary_10_1016_j_cmi_2020_08_022
crossref_primary_10_1111_rssc_12453
crossref_primary_10_1186_s12885_024_12641_8
crossref_primary_10_1161_STROKEAHA_116_011707
crossref_primary_10_1002_14651858_CD013166
crossref_primary_10_1016_j_gie_2020_06_048
crossref_primary_10_1111_jebm_12236
crossref_primary_10_1007_s10741_021_10086_w
crossref_primary_10_1111_resp_12783
crossref_primary_10_1002_14651858_CD007786_pub3
crossref_primary_10_1038_s41598_019_38853_8
crossref_primary_10_1186_s40359_017_0200_5
crossref_primary_10_3389_fspor_2024_1386967
crossref_primary_10_1371_journal_pone_0215372
crossref_primary_10_1002_cpp_2874
crossref_primary_10_1097_j_pain_0000000000002636
crossref_primary_10_1002_14651858_CD003298_pub3
crossref_primary_10_1016_S2666_7568_24_00094_1
crossref_primary_10_1093_biostatistics_kxq046
crossref_primary_10_1002_jrsm_26
crossref_primary_10_1016_j_techsoc_2024_102798
crossref_primary_10_1136_jnnp_2019_322575
crossref_primary_10_1002_14651858_CD013178
crossref_primary_10_1016_j_arr_2021_101257
crossref_primary_10_1080_19439342_2024_2436186
crossref_primary_10_1007_s00167_023_07328_9
crossref_primary_10_1111_jebm_12228
crossref_primary_10_1038_tp_2016_279
crossref_primary_10_1177_0003319715599863
crossref_primary_10_1186_s12957_015_0681_8
crossref_primary_10_1007_s40520_022_02336_0
crossref_primary_10_1002_sim_9125
crossref_primary_10_1016_j_ajodo_2013_08_007
crossref_primary_10_1016_j_heliyon_2024_e29741
crossref_primary_10_1002_14651858_CD012298
crossref_primary_10_1007_s11695_022_05950_z
crossref_primary_10_1111_rssa_12005
crossref_primary_10_1348_000711010X522687
crossref_primary_10_1055_a_2378_9533
crossref_primary_10_1371_journal_pone_0272327
crossref_primary_10_1097_MPA_0000000000002155
crossref_primary_10_1177_0706743718779933
crossref_primary_10_1002_sim_8289
crossref_primary_10_1136_bjsports_2018_100461
crossref_primary_10_1002_14651858_CD013178_pub2
crossref_primary_10_1094_PHYTO_12_15_0342_RVW
crossref_primary_10_1007_s00228_021_03097_x
crossref_primary_10_1002_jrsm_45
crossref_primary_10_1097_MD_0000000000033345
crossref_primary_10_1002_14651858_CD010787_pub2
crossref_primary_10_1186_1471_2288_11_19
crossref_primary_10_1016_j_archger_2024_105601
crossref_primary_10_1016_j_jscai_2024_102449
crossref_primary_10_1002_wps_20490
crossref_primary_10_1097_GOX_0000000000002625
crossref_primary_10_1148_radiol_242505
crossref_primary_10_23736_S1973_9087_19_05814_3
crossref_primary_10_1186_s13643_021_01726_1
crossref_primary_10_1093_ejo_cjab037
crossref_primary_10_1371_journal_pone_0076654
crossref_primary_10_1371_journal_pone_0187177
crossref_primary_10_1016_j_ijantimicag_2018_07_021
crossref_primary_10_1093_ageing_afac104
crossref_primary_10_1097_BOT_0000000000000455
crossref_primary_10_1016_j_ajog_2021_07_009
crossref_primary_10_3390_jcm12052025
crossref_primary_10_3389_fmed_2023_1204849
crossref_primary_10_1002_14651858_CD013138
crossref_primary_10_1016_j_eja_2020_126127
crossref_primary_10_1155_2011_125485
crossref_primary_10_1111_dom_12827
crossref_primary_10_2214_AJR_17_19495
crossref_primary_10_1289_ehp_1206187
crossref_primary_10_1371_journal_pone_0158604
crossref_primary_10_1177_15248380231179133
crossref_primary_10_1007_s00198_014_2636_2
crossref_primary_10_1177_0272989X12453504
crossref_primary_10_1002_sim_7549
crossref_primary_10_1111_nmo_14698
crossref_primary_10_1017_S0266462313000676
crossref_primary_10_1111_apt_16335
crossref_primary_10_3390_microorganisms12122430
crossref_primary_10_1016_j_jpsychires_2022_03_013
crossref_primary_10_3390_nu15040940
crossref_primary_10_1186_1471_2288_11_41
crossref_primary_10_1038_s41598_021_88041_w
crossref_primary_10_1371_journal_pone_0156891
crossref_primary_10_1080_13697137_2020_1767571
crossref_primary_10_1002_14651858_CD012268
crossref_primary_10_1016_j_parkreldis_2015_12_008
crossref_primary_10_1186_1741_7015_10_62
crossref_primary_10_5946_ce_2019_211
crossref_primary_10_2196_21156
crossref_primary_10_1002_14651858_CD012260
crossref_primary_10_1002_14651858_CD013591
crossref_primary_10_1002_sim_6225
crossref_primary_10_1007_s10549_020_05637_y
crossref_primary_10_1016_j_arthro_2019_02_051
crossref_primary_10_1136_bmjopen_2017_018900
crossref_primary_10_3390_nu15194161
crossref_primary_10_1097_RLU_0000000000000914
crossref_primary_10_3389_fphys_2017_00325
crossref_primary_10_1136_bmjebm_2019_111191
crossref_primary_10_1002_ccd_30017
crossref_primary_10_1002_14651858_CD013561
crossref_primary_10_1186_cc9406
crossref_primary_10_1016_j_jviscsurg_2018_03_014
crossref_primary_10_1186_1741_7015_9_74
crossref_primary_10_1177_1740774509356002
crossref_primary_10_1111_sms_14212
crossref_primary_10_1007_s00405_024_09003_2
crossref_primary_10_1016_j_critrevonc_2021_103414
crossref_primary_10_1016_j_diabet_2016_10_006
crossref_primary_10_1007_s00784_024_05684_5
crossref_primary_10_1016_j_jclinepi_2010_08_002
crossref_primary_10_1016_j_arr_2020_101118
crossref_primary_10_1016_j_medcli_2013_06_013
crossref_primary_10_1002_sim_8422
crossref_primary_10_3390_jcm12062267
crossref_primary_10_1002_14651858_CD013576
crossref_primary_10_1111_jcpt_13598
crossref_primary_10_1186_s13643_018_0812_8
crossref_primary_10_1002_sim_7578
crossref_primary_10_1088_1681_7575_aa6c0e
crossref_primary_10_1155_2012_840935
crossref_primary_10_1097_MD_0000000000024812
crossref_primary_10_1136_bmjopen_2019_031220
crossref_primary_10_3892_etm_2021_9631
crossref_primary_10_1055_a_1352_2944
crossref_primary_10_1177_2047487316659573
crossref_primary_10_3310_hta19200
crossref_primary_10_1016_j_eap_2023_05_024
crossref_primary_10_1186_s12887_021_02821_x
crossref_primary_10_1002_lt_26183
crossref_primary_10_1016_j_euo_2024_04_011
crossref_primary_10_1002_14651858_CD012691
crossref_primary_10_1002_sim_7588
crossref_primary_10_12688_f1000research_53874_1
crossref_primary_10_3389_fpsyt_2022_991085
crossref_primary_10_1002_14651858_CD012211
crossref_primary_10_1002_sim_7589
crossref_primary_10_12688_f1000research_53874_2
crossref_primary_10_1016_j_parepi_2024_e00388
crossref_primary_10_1002_14651858_CD011677_pub2
crossref_primary_10_1002_14651858_CD011740_pub2
crossref_primary_10_1016_j_treng_2022_100158
crossref_primary_10_1038_s41598_018_21226_y
crossref_primary_10_1097_SLA_0b013e31826cc8da
crossref_primary_10_1002_14651858_CD011668_pub2
crossref_primary_10_3390_nu13020404
crossref_primary_10_1002_sim_4088
crossref_primary_10_1007_s10648_022_09683_4
crossref_primary_10_1002_14651858_CD014881
crossref_primary_10_1016_j_jaci_2024_10_030
crossref_primary_10_1186_s12916_015_0529_7
crossref_primary_10_1111_eos_12827
crossref_primary_10_3390_microorganisms13040723
crossref_primary_10_1007_s00228_020_03037_1
crossref_primary_10_1007_s42978_023_00263_8
crossref_primary_10_1007_s40519_022_01393_8
crossref_primary_10_1016_j_tsc_2022_101139
crossref_primary_10_1016_j_ajodo_2015_09_022
crossref_primary_10_1016_j_bj_2023_100609
crossref_primary_10_1002_da_20829
crossref_primary_10_1016_j_tube_2022_102166
crossref_primary_10_1002_14651858_CD011340
crossref_primary_10_1002_ejsp_2508
crossref_primary_10_1016_j_phymed_2020_153359
crossref_primary_10_1136_rapm_2024_105776
crossref_primary_10_1002_14651858_CD012720_pub2
crossref_primary_10_1007_s40279_021_01566_y
crossref_primary_10_1038_nutd_2015_10
crossref_primary_10_1016_j_cortex_2022_07_008
crossref_primary_10_3389_fphar_2023_1163908
crossref_primary_10_1007_s11695_020_05084_0
crossref_primary_10_1016_j_spinee_2014_01_026
crossref_primary_10_1186_s13102_024_01038_6
crossref_primary_10_3390_jcm12247508
crossref_primary_10_3390_medicina57060546
crossref_primary_10_1136_bmjopen_2023_080263
crossref_primary_10_1183_13993003_00736_2016
crossref_primary_10_1186_s12916_024_03284_4
crossref_primary_10_1016_j_cpr_2018_09_001
crossref_primary_10_1186_2046_4053_2_16
crossref_primary_10_1111_jcpe_12698
crossref_primary_10_1186_2046_4053_3_146
crossref_primary_10_3390_pediatric15030047
crossref_primary_10_1080_00952990_2020_1771723
crossref_primary_10_1097_HJH_0000000000000435
crossref_primary_10_1016_j_ajhg_2009_10_017
crossref_primary_10_1002_sim_7948
crossref_primary_10_1093_ajcn_nqac074
crossref_primary_10_3389_fnut_2021_647122
crossref_primary_10_1080_17453674_2017_1368884
crossref_primary_10_1016_j_jhazmat_2025_137832
crossref_primary_10_3389_fpsyg_2024_1470817
crossref_primary_10_1016_j_jad_2018_12_082
crossref_primary_10_1016_j_fm_2022_104089
crossref_primary_10_1016_j_eclinm_2023_102137
crossref_primary_10_3390_ani12141811
crossref_primary_10_1002_14651858_CD013516
crossref_primary_10_2105_AJPH_2018_304855
crossref_primary_10_1016_j_ctim_2022_102818
crossref_primary_10_1053_j_ajkd_2012_02_332
crossref_primary_10_1002_14651858_CD012661
crossref_primary_10_1002_14651858_CD011361_pub2
crossref_primary_10_1007_s00296_023_05500_5
crossref_primary_10_1007_s12032_017_0951_0
crossref_primary_10_1002_14651858_CD003319_pub2
crossref_primary_10_1016_j_jclinepi_2011_10_009
crossref_primary_10_1002_hep4_1491
crossref_primary_10_1016_j_actatropica_2015_09_023
crossref_primary_10_1097_XEB_0000000000000207
crossref_primary_10_1016_j_jocrd_2020_100527
crossref_primary_10_1186_s12890_015_0140_x
crossref_primary_10_3390_ijms25094760
crossref_primary_10_1016_j_ijintrel_2023_101780
crossref_primary_10_1111_biom_13716
crossref_primary_10_1016_j_taap_2024_117160
crossref_primary_10_11124_JBIES_20_00170
crossref_primary_10_1186_s12874_022_01779_3
crossref_primary_10_1186_s41512_024_00167_3
crossref_primary_10_1016_j_jad_2022_03_062
crossref_primary_10_1016_j_smrv_2013_01_004
crossref_primary_10_1002_sim_6631
crossref_primary_10_1016_j_eclinm_2024_102852
crossref_primary_10_1097_JTE_0000000000000075
crossref_primary_10_1055_a_1236_3187
crossref_primary_10_1186_1471_2334_11_122
crossref_primary_10_1016_j_neubiorev_2022_104761
crossref_primary_10_7759_cureus_59215
crossref_primary_10_1002_jrsm_1401
crossref_primary_10_1002_jrsm_1404
crossref_primary_10_1007_s10654_020_00714_4
crossref_primary_10_1080_14616734_2023_2187852
crossref_primary_10_1016_S2213_2600_19_30057_8
crossref_primary_10_1097_FBP_0000000000000044
crossref_primary_10_1111_j_1420_9101_2009_01915_x
crossref_primary_10_3390_vaccines12050500
crossref_primary_10_1002_bimj_201900351
crossref_primary_10_1053_j_ajkd_2021_07_003
crossref_primary_10_1002_sim_7974
crossref_primary_10_1111_sms_14603
crossref_primary_10_1097_ADM_0000000000000338
crossref_primary_10_1080_23308249_2019_1583166
crossref_primary_10_1007_s00464_019_07135_9
crossref_primary_10_1111_eos_12409
crossref_primary_10_1016_j_neubiorev_2022_104751
crossref_primary_10_1002_jrsm_1410
crossref_primary_10_1016_j_amjcard_2021_05_028
crossref_primary_10_1093_ejo_cjw048
crossref_primary_10_1002_jrsm_1415
crossref_primary_10_1111_jre_12514
crossref_primary_10_1093_jac_dkr112
crossref_primary_10_1093_ejo_cjw041
crossref_primary_10_1136_bmjopen_2017_019819
crossref_primary_10_14283_jpad_2024_100
crossref_primary_10_1002_14651858_CD011296_pub2
crossref_primary_10_1094_PHYTO_03_10_0069
crossref_primary_10_3390_vaccines12091021
crossref_primary_10_1111_idh_12483
crossref_primary_10_1111_j_1440_1754_2011_02211_x
crossref_primary_10_1002_mar_21657
crossref_primary_10_1111_apa_17059
crossref_primary_10_1136_bmjopen_2017_017644
crossref_primary_10_1007_s12560_022_09530_3
crossref_primary_10_1007_s10654_022_00961_7
crossref_primary_10_1093_ejcts_ezx115
crossref_primary_10_1093_ejo_cjw035
crossref_primary_10_1007_s40279_018_01051_z
crossref_primary_10_1186_s12245_022_00435_3
crossref_primary_10_1080_17453674_2021_1975398
crossref_primary_10_1097_PCC_0000000000001113
crossref_primary_10_1111_andr_12403
crossref_primary_10_3389_fneur_2021_759759
crossref_primary_10_1097_HJH_0b013e328338e2bb
crossref_primary_10_1093_aje_kwac013
crossref_primary_10_1002_sim_7090
crossref_primary_10_1007_s40279_017_0838_4
crossref_primary_10_1371_journal_pone_0307145
crossref_primary_10_1002_14651858_CD011740
crossref_primary_10_1016_j_aap_2015_12_022
crossref_primary_10_1007_s40520_019_01292_6
crossref_primary_10_1186_s13643_017_0466_y
crossref_primary_10_1016_j_amjms_2024_12_003
crossref_primary_10_1007_s40279_018_0917_1
crossref_primary_10_1002_sim_9261
crossref_primary_10_1186_s13643_021_01787_2
crossref_primary_10_1038_s41598_024_54170_1
crossref_primary_10_1136_eb_2015_102275
crossref_primary_10_1002_14651858_CD011759
crossref_primary_10_1136_bmjmed_2022_000339
crossref_primary_10_1007_s00423_016_1418_z
crossref_primary_10_1136_bjo_2022_322325
crossref_primary_10_1002_jrsm_1442
crossref_primary_10_1186_s13643_018_0763_0
crossref_primary_10_1016_j_cct_2023_107083
crossref_primary_10_1002_hep4_1513
crossref_primary_10_1177_0272989X18759488
crossref_primary_10_1186_s12916_021_02020_6
crossref_primary_10_1136_jnnp_2014_307659
crossref_primary_10_1007_s00404_012_2681_z
crossref_primary_10_1111_obr_12759
crossref_primary_10_1093_ilar_ilu042
crossref_primary_10_1186_s12916_016_0692_5
crossref_primary_10_1007_s10995_013_1403_x
crossref_primary_10_1371_journal_pone_0280718
crossref_primary_10_1136_bmjopen_2023_076264
crossref_primary_10_1002_14651858_CD010491_pub2
crossref_primary_10_1111_bju_16613
crossref_primary_10_62347_YBJN2231
crossref_primary_10_1016_j_jclinepi_2009_03_007
crossref_primary_10_1038_s41598_021_84573_3
crossref_primary_10_1080_19466315_2020_1865195
crossref_primary_10_1111_1756_185X_13356
crossref_primary_10_7189_jogh_10_020701
crossref_primary_10_1016_j_jad_2022_05_089
crossref_primary_10_1080_15332276_2024_2414180
crossref_primary_10_1002_jrsm_1479
crossref_primary_10_3390_v16091498
crossref_primary_10_1177_2041386614535131
crossref_primary_10_1007_s00198_023_06942_0
crossref_primary_10_1002_jrsm_1475
crossref_primary_10_1093_cid_cix975
crossref_primary_10_1038_s41598_023_44932_8
crossref_primary_10_3389_fnut_2021_670411
crossref_primary_10_1001_jamanetworkopen_2024_24802
crossref_primary_10_1111_ijpo_12692
crossref_primary_10_1017_S0033291719001855
crossref_primary_10_1002_jrsm_1488
crossref_primary_10_1177_1479973119901234
crossref_primary_10_2139_ssrn_3585640
crossref_primary_10_1016_j_comppsych_2019_152135
crossref_primary_10_3389_fphar_2023_1221069
crossref_primary_10_1136_bmjopen_2021_060590
crossref_primary_10_1016_j_brat_2013_08_005
crossref_primary_10_1016_j_jad_2019_04_026
crossref_primary_10_1136_bmjopen_2018_026002
crossref_primary_10_1093_nar_gkw797
crossref_primary_10_1111_ene_14134
crossref_primary_10_1016_j_humov_2011_01_001
crossref_primary_10_1002_14651858_CD006992_pub2
crossref_primary_10_12688_wellcomeopenres_18657_2
crossref_primary_10_1016_j_ijsu_2022_106678
crossref_primary_10_1186_s13643_024_02457_9
crossref_primary_10_12688_wellcomeopenres_18657_1
crossref_primary_10_1016_j_ijcard_2018_06_114
crossref_primary_10_1136_bmjgh_2018_000858
crossref_primary_10_3390_jcm11247289
crossref_primary_10_1016_j_gie_2016_01_039
crossref_primary_10_1002_jrsm_1490
crossref_primary_10_1002_jrsm_1491
crossref_primary_10_1111_imj_14325
crossref_primary_10_1007_s00198_016_3578_7
crossref_primary_10_1016_j_xkme_2021_03_014
crossref_primary_10_1177_0962280215597260
crossref_primary_10_7189_jogh_15_04072
crossref_primary_10_1002_sim_5726
crossref_primary_10_1002_14651858_CD013656_pub2
crossref_primary_10_1017_S003329171800421X
crossref_primary_10_1111_iju_12070
crossref_primary_10_3389_fnmol_2018_00450
crossref_primary_10_1002_jso_25410
crossref_primary_10_1371_journal_pone_0078073
crossref_primary_10_1111_dme_14170
crossref_primary_10_1002_ptr_7759
crossref_primary_10_1016_j_sapharm_2021_06_002
crossref_primary_10_1136_bmjopen_2017_017248
crossref_primary_10_1186_s40697_015_0040_2
crossref_primary_10_1136_heartjnl_2013_304394
crossref_primary_10_33206_mjss_810834
crossref_primary_10_1016_j_joca_2020_10_004
crossref_primary_10_1136_ebnurs_2020_103318
crossref_primary_10_1002_sim_5730
crossref_primary_10_1002_jcsm_13477
crossref_primary_10_1016_S1474_4422_14_70267_4
crossref_primary_10_1002_jrsm_1037
crossref_primary_10_3310_phr09080
crossref_primary_10_1002_jrsm_1039
crossref_primary_10_1371_journal_pone_0263760
crossref_primary_10_1016_j_clml_2024_07_008
crossref_primary_10_1097_PSY_0000000000001333
crossref_primary_10_1016_j_wneu_2021_07_034
crossref_primary_10_1016_j_nutres_2022_09_006
crossref_primary_10_1136_bmjopen_2020_037478
crossref_primary_10_1371_journal_pone_0184065
crossref_primary_10_1016_j_ajog_2022_04_023
crossref_primary_10_1002_jrsm_1049
crossref_primary_10_1002_jrsm_1045
crossref_primary_10_1038_s41598_023_40009_8
crossref_primary_10_1016_j_jadr_2023_100465
crossref_primary_10_1002_sim_7491
crossref_primary_10_1007_s40725_022_00175_w
crossref_primary_10_1002_sim_6163
crossref_primary_10_1016_j_thromres_2023_12_009
crossref_primary_10_3390_children10091481
crossref_primary_10_1007_s12529_016_9596_1
crossref_primary_10_1016_j_asjsur_2019_03_019
crossref_primary_10_1002_jrsm_1053
crossref_primary_10_1111_eci_13536
crossref_primary_10_1097_SLA_0b013e3182864fd6
crossref_primary_10_1002_14651858_CD013064
crossref_primary_10_1080_10669817_2023_2252187
crossref_primary_10_1186_1756_0500_7_139
crossref_primary_10_1042_BSR20192721
crossref_primary_10_1093_ejo_cjs033
crossref_primary_10_5127_jep_009610
crossref_primary_10_1002_csr_1716
crossref_primary_10_1016_j_envint_2021_106663
crossref_primary_10_1097_PSY_0000000000001321
crossref_primary_10_1183_23120541_00231_2018
crossref_primary_10_3390_cancers11111699
crossref_primary_10_1002_jrsm_1065
crossref_primary_10_1002_jrsm_1066
crossref_primary_10_1093_advances_nmaa055
crossref_primary_10_1111_eci_13524
crossref_primary_10_1002_sim_6188
crossref_primary_10_1002_cl2_1443
crossref_primary_10_1002_sim_8362
crossref_primary_10_1016_j_heliyon_2023_e19956
crossref_primary_10_1094_PHYTO_02_21_0056_R
crossref_primary_10_1002_14651858_CD013071
crossref_primary_10_1002_sim_8360
crossref_primary_10_1186_s12872_021_02349_z
crossref_primary_10_1016_j_apmr_2024_06_015
crossref_primary_10_3310_DABW4814
crossref_primary_10_1016_j_aap_2018_08_001
crossref_primary_10_1080_01635581_2020_1733625
crossref_primary_10_1016_j_cardfail_2021_08_012
crossref_primary_10_1136_bmjopen_2018_021636
crossref_primary_10_3390_cancers14112785
crossref_primary_10_1002_sim_6191
crossref_primary_10_1016_j_jclinepi_2021_06_011
crossref_primary_10_1016_j_diabres_2019_107924
crossref_primary_10_1136_bmjos_2021_100272
crossref_primary_10_1002_clc_23508
crossref_primary_10_1016_j_jshs_2020_06_009
crossref_primary_10_1016_j_jclinepi_2015_05_030
crossref_primary_10_1038_s41380_023_02347_x
crossref_primary_10_1136_bmj_k4738
crossref_primary_10_1002_pits_22100
crossref_primary_10_1097_j_pain_0000000000002753
crossref_primary_10_1634_theoncologist_2018_0358
crossref_primary_10_1002_jrsm_1081
crossref_primary_10_1002_ptr_6833
crossref_primary_10_1007_s10072_025_08016_x
crossref_primary_10_1136_bmjopen_2016_011271
crossref_primary_10_12793_jkscpt_2012_20_1_17
crossref_primary_10_1002_14651858_CD007153_pub2
crossref_primary_10_1177_2047487314566758
crossref_primary_10_1136_bmjopen_2016_011258
crossref_primary_10_1016_j_jhin_2023_12_014
crossref_primary_10_3390_s21020479
crossref_primary_10_1016_j_jclinepi_2015_05_009
crossref_primary_10_1111_obr_12714
crossref_primary_10_1002_ijc_34199
crossref_primary_10_1111_jgs_13835
crossref_primary_10_1214_13_BA806
crossref_primary_10_1016_j_socscimed_2014_12_034
crossref_primary_10_1016_j_lungcan_2021_06_004
crossref_primary_10_1136_bmjopen_2022_068313
crossref_primary_10_3310_hta20120
crossref_primary_10_1161_JAHA_120_019291
crossref_primary_10_1002_ijgo_14334
crossref_primary_10_1007_s00464_024_11019_y
crossref_primary_10_1002_14651858_CD005061_pub3
crossref_primary_10_1136_bmjopen_2020_042828
crossref_primary_10_1136_bmjopen_2017_021344
crossref_primary_10_1002_14651858_CD013035
crossref_primary_10_1016_S2215_0366_19_30181_6
crossref_primary_10_1016_j_jinf_2019_07_012
crossref_primary_10_1111_trf_16952
crossref_primary_10_1245_s10434_021_10759_8
crossref_primary_10_1002_14651858_CD013007
crossref_primary_10_1210_jc_2012_3682
crossref_primary_10_1016_j_jspi_2018_12_003
crossref_primary_10_1111_jvh_12846
crossref_primary_10_1080_14760584_2023_2289566
crossref_primary_10_1007_s12016_023_08964_2
crossref_primary_10_1016_j_jad_2020_03_024
crossref_primary_10_1093_bib_bbr020
crossref_primary_10_1136_bmjos_2020_100074
crossref_primary_10_1111_bdi_12490
crossref_primary_10_1038_s44271_024_00124_2
crossref_primary_10_1080_07853890_2020_1790643
crossref_primary_10_1016_j_smrv_2022_101682
crossref_primary_10_1016_j_jhazmat_2024_135067
crossref_primary_10_1136_bmjopen_2018_028066
crossref_primary_10_1002_sim_5471
crossref_primary_10_1093_ehjqcco_qcab075
crossref_primary_10_1002_14651858_CD012161
crossref_primary_10_1002_sim_8981
crossref_primary_10_1002_14651858_CD013498
crossref_primary_10_1002_clc_22333
crossref_primary_10_1183_13993003_02964_2020
crossref_primary_10_3390_youth3010010
crossref_primary_10_1136_eb_2014_101795
crossref_primary_10_1007_s40279_020_01348_y
crossref_primary_10_1146_annurev_statistics_010814_020249
crossref_primary_10_1016_j_apm_2020_12_037
crossref_primary_10_1080_00949655_2017_1402331
crossref_primary_10_1371_journal_pone_0129181
crossref_primary_10_1016_j_ejso_2020_06_037
crossref_primary_10_1161_CIR_0000000000000523
crossref_primary_10_1002_sim_8516
crossref_primary_10_4103_EUS_D_20_00198
crossref_primary_10_1002_14651858_CD005613_pub4
crossref_primary_10_2139_ssrn_4868762
crossref_primary_10_1002_sim_7665
crossref_primary_10_1016_j_rehab_2024_101894
crossref_primary_10_1186_s13075_015_0533_5
crossref_primary_10_1080_13811118_2020_1804024
crossref_primary_10_3389_fonc_2023_1194718
crossref_primary_10_1186_s12916_020_01766_9
crossref_primary_10_1186_s12874_019_0676_1
crossref_primary_10_1002_14651858_CD010888_pub2
crossref_primary_10_1007_s13194_021_00348_7
crossref_primary_10_1111_biom_12998
crossref_primary_10_1097_MD_0000000000010116
crossref_primary_10_1111_acps_13088
crossref_primary_10_1371_journal_pone_0025164
crossref_primary_10_1002_14651858_CD011296
crossref_primary_10_1177_0962280217705678
crossref_primary_10_1093_dote_doy130
crossref_primary_10_1186_s12966_017_0558_z
crossref_primary_10_1111_jocn_17554
crossref_primary_10_1371_journal_pbio_3002667
crossref_primary_10_1519_JSC_0000000000004570
crossref_primary_10_1186_1471_2288_12_34
crossref_primary_10_1002_bimj_201800071
crossref_primary_10_3389_fneur_2021_780080
crossref_primary_10_1002_sim_4172
crossref_primary_10_1016_j_jclinepi_2015_03_008
crossref_primary_10_1016_j_jclinepi_2024_111543
crossref_primary_10_1111_acps_13066
crossref_primary_10_1136_bmjsem_2022_001312
crossref_primary_10_1371_journal_pone_0090897
crossref_primary_10_1093_ajcn_nqx082
crossref_primary_10_1371_journal_pone_0249831
crossref_primary_10_1007_s10682_012_9555_5
crossref_primary_10_1002_14651858_CD007651_pub3
crossref_primary_10_2106_JBJS_RVW_24_00067
crossref_primary_10_1007_s00167_022_07304_9
crossref_primary_10_1080_01621459_2017_1385465
crossref_primary_10_1055_a_1341_0788
crossref_primary_10_1371_journal_pone_0099682
crossref_primary_10_1186_s13643_020_01476_6
crossref_primary_10_1093_jnci_djad135
crossref_primary_10_1016_j_jclinepi_2021_03_010
crossref_primary_10_1002_cam4_3051
crossref_primary_10_1017_S104161021700271X
crossref_primary_10_1186_1471_2288_12_56
crossref_primary_10_1159_000525406
crossref_primary_10_1159_000441457
crossref_primary_10_1016_S2215_0366_19_30511_5
crossref_primary_10_1002_sim_8555
crossref_primary_10_1080_19466315_2022_2050291
crossref_primary_10_1111_jcpt_13442
crossref_primary_10_1111_1471_0528_16683
crossref_primary_10_1002_jcla_24759
crossref_primary_10_1002_glia_23962
crossref_primary_10_1002_14651858_CD012796_pub2
crossref_primary_10_1002_14651858_CD012105
crossref_primary_10_1080_20445911_2023_2260050
crossref_primary_10_1094_PDIS_09_20_2046_RE
crossref_primary_10_1186_s12879_015_0872_5
crossref_primary_10_1186_s12891_016_0919_9
crossref_primary_10_1002_14651858_CD013591_pub2
crossref_primary_10_1002_14651858_CD012581
crossref_primary_10_1542_peds_2022_056540
crossref_primary_10_1002_14651858_CD011800_pub2
crossref_primary_10_1016_j_jaac_2017_03_013
crossref_primary_10_1146_annurev_orgpsych_031921_021922
crossref_primary_10_1002_sim_6381
crossref_primary_10_1186_1471_2288_14_120
crossref_primary_10_1080_00401706_2014_962707
crossref_primary_10_1177_1088868314544223
crossref_primary_10_1002_bimj_201700266
crossref_primary_10_1007_s00520_018_4216_z
crossref_primary_10_1002_bimj_201700265
crossref_primary_10_1016_j_jpsychires_2015_01_004
crossref_primary_10_1002_14651858_CD010371
crossref_primary_10_1055_a_1483_9406
crossref_primary_10_1007_s10658_013_0365_6
crossref_primary_10_1016_j_avsg_2016_06_030
crossref_primary_10_3390_epidemiologia5020016
crossref_primary_10_2337_dci23_0031
crossref_primary_10_2903_j_efsa_2017_4971
crossref_primary_10_1016_j_gie_2022_10_009
crossref_primary_10_1177_17562848241255295
crossref_primary_10_1214_24_BA1465
crossref_primary_10_1371_journal_pntd_0010610
crossref_primary_10_3390_ijms25105374
crossref_primary_10_1016_j_ajpc_2024_100874
crossref_primary_10_1016_j_ctim_2022_102913
crossref_primary_10_1016_j_jclinepi_2018_04_017
crossref_primary_10_1214_22_AOAS1600
crossref_primary_10_1002_14651858_CD011688
crossref_primary_10_1016_j_jvb_2020_103397
crossref_primary_10_1016_j_cmi_2015_06_022
crossref_primary_10_1093_ije_dys041
crossref_primary_10_1155_2013_783103
crossref_primary_10_1016_j_cortex_2017_08_008
crossref_primary_10_1016_j_apmr_2021_12_019
crossref_primary_10_1016_j_ypmed_2009_09_018
crossref_primary_10_1111_crj_12278
crossref_primary_10_14309_ajg_0000000000001614
crossref_primary_10_1002_14651858_CD011697
crossref_primary_10_2196_54324
crossref_primary_10_1016_j_jbi_2014_07_018
crossref_primary_10_1136_bmj_k4597
crossref_primary_10_3390_vaccines12060640
crossref_primary_10_1016_j_igie_2024_02_003
crossref_primary_10_1016_j_igie_2023_07_003
crossref_primary_10_1016_j_nut_2020_110960
crossref_primary_10_1016_j_psychres_2024_116118
crossref_primary_10_1177_09622802241309750
crossref_primary_10_1002_jmv_29343
crossref_primary_10_1097_CM9_0000000000001892
crossref_primary_10_1007_s10648_013_9244_0
crossref_primary_10_1016_j_diabres_2018_01_004
crossref_primary_10_1186_1471_2407_13_538
crossref_primary_10_1007_s13253_021_00485_9
crossref_primary_10_1016_j_bone_2012_11_031
crossref_primary_10_1186_s12874_017_0315_7
crossref_primary_10_1176_appi_ps_201700114
crossref_primary_10_1186_s13063_016_1720_7
crossref_primary_10_1007_s10067_019_04590_6
crossref_primary_10_1371_journal_pone_0114023
crossref_primary_10_1097_MCG_0000000000001860
crossref_primary_10_1002_14651858_CD012512
crossref_primary_10_3109_02699052_2015_1118764
crossref_primary_10_1002_14651858_CD011667
crossref_primary_10_1002_14651858_CD011668
crossref_primary_10_1111_j_1467_985X_2008_00593_x
crossref_primary_10_1177_1740774518755122
crossref_primary_10_12688_f1000research_129182_2
crossref_primary_10_12688_f1000research_129182_1
crossref_primary_10_3389_fnagi_2020_00184
crossref_primary_10_1002_14651858_CD011462_pub2
crossref_primary_10_1002_14651858_CD010751_pub2
crossref_primary_10_1177_2632084320957207
crossref_primary_10_1016_j_jadohealth_2024_10_032
crossref_primary_10_1093_annonc_mdu106
crossref_primary_10_1002_jrsm_1526
crossref_primary_10_2217_imt_2023_0001
crossref_primary_10_1177_00368504221101636
crossref_primary_10_1002_14651858_CD013858
crossref_primary_10_1080_00273171_2023_2229310
crossref_primary_10_1002_jrsm_1517
crossref_primary_10_1177_02655322221112364
crossref_primary_10_1186_s12885_018_4163_6
crossref_primary_10_1002_14651858_CD013828
crossref_primary_10_1002_14651858_CD010319
crossref_primary_10_1016_j_jclinepi_2014_08_012
crossref_primary_10_1002_sim_7625
crossref_primary_10_1002_ijc_29044
crossref_primary_10_1007_s11739_019_02204_2
crossref_primary_10_1002_sim_9808
crossref_primary_10_1002_sim_8959
crossref_primary_10_1111_idh_12364
crossref_primary_10_1002_14651858_CD012368_pub2
crossref_primary_10_1111_ocr_12237
crossref_primary_10_1016_j_envint_2016_02_013
crossref_primary_10_3390_diseases11030103
crossref_primary_10_1016_S1470_2045_18_30535_7
crossref_primary_10_3390_ijerph19116479
crossref_primary_10_1016_j_amjsurg_2025_116245
crossref_primary_10_3390_bs14100939
crossref_primary_10_4073_csr_2018_6
crossref_primary_10_1002_14651858_CD011658
crossref_primary_10_1002_sim_9817
crossref_primary_10_1097_NCC_0000000000001348
crossref_primary_10_1016_j_parkreldis_2018_08_017
crossref_primary_10_1002_mds_25898
crossref_primary_10_1002_sim_5453
crossref_primary_10_1371_journal_pone_0171028
crossref_primary_10_1007_s10648_023_09831_4
crossref_primary_10_1111_ene_13905
crossref_primary_10_5183_jjscs_1212001_203
crossref_primary_10_1007_s11764_024_01579_2
crossref_primary_10_1177_17562848251324227
crossref_primary_10_1002_14651858_CD011629
crossref_primary_10_1016_j_gie_2022_04_004
crossref_primary_10_1108_JADEE_02_2022_0028
crossref_primary_10_1002_jrsm_6
crossref_primary_10_1007_s00056_018_0123_7
crossref_primary_10_1177_0962280211432512
crossref_primary_10_1016_j_jpsychires_2018_05_020
crossref_primary_10_1002_sim_8057
crossref_primary_10_3413_Nukmed_0808_16_03
crossref_primary_10_1002_14651858_CD011919_pub2
crossref_primary_10_1002_14651858_CD012581_pub2
crossref_primary_10_1002_14651858_CD011840_pub2
crossref_primary_10_1002_jrsm_1566
crossref_primary_10_3389_fgene_2022_807466
crossref_primary_10_1007_s00784_023_04881_y
crossref_primary_10_1214_22_AOAS1699
crossref_primary_10_1016_j_ejvs_2015_05_002
crossref_primary_10_1016_j_jhsa_2018_06_120
crossref_primary_10_1002_14651858_CD010787
crossref_primary_10_1002_jrsm_1562
crossref_primary_10_1093_ejo_cjt064
crossref_primary_10_1111_jcpe_13050
crossref_primary_10_1002_cl2_1381
crossref_primary_10_1371_journal_pone_0151537
crossref_primary_10_1007_s10654_012_9738_y
crossref_primary_10_1111_ipd_12963
crossref_primary_10_1002_jrsm_4
crossref_primary_10_1002_pst_532
crossref_primary_10_3390_jpm12040545
crossref_primary_10_1016_j_sleep_2015_08_012
crossref_primary_10_1016_j_xnsj_2021_100086
crossref_primary_10_1016_S2214_109X_24_00003_2
crossref_primary_10_1002_jrsm_1576
crossref_primary_10_1097_ICL_0000000000000327
crossref_primary_10_1007_s00464_019_06819_6
crossref_primary_10_1038_s41598_017_18296_9
crossref_primary_10_1186_s13643_017_0443_5
crossref_primary_10_1371_journal_pone_0060650
crossref_primary_10_1097_CRD_0000000000000453
crossref_primary_10_1007_s42001_024_00290_7
crossref_primary_10_1002_14651858_CD006424_pub3
crossref_primary_10_1007_s10899_022_10140_8
crossref_primary_10_3109_07420528_2016_1149486
crossref_primary_10_1111_tri_13863
crossref_primary_10_3390_nu13061908
crossref_primary_10_1093_jnci_djz111
crossref_primary_10_1002_pst_1915
crossref_primary_10_3389_fped_2022_851700
crossref_primary_10_1371_journal_pone_0232947
crossref_primary_10_1016_j_gie_2018_11_019
crossref_primary_10_1016_S2213_8587_19_30422_X
crossref_primary_10_1016_j_jalz_2016_07_152
crossref_primary_10_1155_2018_9312650
crossref_primary_10_1136_bmjopen_2018_027666
crossref_primary_10_1097_MD_0000000000020718
crossref_primary_10_1111_1471_0528_14971
crossref_primary_10_1016_j_neubiorev_2013_12_004
crossref_primary_10_1002_14651858_CD010736
crossref_primary_10_1002_jrsm_1117
crossref_primary_10_1016_j_jinf_2018_08_017
crossref_primary_10_1002_jrsm_1119
crossref_primary_10_1017_S0266462312000517
crossref_primary_10_1590_s1984_29612024040
crossref_primary_10_1002_sim_5821
crossref_primary_10_1097_HJH_0000000000003727
crossref_primary_10_1093_ofid_ofad233
crossref_primary_10_1016_j_prevetmed_2021_105433
crossref_primary_10_1186_2046_4053_2_80
crossref_primary_10_23736_S0375_9393_22_16775_1
crossref_primary_10_1007_s40279_022_01806_9
crossref_primary_10_1016_j_jrp_2020_103982
crossref_primary_10_4103_EUS_D_21_00268
crossref_primary_10_1007_s00228_021_03212_y
crossref_primary_10_1136_bmjopen_2020_038085
crossref_primary_10_1136_bmjopen_2017_017144
crossref_primary_10_1016_j_ophtha_2012_04_020
crossref_primary_10_1186_1471_2288_14_5
crossref_primary_10_1186_s12874_021_01381_z
crossref_primary_10_1093_ije_dyad134
crossref_primary_10_3109_0886022X_2016_1172468
crossref_primary_10_1002_jrsm_1122
crossref_primary_10_1016_j_jclinepi_2019_01_002
crossref_primary_10_1007_s00125_012_2677_z
crossref_primary_10_1177_0956797616684682
crossref_primary_10_7717_peerj_19060
crossref_primary_10_3389_fimmu_2021_550670
crossref_primary_10_1371_journal_pone_0250385
crossref_primary_10_1088_0026_1394_53_1_S17
crossref_primary_10_1007_s11060_023_04528_8
crossref_primary_10_3389_fped_2021_695610
crossref_primary_10_1371_journal_pmed_1003731
crossref_primary_10_1159_000504170
crossref_primary_10_4103_1673_5374_213551
crossref_primary_10_1002_14651858_CD012106_pub2
crossref_primary_10_1016_j_jval_2025_01_005
crossref_primary_10_1088_1748_605X_acc99a
crossref_primary_10_1097_MCG_0000000000001484
crossref_primary_10_3389_fpsyg_2024_1516815
crossref_primary_10_1007_s40273_018_0681_y
crossref_primary_10_1093_jpepsy_jsae097
crossref_primary_10_1002_14651858_CD012906
crossref_primary_10_1016_j_suronc_2019_05_014
crossref_primary_10_1177_0962280216659896
crossref_primary_10_1007_s11605_022_05473_z
crossref_primary_10_1002_jrsm_1141
crossref_primary_10_1016_j_ejogrb_2024_06_037
crossref_primary_10_1177_17585732221098738
crossref_primary_10_1016_j_jamda_2019_08_009
crossref_primary_10_1007_s40120_020_00213_4
crossref_primary_10_1002_sim_5851
crossref_primary_10_1021_acsbiomaterials_1c01307
crossref_primary_10_1016_j_dld_2019_08_016
crossref_primary_10_1371_journal_pmed_1003750
crossref_primary_10_1136_bmjopen_2019_034298
crossref_primary_10_1371_journal_pone_0155050
crossref_primary_10_1016_j_jmig_2020_11_025
crossref_primary_10_1055_a_1324_7919
crossref_primary_10_1016_j_apmr_2019_09_003
crossref_primary_10_1016_j_jclinepi_2015_10_010
crossref_primary_10_1093_advances_nmab037
crossref_primary_10_1192_bjp_200_5_429
crossref_primary_10_1016_j_igie_2023_03_003
crossref_primary_10_1136_bjsports_2018_099643
crossref_primary_10_1002_14651858_CD012204_pub2
crossref_primary_10_1371_journal_pone_0302408
crossref_primary_10_1016_j_ejim_2022_09_021
crossref_primary_10_1136_eb_2016_102491
crossref_primary_10_1186_s41512_017_0016_z
crossref_primary_10_1214_09_STS290
crossref_primary_10_1002_jrsm_1162
crossref_primary_10_1177_17423953231167378
crossref_primary_10_1017_S109285292000156X
crossref_primary_10_3389_fphar_2023_1050412
crossref_primary_10_14812_cuefd_1292823
crossref_primary_10_1016_j_imr_2023_101014
crossref_primary_10_1007_s10654_022_00891_4
crossref_primary_10_1542_peds_2018_0134
crossref_primary_10_1080_10543406_2014_919930
crossref_primary_10_1016_j_clnu_2011_11_011
crossref_primary_10_1186_s12916_023_03171_4
crossref_primary_10_1097_PXH_0000000000000023
crossref_primary_10_3389_fvets_2020_00011
crossref_primary_10_1111_jeb_12950
crossref_primary_10_1038_s41598_021_99716_9
crossref_primary_10_1038_s43247_021_00291_8
crossref_primary_10_1002_sim_7140
crossref_primary_10_1002_sim_7141
crossref_primary_10_1093_sleep_zsw011
crossref_primary_10_1002_cl2_1316
crossref_primary_10_1177_1559827620988839
crossref_primary_10_1002_14651858_CD012483_pub2
crossref_primary_10_1002_sim_7156
crossref_primary_10_1016_j_cct_2016_01_008
crossref_primary_10_1053_j_sodo_2013_03_006
crossref_primary_10_1136_bmjopen_2018_022811
crossref_primary_10_1371_journal_pone_0095323
crossref_primary_10_1186_s12916_025_03948_9
crossref_primary_10_12788_jhm_3655
crossref_primary_10_1016_j_clinimag_2021_06_039
crossref_primary_10_1177_2047487318767199
crossref_primary_10_1053_j_jvca_2024_04_030
crossref_primary_10_1038_s41562_024_01994_6
crossref_primary_10_1093_eurjpc_zwae080
crossref_primary_10_1002_jrsm_1193
crossref_primary_10_1186_s12874_017_0376_7
crossref_primary_10_1002_jrsm_1196
crossref_primary_10_1111_rssa_12275
crossref_primary_10_1002_jrsm_1198
crossref_primary_10_1007_s10654_019_00579_2
crossref_primary_10_1002_14651858_CD012076
crossref_primary_10_1016_j_ijcha_2024_101494
crossref_primary_10_1038_s42003_021_01812_z
crossref_primary_10_1161_CIRCGENETICS_115_001302
crossref_primary_10_1097_CORR_0000000000000946
crossref_primary_10_1055_a_1490_8493
crossref_primary_10_1136_bmj_2023_077310
crossref_primary_10_1016_j_arr_2019_02_003
crossref_primary_10_1186_s12885_017_3687_5
crossref_primary_10_1089_chi_2020_0056
crossref_primary_10_1111_jfpp_14061
crossref_primary_10_1186_s40798_024_00772_y
crossref_primary_10_1016_j_phrs_2021_105418
crossref_primary_10_1055_s_0042_1744541
crossref_primary_10_1002_sim_9354
crossref_primary_10_1136_spcare_2022_003861
crossref_primary_10_1016_j_jdent_2024_105451
crossref_primary_10_1016_j_euroneuro_2013_03_006
crossref_primary_10_1097_CND_0000000000000353
crossref_primary_10_1016_j_joca_2018_10_009
crossref_primary_10_18632_oncotarget_17928
crossref_primary_10_5334_joc_389
crossref_primary_10_1097_QAD_0000000000000027
crossref_primary_10_7314_APJCP_2014_15_13_5229
crossref_primary_10_1111_rssb_12227
crossref_primary_10_1186_s12966_023_01535_w
crossref_primary_10_1186_s12874_018_0531_9
crossref_primary_10_3389_fpubh_2023_1144012
crossref_primary_10_3390_ijms25095045
crossref_primary_10_1055_a_1774_4736
crossref_primary_10_1038_s41562_019_0787_z
crossref_primary_10_1128_AAC_00424_13
crossref_primary_10_1016_j_clinph_2021_05_015
crossref_primary_10_1007_s41999_019_00233_w
crossref_primary_10_1007_s00508_020_01702_0
crossref_primary_10_1136_bmjopen_2017_020381
crossref_primary_10_3390_nu8120747
crossref_primary_10_1080_13697137_2016_1221919
crossref_primary_10_1016_j_jad_2021_05_020
crossref_primary_10_1186_s12879_020_05133_0
crossref_primary_10_1055_a_1765_4035
Cites_doi 10.1136/bmj.317.7153.235
10.1002/0470854200
10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9
10.1002/sim.4780122405
10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D
10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G
10.1002/sim.4780142408
10.1093/oxfordjournals.aje.a117644
10.1136/bmj.323.7303.42
10.2307/2530862
10.1080/00401706.2000.10485740
10.1002/sim.1009
10.1016/0197-2456(86)90046-2
10.1002/sim.2528
10.1002/sim.4780101105
10.1016/j.cct.2006.04.004
10.1002/sim.791
10.1111/j.1467-985X.2004.00349.x
10.1002/sim.4780100604
10.1177/0272989X05282643
10.1198/016214504000001024
10.1214/aos/1176346239
10.1002/sim.4780140406
10.1002/9780470316870
10.1055/s-0038-1633931
10.1080/00031305.1998.10480567
10.1002/sim.2897
10.1002/sim.1186
10.1002/sim.1189
10.1201/9780429258411
10.1002/sim.1586
10.1002/sim.1375
10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A
10.1002/sim.2514
10.7326/0003-4819-130-12-199906150-00019
10.1111/j.0006-341X.1999.00732.x
10.1002/bimj.4710320316
10.1002/sim.4780090808
10.1016/0895-4356(94)00110-C
10.1002/sim.1183
10.1002/sim.4780121305
10.1136/bmj.315.7109.629
10.1002/sim.4780060304
10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0
10.1080/01621459.1983.10477920
10.1016/0895-4356(92)90085-2
10.3102/10769986010002075
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2343::AID-SIM260>3.0.CO;2-3
10.1002/sim.2666
10.1002/(SICI)1097-0258(19970730)16:14<1645::AID-SIM596>3.0.CO;2-G
10.1002/sim.4780060327
10.1111/j.0006-341X.1999.00129.x
10.1016/0895-4356(94)00084-4
10.1136/bmj.309.6965.1351
10.1002/sim.1187
10.1017/S0033291707009877
10.2307/2531491
10.1002/sim.2112
10.1002/bimj.200510175
10.1093/biomet/80.1.127
10.1093/biostatistics/2.4.463
10.1111/1467-9868.00353
10.1080/01621459.1995.10476572
10.1002/sim.4780060333
10.1258/1355819021927674
10.1080/01621459.1978.10480103
10.1002/sim.4780060306
10.1111/j.0006-341X.1999.00117.x
ContentType Journal Article
Copyright Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd.
Journal compilation © 2009 Royal Statistical Society
2009 INIST-CNRS
Copyright Blackwell Publishing Ltd. Jan 2009
2009 The Royal Statistical Society and Blackwell Publishing Ltd 2009
Copyright_xml – notice: Copyright 2009 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: Journal compilation © 2009 Royal Statistical Society
– notice: 2009 INIST-CNRS
– notice: Copyright Blackwell Publishing Ltd. Jan 2009
– notice: 2009 The Royal Statistical Society and Blackwell Publishing Ltd 2009
DBID FBQ
BSCLL
24P
AAYXX
CITATION
IQODW
NPM
DKI
X2L
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
7S9
L.6
5PM
DOI 10.1111/j.1467-985X.2008.00552.x
DatabaseName AGRIS
Istex
Wiley Online Library Open Access
CrossRef
Pascal-Francis
PubMed
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

PubMed



Computer and Information Systems Abstracts
AGRICOLA
MEDLINE - Academic
International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-985X
EndPage 159
ExternalDocumentID PMC2667312
1968618891
blajorssa_v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137_159_htm
19381330
20981093
10_1111_j_1467_985X_2008_00552_x
RSSA552
30136745
ark_67375_WNG_NK6R45DG_4
US201301573239
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: British Heart Foundation
  grantid: RG/08/014/24067
– fundername: Medical Research Council
  grantid: MC_U105260557
– fundername: Medical Research Council
  grantid: MC_U105285807
GroupedDBID -~X
.3N
.GA
.Y3
05W
07C
0R~
10A
1OB
1OC
1OL
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAGJQ
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABFAN
ABHUG
ABIVO
ABPFR
ABPTD
ABWST
ABYAD
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVGU
AFVYC
AFXHP
AFXKK
AFZJQ
AGJLS
AIHXQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ANFBD
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EFSUC
EJD
EMK
EOH
F00
F5P
FBQ
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OJZSN
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SAMSI
SUPJJ
TH9
TN5
UB1
VUG
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
YQT
ZGI
ZL0
ZZTAW
~IA
~WT
AANHP
AARHZ
AAUAY
AAWIL
ABAWQ
ABDFA
ABPQH
ABXSQ
ACHJO
ACRPL
ACYXJ
ADNMO
ADZMN
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
ALUQN
AMVHM
ATGXG
BCRHZ
BSCLL
H13
IPSME
NU-
OIG
24P
AAYXX
CITATION
IQODW
NPM
08R
0R
31
3N
AS
DKI
FSPIC
GA
HZ
IA
IPNFZ
MEWTI
NF
P4A
PQEST
RIG
WRC
WT
X
X2L
Y3
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c8732-6bf7bb416e62ce1abdd73ed830052d626c04ab2e0ff249e73200e6a2efc616053
IEDL.DBID 24P
ISSN 0964-1998
IngestDate Thu Aug 21 14:09:59 EDT 2025
Sun Sep 28 01:33:58 EDT 2025
Thu Sep 04 15:47:26 EDT 2025
Sun Sep 28 01:38:18 EDT 2025
Thu Sep 04 23:32:46 EDT 2025
Sat Sep 06 22:21:29 EDT 2025
Fri Oct 15 12:32:05 EDT 2021
Mon Jul 21 05:29:33 EDT 2025
Mon Jul 21 09:13:55 EDT 2025
Thu Apr 24 22:54:51 EDT 2025
Tue Jul 01 00:50:54 EDT 2025
Tue Sep 09 05:09:26 EDT 2025
Thu Jul 03 21:08:00 EDT 2025
Sun Sep 21 06:26:26 EDT 2025
Wed Dec 27 19:15:20 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bayes estimation
Random-effects models
Prediction
Gaussian distribution
Prediction theory
Non parametric estimation
Statistical estimation
Multivariate analysis
Random distribution
Stochastic process
Mean estimation
Prediction interval
Meta-analysis
Statistical method
Hypothesis test
Heterogeneity
Statistical test
Distribution function
Systematic reviews
Random effect
Filtering theory
Application
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c8732-6bf7bb416e62ce1abdd73ed830052d626c04ab2e0ff249e73200e6a2efc616053
Notes http://dx.doi.org/10.1111/j.1467-985X.2008.00552.x
istex:34D4527B2E6B62007442A43B1C8EE9B0DCC5B8AB
ark:/67375/WNG-NK6R45DG-4
ArticleID:RSSA552
Re‐use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-985X.2008.00552.x
PMID 19381330
PQID 872797581
PQPubID 105636
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2667312
proquest_miscellaneous_48187772
proquest_miscellaneous_37049696
proquest_miscellaneous_33474624
proquest_miscellaneous_1835470434
proquest_journals_872797581
repec_primary_blajorssa_v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137_159_htm
pubmed_primary_19381330
pascalfrancis_primary_20981093
crossref_primary_10_1111_j_1467_985X_2008_00552_x
crossref_citationtrail_10_1111_j_1467_985X_2008_00552_x
wiley_primary_10_1111_j_1467_985X_2008_00552_x_RSSA552
jstor_primary_30136745
istex_primary_ark_67375_WNG_NK6R45DG_4
fao_agris_US201301573239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2009
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: January 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationSeriesTitle Journal of the Royal Statistical Society Series A
PublicationTitle Journal of the Royal Statistical Society. Series A, Statistics in society
PublicationTitleAlternate J R Stat Soc Ser A Stat Soc
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Royal Statistical Society
Oxford University Press
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
– name: Royal Statistical Society
– name: Oxford University Press
References O'Hagan, A. (1994) Kendall's Advanced Theory of Statistics, vol. 2B, Bayesian Inference. London: Arnold.
Thompson, S. G. (1994) Why sources of heterogeneity in meta-analysis should be investigated. Br. Med. J., 309, 1351-1355.
Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. London: Academic Press.
Louis, T. A. (1991) Using Empirical Bayes methods in biopharmaceutical research. Statist. Med., 10, 811-829.
Bailey, K. R. (1987) Inter-study differences-how should they influence the interpretation and analysis of results. Statist. Med., 6, 351-360.
Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R. and Jones, D. R. (2005) How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statist. Med., 24, 2401-2428.
Whitehead, A. (2002) Meta-analysis of Controlled Clinical Trials. Chichester: Wiley.
Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. (2008) Bias modelling in evidence synthesis. J. R. Statist. Soc. A, to be published.
Tjur, T. (1998) Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models. Am. Statistn, 52, 222-227.
Eddy, D. M., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method. San Diego: Academic Press.
Spiegelhalter, D. J. and Best, N. G. (2003) Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Statist. Med., 22, 3687-3709.
Burr, D., Doss, H., Cooke, G. E. and Goldschmidt-Clermont, P. J. (2003) A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease. Statist. Med., 22, 1741-1760.
Welton, N. J., Ades, A. E., Carlin, J. B., Altman, D. G. and Sterne, J. A. C. (2008) Models for potentially biased evidence in meta-analysis using empirically based priors. J. R. Statist. Soc. A, to be published.
Greenland, S. and O'Rourke, K. (2001) On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions. Biostatistics, 2, 463-471.
Knapp, G., Biggerstaff, B. J. and Hartung, J. (2006) Assessing the amount of heterogeneity in random-effects meta-analysis. Biometr. J., 48, 271-285.
Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayes. Anal., 1, 515-533.
Smith, T. C., Spiegelhalter, D. J. and Thomas, A. (1995) Bayesian approaches to random-effects meta-analysis: a comparative study. Statist. Med., 14, 2685-2699.
Lee, K. J. and Thompson, S. G. (2007) Flexible parametric models for random-effects distributions. Statist. Med., 27, 418-434.
Hedges, L. V. (1987) Commentary. Statist. Med., 6, 381-385.
Warn, D. E., Thompson, S. G. and Spiegelhalter, D. J. (2002) Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Statist. Med., 21, 1601-1623.
Light, R. J. (1987) Accumulating evidence from independent studies-what we can win and what we can lose. Statist. Med., 6, 221-231.
Viechtbauer, W. (2007) Confidence intervals for the amount of heterogeneity in meta-analysis. Statist. Med., 26, 37-52.
Anello, C. and Fleiss, J. L. (1995) Exploratory or analytic meta-analysis: should we distinguish between them? J. Clin. Epidem., 48, 109-116.
Biggerstaff, B. J. and Tweedie, R. L. (1997) Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statist. Med., 16, 753-768.
DerSimonian, R. and Kacker, R. (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp. Clin. Trials, 28, 105-114.
Kass, R. E. and Raftery, A. E. (1995) Bayes Factors. J. Am. Statist. Ass., 90, 773-795.
Higgins, J. P. T. and Whitehead, A. (1996) Borrowing strength from external trials in a meta-analysis. Statist. Med., 15, 2733-2749.
Gelman, A. B., Carlin, J. S., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis. Boca Raton: Chapman and Hall-CRC.
Pan, G. H. and Wolfe, D. A. (1997) Test for qualitative interaction of clinical significance. Statist. Med., 16, 1645-1652.
Colditz, G. A., Burdick, E. and Mosteller, F. (1995) Heterogeneity in meta-analysis of data from epidemiologic studies: Commentary. Am. J. Epidem., 142, 371-382.
Detsky, A. S., Naylor, C. D., O'Rourke, K., McGeer, A. J. and Labbe, K. A. (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J. Clin. Epidem., 45, 255-265.
Laird, N. and Louis, T. A. (1989) Empirical Bayes confidence intervals for a series of related experiments. Biometrics, 45, 481-495.
Robbins, H. (1983) Some thoughts on empirical Bayes estimation. Ann. Statist., 11, 713-723.
Goodman, S. N. (1999) Toward evidence-based medical statistics, 2: the Bayes factor. Ann. Intern. Med., 130, 1005-1013.
Hardy, R. J. and Thompson, S. G. (1998) Detecting and describing heterogeneity in meta-analysis. Statist. Med., 17, 841-856.
Raudenbush, S. W. and Bryk, A. S. (1985) Empirical Bayes meta-analysis. J. Educ. Statist., 10, 75-98.
Laird, N. (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Statist. Ass., 73, 805-811.
Böhning, D. (2005) Meta-analysis: a unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality. Meth. Inform. Med., 44, 127-135.
Morris, C. N. and Normand, S. L. (1992) Hierachical models for combining information and for meta-analysis. Bayes. Statist., 4, 321-344.
Follmann, D. A. and Proschan, M. A. (1999) Valid inference in random effects meta-analysis. Biometrics, 55, 732-737.
Gail, M. and Simon, R. (1985) Testing for qualitative interaction between treatment effects and patient subsets. Biometrics, 41, 361-372.
Feinstein, A. R. (1995) Meta-analysis: statistical alchemy for the 21st century. J. Clin. Epidem., 48, 71-79.
Thompson, S. G. and Higgins, J. P. T. (2002) How should meta-regression analyses be undertaken and interpreted? Statist. Med., 21, 1559-1574.
Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003) WinBUGS User Manual, Version 1.4. Cambridge: Medical Research Council Biostatistics Unit.
Burr, D. and Doss, H. (2005) A Bayesian semiparametric model for random-effects meta-analysis. J. Am. Statist. Ass., 100, 242-251.
Aitkin, M. (1999a) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 117-128.
Glasziou, P. P. and Sanders, S. L. (2002) Investigating causes of heterogeneity in systematic reviews. Statist. Med., 21, 1503-1511.
Abrams, K. R. and Sanso, B. (1998) Approximate Bayesian inference in random effects meta-analysis. Statist. Med., 17, 201-218.
Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chichester: Wiley.
Greenland, S. (2005) Multiple-bias modelling for analysis of observational data. J. R. Statist. Soc. A, 168, 267-291.
Hartung, J. and Knapp, G. (2001a) A refined method for the meta-analysis of controlled clinical trials with binary outcome. Statist. Med., 20, 3875-3889.
Morris, C. N. (1983) Parametric empirical Bayes inference: theory and applications. J. Am. Statist. Ass., 78, 47-65.
Skene, A. M. and Wakefield, J. C. (1990) Hierarchical models for multicentre binary response studies. Statist. Med., 9, 919-929.
DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Contr. Clin. Trials, 7, 177-188.
Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. Br. Med. J., 315, 629-634.
Aitkin, M. (1999b) Meta-analysis by random effect modelling in generalized linear models. Statist. Med., 18, 2343-2351.
Berkey, C. S., Hoaglin, D. C., Mosteller, F. and Colditz, G. A. (1995) A random-effects regression model for meta-analysis. Statist. Med., 14, 395-411.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639.
Peto, R. (1987) Why do we need systematic overviews of randomised trials? Statist. Med., 6, 233-240.
Vangel, M. G. and Rukhin, A. L. (1999) Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies. Biometrics, 55, 129-136.
Bradburn, M. J., Deeks, J. J., Berlin, J. A. and Localio, A. R. (2006) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statist. Med., 26, 53-77.
Hardy, R. J. and Thompson, S. G. (1996) A likelihood approach to meta-analysis with random effects. Statist. Med., 15, 619-629.
Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. Br. Med. J., 317, 235-240.
Van Houwelingen, H. C., Zwinderman, K. H. and Stijnen, T. (1993) A bivariate approach to meta-analysis. Statist. Med., 12, 2273-2284.
Whitehead, A. and Whitehead, J. (1991) A general parametric approach to the meta-analysis of randomised clinical trials. Statist. Med., 10, 1665-1677.
Stijnen, T. and Van Houwelingen, J. C. (1990) Empirical Bayes methods in clinical trials meta-analysis. Biometr. J., 32, 335-346.
Raghunathan, T. E. and Ii, Y. C. (1993) Analysis of binary data from a multicenter clinical-trial. Biometrika, 80, 127-139.
Roberts, M. E., Tchanturia, K., Stahl, D., Southgate, L. and Treasure, J. (2007) A systematic review and meta-analysis of set-shifting ability in eating disorders. Psychol. Med., 37, 1075-1084.
Ohlssen, D. I., Sharples, L. D. and Spiegelhalter, D. J. (2007) Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Statist. Med., 26, 2088-2112.
Hartung, J. and Knapp, G. (2001b) On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statist. Med., 20, 1771-1782.
Piantadosi, S. and Gail, M. H. (1993) A comparison of the power of two tests for qualitative interactions. Statist. Med., 12, 1239-1248.
Böhning, D. (2000) Computer-assisted Analysis
1997; 315
1999b; 18
1989; 45
1991; 10
1999a; 55
1978; 73
1987; 6
1998; 317
2001a; 20
2001b; 20
2005; 24
1983; 11
2007; 37
2005; 25
2007; 28
1998; 17
1986; 7
2000
2005; 100
2006; 26
1999; 55
1985
1997; 16
1999; 130
1993; 80
1998; 52
1992; 45
1985; 10
1989
1992; 4
2007; 26
1994; 309
2007; 27
1990; 32
1995; 90
1995; 14
2002; 7
1998
2008
2006
1995
1994
1985; 41
1992
2006; 1
2003
2002
1996; 15
2005; 44
2001; 323
1956
1983; 78
1993; 12
2002; 64
1995; 48
2005; 168
2002; 21
2006; 48
2001; 2
1995; 142
1990; 9
2003; 22
Hardy (2023032309081474300_) 1996; 15
Raudenbush (2023032309081474300_) 1985; 10
Egger (2023032309081474300_) 1997; 315
Pauler (2023032309081474300_) 2000
Aitkin (2023032309081474300_) 1999; 18
Anello (2023032309081474300_) 1995; 48
Eddy (2023032309081474300_) 1992
Ades (2023032309081474300_) 2005; 25
Aitkin (2023032309081474300_) 1999; 55
Cochrane Injuries Group Albumin Reviewers (2023032309081474300_) 1998; 317
Goodman (2023032309081474300_) 1999; 130
Greenland (2023032309081474300_) 2001; 2
Follmann (2023032309081474300_) 1999; 55
Berkey (2023032309081474300_) 1995; 14
Louis (2023032309081474300_) 1991; 10
DerSimonian (2023032309081474300_) 1986; 7
Skene (2023032309081474300_) 1990; 9
Morris (2023032309081474300_) 1992; 4
Smith (2023032309081474300_) 1995; 14
Böhning (2023032309081474300_) 2005; 44
Gelman (2023032309081474300_) 2006; 1
Welton (2023032309081474300_) 2008
Raghunathan (2023032309081474300_) 1993; 80
Larholt (2023032309081474300_) 1989
Böhning (2023032309081474300_) 2000
Feinstein (2023032309081474300_) 1995; 48
Higgins (2023032309081474300_) 1996; 15
Turner (2023032309081474300_) 2008
Morris (2023032309081474300_) 1983; 78
Higgins (2023032309081474300_) 2002; 7
Hartung (2023032309081474300_) 2001; 20
Burr (2023032309081474300_) 2005; 100
Thompson (2023032309081474300_) 1994; 309
Spiegelhalter (2023032309081474300_) 2002; 64
Whitehead (2023032309081474300_) 2002
Kass (2023032309081474300_) 1995; 90
Spiegelhalter (2023032309081474300_) 2003; 22
Tjur (2023032309081474300_) 1998; 52
Whitehead (2023032309081474300_) 1991; 10
Thompson (2023032309081474300_) 2002; 21
Detsky (2023032309081474300_) 1992; 45
Bailey (2023032309081474300_) 1987; 6
Jüni (2023032309081474300_) 2001; 323
Vangel (2023032309081474300_) 1999; 55
Light (2023032309081474300_) 1987; 6
Biggerstaff (2023032309081474300_) 1997; 16
Knapp (2023032309081474300_) 2006; 48
Spiegelhalter (2023032309081474300_) 2003
Cox (2023032309081474300_) 2006
Bradburn (2023032309081474300_) 2006; 26
Lee (2023032309081474300_) 2007; 27
Thompson (2023032309081474300_) 1998
Gail (2023032309081474300_) 1985; 41
Pan (2023032309081474300_) 1997; 16
Glasziou (2023032309081474300_) 2002; 21
Stijnen (2023032309081474300_) 1990; 32
DuMouchel (2023032309081474300_) 1994
DerSimonian (2023032309081474300_) 2007; 28
Higgins (2023032309081474300_) 2002; 21
Viechtbauer (2023032309081474300_) 2007; 26
Greenland (2023032309081474300_) 2005; 168
Hardy (2023032309081474300_) 1998; 17
Van Houwelingen (2023032309081474300_) 1993; 12
O’Hagan (2023032309081474300_) 1994
Peto (2023032309081474300_) 1987; 6
Laird (2023032309081474300_) 1989; 45
Robbins (2023032309081474300_) 1983; 11
Gelman (2023032309081474300_) 1995
Piantadosi (2023032309081474300_) 1993; 12
Lambert (2023032309081474300_) 2005; 24
Roberts (2023032309081474300_) 2007; 37
Bernardo (2023032309081474300_) 1994
Stein (2023032309081474300_) 1956
Laird (2023032309081474300_) 1978; 73
Colditz (2023032309081474300_) 1995; 142
Hedges (2023032309081474300_) 1985
Ohlssen (2023032309081474300_) 2007; 26
DuMouchel (2023032309081474300_) 2000
Hedges (2023032309081474300_) 1987; 6
Burr (2023032309081474300_) 2003; 22
Abrams (2023032309081474300_) 1998; 17
Warn (2023032309081474300_) 2002; 21
References_xml – reference: Stijnen, T. and Van Houwelingen, J. C. (1990) Empirical Bayes methods in clinical trials meta-analysis. Biometr. J., 32, 335-346.
– reference: Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. Br. Med. J., 317, 235-240.
– reference: Egger, M., Davey Smith, G., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. Br. Med. J., 315, 629-634.
– reference: Hartung, J. and Knapp, G. (2001a) A refined method for the meta-analysis of controlled clinical trials with binary outcome. Statist. Med., 20, 3875-3889.
– reference: Higgins, J. P. T. and Whitehead, A. (1996) Borrowing strength from external trials in a meta-analysis. Statist. Med., 15, 2733-2749.
– reference: Roberts, M. E., Tchanturia, K., Stahl, D., Southgate, L. and Treasure, J. (2007) A systematic review and meta-analysis of set-shifting ability in eating disorders. Psychol. Med., 37, 1075-1084.
– reference: Higgins, J. P. T. and Thompson, S. G. (2002) Quantifying heterogeneity in a meta-analysis. Statist. Med., 21, 1539-1558.
– reference: Hedges, L. V. (1987) Commentary. Statist. Med., 6, 381-385.
– reference: O'Hagan, A. (1994) Kendall's Advanced Theory of Statistics, vol. 2B, Bayesian Inference. London: Arnold.
– reference: Smith, T. C., Spiegelhalter, D. J. and Thomas, A. (1995) Bayesian approaches to random-effects meta-analysis: a comparative study. Statist. Med., 14, 2685-2699.
– reference: Goodman, S. N. (1999) Toward evidence-based medical statistics, 2: the Bayes factor. Ann. Intern. Med., 130, 1005-1013.
– reference: Whitehead, A. (2002) Meta-analysis of Controlled Clinical Trials. Chichester: Wiley.
– reference: DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Contr. Clin. Trials, 7, 177-188.
– reference: Burr, D., Doss, H., Cooke, G. E. and Goldschmidt-Clermont, P. J. (2003) A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease. Statist. Med., 22, 1741-1760.
– reference: Hardy, R. J. and Thompson, S. G. (1996) A likelihood approach to meta-analysis with random effects. Statist. Med., 15, 619-629.
– reference: Whitehead, A. and Whitehead, J. (1991) A general parametric approach to the meta-analysis of randomised clinical trials. Statist. Med., 10, 1665-1677.
– reference: Abrams, K. R. and Sanso, B. (1998) Approximate Bayesian inference in random effects meta-analysis. Statist. Med., 17, 201-218.
– reference: Knapp, G., Biggerstaff, B. J. and Hartung, J. (2006) Assessing the amount of heterogeneity in random-effects meta-analysis. Biometr. J., 48, 271-285.
– reference: Eddy, D. M., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method. San Diego: Academic Press.
– reference: Higgins, J., Thompson, S., Deeks, J. and Altman, D. (2002) Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J. Hlth Serv. Res. Poly, 7, 51-61.
– reference: Jüni, P., Altman, D. G. and Egger, M. (2001) Assessing the quality of controlled clinical trials. Br. Med. J., 323, 42-46.
– reference: Peto, R. (1987) Why do we need systematic overviews of randomised trials? Statist. Med., 6, 233-240.
– reference: Thompson, S. G. and Higgins, J. P. T. (2002) How should meta-regression analyses be undertaken and interpreted? Statist. Med., 21, 1559-1574.
– reference: Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S. and Thompson, S. G. (2008) Bias modelling in evidence synthesis. J. R. Statist. Soc. A, to be published.
– reference: Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639.
– reference: Louis, T. A. (1991) Using Empirical Bayes methods in biopharmaceutical research. Statist. Med., 10, 811-829.
– reference: Burr, D. and Doss, H. (2005) A Bayesian semiparametric model for random-effects meta-analysis. J. Am. Statist. Ass., 100, 242-251.
– reference: Viechtbauer, W. (2007) Confidence intervals for the amount of heterogeneity in meta-analysis. Statist. Med., 26, 37-52.
– reference: Bradburn, M. J., Deeks, J. J., Berlin, J. A. and Localio, A. R. (2006) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Statist. Med., 26, 53-77.
– reference: Morris, C. N. (1983) Parametric empirical Bayes inference: theory and applications. J. Am. Statist. Ass., 78, 47-65.
– reference: Warn, D. E., Thompson, S. G. and Spiegelhalter, D. J. (2002) Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Statist. Med., 21, 1601-1623.
– reference: Vangel, M. G. and Rukhin, A. L. (1999) Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies. Biometrics, 55, 129-136.
– reference: Follmann, D. A. and Proschan, M. A. (1999) Valid inference in random effects meta-analysis. Biometrics, 55, 732-737.
– reference: Bailey, K. R. (1987) Inter-study differences-how should they influence the interpretation and analysis of results. Statist. Med., 6, 351-360.
– reference: Laird, N. and Louis, T. A. (1989) Empirical Bayes confidence intervals for a series of related experiments. Biometrics, 45, 481-495.
– reference: Anello, C. and Fleiss, J. L. (1995) Exploratory or analytic meta-analysis: should we distinguish between them? J. Clin. Epidem., 48, 109-116.
– reference: Feinstein, A. R. (1995) Meta-analysis: statistical alchemy for the 21st century. J. Clin. Epidem., 48, 71-79.
– reference: Greenland, S. (2005) Multiple-bias modelling for analysis of observational data. J. R. Statist. Soc. A, 168, 267-291.
– reference: Greenland, S. and O'Rourke, K. (2001) On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions. Biostatistics, 2, 463-471.
– reference: Bernardo, J. M. and Smith, A. F. M. (1994) Bayesian Theory. Chichester: Wiley.
– reference: Robbins, H. (1983) Some thoughts on empirical Bayes estimation. Ann. Statist., 11, 713-723.
– reference: Colditz, G. A., Burdick, E. and Mosteller, F. (1995) Heterogeneity in meta-analysis of data from epidemiologic studies: Commentary. Am. J. Epidem., 142, 371-382.
– reference: Böhning, D. (2005) Meta-analysis: a unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality. Meth. Inform. Med., 44, 127-135.
– reference: Raudenbush, S. W. and Bryk, A. S. (1985) Empirical Bayes meta-analysis. J. Educ. Statist., 10, 75-98.
– reference: DerSimonian, R. and Kacker, R. (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp. Clin. Trials, 28, 105-114.
– reference: Ades, A. E., Lu, G. and Higgins, J. P. T. (2005) The interpretation of random-effects meta-analysis in decision models. Med. Decsn Mak., 25, 646-654.
– reference: Biggerstaff, B. J. and Tweedie, R. L. (1997) Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statist. Med., 16, 753-768.
– reference: Skene, A. M. and Wakefield, J. C. (1990) Hierarchical models for multicentre binary response studies. Statist. Med., 9, 919-929.
– reference: Aitkin, M. (1999a) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics, 55, 117-128.
– reference: Detsky, A. S., Naylor, C. D., O'Rourke, K., McGeer, A. J. and Labbe, K. A. (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J. Clin. Epidem., 45, 255-265.
– reference: Glasziou, P. P. and Sanders, S. L. (2002) Investigating causes of heterogeneity in systematic reviews. Statist. Med., 21, 1503-1511.
– reference: Kass, R. E. and Raftery, A. E. (1995) Bayes Factors. J. Am. Statist. Ass., 90, 773-795.
– reference: Raghunathan, T. E. and Ii, Y. C. (1993) Analysis of binary data from a multicenter clinical-trial. Biometrika, 80, 127-139.
– reference: Spiegelhalter, D., Thomas, A., Best, N. and Lunn, D. (2003) WinBUGS User Manual, Version 1.4. Cambridge: Medical Research Council Biostatistics Unit.
– reference: Hardy, R. J. and Thompson, S. G. (1998) Detecting and describing heterogeneity in meta-analysis. Statist. Med., 17, 841-856.
– reference: Laird, N. (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Statist. Ass., 73, 805-811.
– reference: Morris, C. N. and Normand, S. L. (1992) Hierachical models for combining information and for meta-analysis. Bayes. Statist., 4, 321-344.
– reference: Ohlssen, D. I., Sharples, L. D. and Spiegelhalter, D. J. (2007) Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons. Statist. Med., 26, 2088-2112.
– reference: Gail, M. and Simon, R. (1985) Testing for qualitative interaction between treatment effects and patient subsets. Biometrics, 41, 361-372.
– reference: Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. London: Academic Press.
– reference: Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Bayes. Anal., 1, 515-533.
– reference: Hartung, J. and Knapp, G. (2001b) On tests of the overall treatment effect in meta-analysis with normally distributed responses. Statist. Med., 20, 1771-1782.
– reference: Lee, K. J. and Thompson, S. G. (2007) Flexible parametric models for random-effects distributions. Statist. Med., 27, 418-434.
– reference: Pan, G. H. and Wolfe, D. A. (1997) Test for qualitative interaction of clinical significance. Statist. Med., 16, 1645-1652.
– reference: Light, R. J. (1987) Accumulating evidence from independent studies-what we can win and what we can lose. Statist. Med., 6, 221-231.
– reference: Aitkin, M. (1999b) Meta-analysis by random effect modelling in generalized linear models. Statist. Med., 18, 2343-2351.
– reference: Gelman, A. B., Carlin, J. S., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis. Boca Raton: Chapman and Hall-CRC.
– reference: Piantadosi, S. and Gail, M. H. (1993) A comparison of the power of two tests for qualitative interactions. Statist. Med., 12, 1239-1248.
– reference: Tjur, T. (1998) Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models. Am. Statistn, 52, 222-227.
– reference: Thompson, S. G. (1994) Why sources of heterogeneity in meta-analysis should be investigated. Br. Med. J., 309, 1351-1355.
– reference: Böhning, D. (2000) Computer-assisted Analysis of Mixtures and Applications: Meta-analysis, Disease Mapping and Others. Boca Raton: Chapman and Hall-CRC.
– reference: Van Houwelingen, H. C., Zwinderman, K. H. and Stijnen, T. (1993) A bivariate approach to meta-analysis. Statist. Med., 12, 2273-2284.
– reference: Welton, N. J., Ades, A. E., Carlin, J. B., Altman, D. G. and Sterne, J. A. C. (2008) Models for potentially biased evidence in meta-analysis using empirically based priors. J. R. Statist. Soc. A, to be published.
– reference: Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R. and Jones, D. R. (2005) How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statist. Med., 24, 2401-2428.
– reference: Spiegelhalter, D. J. and Best, N. G. (2003) Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Statist. Med., 22, 3687-3709.
– reference: Berkey, C. S., Hoaglin, D. C., Mosteller, F. and Colditz, G. A. (1995) A random-effects regression model for meta-analysis. Statist. Med., 14, 395-411.
– year: 1985
– volume: 52
  start-page: 222
  year: 1998
  end-page: 227
  article-title: Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models
  publication-title: Am. Statistn
– volume: 100
  start-page: 242
  year: 2005
  end-page: 251
  article-title: A Bayesian semiparametric model for random‐effects meta‐analysis
  publication-title: J. Am. Statist. Ass.
– volume: 28
  start-page: 105
  year: 2007
  end-page: 114
  article-title: Random‐effects model for meta‐analysis of clinical trials: an update
  publication-title: Contemp. Clin. Trials
– volume: 1
  start-page: 515
  year: 2006
  end-page: 533
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Bayes. Anal.
– volume: 309
  start-page: 1351
  year: 1994
  end-page: 1355
  article-title: Why sources of heterogeneity in meta‐analysis should be investigated
  publication-title: Br. Med. J.
– volume: 130
  start-page: 1005
  year: 1999
  end-page: 1013
  article-title: Toward evidence‐based medical statistics, 2: the Bayes factor
  publication-title: Ann. Intern. Med.
– year: 1989
– volume: 41
  start-page: 361
  year: 1985
  end-page: 372
  article-title: Testing for qualitative interaction between treatment effects and patient subsets
  publication-title: Biometrics
– start-page: 2570
  year: 1998
  end-page: 2579
– volume: 142
  start-page: 371
  year: 1995
  end-page: 382
  article-title: Heterogeneity in meta‐analysis of data from epidemiologic studies: Commentary
  publication-title: Am. J. Epidem.
– volume: 7
  start-page: 177
  year: 1986
  end-page: 188
  article-title: Meta‐analysis in clinical trials
  publication-title: Contr. Clin. Trials
– start-page: 127
  year: 2000
  end-page: 178
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Statist. Soc. B
– volume: 73
  start-page: 805
  year: 1978
  end-page: 811
  article-title: Nonparametric maximum likelihood estimation of a mixing distribution
  publication-title: J. Am. Statist. Ass.
– start-page: 197
  year: 1956
  end-page: 206
– volume: 22
  start-page: 1741
  year: 2003
  end-page: 1760
  article-title: A meta‐analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease
  publication-title: Statist. Med.
– volume: 2
  start-page: 463
  year: 2001
  end-page: 471
  article-title: On the bias produced by quality scores in meta‐analysis, and a hierarchical view of proposed solutions
  publication-title: Biostatistics
– year: 1994
– volume: 15
  start-page: 2733
  year: 1996
  end-page: 2749
  article-title: Borrowing strength from external trials in a meta‐analysis
  publication-title: Statist. Med.
– volume: 317
  start-page: 235
  year: 1998
  end-page: 240
  article-title: Human albumin administration in critically ill patients: systematic review of randomised controlled trials
  publication-title: Br. Med. J.
– volume: 37
  start-page: 1075
  year: 2007
  end-page: 1084
  article-title: A systematic review and meta‐analysis of set‐shifting ability in eating disorders
  publication-title: Psychol. Med.
– volume: 21
  start-page: 1539
  year: 2002
  end-page: 1558
  article-title: Quantifying heterogeneity in a meta‐analysis
  publication-title: Statist. Med.
– volume: 32
  start-page: 335
  year: 1990
  end-page: 346
  article-title: Empirical Bayes methods in clinical trials meta‐analysis
  publication-title: Biometr. J.
– volume: 26
  start-page: 37
  year: 2007
  end-page: 52
  article-title: Confidence intervals for the amount of heterogeneity in meta‐analysis
  publication-title: Statist. Med.
– volume: 16
  start-page: 753
  year: 1997
  end-page: 768
  article-title: Incorporating variability in estimates of heterogeneity in the random effects model in meta‐analysis
  publication-title: Statist. Med.
– volume: 55
  start-page: 117
  year: 1999a
  end-page: 128
  article-title: A general maximum likelihood analysis of variance components in generalized linear models
  publication-title: Biometrics
– volume: 6
  start-page: 351
  year: 1987
  end-page: 360
  article-title: Inter‐study differences—how should they influence the interpretation and analysis of results
  publication-title: Statist. Med.
– year: 2008
  article-title: Models for potentially biased evidence in meta‐analysis using empirically based priors
  publication-title: J. R. Statist. Soc. A
– volume: 25
  start-page: 646
  year: 2005
  end-page: 654
  article-title: The interpretation of random‐effects meta‐analysis in decision models
  publication-title: Med. Decsn Mak.
– volume: 21
  start-page: 1559
  year: 2002
  end-page: 1574
  article-title: How should meta‐regression analyses be undertaken and interpreted?
  publication-title: Statist. Med.
– volume: 4
  start-page: 321
  year: 1992
  end-page: 344
  article-title: Hierachical models for combining information and for meta‐analysis
  publication-title: Bayes. Statist.
– volume: 45
  start-page: 255
  year: 1992
  end-page: 265
  article-title: Incorporating variations in the quality of individual randomized trials into meta‐analysis
  publication-title: J. Clin. Epidem.
– volume: 48
  start-page: 271
  year: 2006
  end-page: 285
  article-title: Assessing the amount of heterogeneity in random‐effects meta‐analysis
  publication-title: Biometr. J.
– volume: 9
  start-page: 919
  year: 1990
  end-page: 929
  article-title: Hierarchical models for multicentre binary response studies
  publication-title: Statist. Med.
– start-page: 205
  year: 2000
  end-page: 230
– year: 2008
  article-title: Bias modelling in evidence synthesis
  publication-title: J. R. Statist. Soc. A
– volume: 315
  start-page: 629
  year: 1997
  end-page: 634
  article-title: Bias in meta‐analysis detected by a simple, graphical test
  publication-title: Br. Med. J.
– volume: 17
  start-page: 841
  year: 1998
  end-page: 856
  article-title: Detecting and describing heterogeneity in meta‐analysis
  publication-title: Statist. Med.
– volume: 12
  start-page: 1239
  year: 1993
  end-page: 1248
  article-title: A comparison of the power of two tests for qualitative interactions
  publication-title: Statist. Med.
– volume: 55
  start-page: 732
  year: 1999
  end-page: 737
  article-title: Valid inference in random effects meta‐analysis
  publication-title: Biometrics
– volume: 6
  start-page: 381
  year: 1987
  end-page: 385
  article-title: Commentary
  publication-title: Statist. Med.
– volume: 7
  start-page: 51
  year: 2002
  end-page: 61
  article-title: Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice
  publication-title: J. Hlth Serv. Res. Poly
– volume: 44
  start-page: 127
  year: 2005
  end-page: 135
  article-title: Meta‐analysis: a unifying meta‐likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality
  publication-title: Meth. Inform. Med.
– volume: 20
  start-page: 1771
  year: 2001b
  end-page: 1782
  article-title: On tests of the overall treatment effect in meta‐analysis with normally distributed responses
  publication-title: Statist. Med.
– start-page: 1074
  year: 2006
  end-page: 1081
– volume: 6
  start-page: 233
  year: 1987
  end-page: 240
  article-title: Why do we need systematic overviews of randomised trials?
  publication-title: Statist. Med.
– volume: 26
  start-page: 53
  year: 2006
  end-page: 77
  article-title: Much ado about nothing: a comparison of the performance of meta‐analytical methods with rare events
  publication-title: Statist. Med.
– volume: 45
  start-page: 481
  year: 1989
  end-page: 495
  article-title: Empirical Bayes confidence intervals for a series of related experiments
  publication-title: Biometrics
– volume: 26
  start-page: 2088
  year: 2007
  end-page: 2112
  article-title: Flexible random‐effects models using Bayesian semi‐parametric models: applications to institutional comparisons
  publication-title: Statist. Med.
– volume: 48
  start-page: 71
  year: 1995
  end-page: 79
  article-title: Meta‐analysis: statistical alchemy for the 21st century
  publication-title: J. Clin. Epidem.
– volume: 78
  start-page: 47
  year: 1983
  end-page: 65
  article-title: Parametric empirical Bayes inference: theory and applications
  publication-title: J. Am. Statist. Ass.
– volume: 48
  start-page: 109
  year: 1995
  end-page: 116
  article-title: Exploratory or analytic meta‐analysis: should we distinguish between them?
  publication-title: J. Clin. Epidem.
– year: 2003
– year: 2000
– volume: 15
  start-page: 619
  year: 1996
  end-page: 629
  article-title: A likelihood approach to meta‐analysis with random effects
  publication-title: Statist. Med.
– volume: 10
  start-page: 75
  year: 1985
  end-page: 98
  article-title: Empirical Bayes meta‐analysis
  publication-title: J. Educ. Statist.
– volume: 14
  start-page: 2685
  year: 1995
  end-page: 2699
  article-title: Bayesian approaches to random‐effects meta‐analysis: a comparative study
  publication-title: Statist. Med.
– volume: 10
  start-page: 811
  year: 1991
  end-page: 829
  article-title: Using Empirical Bayes methods in biopharmaceutical research
  publication-title: Statist. Med.
– volume: 21
  start-page: 1601
  year: 2002
  end-page: 1623
  article-title: Bayesian random effects meta‐analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales
  publication-title: Statist. Med.
– volume: 168
  start-page: 267
  year: 2005
  end-page: 291
  article-title: Multiple‐bias modelling for analysis of observational data
  publication-title: J. R. Statist. Soc. A
– year: 1992
– volume: 12
  start-page: 2273
  year: 1993
  end-page: 2284
  article-title: A bivariate approach to meta‐analysis
  publication-title: Statist. Med.
– volume: 10
  start-page: 1665
  year: 1991
  end-page: 1677
  article-title: A general parametric approach to the meta‐analysis of randomised clinical trials
  publication-title: Statist. Med.
– volume: 17
  start-page: 201
  year: 1998
  end-page: 218
  article-title: Approximate Bayesian inference in random effects meta‐analysis
  publication-title: Statist. Med.
– volume: 24
  start-page: 2401
  year: 2005
  end-page: 2428
  article-title: How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
  publication-title: Statist. Med.
– volume: 80
  start-page: 127
  year: 1993
  end-page: 139
  article-title: Analysis of binary data from a multicenter clinical‐trial
  publication-title: Biometrika
– volume: 20
  start-page: 3875
  year: 2001a
  end-page: 3889
  article-title: A refined method for the meta‐analysis of controlled clinical trials with binary outcome
  publication-title: Statist. Med.
– volume: 27
  start-page: 418
  year: 2007
  end-page: 434
  article-title: Flexible parametric models for random‐effects distributions
  publication-title: Statist. Med.
– volume: 16
  start-page: 1645
  year: 1997
  end-page: 1652
  article-title: Test for qualitative interaction of clinical significance
  publication-title: Statist. Med.
– volume: 323
  start-page: 42
  year: 2001
  end-page: 46
  article-title: Assessing the quality of controlled clinical trials
  publication-title: Br. Med. J.
– year: 2002
– volume: 90
  start-page: 773
  year: 1995
  end-page: 795
  article-title: Bayes Factors
  publication-title: J. Am. Statist. Ass.
– volume: 11
  start-page: 713
  year: 1983
  end-page: 723
  article-title: Some thoughts on empirical Bayes estimation
  publication-title: Ann. Statist.
– volume: 22
  start-page: 3687
  year: 2003
  end-page: 3709
  article-title: Bayesian approaches to multiple sources of evidence and uncertainty in complex cost‐effectiveness modelling
  publication-title: Statist. Med.
– volume: 55
  start-page: 129
  year: 1999
  end-page: 136
  article-title: Maximum likelihood analysis for heteroscedastic one‐way random effects ANOVA in interlaboratory studies
  publication-title: Biometrics
– year: 1995
– volume: 18
  start-page: 2343
  year: 1999b
  end-page: 2351
  article-title: Meta‐analysis by random effect modelling in generalized linear models
  publication-title: Statist. Med.
– volume: 21
  start-page: 1503
  year: 2002
  end-page: 1511
  article-title: Investigating causes of heterogeneity in systematic reviews
  publication-title: Statist. Med.
– volume: 6
  start-page: 221
  year: 1987
  end-page: 231
  article-title: Accumulating evidence from independent studies—what we can win and what we can lose
  publication-title: Statist. Med.
– volume: 14
  start-page: 395
  year: 1995
  end-page: 411
  article-title: A random‐effects regression model for meta‐analysis
  publication-title: Statist. Med.
– volume: 317
  start-page: 235
  year: 1998
  ident: 2023032309081474300_
  article-title: Human albumin administration in critically ill patients: systematic review of randomised controlled trials
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.317.7153.235
– volume-title: Statistical Methods for Meta-analysis
  year: 1985
  ident: 2023032309081474300_
– volume-title: Meta-analysis of Controlled Clinical Trials
  year: 2002
  ident: 2023032309081474300_
  doi: 10.1002/0470854200
– volume: 17
  start-page: 201
  year: 1998
  ident: 2023032309081474300_
  article-title: Approximate Bayesian inference in random effects meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9
– volume: 12
  start-page: 2273
  year: 1993
  ident: 2023032309081474300_
  article-title: A bivariate approach to meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780122405
– volume: 17
  start-page: 841
  year: 1998
  ident: 2023032309081474300_
  article-title: Detecting and describing heterogeneity in meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<841::AID-SIM781>3.0.CO;2-D
– volume: 16
  start-page: 753
  year: 1997
  ident: 2023032309081474300_
  article-title: Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G
– volume: 14
  start-page: 2685
  year: 1995
  ident: 2023032309081474300_
  article-title: Bayesian approaches to random-effects meta-analysis: a comparative study
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780142408
– volume: 142
  start-page: 371
  year: 1995
  ident: 2023032309081474300_
  article-title: Heterogeneity in meta-analysis of data from epidemiologic studies: Commentary
  publication-title: Am. J. Epidem.
  doi: 10.1093/oxfordjournals.aje.a117644
– volume: 323
  start-page: 42
  year: 2001
  ident: 2023032309081474300_
  article-title: Assessing the quality of controlled clinical trials
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.323.7303.42
– volume: 41
  start-page: 361
  year: 1985
  ident: 2023032309081474300_
  article-title: Testing for qualitative interaction between treatment effects and patient subsets
  publication-title: Biometrics
  doi: 10.2307/2530862
– volume-title: Computer-assisted Analysis of Mixtures and Applications: Meta-analysis, Disease Mapping and Others
  year: 2000
  ident: 2023032309081474300_
  doi: 10.1080/00401706.2000.10485740
– volume: 20
  start-page: 3875
  year: 2001
  ident: 2023032309081474300_
  article-title: A refined method for the meta-analysis of controlled clinical trials with binary outcome
  publication-title: Statist. Med.
  doi: 10.1002/sim.1009
– volume: 7
  start-page: 177
  year: 1986
  ident: 2023032309081474300_
  article-title: Meta-analysis in clinical trials
  publication-title: Contr. Clin. Trials
  doi: 10.1016/0197-2456(86)90046-2
– volume: 26
  start-page: 53
  year: 2006
  ident: 2023032309081474300_
  article-title: Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events
  publication-title: Statist. Med.
  doi: 10.1002/sim.2528
– volume: 10
  start-page: 1665
  year: 1991
  ident: 2023032309081474300_
  article-title: A general parametric approach to the meta-analysis of randomised clinical trials
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780101105
– volume: 28
  start-page: 105
  year: 2007
  ident: 2023032309081474300_
  article-title: Random-effects model for meta-analysis of clinical trials: an update
  publication-title: Contemp. Clin. Trials
  doi: 10.1016/j.cct.2006.04.004
– volume: 20
  start-page: 1771
  year: 2001
  ident: 2023032309081474300_
  article-title: On tests of the overall treatment effect in meta-analysis with normally distributed responses
  publication-title: Statist. Med.
  doi: 10.1002/sim.791
– volume: 168
  start-page: 267
  year: 2005
  ident: 2023032309081474300_
  article-title: Multiple-bias modelling for analysis of observational data
  publication-title: J. R. Statist. Soc. A
  doi: 10.1111/j.1467-985X.2004.00349.x
– year: 2008
  ident: 2023032309081474300_
  article-title: Bias modelling in evidence synthesis
  publication-title: J. R. Statist. Soc. A
– volume: 10
  start-page: 811
  year: 1991
  ident: 2023032309081474300_
  article-title: Using Empirical Bayes methods in biopharmaceutical research
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780100604
– volume: 25
  start-page: 646
  year: 2005
  ident: 2023032309081474300_
  article-title: The interpretation of random-effects meta-analysis in decision models
  publication-title: Med. Decsn Mak.
  doi: 10.1177/0272989X05282643
– volume: 100
  start-page: 242
  year: 2005
  ident: 2023032309081474300_
  article-title: A Bayesian semiparametric model for random-effects meta-analysis
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214504000001024
– volume: 11
  start-page: 713
  year: 1983
  ident: 2023032309081474300_
  article-title: Some thoughts on empirical Bayes estimation
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176346239
– volume: 14
  start-page: 395
  year: 1995
  ident: 2023032309081474300_
  article-title: A random-effects regression model for meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780140406
– volume-title: Hierarchical Bayes linear models for meta-analysis
  year: 1994
  ident: 2023032309081474300_
– volume-title: Bayesian Theory
  year: 1994
  ident: 2023032309081474300_
  doi: 10.1002/9780470316870
– volume: 44
  start-page: 127
  year: 2005
  ident: 2023032309081474300_
  article-title: Meta-analysis: a unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality
  publication-title: Meth. Inform. Med.
  doi: 10.1055/s-0038-1633931
– volume: 52
  start-page: 222
  year: 1998
  ident: 2023032309081474300_
  article-title: Nonlinear regression, quasi likelihood, and overdispersion in generalized linear models
  publication-title: Am. Statistn
  doi: 10.1080/00031305.1998.10480567
– volume: 27
  start-page: 418
  year: 2007
  ident: 2023032309081474300_
  article-title: Flexible parametric models for random-effects distributions
  publication-title: Statist. Med.
  doi: 10.1002/sim.2897
– volume: 21
  start-page: 1539
  year: 2002
  ident: 2023032309081474300_
  article-title: Quantifying heterogeneity in a meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/sim.1186
– volume: 21
  start-page: 1601
  year: 2002
  ident: 2023032309081474300_
  article-title: Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales
  publication-title: Statist. Med.
  doi: 10.1002/sim.1189
– start-page: 2570
  volume-title: Encyclopedia of Biostatistics
  year: 1998
  ident: 2023032309081474300_
– volume-title: Bayesian Data Analysis
  year: 1995
  ident: 2023032309081474300_
  doi: 10.1201/9780429258411
– volume: 1
  start-page: 515
  year: 2006
  ident: 2023032309081474300_
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Bayes. Anal.
– volume: 22
  start-page: 3687
  year: 2003
  ident: 2023032309081474300_
  article-title: Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling
  publication-title: Statist. Med.
  doi: 10.1002/sim.1586
– volume: 22
  start-page: 1741
  year: 2003
  ident: 2023032309081474300_
  article-title: A meta-analysis of studies on the association of the platelet PlA polymorphism of glycoprotein IIIa and risk of coronary heart disease
  publication-title: Statist. Med.
  doi: 10.1002/sim.1375
– volume: 15
  start-page: 619
  year: 1996
  ident: 2023032309081474300_
  article-title: A likelihood approach to meta-analysis with random effects
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A
– volume-title: Statistical methods and heterogeneity in meta-analysis
  year: 1989
  ident: 2023032309081474300_
– volume: 26
  start-page: 37
  year: 2007
  ident: 2023032309081474300_
  article-title: Confidence intervals for the amount of heterogeneity in meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/sim.2514
– volume: 130
  start-page: 1005
  year: 1999
  ident: 2023032309081474300_
  article-title: Toward evidence-based medical statistics, 2: the Bayes factor
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-130-12-199906150-00019
– volume: 55
  start-page: 732
  year: 1999
  ident: 2023032309081474300_
  article-title: Valid inference in random effects meta-analysis
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00732.x
– volume: 4
  start-page: 321
  year: 1992
  ident: 2023032309081474300_
  article-title: Hierachical models for combining information and for meta-analysis
  publication-title: Bayes. Statist.
– volume-title: Kendall’s Advanced Theory of Statistics, vol. 2B, Bayesian Inference
  year: 1994
  ident: 2023032309081474300_
– volume: 32
  start-page: 335
  year: 1990
  ident: 2023032309081474300_
  article-title: Empirical Bayes methods in clinical trials meta-analysis
  publication-title: Biometr. J.
  doi: 10.1002/bimj.4710320316
– volume: 9
  start-page: 919
  year: 1990
  ident: 2023032309081474300_
  article-title: Hierarchical models for multicentre binary response studies
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780090808
– volume: 48
  start-page: 71
  year: 1995
  ident: 2023032309081474300_
  article-title: Meta-analysis: statistical alchemy for the 21st century
  publication-title: J. Clin. Epidem.
  doi: 10.1016/0895-4356(94)00110-C
– volume: 21
  start-page: 1503
  year: 2002
  ident: 2023032309081474300_
  article-title: Investigating causes of heterogeneity in systematic reviews
  publication-title: Statist. Med.
  doi: 10.1002/sim.1183
– volume: 12
  start-page: 1239
  year: 1993
  ident: 2023032309081474300_
  article-title: A comparison of the power of two tests for qualitative interactions
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780121305
– volume: 315
  start-page: 629
  year: 1997
  ident: 2023032309081474300_
  article-title: Bias in meta-analysis detected by a simple, graphical test
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.315.7109.629
– volume: 6
  start-page: 221
  year: 1987
  ident: 2023032309081474300_
  article-title: Accumulating evidence from independent studies—what we can win and what we can lose
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780060304
– volume: 15
  start-page: 2733
  year: 1996
  ident: 2023032309081474300_
  article-title: Borrowing strength from external trials in a meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0
– volume: 78
  start-page: 47
  year: 1983
  ident: 2023032309081474300_
  article-title: Parametric empirical Bayes inference: theory and applications
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1983.10477920
– volume: 45
  start-page: 255
  year: 1992
  ident: 2023032309081474300_
  article-title: Incorporating variations in the quality of individual randomized trials into meta-analysis
  publication-title: J. Clin. Epidem.
  doi: 10.1016/0895-4356(92)90085-2
– volume: 10
  start-page: 75
  year: 1985
  ident: 2023032309081474300_
  article-title: Empirical Bayes meta-analysis
  publication-title: J. Educ. Statist.
  doi: 10.3102/10769986010002075
– volume: 18
  start-page: 2343
  year: 1999
  ident: 2023032309081474300_
  article-title: Meta-analysis by random effect modelling in generalized linear models
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2343::AID-SIM260>3.0.CO;2-3
– volume: 26
  start-page: 2088
  year: 2007
  ident: 2023032309081474300_
  article-title: Flexible random-effects models using Bayesian semi-parametric models: applications to institutional comparisons
  publication-title: Statist. Med.
  doi: 10.1002/sim.2666
– volume: 16
  start-page: 1645
  year: 1997
  ident: 2023032309081474300_
  article-title: Test for qualitative interaction of clinical significance
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19970730)16:14<1645::AID-SIM596>3.0.CO;2-G
– volume: 6
  start-page: 351
  year: 1987
  ident: 2023032309081474300_
  article-title: Inter-study differences—how should they influence the interpretation and analysis of results
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780060327
– volume-title: WinBUGS User Manual, Version 1.4
  year: 2003
  ident: 2023032309081474300_
– volume: 55
  start-page: 129
  year: 1999
  ident: 2023032309081474300_
  article-title: Maximum likelihood analysis for heteroscedastic one-way random effects ANOVA in interlaboratory studies
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00129.x
– year: 2008
  ident: 2023032309081474300_
  article-title: Models for potentially biased evidence in meta-analysis using empirically based priors
  publication-title: J. R. Statist. Soc. A
– volume: 48
  start-page: 109
  year: 1995
  ident: 2023032309081474300_
  article-title: Exploratory or analytic meta-analysis: should we distinguish between them?
  publication-title: J. Clin. Epidem.
  doi: 10.1016/0895-4356(94)00084-4
– volume: 309
  start-page: 1351
  year: 1994
  ident: 2023032309081474300_
  article-title: Why sources of heterogeneity in meta-analysis should be investigated
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.309.6965.1351
– volume: 21
  start-page: 1559
  year: 2002
  ident: 2023032309081474300_
  article-title: How should meta-regression analyses be undertaken and interpreted?
  publication-title: Statist. Med.
  doi: 10.1002/sim.1187
– volume: 37
  start-page: 1075
  year: 2007
  ident: 2023032309081474300_
  article-title: A systematic review and meta-analysis of set-shifting ability in eating disorders
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291707009877
– volume: 45
  start-page: 481
  year: 1989
  ident: 2023032309081474300_
  article-title: Empirical Bayes confidence intervals for a series of related experiments
  publication-title: Biometrics
  doi: 10.2307/2531491
– volume: 24
  start-page: 2401
  year: 2005
  ident: 2023032309081474300_
  article-title: How vague is vague?: a simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
  publication-title: Statist. Med.
  doi: 10.1002/sim.2112
– start-page: 1074
  volume-title: Encyclopedia of Statistical Sciences
  year: 2006
  ident: 2023032309081474300_
– volume: 48
  start-page: 271
  year: 2006
  ident: 2023032309081474300_
  article-title: Assessing the amount of heterogeneity in random-effects meta-analysis
  publication-title: Biometr. J.
  doi: 10.1002/bimj.200510175
– volume: 80
  start-page: 127
  year: 1993
  ident: 2023032309081474300_
  article-title: Analysis of binary data from a multicenter clinical-trial
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.127
– volume: 2
  start-page: 463
  year: 2001
  ident: 2023032309081474300_
  article-title: On the bias produced by quality scores in meta-analysis, and a hierarchical view of proposed solutions
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/2.4.463
– start-page: 197
  volume-title: Proc. 3rd Berkeley Symp
  year: 1956
  ident: 2023032309081474300_
– volume: 64
  start-page: 583
  year: 2002
  ident: 2023032309081474300_
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00353
– start-page: 127
  volume-title: Statistical Methodology in the Pharmaceutical Sciences
  year: 2000
  ident: 2023032309081474300_
– volume: 90
  start-page: 773
  year: 1995
  ident: 2023032309081474300_
  article-title: Bayes Factors
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1995.10476572
– volume: 6
  start-page: 381
  year: 1987
  ident: 2023032309081474300_
  article-title: Commentary
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780060333
– volume: 7
  start-page: 51
  year: 2002
  ident: 2023032309081474300_
  article-title: Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice
  publication-title: J. Hlth Serv. Res. Poly
  doi: 10.1258/1355819021927674
– volume: 73
  start-page: 805
  year: 1978
  ident: 2023032309081474300_
  article-title: Nonparametric maximum likelihood estimation of a mixing distribution
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1978.10480103
– volume: 6
  start-page: 233
  year: 1987
  ident: 2023032309081474300_
  article-title: Why do we need systematic overviews of randomised trials?
  publication-title: Statist. Med.
  doi: 10.1002/sim.4780060306
– volume-title: Meta-analysis by the Confidence Profile Method
  year: 1992
  ident: 2023032309081474300_
– start-page: 205
  volume-title: Meta-analysis in Medicine and Health Policy
  year: 2000
  ident: 2023032309081474300_
– volume: 55
  start-page: 117
  year: 1999
  ident: 2023032309081474300_
  article-title: A general maximum likelihood analysis of variance components in generalized linear models
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00117.x
SSID ssj0000077
Score 2.495292
Snippet Meta-analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random-effects model, in which the effects underlying different...
Meta‐analysis in the presence of unexplained heterogeneity is frequently undertaken by using a random‐effects model, in which the effects underlying different...
SourceID pubmedcentral
proquest
repec
pubmed
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Analysis
Applications
Bayesian analysis
Bayesian method
Confidence interval
Degrees of freedom
Distribution theory
Eating disorders
Exact sciences and technology
Forecasts
Gaussian distributions
General topics
Hypothesis
Hypothesis testing
Inference
Justification
Mathematical intervals
Mathematics
Meta analysis
Methodology
Modeling
Normal distribution
Null hypothesis
Original
Prediction
Predictions
Probability and statistics
Probability theory and stochastic processes
Random-effects models
Sciences and techniques of general use
Standard error
Statistical methods
Statistical variance
Statistics
Stochastic processes
Systematic reviews
Uncertainty
Title re-evaluation of random-effects meta-analysis
URI https://api.istex.fr/ark:/67375/WNG-NK6R45DG-4/fulltext.pdf
https://www.jstor.org/stable/30136745
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-985X.2008.00552.x
https://www.ncbi.nlm.nih.gov/pubmed/19381330
http://econpapers.repec.org/article/blajorssa/v_3a172_3ay_3a2009_3ai_3a1_3ap_3a137-159.htm
https://www.proquest.com/docview/872797581
https://www.proquest.com/docview/1835470434
https://www.proquest.com/docview/33474624
https://www.proquest.com/docview/37049696
https://www.proquest.com/docview/48187772
https://pubmed.ncbi.nlm.nih.gov/PMC2667312
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgexkPEwzGssEIEuItKPGfOHmsKNtgWoVaKvpm2Ym9Ddamajq0Rz4Cn5FPwl2SZkTb0MRDkzQ5u5HvbP_Ovv6OkDfOSkuZc4EUuFpFcxEYl6aBcBrGyQScDIvrkCeD-GjMP03EpIl_wv_C1PwQ7YIb9oxqvMYOrk15s5OniZisQiKFoO8AT64Dxmdo7ZR__gsKV1kYAbFzDK5IulE9t9bUmaoeOl0AgMW2v1rFLmIgpS6hLV2dBOM2lHoz2HJ9Yec264LhajY7eEw2Gxjq92q7eUIe2NkWeXTScriWW2QDcWhN4_yUiJ6_sL9__romB_cL58P75MUUb9dRIf7ULjV81Q3TyTMyPvjw5f1R0GRcCLJEMhrExkljAKPZmGY20ibPJbN5gpz2NAffJwu5NtSGzoHbZqFIGNpYU-uyOALHiG2TtVkxszvED50JY-tobm3KdZabDKCSg9lPiMxE0nhErhpXZQ0dOWbFuFAdt0QqVEuTLBPVoq48ErUl5zUlxz3K7ID-lD6FkVONRxT3ayMB789Sj7ytlNrWpRffMdpNCvV1cKgGx_GQi_6h4h7ZrrTeCrKK744Lj-x3zKAVoGGaIF2XR_ZWdqGaIaJUCSDHFLy1yCOv26fQt3HDRs9scVmqCFflZMgZ_ParO2QY45LH9F8SUANyIN0twQG1SXCzPPK8ttXrdk0B0TEWgrY6VtwKIDt598ns_KxiKaeYUDaCOvuVvbclzIX-VizKUqsfimkwCjhCW2rcpoPTOd6EzxzPTCqA2-psOfVIXHWXe2tcDUejHlzt_m_BPbJR7xzictsLsrZcXNqXAECXZr8aWeDYP_6IxyH9A3EAebI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NctMwENZAe6Ac-CmUmkIbZhhuydiSZdnHDKUNtMkhaYbcNJIttaVJnIkTpsOJR-AZeRJ2bcfFtGU6DIfEib1SkvWu9K20-ZaQt9YIQ5m1TcFxtYomvKltFDW5VTBOhhBkGFyH7PaCztD_NOKjshwQ_hem4IeoFtzQM_LxGh0cF6Sve3kU8tEqJ5Jz2gJAuZ5v1yFC6v_GJeXmZRgBsvuYXRHW03pu7Kk2V923KgUEi8q_XCUvYialykCZtqiCcRNMvZ5tuT43MxPX0XA-nR08JuOVIooslovWcqFb8bc_OCL_k6aekEcl7G20Czt9Su6Z6SZ52K04Y7NNsoG4t6CNfkZ4uzE3P7__uCIjb6S2AT8_SSd4ushCaUzMQsFbVTKrPCfDgw8n7zvNssJDMw4Fo81AW6E1YEIT0Nh4SieJYCYJkUOfJhBrxa6vNDWutRAmGmjiuiZQ1Ng48CAQY1tkbZpOzTZpuFa7gbE0MSbyVZzoGKCZhdmW81h7QjtErO6ljEv6c6zCMZa1MEhI1FJZnBO1JC8d4lUtZwUFyB3abIO5SHUKI7UcDijuD3scvj-LHPIut6GqLzW_wOw6weXn3qHsHQV9n-8fSt8hW7mRVYIs59fzuUN2a1ZXCVA3CpEezCE7KzOU5ZCUyRCQagTRoeeQN9VVGEtwg0hNTbrMpIergML1GXz23i0yjPnCD-jfJKAH5Fy6XcIHlCggrHPIi8I1rvQaAYJkzIW7VXOaSgDZ0OtXpudnOSs6xQK2HvS5n7tX1UKP1Zd0nmVKfpVMgVHAM-hS4bYgHM7xJDxmeGRCAryXZ4uJQ4Lcpe58x2V_MGjDq5f_2nCPPOicdI_l8cfe0Q7ZKHYtcanvFVlbzJfmNYDfhd7NB7VfGLWe8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgk9B4QDDYFgZbkBBvQYn_xMljRekGY9W0UrE3y05sNlibqunQHvkIfEY-CXdJmhFtQxMPTZrk7Ea-s_07-_o7Ql47Ky1lzgVS4GoVzUVgXJoGwmkYJxNwMiyuQx4O4_0x_3giTpr4J_wvTM0P0S64Yc-oxmvs4LPcXe_kaSJOliGRQtC3gCdXOZghWjvlR39B4SoLIyB2jsEVSTeq58aaOlPVfacLALDY9pfL2EUMpNQltKWrk2DchFKvB1uuzu3MZl0wXM1mg8fkUQND_V5tN0_IPTtdJw8PWw7Xcp2sIQ6taZyfEtHz5_b3z19X5OB-4Xx4n7yY4O06KsSf2IWGS90wnTwj48H7z-_2gybjQpAlktEgNk4aAxjNxjSzkTZ5LpnNE-S0pzn4PlnItaE2dA7cNgtFwtDGmlqXxRE4RmyDrEyLqd0ifuhMGFtHc2tTrrPcZACVHMx-QmQmksYjctm4KmvoyDErxrnquCVSoVqaZJmoFnXpkagtOaspOe5QZgv0p_RXGDnVeERxvzYS8P4s9cibSqltXXr-HaPdpFBfhntqeBAfc9HfU9wjG5XWW0FW8d1x4ZGdjhm0AjRME6Tr8sj20i5UM0SUKgHkmIK3FnnkVfsU-jZu2OipLS5KFeGqnAw5g9_evUWGMS55TP8lATUgB9LtEhxQmwQ3yyObta1etWsKiI6xELTVseJWANnJu0-mZ6cVSznFhLIR1Nmv7L0tYc71t2Jellr9UEyDUcAR2lLjNh2czvAmfGZ4ZlIB3Fani4lH4qq73Fnj6ng06sG35_9bcJc8OOoP1KcPw4NtslZvIuLK2wuysphf2JeARRdmpxpk_gBdsHpx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Re-Evaluation+of+Random-Effects+Meta-Analysis&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Higgins%2C+Julian+P.+T.&rft.au=Thompson%2C+Simon+G.&rft.au=Spiegelhalter%2C+David+J.&rft.date=2009-01-01&rft.pub=Blackwell+Publishing&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=172&rft.issue=1&rft.spage=137&rft.epage=159&rft_id=info:doi/10.1111%2Fj.1467-985X.2008.00552.x&rft.externalDocID=30136745
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon