Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles
Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the gl...
Saved in:
| Published in | PLoS biology Vol. 5; no. 1; p. e8 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.01.2007
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1545-7885 1544-9173 1545-7885 |
| DOI | 10.1371/journal.pbio.0050008 |
Cover
| Abstract | Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. |
|---|---|
| AbstractList | Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data.Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. Organisms can adapt to changing environments—becoming more virulent, for example, or activating stress responses—thanks to a flexible gene expression program controlled by the dynamic interactions of hundreds of transcriptional regulators. To unravel this regulatory complexity, multiple computational algorithms have been developed to analyze gene expression profiles and detect dependencies among genes over different conditions. It has been difficult to judge whether these algorithms can generate accurate global maps of regulatory interactions, however, because of the absence of a model organism with both a compendium of gene expression data and a corresponding network of experimentally determined regulatory interactions. To address this issue, we assembled 445 Escherichia coli microarrays, applied four classes of inference algorithms to the dataset, and validated the predictions against 3,216 experimentally determined E. coli interactions. The top-performing algorithm identifies 1,079 regulatory interactions at a confidence level of 60% or higher. Of these predicted interactions, 741 are novel and illuminate the regulation of amino acid biosynthesis, flagella biosynthesis, osmotic stress response, antibiotic resistance, and iron regulation. By defining the capabilities and limitations of network inference algorithms for large-scale mapping of prokaryotic regulatory networks, our work should facilitate their application to the mapping of novel microbes. A novel, machine-learning method is developed to predict transcriptional regulatory interactions, making use of microarray data. One interaction identified appears to be important for the control of iron transport. Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. |
| Audience | Academic |
| Author | Cottarel, Guillaume Kasif, Simon Thaden, Joshua T Gardner, Timothy S Wierzbowski, Jamey Collins, James J Faith, Jeremiah J Mogno, Ilaria Hayete, Boris |
| AuthorAffiliation | 4 Department of Computer and Systems Science A. Ruberti, University of Rome, La Sapienza, Rome, Italy 1 Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America 3 Boston University School of Medicine, Boston, Massachusetts, United States of America 5 Cellicon Biotechnologies, Boston, Massachusetts, United States of America Johns Hopkins University, United States of America 2 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America |
| AuthorAffiliation_xml | – name: 2 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America – name: 1 Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America – name: Johns Hopkins University, United States of America – name: 4 Department of Computer and Systems Science A. Ruberti, University of Rome, La Sapienza, Rome, Italy – name: 3 Boston University School of Medicine, Boston, Massachusetts, United States of America – name: 5 Cellicon Biotechnologies, Boston, Massachusetts, United States of America |
| Author_xml | – sequence: 1 givenname: Jeremiah J surname: Faith fullname: Faith, Jeremiah J – sequence: 2 givenname: Boris surname: Hayete fullname: Hayete, Boris – sequence: 3 givenname: Joshua T surname: Thaden fullname: Thaden, Joshua T – sequence: 4 givenname: Ilaria surname: Mogno fullname: Mogno, Ilaria – sequence: 5 givenname: Jamey surname: Wierzbowski fullname: Wierzbowski, Jamey – sequence: 6 givenname: Guillaume surname: Cottarel fullname: Cottarel, Guillaume – sequence: 7 givenname: Simon surname: Kasif fullname: Kasif, Simon – sequence: 8 givenname: James J surname: Collins fullname: Collins, James J – sequence: 9 givenname: Timothy S surname: Gardner fullname: Gardner, Timothy S |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17214507$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVk91r1TAYxotM3If-B6IFQfDiHJN-JKkXwhhTDxydbHO34T356DLSpCatbv71tjtVd8ZgM71IaH7Pw5s8b3aTLeedSpLnGM1xTvHbC98HB3beroyfI1QihNijZAeXRTmjjJVbN9bbyW6MFwhlWZWxJ8k2phkuSkR3kl9LCLWanQiwKv0MbWtcnYKT6RlYI6Ez3qVep4dRnKtgxLmBVHhr0tMALopg2pEAmx6rurdrXAffpJAe-KZVTpq-uTa4bIOKcdz_Grw2VsWnyWMNNqpn07yXfPtweHrwabY8-rg42F_OBCOom5FM4hVRutL5cBLCEEMa4ZzJIs8xqxQwWiGsGCECshIKgpTUQJAUbBgqy_eSl2vf1vrIp2uLHGfVIKcYkYFYrAnp4YK3wTQQrrgHw69_-FBzCJ0RVvFVgUiJCCOKoSKnsqJEV0IDlbJYaWCDV7n26l0LVz_B2r-GGPExuT8l8DE5PiU36N5PVfarRkmhXBfAbhSzuePMOa_9D44pKYp8NHg9GQT_vVex442JQlkLTvk-coryimFa3AviqiwqSkfHV7fAuy9vouqhhbhx2g_lidGS72OCaYlJNnrN76CGT6rGiKGzx5bYFLzZEAxMpy67GvoY-eLk-D_YLw9nj8422Rc3M_kX5PR8BuDdGhDBxxiU5sJ0169gOJ2x9yVe3BI_qFF-A6-SQik |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btw422 crossref_primary_10_1371_journal_pone_0006799 crossref_primary_10_1016_j_molcel_2019_04_001 crossref_primary_10_1016_j_ajpath_2019_03_009 crossref_primary_10_1093_jxb_eru322 crossref_primary_10_1093_nar_gkp792 crossref_primary_10_1371_journal_pcbi_1002597 crossref_primary_10_1093_bib_bbac586 crossref_primary_10_1093_bib_bbab495 crossref_primary_10_1371_journal_pgen_1004201 crossref_primary_10_1186_1471_2164_13_S8_S22 crossref_primary_10_1186_1471_2105_12_233 crossref_primary_10_1186_1752_0509_8_3 crossref_primary_10_1093_bib_bbab009 crossref_primary_10_1142_S0219720019500185 crossref_primary_10_1155_2016_5283937 crossref_primary_10_1196_annals_1407_021 crossref_primary_10_1080_01621459_2020_1778482 crossref_primary_10_1016_j_resmic_2007_09_001 crossref_primary_10_1093_bioinformatics_btm529 crossref_primary_10_3389_fgene_2019_00294 crossref_primary_10_1016_j_compbiolchem_2017_08_012 crossref_primary_10_1109_TCBB_2017_2758786 crossref_primary_10_5812_ircmj_41119 crossref_primary_10_1007_s12539_018_0297_0 crossref_primary_10_3390_ijms18010037 crossref_primary_10_1007_s11060_010_0332_4 crossref_primary_10_1016_j_jcyt_2021_02_118 crossref_primary_10_1371_journal_pcbi_1004765 crossref_primary_10_1371_journal_pcbi_1000166 crossref_primary_10_1038_msb_2009_42 crossref_primary_10_3389_fpls_2017_02029 crossref_primary_10_3390_metabo11050326 crossref_primary_10_1038_s41598_017_11159_3 crossref_primary_10_1186_s12866_020_01904_6 crossref_primary_10_1371_journal_pcbi_1002589 crossref_primary_10_15252_msb_20156236 crossref_primary_10_1186_1471_2164_13_S8_S14 crossref_primary_10_1007_s10994_018_5700_x crossref_primary_10_1073_pnas_1104318108 crossref_primary_10_1186_s12885_019_6235_7 crossref_primary_10_1093_bib_bbad413 crossref_primary_10_1111_j_1574_6976_2008_00145_x crossref_primary_10_1093_bioinformatics_btx748 crossref_primary_10_1196_annals_1407_013 crossref_primary_10_1134_S0006350911060078 crossref_primary_10_1186_1752_0509_4_64 crossref_primary_10_1093_bioinformatics_btv118 crossref_primary_10_1093_database_bat008 crossref_primary_10_1109_TMBMC_2019_2933391 crossref_primary_10_5808_GI_2013_11_4_200 crossref_primary_10_1016_j_coisb_2017_04_001 crossref_primary_10_1104_pp_110_168641 crossref_primary_10_1109_TCBB_2017_2688355 crossref_primary_10_1016_j_compbiolchem_2018_10_014 crossref_primary_10_1186_s12864_020_07079_8 crossref_primary_10_1093_bioinformatics_btm309 crossref_primary_10_1093_bib_bbz089 crossref_primary_10_1038_nchembio_122 crossref_primary_10_1186_1752_0509_4_53 crossref_primary_10_1080_15592324_2015_1034421 crossref_primary_10_1038_nmeth_1418 crossref_primary_10_1038_ncomms7315 crossref_primary_10_1177_1471082X18776577 crossref_primary_10_1186_s12864_016_2791_2 crossref_primary_10_1186_s12918_019_0695_x crossref_primary_10_3390_cancers13051045 crossref_primary_10_3390_app132111902 crossref_primary_10_1016_j_cnsns_2008_09_015 crossref_primary_10_1038_s41598_024_67329_7 crossref_primary_10_1038_nbt_1582 crossref_primary_10_1016_j_ygeno_2010_10_003 crossref_primary_10_1016_j_neucom_2016_02_087 crossref_primary_10_1049_iet_syb_2018_5015 crossref_primary_10_1080_01621459_2016_1256812 crossref_primary_10_1371_journal_pone_0092709 crossref_primary_10_15252_msb_20167150 crossref_primary_10_1088_1367_2630_13_1_013004 crossref_primary_10_1093_bioinformatics_btu285 crossref_primary_10_3390_informatics11020014 crossref_primary_10_1128_AEM_02392_09 crossref_primary_10_3390_cancers13030393 crossref_primary_10_1039_c2mb25236h crossref_primary_10_1186_1471_2180_14_14 crossref_primary_10_3390_plants12010071 crossref_primary_10_1093_bioinformatics_btn658 crossref_primary_10_1146_annurev_micro_112408_134247 crossref_primary_10_1016_j_tplants_2022_08_018 crossref_primary_10_3389_fmicb_2016_01819 crossref_primary_10_1093_bioinformatics_btt186 crossref_primary_10_3389_fgene_2021_652189 crossref_primary_10_1371_journal_pcbi_1011254 crossref_primary_10_1186_1756_0500_5_518 crossref_primary_10_1007_s11103_024_01547_5 crossref_primary_10_1088_1367_2630_13_8_083002 crossref_primary_10_1186_s12920_019_0515_6 crossref_primary_10_11922_csdata_180_2015_0011 crossref_primary_10_1109_TCBB_2013_3 crossref_primary_10_1016_j_cmi_2016_04_014 crossref_primary_10_1007_s13721_016_0135_4 crossref_primary_10_1186_1471_2164_11_578 crossref_primary_10_1111_nph_19426 crossref_primary_10_1016_j_coisb_2017_12_009 crossref_primary_10_1155_2013_856325 crossref_primary_10_1088_1751_8113_47_34_343001 crossref_primary_10_1016_j_foodres_2013_02_050 crossref_primary_10_1038_s41396_018_0145_6 crossref_primary_10_1038_srep39709 crossref_primary_10_1016_j_jbi_2008_01_011 crossref_primary_10_7717_peerj_10 crossref_primary_10_1093_bioinformatics_btu290 crossref_primary_10_1186_s12859_018_2558_7 crossref_primary_10_1038_s42256_022_00469_5 crossref_primary_10_1093_bioinformatics_btx563 crossref_primary_10_1371_journal_pcbi_1004748 crossref_primary_10_1371_journal_pone_0100842 crossref_primary_10_1016_j_febslet_2013_07_032 crossref_primary_10_1038_nbt_2635 crossref_primary_10_3390_jof7090765 crossref_primary_10_1016_j_compbiolchem_2015_04_012 crossref_primary_10_1098_rstb_2014_0376 crossref_primary_10_1111_j_1529_8817_2009_00674_x crossref_primary_10_1093_nargab_lqad018 crossref_primary_10_1089_cmb_2014_0290 crossref_primary_10_1007_s00249_013_0888_y crossref_primary_10_1038_s41598_021_87074_5 crossref_primary_10_3390_cells12010101 crossref_primary_10_1371_journal_pcbi_1000340 crossref_primary_10_1021_acs_jproteome_6b00704 crossref_primary_10_1093_bioinformatics_btz529 crossref_primary_10_1177_11779322241287120 crossref_primary_10_3390_biology12040558 crossref_primary_10_1186_s12859_021_03987_y crossref_primary_10_3389_fimmu_2023_1251067 crossref_primary_10_1111_tpj_15725 crossref_primary_10_1111_tpj_14628 crossref_primary_10_1016_j_csbj_2021_08_028 crossref_primary_10_3390_computation9040048 crossref_primary_10_1039_C5MB00174A crossref_primary_10_1002_bdd_1875 crossref_primary_10_1016_j_physa_2011_02_021 crossref_primary_10_1186_s40246_022_00431_x crossref_primary_10_1002_wsbm_105 crossref_primary_10_1038_s41598_020_80745_9 crossref_primary_10_1007_s11425_017_9206_0 crossref_primary_10_1093_bioinformatics_btn476 crossref_primary_10_1098_rstb_2017_0221 crossref_primary_10_1093_nargab_lqae130 crossref_primary_10_1098_rstb_2017_0222 crossref_primary_10_1038_nbt_2601 crossref_primary_10_3390_nano10040708 crossref_primary_10_1111_tpj_13750 crossref_primary_10_1186_s12859_016_0885_0 crossref_primary_10_1128_JB_00646_20 crossref_primary_10_1371_journal_pbio_1000096 crossref_primary_10_1186_s12918_015_0165_z crossref_primary_10_1073_pnas_1702581114 crossref_primary_10_1371_journal_pcbi_1002528 crossref_primary_10_1109_TCBB_2019_2900614 crossref_primary_10_1007_s00404_014_3264_y crossref_primary_10_1186_1471_2105_14_273 crossref_primary_10_1371_journal_pone_0028713 crossref_primary_10_1186_s13637_014_0012_3 crossref_primary_10_1002_bit_26791 crossref_primary_10_1016_j_cell_2013_11_046 crossref_primary_10_1016_j_compbiomed_2014_08_020 crossref_primary_10_1038_nmeth0307_198 crossref_primary_10_1093_bioinformatics_btn220 crossref_primary_10_1093_bioinformatics_btv186 crossref_primary_10_1186_1471_2105_14_278 crossref_primary_10_1093_bioinformatics_btaa267 crossref_primary_10_1093_nar_gkt983 crossref_primary_10_1186_1471_2105_12_286 crossref_primary_10_3389_fphys_2017_00915 crossref_primary_10_1016_j_jbi_2018_07_012 crossref_primary_10_1158_1541_7786_MCR_12_0690 crossref_primary_10_1109_TCBB_2016_2535267 crossref_primary_10_1016_j_cell_2012_09_016 crossref_primary_10_1186_s12859_015_0588_y crossref_primary_10_2139_ssrn_3253573 crossref_primary_10_3233_JAD_170011 crossref_primary_10_3182_20080706_5_KR_1001_02684 crossref_primary_10_1093_nar_gks467 crossref_primary_10_1093_bioinformatics_btab367 crossref_primary_10_1038_s41540_021_00208_3 crossref_primary_10_1039_c0mb00107d crossref_primary_10_1155_2016_4241293 crossref_primary_10_1186_gb_2009_10_3_r27 crossref_primary_10_1534_genetics_107_080069 crossref_primary_10_1016_j_cmpb_2008_11_003 crossref_primary_10_1186_s12918_018_0531_8 crossref_primary_10_1016_j_copbio_2011_12_005 crossref_primary_10_1016_j_tibtech_2007_09_004 crossref_primary_10_1101_gr_153916_112 crossref_primary_10_1142_S0219720010004859 crossref_primary_10_2976_1_3366829 crossref_primary_10_1186_s12859_017_1550_y crossref_primary_10_1080_19336918_2016_1183867 crossref_primary_10_1186_1471_2105_11_228 crossref_primary_10_1371_journal_pone_0127216 crossref_primary_10_1093_bioinformatics_btp423 crossref_primary_10_1038_srep41174 crossref_primary_10_1128_msystems_01456_21 crossref_primary_10_1016_j_isci_2019_03_021 crossref_primary_10_1371_journal_pone_0220279 crossref_primary_10_1016_j_semcancer_2021_03_011 crossref_primary_10_17706_ijbbb_2015_5_5_296_310 crossref_primary_10_1080_07391102_2012_691368 crossref_primary_10_1209_0295_5075_113_18005 crossref_primary_10_3389_fgene_2015_00256 crossref_primary_10_1093_bioinformatics_btn273 crossref_primary_10_1093_nar_gkr593 crossref_primary_10_1186_s13059_021_02568_9 crossref_primary_10_1098_rsif_2013_0505 crossref_primary_10_1038_s41540_023_00312_6 crossref_primary_10_12677_AAM_2019_89178 crossref_primary_10_1186_1471_2164_16_S12_S4 crossref_primary_10_1016_j_copbio_2020_02_014 crossref_primary_10_1039_B816845H crossref_primary_10_1109_TPDS_2010_65 crossref_primary_10_1016_j_automatica_2014_08_003 crossref_primary_10_12688_f1000research_7118_2 crossref_primary_10_1186_1471_2105_11_454 crossref_primary_10_1016_j_mbs_2015_06_006 crossref_primary_10_12688_f1000research_7118_1 crossref_primary_10_1016_j_gene_2016_03_045 crossref_primary_10_1039_b908108a crossref_primary_10_1186_1471_2105_12_S10_S20 crossref_primary_10_1093_bioinformatics_btz105 crossref_primary_10_1016_j_mbs_2010_07_003 crossref_primary_10_1186_1752_0509_6_38 crossref_primary_10_1186_gb_2009_10_2_r19 crossref_primary_10_1002_cppb_20100 crossref_primary_10_1186_1471_2105_12_243 crossref_primary_10_1038_s41467_018_03214_y crossref_primary_10_1186_s12859_016_0981_1 crossref_primary_10_1371_journal_pone_0152648 crossref_primary_10_1155_2016_2090286 crossref_primary_10_1186_s12885_016_2937_2 crossref_primary_10_1186_s12918_017_0463_8 crossref_primary_10_1093_bioinformatics_btr626 crossref_primary_10_1093_hmg_ddu202 crossref_primary_10_1186_gb_2009_10_9_r96 crossref_primary_10_1142_S0219720018500099 crossref_primary_10_3389_fgene_2023_1143382 crossref_primary_10_1186_s12859_016_1398_6 crossref_primary_10_1109_TCBB_2015_2424411 crossref_primary_10_1186_s12859_016_0913_0 crossref_primary_10_1371_journal_pcbi_1008223 crossref_primary_10_1371_journal_pcbi_1009312 crossref_primary_10_1038_s41593_019_0489_x crossref_primary_10_1016_j_biosystems_2018_10_008 crossref_primary_10_3390_ijms20153730 crossref_primary_10_1080_14789450_2020_1766975 crossref_primary_10_1039_c1ib00117e crossref_primary_10_1093_nar_gkr1265 crossref_primary_10_1039_c2mb25030f crossref_primary_10_1049_iet_syb_2011_0004 crossref_primary_10_1186_s12859_019_3104_y crossref_primary_10_1109_TCBB_2015_2415931 crossref_primary_10_1038_onc_2017_185 crossref_primary_10_3389_fmicb_2016_01191 crossref_primary_10_1038_nprot_2017_022 crossref_primary_10_1093_bioinformatics_bts619 crossref_primary_10_3390_cells2020306 crossref_primary_10_1007_s40496_019_0214_6 crossref_primary_10_1371_journal_pone_0037510 crossref_primary_10_1101_gr_096305_109 crossref_primary_10_1126_sciadv_adq3073 crossref_primary_10_1186_1471_2105_15_S7_S10 crossref_primary_10_1126_scitranslmed_aal3973 crossref_primary_10_1038_nchembio_1063 crossref_primary_10_1007_s10142_021_00821_9 crossref_primary_10_1371_journal_pone_0012776 crossref_primary_10_1038_s41586_024_07141_5 crossref_primary_10_1371_journal_pone_0171240 crossref_primary_10_1038_s41698_021_00185_0 crossref_primary_10_1002_wrna_1508 crossref_primary_10_1093_nar_gkac377 crossref_primary_10_1093_nar_gkm815 crossref_primary_10_1038_nrmicro2333 crossref_primary_10_1371_journal_pone_0002981 crossref_primary_10_1042_BST20190840 crossref_primary_10_1128_msystems_00064_24 crossref_primary_10_1093_nar_gkw737 crossref_primary_10_1093_bioinformatics_btad256 crossref_primary_10_1145_3154524 crossref_primary_10_1101_gr_259655_119 crossref_primary_10_1534_g3_120_401067 crossref_primary_10_7717_peerj_5692 crossref_primary_10_1155_2017_8514071 crossref_primary_10_1038_nrmicro2107 crossref_primary_10_1093_nar_gkr1050 crossref_primary_10_3390_e22060627 crossref_primary_10_1371_journal_pone_0069374 crossref_primary_10_3390_ijms20102570 crossref_primary_10_1016_j_csbj_2020_10_022 crossref_primary_10_1038_ncomms2743 crossref_primary_10_1186_gm340 crossref_primary_10_1186_s12920_016_0202_9 crossref_primary_10_1186_s12859_016_1038_1 crossref_primary_10_3389_fimmu_2023_1107397 crossref_primary_10_1128_mBio_01349_20 crossref_primary_10_1016_j_procs_2014_05_183 crossref_primary_10_1038_ni_2420 crossref_primary_10_1093_bioinformatics_btab099 crossref_primary_10_1371_journal_pcbi_1005379 crossref_primary_10_1007_s12539_016_0185_4 crossref_primary_10_1128_JB_00350_11 crossref_primary_10_1371_journal_pcbi_1008647 crossref_primary_10_1016_j_jbi_2019_103211 crossref_primary_10_1371_journal_pcbi_1004295 crossref_primary_10_1534_g3_118_200867 crossref_primary_10_1016_j_plrev_2007_10_003 crossref_primary_10_1111_j_1749_6632_2008_03943_x crossref_primary_10_1371_journal_pcbi_1007324 crossref_primary_10_1371_journal_pone_0020124 crossref_primary_10_3390_genes14020269 crossref_primary_10_1016_j_stem_2024_10_004 crossref_primary_10_1038_s41598_017_17143_1 crossref_primary_10_1371_journal_pone_0036465 crossref_primary_10_1186_1471_2105_10_85 crossref_primary_10_1016_j_jmb_2008_04_008 crossref_primary_10_1186_s12859_021_04197_2 crossref_primary_10_1038_nbt_3184 crossref_primary_10_1093_bioinformatics_btu863 crossref_primary_10_3389_fimmu_2024_1446453 crossref_primary_10_1186_gb_2010_11_3_r32 crossref_primary_10_1016_j_compbiolchem_2019_107120 crossref_primary_10_1093_bioinformatics_btp177 crossref_primary_10_4109_jslab_22_3 crossref_primary_10_1089_cmb_2024_0607 crossref_primary_10_1371_journal_pone_0170340 crossref_primary_10_1371_journal_pcbi_1010991 crossref_primary_10_1093_nargab_lqad083 crossref_primary_10_1128_JB_00031_15 crossref_primary_10_3389_fcell_2014_00038 crossref_primary_10_1016_j_cell_2008_12_016 crossref_primary_10_3390_e18090328 crossref_primary_10_1016_j_cj_2024_05_006 crossref_primary_10_1093_bioinformatics_btr580 crossref_primary_10_1073_pnas_0807227105 crossref_primary_10_1093_bioinformatics_bts434 crossref_primary_10_1016_j_compbiomed_2020_103656 crossref_primary_10_1093_nar_gkw777 crossref_primary_10_1038_ncomms3830 crossref_primary_10_1371_journal_pone_0166084 crossref_primary_10_1534_genetics_120_303186 crossref_primary_10_1093_bioinformatics_btq259 crossref_primary_10_1186_gm367 crossref_primary_10_3389_fbioe_2018_00165 crossref_primary_10_1038_s41598_022_06658_x crossref_primary_10_1155_2015_540297 crossref_primary_10_1016_j_cels_2016_08_010 crossref_primary_10_1016_j_ymeth_2012_10_012 crossref_primary_10_1186_s12918_017_0517_y crossref_primary_10_1016_j_asoc_2016_01_014 crossref_primary_10_1371_journal_pone_0096732 crossref_primary_10_1093_bioinformatics_btr373 crossref_primary_10_1016_j_ymeth_2013_04_023 crossref_primary_10_3389_fnmol_2014_00064 crossref_primary_10_1103_PhysRevE_79_061916 crossref_primary_10_1016_j_cell_2007_06_049 crossref_primary_10_1186_1752_0509_4_8 crossref_primary_10_1371_journal_pone_0082146 crossref_primary_10_1007_s12539_021_00478_9 crossref_primary_10_1016_j_asoc_2018_05_009 crossref_primary_10_15252_msb_20145160 crossref_primary_10_1038_s41588_018_0138_4 crossref_primary_10_1186_s12859_018_2217_z crossref_primary_10_4137_CIN_S13630 crossref_primary_10_1007_s40484_014_0025_7 crossref_primary_10_1093_bib_bbs071 crossref_primary_10_1016_j_cell_2018_05_015 crossref_primary_10_1016_j_celrep_2024_114339 crossref_primary_10_1093_bioinformatics_btr366 crossref_primary_10_1186_1471_2105_12_S12_S2 crossref_primary_10_1093_nar_gkr902 crossref_primary_10_3390_cancers14082043 crossref_primary_10_1016_j_mbs_2011_11_008 crossref_primary_10_1093_gigascience_gix078 crossref_primary_10_1103_PhysRevE_87_012915 crossref_primary_10_1038_s41467_023_42967_z crossref_primary_10_1038_srep20533 crossref_primary_10_1021_sb5003407 crossref_primary_10_1016_j_gene_2014_03_010 crossref_primary_10_1186_s13040_017_0136_6 crossref_primary_10_1021_acs_jproteome_7b00106 crossref_primary_10_1103_PhysRevE_103_042417 crossref_primary_10_18632_oncotarget_21268 crossref_primary_10_1093_nar_gkn515 crossref_primary_10_1093_bfgp_elae036 crossref_primary_10_3390_f11030287 crossref_primary_10_1038_s41598_020_61758_w crossref_primary_10_1111_biom_13457 crossref_primary_10_1038_ncomms10105 crossref_primary_10_1128_msystems_00729_19 crossref_primary_10_1007_s00216_019_02011_w crossref_primary_10_1128_JB_06112_11 crossref_primary_10_1021_acs_jproteome_8b00781 crossref_primary_10_1021_pr501075r crossref_primary_10_1016_j_compbiomed_2024_108850 crossref_primary_10_1371_journal_pone_0094360 crossref_primary_10_1371_journal_pone_0105942 crossref_primary_10_1038_srep20518 crossref_primary_10_1088_1674_1056_27_3_030503 crossref_primary_10_1093_bioinformatics_btq051 crossref_primary_10_1186_s12859_022_05047_5 crossref_primary_10_1038_nrc_2016_124 crossref_primary_10_1073_pnas_0913357107 crossref_primary_10_1093_nar_gky750 crossref_primary_10_1016_j_sigpro_2011_11_028 crossref_primary_10_1038_s41556_022_00884_1 crossref_primary_10_1093_bioinformatics_btq080 crossref_primary_10_3389_fbioe_2015_00157 crossref_primary_10_4161_sysb_22816 crossref_primary_10_1039_c9mt00186g crossref_primary_10_1093_bioinformatics_btu446 crossref_primary_10_1515_sagmb_2021_0025 crossref_primary_10_1371_journal_pone_0089815 crossref_primary_10_1371_journal_pone_0178258 crossref_primary_10_1186_1752_0509_6_6 crossref_primary_10_1371_journal_pcbi_1003370 crossref_primary_10_1002_1873_3468_12192 crossref_primary_10_1016_j_ymeth_2013_03_011 crossref_primary_10_1002_wsbm_1159 crossref_primary_10_1109_TCBB_2015_2450740 crossref_primary_10_1186_s12918_016_0336_6 crossref_primary_10_1093_nar_gkq612 crossref_primary_10_1186_s12859_020_03651_x crossref_primary_10_1093_bioinformatics_btr166 crossref_primary_10_1109_TCBB_2018_2866836 crossref_primary_10_26508_lsa_202302415 crossref_primary_10_1089_cmb_2017_0022 crossref_primary_10_1038_nrg3096 crossref_primary_10_1093_bib_bbab166 crossref_primary_10_1038_s41598_017_09094_4 crossref_primary_10_1093_bioinformatics_btaa840 crossref_primary_10_1038_srep15147 crossref_primary_10_1371_journal_pcbi_1003361 crossref_primary_10_1158_2159_8290_CD_20_1677 crossref_primary_10_3390_ijms241914473 crossref_primary_10_1186_s12859_015_0754_2 crossref_primary_10_1093_bioinformatics_btt108 crossref_primary_10_1186_s13024_022_00517_z crossref_primary_10_1007_s10844_018_0506_7 crossref_primary_10_1109_TPAMI_2012_96 crossref_primary_10_1371_journal_pntd_0004533 crossref_primary_10_1101_gr_275107_120 crossref_primary_10_15252_msb_20145108 crossref_primary_10_3389_fpls_2016_01936 crossref_primary_10_1093_bioinformatics_btx730 crossref_primary_10_1007_s10710_013_9183_z crossref_primary_10_1016_j_ccr_2014_03_017 crossref_primary_10_1038_s41467_023_41572_4 crossref_primary_10_1111_j_1742_4658_2012_08616_x crossref_primary_10_1093_jxb_erac394 crossref_primary_10_1111_pce_12156 crossref_primary_10_1186_s12864_022_09020_7 crossref_primary_10_1016_j_jbiotec_2009_07_013 crossref_primary_10_1093_bib_bbad129 crossref_primary_10_1021_acssynbio_8b00236 crossref_primary_10_1038_s41467_023_37897_9 crossref_primary_10_1111_j_1365_2958_2010_07072_x crossref_primary_10_1214_17_AOAS1051 crossref_primary_10_1016_j_compbiolchem_2022_107769 crossref_primary_10_1109_TCBB_2009_58 crossref_primary_10_1007_s12033_023_00929_2 crossref_primary_10_1016_j_csbj_2022_12_022 crossref_primary_10_3892_etm_2017_4481 crossref_primary_10_1109_TCBB_2020_3029846 crossref_primary_10_1371_journal_pone_0204100 crossref_primary_10_1038_srep37140 crossref_primary_10_1109_TCBB_2010_40 crossref_primary_10_1093_bioinformatics_btab718 crossref_primary_10_1016_j_jprot_2013_09_018 crossref_primary_10_1109_ACCESS_2020_2991664 crossref_primary_10_1371_journal_pone_0188016 crossref_primary_10_1128_msystems_00057_20 crossref_primary_10_1186_s12859_018_2481_y crossref_primary_10_1016_j_automatica_2011_03_008 crossref_primary_10_1101_gr_079715_108 crossref_primary_10_1093_bioinformatics_btv215 crossref_primary_10_1155_2008_253894 crossref_primary_10_1186_1471_2105_14_S1_S3 crossref_primary_10_1371_journal_pone_0004495 crossref_primary_10_1158_1055_9965_EPI_17_0461 crossref_primary_10_1515_sagmb_2017_0052 crossref_primary_10_1038_srep11432 crossref_primary_10_1371_journal_pone_0166115 crossref_primary_10_1155_2007_79879 crossref_primary_10_1111_j_1749_6632_2008_04100_x crossref_primary_10_1186_s12859_020_03930_7 crossref_primary_10_1111_nph_19993 crossref_primary_10_1128_JB_01017_08 crossref_primary_10_1371_journal_pone_0142147 crossref_primary_10_1007_s11306_018_1335_y crossref_primary_10_1038_s41467_020_16019_9 crossref_primary_10_1371_journal_pgen_1002377 crossref_primary_10_1371_journal_pone_0109569 crossref_primary_10_1371_journal_pone_0087446 crossref_primary_10_1128_MMBR_00037_08 crossref_primary_10_7554_eLife_06974 crossref_primary_10_1093_nar_gky015 crossref_primary_10_1016_j_compbiolchem_2024_108223 crossref_primary_10_1186_1752_0509_6_147 crossref_primary_10_1186_s12918_015_0233_4 crossref_primary_10_1186_1752_0509_6_145 crossref_primary_10_7717_peerj_cs_363 crossref_primary_10_1109_TSP_2014_2358956 crossref_primary_10_1186_1752_0509_5_100 crossref_primary_10_1016_j_bbagrm_2019_194416 crossref_primary_10_1038_nbt_2530 crossref_primary_10_1038_s41598_020_67878_7 crossref_primary_10_1093_bioinformatics_btac717 crossref_primary_10_3390_ncrna8040045 crossref_primary_10_1093_bioinformatics_btt290 crossref_primary_10_1073_pnas_0812551106 crossref_primary_10_1089_cmb_2018_0225 crossref_primary_10_1038_msb4100168 crossref_primary_10_3390_cancers13030495 crossref_primary_10_1155_2009_308959 crossref_primary_10_1016_j_compbiomed_2024_108690 crossref_primary_10_1089_ars_2017_7256 crossref_primary_10_1016_j_cels_2017_04_010 crossref_primary_10_3390_microorganisms10050922 crossref_primary_10_1021_acs_jproteome_5b00344 crossref_primary_10_3389_fmicb_2016_00442 crossref_primary_10_3389_fpls_2017_01044 crossref_primary_10_1016_j_pbi_2018_10_005 crossref_primary_10_1186_1471_2105_13_193 crossref_primary_10_1186_1756_0500_7_886 crossref_primary_10_1093_bioinformatics_btx407 crossref_primary_10_1142_S0219720016500104 crossref_primary_10_1126_science_1171347 crossref_primary_10_1007_s10142_025_01549_6 crossref_primary_10_1093_bioinformatics_bty764 crossref_primary_10_1186_s12918_018_0547_0 crossref_primary_10_1016_j_jbi_2025_104797 crossref_primary_10_1093_nar_gkp231 crossref_primary_10_1111_j_1749_6632_2008_03762_x crossref_primary_10_1093_gigascience_giy118 crossref_primary_10_1089_cmb_2010_0222 crossref_primary_10_1186_s12859_018_2402_0 crossref_primary_10_1186_s13059_018_1536_8 crossref_primary_10_1016_j_imu_2021_100773 crossref_primary_10_1093_bib_bbab325 crossref_primary_10_5402_2012_304021 crossref_primary_10_1007_s13721_019_0187_3 crossref_primary_10_1093_bib_bbab568 crossref_primary_10_1016_j_cell_2009_03_032 crossref_primary_10_1186_1752_0509_3_39 crossref_primary_10_1002_pmic_201800363 crossref_primary_10_1039_C2MB25287B crossref_primary_10_1007_s11010_008_9857_7 crossref_primary_10_1371_journal_pone_0033624 crossref_primary_10_1016_j_biopsych_2023_08_006 crossref_primary_10_1128_JB_01829_08 crossref_primary_10_4137_BBI_S12467 crossref_primary_10_1371_journal_pone_0288174 crossref_primary_10_1007_s11103_017_0617_5 crossref_primary_10_3390_ijms21217886 crossref_primary_10_1186_1756_0500_6_430 crossref_primary_10_3389_fphys_2015_00364 crossref_primary_10_1016_j_semcdb_2016_01_012 crossref_primary_10_1016_j_tim_2018_02_004 crossref_primary_10_1109_JBHI_2019_2931997 crossref_primary_10_1186_1471_2164_12_S5_S13 crossref_primary_10_1038_s42003_022_03584_6 crossref_primary_10_1371_journal_pone_0028646 crossref_primary_10_1093_bib_bbac442 crossref_primary_10_1093_bioinformatics_btu182 crossref_primary_10_1186_s12864_016_3317_7 crossref_primary_10_1049_iet_syb_2010_0041 crossref_primary_10_3934_mbe_2016041 crossref_primary_10_1371_journal_pone_0013397 crossref_primary_10_3390_cancers16040822 crossref_primary_10_1186_1752_0509_6_134 crossref_primary_10_1093_bib_bbab104 crossref_primary_10_1038_s41540_020_0140_1 crossref_primary_10_1186_s12859_018_2426_5 crossref_primary_10_1258_ebm_2011_010264 crossref_primary_10_1089_wound_2012_0386 crossref_primary_10_1049_iet_syb_2017_0013 crossref_primary_10_1371_journal_pcbi_1009095 crossref_primary_10_1016_j_bbagrm_2019_194444 crossref_primary_10_1186_1752_0509_3_41 crossref_primary_10_1039_C7IB00135E crossref_primary_10_1093_bioinformatics_btad619 crossref_primary_10_1038_ncomms6302 crossref_primary_10_1038_srep18238 crossref_primary_10_1155_2014_540679 crossref_primary_10_1016_j_micres_2015_01_003 crossref_primary_10_1093_bib_bbac424 crossref_primary_10_1103_PhysRevE_88_062812 crossref_primary_10_1016_j_cell_2014_07_020 crossref_primary_10_1186_1752_0509_3_49 crossref_primary_10_1016_j_virusres_2013_02_011 crossref_primary_10_1021_acs_jproteome_7b00404 crossref_primary_10_1016_j_exphem_2018_10_009 crossref_primary_10_1039_C6IB00093B crossref_primary_10_1186_1752_0509_4_153 crossref_primary_10_1016_j_csbj_2021_01_029 crossref_primary_10_1016_j_nancom_2015_04_002 crossref_primary_10_1186_s13637_015_0027_4 crossref_primary_10_3390_ijms242115593 crossref_primary_10_1016_j_cpb_2015_04_001 crossref_primary_10_1371_journal_pone_0067434 crossref_primary_10_1093_gbe_evw104 crossref_primary_10_1161_CIRCRESAHA_110_226357 crossref_primary_10_1186_1752_0509_5_197 crossref_primary_10_1186_1471_2105_13_328 crossref_primary_10_1186_1471_2105_11_154 crossref_primary_10_1038_s41540_020_00154_6 crossref_primary_10_1152_japplphysiol_01110_2014 crossref_primary_10_1007_s10994_013_5423_y crossref_primary_10_1016_j_indcrop_2024_118504 crossref_primary_10_1039_b800446n crossref_primary_10_1007_s12041_010_0013_2 crossref_primary_10_1186_1752_0509_4_148 crossref_primary_10_1007_s10646_011_0623_3 crossref_primary_10_1016_j_cels_2020_02_003 crossref_primary_10_1039_C7RA01557G crossref_primary_10_1371_journal_pone_0171097 crossref_primary_10_1042_ETLS20180176 crossref_primary_10_1186_1752_0509_5_86 crossref_primary_10_1186_s12859_015_0685_y crossref_primary_10_3389_fpls_2018_01770 crossref_primary_10_1016_j_compbiolchem_2019_02_006 crossref_primary_10_1038_s41589_022_00970_3 crossref_primary_10_1111_ppl_14537 crossref_primary_10_1039_c1mb05006k crossref_primary_10_1093_nar_gkaa264 crossref_primary_10_3389_fcell_2019_00200 crossref_primary_10_1073_pnas_1009747107 crossref_primary_10_1126_science_1219192 crossref_primary_10_1080_10641963_2017_1416120 crossref_primary_10_1093_bioinformatics_bty584 crossref_primary_10_1534_g3_120_401477 crossref_primary_10_1002_qub2_26 crossref_primary_10_1038_nrmicro1949 crossref_primary_10_1038_nrmicro1947 crossref_primary_10_1093_bioinformatics_btq629 crossref_primary_10_1101_gr_150904_112 crossref_primary_10_1016_j_csbj_2020_06_033 crossref_primary_10_1016_j_csbj_2020_06_036 crossref_primary_10_12688_f1000research_8923_2 crossref_primary_10_12688_f1000research_8923_1 crossref_primary_10_1093_nar_gkp022 crossref_primary_10_1093_nar_gkr440 crossref_primary_10_1038_s41467_019_09522_1 crossref_primary_10_1038_s41598_018_21715_0 crossref_primary_10_1088_1742_6596_2701_1_012139 crossref_primary_10_1371_journal_pone_0014673 crossref_primary_10_3390_genes10100798 crossref_primary_10_3390_a14020061 crossref_primary_10_1186_s12859_015_0719_5 crossref_primary_10_1016_j_pbiomolbio_2024_04_002 crossref_primary_10_1098_rsif_2011_0585 crossref_primary_10_1186_s12859_016_1308_y crossref_primary_10_48130_FR_2021_0006 crossref_primary_10_1513_AnnalsATS_201306_190AW crossref_primary_10_1186_1471_2105_14_S13_S5 crossref_primary_10_1038_s41597_022_01706_7 crossref_primary_10_1186_1752_0509_5_53 crossref_primary_10_1186_1752_0509_4_116 crossref_primary_10_1093_bib_bbaf098 crossref_primary_10_1016_j_celrep_2012_07_008 crossref_primary_10_1186_1471_2105_12_7 crossref_primary_10_1016_j_ygcen_2014_03_022 crossref_primary_10_1186_1752_0509_5_152 crossref_primary_10_1038_sdata_2015_10 crossref_primary_10_1016_j_heliyon_2023_e16811 crossref_primary_10_1155_2017_8307530 crossref_primary_10_1109_TCBB_2019_2892450 crossref_primary_10_1093_bib_bbx163 crossref_primary_10_1093_nar_gku1315 crossref_primary_10_1021_cr068309 crossref_primary_10_1093_nar_gku777 crossref_primary_10_1128_JB_01027_07 crossref_primary_10_1007_s00299_024_03250_7 crossref_primary_10_1073_pnas_1603577113 crossref_primary_10_1038_s41598_022_19005_x crossref_primary_10_3389_fpls_2021_708286 crossref_primary_10_1039_B916989J crossref_primary_10_1128_ecosalplus_10_2_1 crossref_primary_10_1371_journal_pcbi_1000403 crossref_primary_10_1038_msb_2011_46 crossref_primary_10_1371_journal_pcbi_1008379 crossref_primary_10_7717_peerj_7211 crossref_primary_10_1038_nrg3885 crossref_primary_10_1103_PhysRevE_91_032807 crossref_primary_10_1093_nar_gkm807 crossref_primary_10_3390_biom13030526 crossref_primary_10_1016_j_cell_2007_10_053 crossref_primary_10_1093_bib_bbx151 crossref_primary_10_1109_TCBB_2011_143 crossref_primary_10_3389_fgene_2022_855770 crossref_primary_10_1038_ncomms13090 crossref_primary_10_1371_journal_pone_0183103 crossref_primary_10_1214_12_AOAS550 crossref_primary_10_1016_j_biotechadv_2021_107858 crossref_primary_10_1158_1055_9965_EPI_14_1270 crossref_primary_10_1039_C4MB00419A crossref_primary_10_1038_nmeth_2016 crossref_primary_10_1016_j_ygcen_2014_03_042 crossref_primary_10_1093_bib_bbab507 crossref_primary_10_1186_s12859_015_0728_4 crossref_primary_10_1109_TCBB_2020_3034861 crossref_primary_10_1155_2017_4827171 crossref_primary_10_1016_j_chembiol_2010_05_010 crossref_primary_10_1016_j_coisb_2018_05_005 crossref_primary_10_1615_JMachLearnModelComput_2023047230 crossref_primary_10_1186_s12864_020_07281_8 crossref_primary_10_1155_2019_4273108 crossref_primary_10_1016_j_cnsns_2019_01_010 crossref_primary_10_1111_j_1749_6632_2008_04099_x crossref_primary_10_1186_s12859_015_0717_7 crossref_primary_10_1186_s12918_017_0440_2 crossref_primary_10_1145_2688909 crossref_primary_10_1016_j_jbi_2014_08_010 crossref_primary_10_3389_fimmu_2019_01283 crossref_primary_10_1093_comnet_cnaa036 crossref_primary_10_1371_journal_pone_0113496 crossref_primary_10_3390_genes15121530 crossref_primary_10_1038_s41540_024_00361_5 crossref_primary_10_1093_bioinformatics_btae433 crossref_primary_10_18632_aging_102275 crossref_primary_10_1093_bioinformatics_btae435 crossref_primary_10_1186_1471_2164_9_495 crossref_primary_10_1007_s13721_012_0008_4 crossref_primary_10_1109_ACCESS_2020_3000432 crossref_primary_10_1038_s41380_022_01439_4 crossref_primary_10_1186_1471_2164_14_324 crossref_primary_10_1093_nar_gkr172 crossref_primary_10_1093_bib_bbv065 crossref_primary_10_1186_1471_2105_15_336 crossref_primary_10_1038_s41467_023_38183_4 crossref_primary_10_1073_pnas_1707566114 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1038_nature07389 crossref_primary_10_1186_1752_0509_8_77 crossref_primary_10_1109_ACCESS_2019_2936794 crossref_primary_10_1186_1754_1611_4_10 crossref_primary_10_1103_PhysRevE_91_012814 crossref_primary_10_3390_sym13091559 crossref_primary_10_1371_journal_pcbi_1007241 crossref_primary_10_1016_j_cels_2017_08_014 crossref_primary_10_1002_biot_201000349 crossref_primary_10_1186_s12859_014_0395_x crossref_primary_10_3390_ijms25052705 crossref_primary_10_2217_fmb_10_1 crossref_primary_10_1152_ajplung_00316_2017 crossref_primary_10_1016_j_tranon_2020_100781 crossref_primary_10_1093_bioinformatics_bty063 crossref_primary_10_1186_s12967_024_04879_4 crossref_primary_10_1111_j_1749_6632_2008_03746_x crossref_primary_10_1016_j_compbiomed_2023_106653 crossref_primary_10_1093_bioinformatics_btad373 crossref_primary_10_1039_C4IB00086B crossref_primary_10_1186_1471_2164_15_106 crossref_primary_10_4137_BBI_S3445 crossref_primary_10_1186_1471_2164_15_362 crossref_primary_10_1186_s12859_017_1489_z crossref_primary_10_1186_1471_2164_15_121 crossref_primary_10_1242_dev_174441 crossref_primary_10_1002_bies_202300210 crossref_primary_10_1016_j_biosystems_2008_12_004 crossref_primary_10_1017_nws_2014_13 crossref_primary_10_1111_j_1749_6632_2008_03757_x crossref_primary_10_1016_j_copbio_2007_07_009 crossref_primary_10_1016_j_cell_2009_01_055 crossref_primary_10_1021_acs_jproteome_6b00454 crossref_primary_10_1186_s12864_021_07659_2 crossref_primary_10_1016_j_jprot_2012_09_036 crossref_primary_10_1016_j_molcel_2009_11_024 crossref_primary_10_1016_j_copbio_2007_07_002 crossref_primary_10_1016_j_csbj_2021_11_012 crossref_primary_10_3390_cells7030019 crossref_primary_10_1371_journal_pcbi_1000812 crossref_primary_10_1186_1752_0509_8_47 crossref_primary_10_1016_j_copbio_2011_02_007 crossref_primary_10_1093_bioinformatics_btr696 crossref_primary_10_1016_j_algal_2019_101580 crossref_primary_10_1093_bioinformatics_btp277 crossref_primary_10_1534_g3_117_300172 crossref_primary_10_1186_1471_2105_10_262 crossref_primary_10_1016_j_softx_2017_06_006 crossref_primary_10_1002_etc_374 crossref_primary_10_1016_j_smim_2023_101735 crossref_primary_10_1038_nbt_3035 crossref_primary_10_1371_journal_pone_0037664 crossref_primary_10_1371_journal_pone_0185475 crossref_primary_10_1016_j_cels_2024_07_006 crossref_primary_10_1186_s12859_016_1235_y crossref_primary_10_3233_IDA_173681 crossref_primary_10_1093_jxb_erad178 crossref_primary_10_1073_pnas_2009192117 crossref_primary_10_1186_s12859_017_1576_1 crossref_primary_10_1021_cr068308h crossref_primary_10_1007_s11427_011_4194_6 crossref_primary_10_1016_j_stem_2012_07_018 crossref_primary_10_1016_j_gde_2016_02_002 crossref_primary_10_1186_1471_2105_9_75 crossref_primary_10_1371_journal_pcbi_1005024 crossref_primary_10_1038_s41592_019_0690_6 crossref_primary_10_3390_life5021127 crossref_primary_10_1093_bioadv_vbae066 crossref_primary_10_1007_s11816_017_0433_z crossref_primary_10_1016_j_biosystems_2022_104757 crossref_primary_10_1016_j_ijar_2012_05_007 crossref_primary_10_1038_s41467_018_06992_7 crossref_primary_10_1021_acs_analchem_8b04096 crossref_primary_10_1093_bioinformatics_btad166 crossref_primary_10_1016_j_stemcr_2021_12_018 crossref_primary_10_1002_biot_200900247 crossref_primary_10_1186_s12859_016_0912_1 crossref_primary_10_1089_cmb_2008_04TT crossref_primary_10_1158_2159_8290_CD_12_0111 crossref_primary_10_1186_1471_2164_12_23 crossref_primary_10_1016_j_artmed_2017_05_004 crossref_primary_10_1142_S0219720021500025 crossref_primary_10_1021_acs_est_7b01567 crossref_primary_10_1093_bioinformatics_bts312 crossref_primary_10_1371_journal_pone_0083308 crossref_primary_10_1038_s41598_022_05402_9 crossref_primary_10_1371_journal_pone_0231658 crossref_primary_10_1016_j_bbagrm_2016_09_003 crossref_primary_10_1016_j_mib_2011_09_003 crossref_primary_10_1186_s12870_018_1329_y crossref_primary_10_1093_nar_gkt147 crossref_primary_10_1093_bfgp_elt030 crossref_primary_10_1111_nph_15739 crossref_primary_10_1093_bfgp_elad040 crossref_primary_10_3389_fmicb_2015_00409 crossref_primary_10_4018_ijncr_2014070101 crossref_primary_10_1186_s12864_021_07940_4 crossref_primary_10_1038_nm_2941 crossref_primary_10_1371_journal_pone_0075931 crossref_primary_10_1039_C4MB00053F crossref_primary_10_1016_j_tig_2016_08_009 crossref_primary_10_1186_1471_2105_11_73 crossref_primary_10_1038_s41467_019_13483_w crossref_primary_10_1371_journal_pone_0029279 crossref_primary_10_1016_j_physrep_2016_06_004 crossref_primary_10_1186_s13015_015_0054_4 crossref_primary_10_1109_TCBB_2018_2861698 crossref_primary_10_1093_bib_bbae361 crossref_primary_10_1093_bioinformatics_btp072 crossref_primary_10_1371_journal_pone_0030827 crossref_primary_10_1105_tpc_114_131417 crossref_primary_10_1371_journal_pone_0064832 crossref_primary_10_1098_rsif_2020_0600 crossref_primary_10_1371_journal_pone_0171532 crossref_primary_10_1088_2632_072X_ac5567 crossref_primary_10_1186_1471_2164_13_372 crossref_primary_10_1186_1471_2105_11_S1_S8 crossref_primary_10_1186_1759_2208_1_6 crossref_primary_10_1093_nar_gkz1209 crossref_primary_10_1214_13_AOAS645 crossref_primary_10_1007_s00357_013_9120_0 crossref_primary_10_1186_s12918_014_0111_5 crossref_primary_10_1093_bib_bbt034 crossref_primary_10_1093_bioinformatics_btp068 crossref_primary_10_1093_bib_bbt028 crossref_primary_10_1093_bioinformatics_bts363 crossref_primary_10_1093_bioinformatics_btu542 crossref_primary_10_1142_S1793524516500406 crossref_primary_10_1007_s12551_020_00665_w crossref_primary_10_1016_j_ccell_2018_01_003 crossref_primary_10_1371_journal_pcbi_1005489 crossref_primary_10_1093_nar_gky626 crossref_primary_10_3389_fgene_2021_617282 crossref_primary_10_1093_bib_bbae382 crossref_primary_10_1128_mBio_01343_17 crossref_primary_10_1016_j_stemcr_2013_07_004 crossref_primary_10_1111_nph_14458 crossref_primary_10_1186_1752_0509_7_106 crossref_primary_10_1016_j_ebiom_2019_06_039 crossref_primary_10_1021_acs_jproteome_1c00406 crossref_primary_10_1016_j_ymeth_2014_06_005 crossref_primary_10_1186_1471_2164_13_356 crossref_primary_10_1093_bioinformatics_btt687 crossref_primary_10_1016_j_bspc_2024_105992 crossref_primary_10_1080_15384047_2020_1818518 crossref_primary_10_1016_j_csda_2019_06_012 crossref_primary_10_1186_1471_2105_8_344 crossref_primary_10_1371_journal_pgen_1008734 crossref_primary_10_1093_nar_gkaf138 crossref_primary_10_1039_c1mb05193h crossref_primary_10_1002_wsbm_1489 crossref_primary_10_1109_TCBB_2024_3442536 crossref_primary_10_1093_nar_gks904 crossref_primary_10_3892_mmr_2018_9092 crossref_primary_10_1093_bioinformatics_bts143 crossref_primary_10_1098_rsta_2011_0548 crossref_primary_10_1093_bioinformatics_btv414 crossref_primary_10_1039_b904400k crossref_primary_10_1002_wsbm_1273 crossref_primary_10_1016_j_ccell_2017_07_003 crossref_primary_10_1016_j_compbiomed_2020_104017 crossref_primary_10_1039_b917571g crossref_primary_10_1155_2012_245968 crossref_primary_10_1038_s41593_024_01806_0 crossref_primary_10_1371_journal_pone_0017258 crossref_primary_10_1038_s41467_018_06382_z crossref_primary_10_1371_journal_pcbi_1003252 crossref_primary_10_1186_s13029_015_0043_5 crossref_primary_10_3389_fgene_2022_815692 crossref_primary_10_1007_s11009_017_9554_7 crossref_primary_10_1126_scisignal_2003994 crossref_primary_10_1093_bib_bbaa190 crossref_primary_10_1186_1471_2164_12_S1_S3 crossref_primary_10_1093_bioinformatics_btr288 crossref_primary_10_1016_j_ymeth_2020_06_005 crossref_primary_10_1007_s12539_024_00604_3 crossref_primary_10_1016_j_semcdb_2015_12_007 crossref_primary_10_1007_s10142_024_01491_z crossref_primary_10_1371_journal_pone_0031969 crossref_primary_10_4103_0973_1482_180678 crossref_primary_10_1016_j_jmva_2017_07_012 crossref_primary_10_1371_journal_pcbi_1002391 crossref_primary_10_1100_2012_435257 crossref_primary_10_1515_sagmb_2016_0013 crossref_primary_10_1016_j_copbio_2019_12_002 crossref_primary_10_1186_s12859_016_1324_y crossref_primary_10_1002_bit_26293 crossref_primary_10_1093_bioinformatics_btt229 crossref_primary_10_1016_j_ygeno_2009_01_010 crossref_primary_10_2174_1574893617666220823114108 crossref_primary_10_1038_msb4100118 crossref_primary_10_1089_cmb_2008_08TT crossref_primary_10_1016_j_amc_2012_07_006 crossref_primary_10_18632_oncotarget_15749 crossref_primary_10_1128_JB_00034_09 crossref_primary_10_1093_bioinformatics_btab829 crossref_primary_10_1186_1752_0509_1_39 crossref_primary_10_1371_journal_pone_0206634 crossref_primary_10_1371_journal_pone_0021969 crossref_primary_10_1093_nar_gkt1190 crossref_primary_10_1038_nrmicro2419 crossref_primary_10_1038_s41587_019_0159_2 crossref_primary_10_1186_1471_2105_14_S18_S5 crossref_primary_10_1186_s12859_021_04074_y crossref_primary_10_1093_bib_bbac156 crossref_primary_10_1371_journal_pcbi_1004103 crossref_primary_10_1073_pnas_1200030109 crossref_primary_10_1016_j_biortech_2010_10_033 crossref_primary_10_1038_srep39684 crossref_primary_10_1371_journal_ppat_1000306 crossref_primary_10_1016_j_cell_2008_09_038 crossref_primary_10_1088_1742_6596_604_1_012022 crossref_primary_10_1186_1471_2105_8_149 crossref_primary_10_1038_nchembio_710 crossref_primary_10_1038_msb4100135 crossref_primary_10_1111_j_1749_6632_2009_04497_x crossref_primary_10_1007_s00500_019_04185_y |
| Cites_doi | 1091-6490(2000)097[12182:DFRBRE]2.0.CO;2 1091-6490(1998)095[14863:CAADOG]2.0.CO;2 1471-2105(2006)007[S7:AAAFTR]2.0.CO;2 1091-6490(2002)099[4632:GDCBCA]2.0.CO;2 1367-4803(2003)019[1917:PORNGI]2.0.CO;2 0168-9525(2002)018[0395:LTGIQG]2.0.CO;2 1091-6490(2002)099[10555:ANTTAP]2.0.CO;2 0021-9258(2005)280[15921:GTPRAC]2.0.CO;2 0305-1048(2005)033[D334:EACDRF]2.0.CO;2 1061-4036(2005)037[0382:REORNI]2.0.CO;2 0021-9193(2003)185[6392:GAOTUO]2.0.CO;2 0092-8674(2004)117[0185:PGEFS]2.0.CO;2 1061-4036(1999)022[0281:SDOGNA]2.0.CO;2 0193-4511(2001)292[0929:IGAPAO]2.0.CO;2 1091-6490(2003)100[5944:REGNIG]2.0.CO;2 1465-6914(2006)007[R36:TIAAFL]2.0.CO;2 1476-4687(2004)431[0099:TRCOAE]2.0.CO;2 1476-4687(2004)431[0308:GAORND]2.0.CO;2 0021-9193(2005)187[0304:PRGFFM]2.0.CO;2 0006-3592(2005)090[0116:AACORP]2.0.CO;2 1087-0156(2004)022[0841:EREPCO]2.0.CO;2 0958-1669(2004)015[0070:ROMTRN]2.0.CO;2 1553-0833(1994)002[0028:FAMMBE]2.0.CO;2 1367-4803(2006)022[0477:LARNAO]2.0.CO;2 0006-3592(2005)090[0127:TPFHRA]2.0.CO;2 1061-4036(2003)034[0166:MNIRMA]2.0.CO;2 0305-1048(2003)031[e15:SOAGPL]2.0.CO;2 0021-9193(2004)186[6714:GTEOAS]2.0.CO;2 0162-1459(2004)099[0909:AMBAFO]2.0.CO;2 0950-382X(2000)035[1560:IOAGBT]2.0.CO;2 0092-8674(2005)121[0511:SBIPAC]2.0.CO;2 1091-6490(2002)099[12841:UTWAST]2.0.CO;2 1471-2105(2004)005[0118:EMIUBF]2.0.CO;2 0014-5793(2002)529[0078:ITASIE]2.0.CO;2 1066-5277(2000)007[0601:UBNTAE]2.0.CO;2 1087-0156(2005)023[0377:CPOAGS]2.0.CO;2 0193-4511(2002)298[0799:TRNISC]2.0.CO;2 10.1103/PhysRevA.33.1134 1088-9051(2004)014[1654:EOGINT]2.0.CO;2 1091-6490(2003)100[15522:NCAROR]2.0.CO;2 0193-4511(2003)301[0102:IGNAIC]2.0.CO;2 0021-9193(2004)186[3254:GAOLEI]2.0.CO;2 0021-9193(2005)187[1135:GEAITF]2.0.CO;2 1091-6490(2001)098[0031:MAOOAE]2.0.CO;2 1476-4687(2004)429[0092:IHACDE]2.0.CO;2 1087-0156(2003)021[1337:CDOGMA]2.0.CO;2 1367-4803(2004)020[1241:GGRNFS]2.0.CO;2 0167-2789(1997)110[0062:STOITF]2.0.CO;2 1741-8364(2004)002[0070:MTMOIP]2.0.CO;2 0305-1048(2006)034[D394:RVECKT]2.0.CO;2 1091-6490(2000)097[6640:OIOCGI]2.0.CO;2 1091-6490(2003)100[3339:IRMDAG]2.0.CO;2 0021-9193(2003)185[5611:PSOECS]2.0.CO;2 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2007 Public Library of Science 2007 Faith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol 5(1): e8. doi:10.1371/journal.pbio.0050008 2007 Faith et al. 2007 |
| Copyright_xml | – notice: COPYRIGHT 2007 Public Library of Science – notice: 2007 Faith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol 5(1): e8. doi:10.1371/journal.pbio.0050008 – notice: 2007 Faith et al. 2007 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PYCSY RC3 7X8 5PM ADTOC UNPAY DOA CZG |
| DOI | 10.1371/journal.pbio.0050008 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals PLoS Biology |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Bacteriology Abstracts (Microbiology B) MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | MappingE. coli Transcription Regulation |
| EISSN | 1545-7885 |
| ExternalDocumentID | 1291897106 oai_doaj_org_article_b40650686e80437d976f9cfa7dd4bfa8 10.1371/journal.pbio.0050008 PMC1764438 2897869621 A161751628 17214507 10_1371_journal_pbio_0050008 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: PHS HHS grantid: HHSN268200248178C |
| GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PYCSY QN7 RIG RNS RPM SJN SV3 TR2 TUS UKHRP WOQ WOW XSB YZZ ~8M .GJ 3V. AGJBV ALIPV CGR CUY CVF ECM EIF M~E NPM PV9 QF4 RZL YIN ABUFD 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ACCTH ADTOC ADXHL AFFHD BBTPI UNPAY AAPBV ABPTK CZG ZA5 |
| ID | FETCH-LOGICAL-c860t-62d1b6ef9f388568080f0138d433189ea87901e866ca25a460edfa60dc8888e23 |
| IEDL.DBID | BENPR |
| ISSN | 1545-7885 1544-9173 |
| IngestDate | Sun Oct 01 00:20:30 EDT 2023 Tue Oct 14 19:05:45 EDT 2025 Wed Oct 29 12:09:26 EDT 2025 Tue Sep 30 16:42:04 EDT 2025 Thu Oct 02 11:49:18 EDT 2025 Tue Oct 07 09:27:09 EDT 2025 Tue Oct 07 06:21:48 EDT 2025 Mon Oct 20 22:47:51 EDT 2025 Mon Oct 20 16:54:20 EDT 2025 Thu Oct 16 15:47:08 EDT 2025 Thu Oct 16 15:46:42 EDT 2025 Thu Oct 16 15:47:13 EDT 2025 Wed Feb 19 01:46:54 EST 2025 Wed Oct 01 02:06:53 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Reproducibility of Results Algorithms Biological Transport Oligonucleotide Array Sequence Analysis Operon Escherichia coli Transcription, Genetic Gene Expression Profiling Iron Gene Expression Regulation, Bacterial Gene Regulatory Networks |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c860t-62d1b6ef9f388568080f0138d433189ea87901e866ca25a460edfa60dc8888e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1291897106?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 17214507 |
| PQID | 1291897106 |
| PQPubID | 1436341 |
| PageCount | 13 |
| ParticipantIDs | plos_journals_1291897106 doaj_primary_oai_doaj_org_article_b40650686e80437d976f9cfa7dd4bfa8 unpaywall_primary_10_1371_journal_pbio_0050008 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1764438 proquest_miscellaneous_70398174 proquest_miscellaneous_19549778 proquest_journals_1291897106 gale_infotracmisc_A161751628 gale_infotracacademiconefile_A161751628 gale_incontextgauss_ISR_A161751628 gale_incontextgauss_ISN_A161751628 gale_incontextgauss_IOV_A161751628 pubmed_primary_17214507 crossref_citationtrail_10_1371_journal_pbio_0050008 crossref_primary_10_1371_journal_pbio_0050008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-01-01 |
| PublicationDateYYYYMMDD | 2007-01-01 |
| PublicationDate_xml | – month: 01 year: 2007 text: 2007-01-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PLoS biology |
| PublicationTitleAlternate | PLoS Biol |
| PublicationYear | 2007 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | Laub (journal-pbio-0050008-b039) 2002; 99 Schmitt (journal-pbio-0050008-b013) 2004; 14 Liao (journal-pbio-0050008-b010) 2003; 100 van Someren (journal-pbio-0050008-b017) 2006; 22 Friedman (journal-pbio-0050008-b007) 2000; 7 Bonomo (journal-pbio-0050008-b051) 2005; 90 Rice (journal-pbio-0050008-b021) 2004; 2 Gardner (journal-pbio-0050008-b040) 2003; 301 Kang (journal-pbio-0050008-b054) 2005; 187 Bailey (journal-pbio-0050008-b034) 1994; 2 Fraser (journal-pbio-0050008-b032) 1986; 33 Luscombe (journal-pbio-0050008-b022) 2004; 431 Brokx (journal-pbio-0050008-b053) 2004; 186 Li (journal-pbio-0050008-b046) 2001; 98 Braun (journal-pbio-0050008-b038) 2002; 529 Earheart (journal-pbio-0050008-b037) 1996 Soupene (journal-pbio-0050008-b042) 2003; 185 Bonneau (journal-pbio-0050008-b018) 2006; 7 Roulston (journal-pbio-0050008-b033) 1997; 110 Liu (journal-pbio-0050008-b056) 2005; 280 Conlon (journal-pbio-0050008-b004) 2003; 100 Salgado (journal-pbio-0050008-b027) 2006; 34 Margolin (journal-pbio-0050008-b030) 2006; 7 Wu (journal-pbio-0050008-b045) 2004; 99 Haddadin (journal-pbio-0050008-b050) 2005; 90 Beer (journal-pbio-0050008-b003) 2004; 117 Isaacs (journal-pbio-0050008-b043) 2004; 22 Keseler (journal-pbio-0050008-b036) 2005; 33 Butte (journal-pbio-0050008-b028) 2000 Butte (journal-pbio-0050008-b029) 2000; 97 Eisen (journal-pbio-0050008-b031) 1998; 95 Daub (journal-pbio-0050008-b047) 2004; 5 Basso (journal-pbio-0050008-b002) 2005; 37 Datsenko (journal-pbio-0050008-b041) 2000; 97 Qian (journal-pbio-0050008-b011) 2003; 19 Aderem (journal-pbio-0050008-b001) 2005; 121 Bar-Joseph (journal-pbio-0050008-b026) 2003; 21 Irizarry (journal-pbio-0050008-b044) 2003; 31 Herring (journal-pbio-0050008-b055) 2004; 186 Segal (journal-pbio-0050008-b014) 2003; 34 Ronen (journal-pbio-0050008-b012) 2002; 99 Herrgard (journal-pbio-0050008-b024) 2004; 15 Harbison (journal-pbio-0050008-b019) 2004; 431 Covert (journal-pbio-0050008-b048) 2004; 429 Kholodenko (journal-pbio-0050008-b009) 2002; 99 de la Fuente (journal-pbio-0050008-b005) 2002; 18 Ideker (journal-pbio-0050008-b023) 2001; 292 Maurer (journal-pbio-0050008-b052) 2005; 187 Hartemink (journal-pbio-0050008-b025) 2002 Hashimoto (journal-pbio-0050008-b008) 2004; 20 di Bernardo (journal-pbio-0050008-b006) 2005; 23 Fernandez De Henestrosa (journal-pbio-0050008-b035) 2000; 35 Allen (journal-pbio-0050008-b049) 2003; 185 Lee (journal-pbio-0050008-b020) 2002; 298 Tavazoie (journal-pbio-0050008-b015) 1999; 22 Tegner (journal-pbio-0050008-b016) 2003; 100 15289483 - Genome Res. 2004 Aug;14(8):1654-63 15339346 - BMC Bioinformatics. 2004 Aug 31;5:118 12354617 - FEBS Lett. 2002 Oct 2;529(1):78-85 15742388 - Biotechnol Bioeng. 2005 Apr 20;90(2):127-53 15601715 - J Bacteriol. 2005 Jan;187(1):304-19 14871865 - Bioinformatics. 2004 May 22;20(8):1241-7 12626739 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3339-44 15765094 - Nat Biotechnol. 2005 Mar;23(3):377-83 12843395 - Science. 2003 Jul 4;301(5629):102-5 16332709 - Bioinformatics. 2006 Feb 15;22(4):477-84 12949114 - J Bacteriol. 2003 Sep;185(18):5611-26 11930012 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4632-7 14673099 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15522-7 12730377 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5944-9 15372033 - Nature. 2004 Sep 16;431(7006):308-12 11928497 - Pac Symp Biocomput. 2002;:437-49 11027309 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12182-6 15343339 - Nature. 2004 Sep 2;431(7004):99-104 10760155 - Mol Microbiol. 2000 Mar;35(6):1560-72 15129285 - Nature. 2004 May 6;429(6987):92-6 15705577 - J Biol Chem. 2005 Apr 22;280(16):15921-7 11340206 - Science. 2001 May 4;292(5518):929-34 14563874 - J Bacteriol. 2003 Nov;185(21):6392-9 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 14555958 - Nat Biotechnol. 2003 Nov;21(11):1337-42 15208640 - Nat Biotechnol. 2004 Jul;22(7):841-7 12740579 - Nat Genet. 2003 Jun;34(2):166-76 12242336 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12841-6 12399584 - Science. 2002 Oct 25;298(5594):799-804 15466022 - J Bacteriol. 2004 Oct;186(20):6714-20 14555624 - Bioinformatics. 2003 Oct 12;19(15):1917-26 10391217 - Nat Genet. 1999 Jul;22(3):281-5 16686963 - Genome Biol. 2006;7(5):R36 10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 15126489 - J Bacteriol. 2004 May;186(10):3254-8 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 16723010 - BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7 15736162 - Biotechnol Bioeng. 2005 Apr 5;90(1):116-26 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7 11108481 - J Comput Biol. 2000;7(3-4):601-20 15778709 - Nat Genet. 2005 Apr;37(4):382-90 15907465 - Cell. 2005 May 20;121(4):511-3 15659690 - J Bacteriol. 2005 Feb;187(3):1135-60 12142007 - Trends Genet. 2002 Aug;18(8):395-8 15102470 - Curr Opin Biotechnol. 2004 Feb;15(1):70-7 15084257 - Cell. 2004 Apr 16;117(2):185-98 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 10902190 - Pac Symp Biocomput. 2000;:418-29 9896728 - Phys Rev A Gen Phys. 1986 Feb;33(2):1134-1140 12145321 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10555-60 16381895 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D394-7 |
| References_xml | – volume: 97 start-page: 12182 issn: 1091-6490 year: 2000 ident: journal-pbio-0050008-b029 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2000)097[12182:DFRBRE]2.0.CO;2 – volume: 95 start-page: 14863 issn: 1091-6490 year: 1998 ident: journal-pbio-0050008-b031 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(1998)095[14863:CAADOG]2.0.CO;2 – volume: 7 start-page: S7 issn: 1471-2105 year: 2006 ident: journal-pbio-0050008-b030 publication-title: BMC Bioinformatics doi: 1471-2105(2006)007[S7:AAAFTR]2.0.CO;2 – volume: 99 start-page: 4632 issn: 1091-6490 year: 2002 ident: journal-pbio-0050008-b039 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2002)099[4632:GDCBCA]2.0.CO;2 – volume: 19 start-page: 1917 issn: 1367-4803 year: 2003 ident: journal-pbio-0050008-b011 publication-title: Bioinformatics doi: 1367-4803(2003)019[1917:PORNGI]2.0.CO;2 – volume: 18 start-page: 395 issn: 0168-9525 year: 2002 ident: journal-pbio-0050008-b005 publication-title: Trends Genet doi: 0168-9525(2002)018[0395:LTGIQG]2.0.CO;2 – volume: 99 start-page: 10555 issn: 1091-6490 year: 2002 ident: journal-pbio-0050008-b012 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2002)099[10555:ANTTAP]2.0.CO;2 – volume: 280 start-page: 15921 issn: 0021-9258 year: 2005 ident: journal-pbio-0050008-b056 publication-title: J Biol Chem doi: 0021-9258(2005)280[15921:GTPRAC]2.0.CO;2 – volume: 33 start-page: D334 issn: 0305-1048 year: 2005 ident: journal-pbio-0050008-b036 publication-title: Nucleic Acids Res doi: 0305-1048(2005)033[D334:EACDRF]2.0.CO;2 – volume: 37 start-page: 382 issn: 1061-4036 year: 2005 ident: journal-pbio-0050008-b002 publication-title: Nat Genet doi: 1061-4036(2005)037[0382:REORNI]2.0.CO;2 – volume: 185 start-page: 6392 issn: 0021-9193 year: 2003 ident: journal-pbio-0050008-b049 publication-title: J Bacteriol doi: 0021-9193(2003)185[6392:GAOTUO]2.0.CO;2 – volume: 117 start-page: 185 issn: 0092-8674 year: 2004 ident: journal-pbio-0050008-b003 publication-title: Cell doi: 0092-8674(2004)117[0185:PGEFS]2.0.CO;2 – volume: 22 start-page: 281 issn: 1061-4036 year: 1999 ident: journal-pbio-0050008-b015 publication-title: Nat Genet doi: 1061-4036(1999)022[0281:SDOGNA]2.0.CO;2 – volume: 292 start-page: 929 issn: 0193-4511 year: 2001 ident: journal-pbio-0050008-b023 publication-title: Science doi: 0193-4511(2001)292[0929:IGAPAO]2.0.CO;2 – volume: 100 start-page: 5944 issn: 1091-6490 year: 2003 ident: journal-pbio-0050008-b016 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2003)100[5944:REGNIG]2.0.CO;2 – volume: 7 start-page: R36 issn: 1465-6914 year: 2006 ident: journal-pbio-0050008-b018 publication-title: Genome Biol doi: 1465-6914(2006)007[R36:TIAAFL]2.0.CO;2 – volume: 431 start-page: 99 issn: 1476-4687 year: 2004 ident: journal-pbio-0050008-b019 publication-title: Nature doi: 1476-4687(2004)431[0099:TRCOAE]2.0.CO;2 – volume: 431 start-page: 308 issn: 1476-4687 year: 2004 ident: journal-pbio-0050008-b022 publication-title: Nature doi: 1476-4687(2004)431[0308:GAORND]2.0.CO;2 – volume: 187 start-page: 304 issn: 0021-9193 year: 2005 ident: journal-pbio-0050008-b052 publication-title: J Bacteriol doi: 0021-9193(2005)187[0304:PRGFFM]2.0.CO;2 – start-page: 437 year: 2002 ident: journal-pbio-0050008-b025 publication-title: Pac Symp Biocomput – volume: 90 start-page: 116 issn: 0006-3592 year: 2005 ident: journal-pbio-0050008-b051 publication-title: Biotechnol Bioeng doi: 0006-3592(2005)090[0116:AACORP]2.0.CO;2 – volume: 22 start-page: 841 issn: 1087-0156 year: 2004 ident: journal-pbio-0050008-b043 publication-title: Nat Biotechnol doi: 1087-0156(2004)022[0841:EREPCO]2.0.CO;2 – volume: 15 start-page: 70 issn: 0958-1669 year: 2004 ident: journal-pbio-0050008-b024 publication-title: Curr Opin Biotechnol doi: 0958-1669(2004)015[0070:ROMTRN]2.0.CO;2 – start-page: 1075 year: 1996 ident: journal-pbio-0050008-b037 publication-title: Escherichia coli and Salmonella: Cellular and molecular biology – volume: 2 start-page: 28 issn: 1553-0833 year: 1994 ident: journal-pbio-0050008-b034 publication-title: Proc Int Conf Intell Syst Mol Biol doi: 1553-0833(1994)002[0028:FAMMBE]2.0.CO;2 – start-page: 418 year: 2000 ident: journal-pbio-0050008-b028 publication-title: Pac Symp Biocomput – volume: 22 start-page: 477 issn: 1367-4803 year: 2006 ident: journal-pbio-0050008-b017 publication-title: Bioinformatics doi: 1367-4803(2006)022[0477:LARNAO]2.0.CO;2 – volume: 90 start-page: 127 issn: 0006-3592 year: 2005 ident: journal-pbio-0050008-b050 publication-title: Biotechnol Bioeng doi: 0006-3592(2005)090[0127:TPFHRA]2.0.CO;2 – volume: 34 start-page: 166 issn: 1061-4036 year: 2003 ident: journal-pbio-0050008-b014 publication-title: Nat Genet doi: 1061-4036(2003)034[0166:MNIRMA]2.0.CO;2 – volume: 31 start-page: e15 issn: 0305-1048 year: 2003 ident: journal-pbio-0050008-b044 publication-title: Nucleic Acids Res doi: 0305-1048(2003)031[e15:SOAGPL]2.0.CO;2 – volume: 186 start-page: 6714 issn: 0021-9193 year: 2004 ident: journal-pbio-0050008-b055 publication-title: J Bacteriol doi: 0021-9193(2004)186[6714:GTEOAS]2.0.CO;2 – volume: 99 start-page: 909 issn: 0162-1459 year: 2004 ident: journal-pbio-0050008-b045 publication-title: J Am Stat Assoc doi: 0162-1459(2004)099[0909:AMBAFO]2.0.CO;2 – volume: 35 start-page: 1560 issn: 0950-382X year: 2000 ident: journal-pbio-0050008-b035 publication-title: Mol Microbiol doi: 0950-382X(2000)035[1560:IOAGBT]2.0.CO;2 – volume: 121 start-page: 511 issn: 0092-8674 year: 2005 ident: journal-pbio-0050008-b001 publication-title: Cell doi: 0092-8674(2005)121[0511:SBIPAC]2.0.CO;2 – volume: 99 start-page: 12841 issn: 1091-6490 year: 2002 ident: journal-pbio-0050008-b009 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2002)099[12841:UTWAST]2.0.CO;2 – volume: 5 start-page: 118 issn: 1471-2105 year: 2004 ident: journal-pbio-0050008-b047 publication-title: BMC Bioinformatics doi: 1471-2105(2004)005[0118:EMIUBF]2.0.CO;2 – volume: 529 start-page: 78 issn: 0014-5793 year: 2002 ident: journal-pbio-0050008-b038 publication-title: FEBS Lett doi: 0014-5793(2002)529[0078:ITASIE]2.0.CO;2 – volume: 7 start-page: 601 issn: 1066-5277 year: 2000 ident: journal-pbio-0050008-b007 publication-title: J Comput Biol doi: 1066-5277(2000)007[0601:UBNTAE]2.0.CO;2 – volume: 23 start-page: 377 issn: 1087-0156 year: 2005 ident: journal-pbio-0050008-b006 publication-title: Nat Biotechnol doi: 1087-0156(2005)023[0377:CPOAGS]2.0.CO;2 – volume: 298 start-page: 799 issn: 0193-4511 year: 2002 ident: journal-pbio-0050008-b020 publication-title: Science doi: 0193-4511(2002)298[0799:TRNISC]2.0.CO;2 – volume: 33 start-page: 1134 year: 1986 ident: journal-pbio-0050008-b032 publication-title: Phy Rev A doi: 10.1103/PhysRevA.33.1134 – volume: 14 start-page: 1654 issn: 1088-9051 year: 2004 ident: journal-pbio-0050008-b013 publication-title: Genome Res doi: 1088-9051(2004)014[1654:EOGINT]2.0.CO;2 – volume: 100 start-page: 15522 issn: 1091-6490 year: 2003 ident: journal-pbio-0050008-b010 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2003)100[15522:NCAROR]2.0.CO;2 – volume: 301 start-page: 102 issn: 0193-4511 year: 2003 ident: journal-pbio-0050008-b040 publication-title: Science doi: 0193-4511(2003)301[0102:IGNAIC]2.0.CO;2 – volume: 186 start-page: 3254 issn: 0021-9193 year: 2004 ident: journal-pbio-0050008-b053 publication-title: J Bacteriol doi: 0021-9193(2004)186[3254:GAOLEI]2.0.CO;2 – volume: 187 start-page: 1135 issn: 0021-9193 year: 2005 ident: journal-pbio-0050008-b054 publication-title: J Bacteriol doi: 0021-9193(2005)187[1135:GEAITF]2.0.CO;2 – volume: 98 start-page: 31 issn: 1091-6490 year: 2001 ident: journal-pbio-0050008-b046 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2001)098[0031:MAOOAE]2.0.CO;2 – volume: 429 start-page: 92 issn: 1476-4687 year: 2004 ident: journal-pbio-0050008-b048 publication-title: Nature doi: 1476-4687(2004)429[0092:IHACDE]2.0.CO;2 – volume: 21 start-page: 1337 issn: 1087-0156 year: 2003 ident: journal-pbio-0050008-b026 publication-title: Nat Biotechnol doi: 1087-0156(2003)021[1337:CDOGMA]2.0.CO;2 – volume: 20 start-page: 1241 issn: 1367-4803 year: 2004 ident: journal-pbio-0050008-b008 publication-title: Bioinformatics doi: 1367-4803(2004)020[1241:GGRNFS]2.0.CO;2 – volume: 110 start-page: 62 issn: 0167-2789 year: 1997 ident: journal-pbio-0050008-b033 publication-title: Physica D doi: 0167-2789(1997)110[0062:STOITF]2.0.CO;2 – volume: 2 start-page: 70 issn: 1741-8364 year: 2004 ident: journal-pbio-0050008-b021 publication-title: Drug Discovery Today: BioSilico doi: 1741-8364(2004)002[0070:MTMOIP]2.0.CO;2 – volume: 34 start-page: D394 issn: 0305-1048 year: 2006 ident: journal-pbio-0050008-b027 publication-title: Nucleic Acids Res doi: 0305-1048(2006)034[D394:RVECKT]2.0.CO;2 – volume: 97 start-page: 6640 issn: 1091-6490 year: 2000 ident: journal-pbio-0050008-b041 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2000)097[6640:OIOCGI]2.0.CO;2 – volume: 100 start-page: 3339 issn: 1091-6490 year: 2003 ident: journal-pbio-0050008-b004 publication-title: Proc Natl Acad Sci U S A doi: 1091-6490(2003)100[3339:IRMDAG]2.0.CO;2 – volume: 185 start-page: 5611 issn: 0021-9193 year: 2003 ident: journal-pbio-0050008-b042 publication-title: J Bacteriol doi: 0021-9193(2003)185[5611:PSOECS]2.0.CO;2 – reference: 15736162 - Biotechnol Bioeng. 2005 Apr 5;90(1):116-26 – reference: 12730377 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5944-9 – reference: 14871865 - Bioinformatics. 2004 May 22;20(8):1241-7 – reference: 15343339 - Nature. 2004 Sep 2;431(7004):99-104 – reference: 12399584 - Science. 2002 Oct 25;298(5594):799-804 – reference: 11930012 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4632-7 – reference: 12843395 - Science. 2003 Jul 4;301(5629):102-5 – reference: 12626739 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3339-44 – reference: 15126489 - J Bacteriol. 2004 May;186(10):3254-8 – reference: 10760155 - Mol Microbiol. 2000 Mar;35(6):1560-72 – reference: 10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 – reference: 12145321 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10555-60 – reference: 16723010 - BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7 – reference: 9896728 - Phys Rev A Gen Phys. 1986 Feb;33(2):1134-1140 – reference: 15778709 - Nat Genet. 2005 Apr;37(4):382-90 – reference: 14673099 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15522-7 – reference: 12740579 - Nat Genet. 2003 Jun;34(2):166-76 – reference: 11928497 - Pac Symp Biocomput. 2002;:437-49 – reference: 15084257 - Cell. 2004 Apr 16;117(2):185-98 – reference: 15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7 – reference: 15765094 - Nat Biotechnol. 2005 Mar;23(3):377-83 – reference: 10902190 - Pac Symp Biocomput. 2000;:418-29 – reference: 14555958 - Nat Biotechnol. 2003 Nov;21(11):1337-42 – reference: 15289483 - Genome Res. 2004 Aug;14(8):1654-63 – reference: 15601715 - J Bacteriol. 2005 Jan;187(1):304-19 – reference: 15208640 - Nat Biotechnol. 2004 Jul;22(7):841-7 – reference: 11340206 - Science. 2001 May 4;292(5518):929-34 – reference: 12142007 - Trends Genet. 2002 Aug;18(8):395-8 – reference: 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6 – reference: 16686963 - Genome Biol. 2006;7(5):R36 – reference: 15129285 - Nature. 2004 May 6;429(6987):92-6 – reference: 15339346 - BMC Bioinformatics. 2004 Aug 31;5:118 – reference: 12242336 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12841-6 – reference: 16381895 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D394-7 – reference: 15742388 - Biotechnol Bioeng. 2005 Apr 20;90(2):127-53 – reference: 14563874 - J Bacteriol. 2003 Nov;185(21):6392-9 – reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 – reference: 15372033 - Nature. 2004 Sep 16;431(7006):308-12 – reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15 – reference: 15659690 - J Bacteriol. 2005 Feb;187(3):1135-60 – reference: 15907465 - Cell. 2005 May 20;121(4):511-3 – reference: 14555624 - Bioinformatics. 2003 Oct 12;19(15):1917-26 – reference: 12949114 - J Bacteriol. 2003 Sep;185(18):5611-26 – reference: 15102470 - Curr Opin Biotechnol. 2004 Feb;15(1):70-7 – reference: 15466022 - J Bacteriol. 2004 Oct;186(20):6714-20 – reference: 12354617 - FEBS Lett. 2002 Oct 2;529(1):78-85 – reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 – reference: 11108481 - J Comput Biol. 2000;7(3-4):601-20 – reference: 11027309 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12182-6 – reference: 16332709 - Bioinformatics. 2006 Feb 15;22(4):477-84 – reference: 10391217 - Nat Genet. 1999 Jul;22(3):281-5 – reference: 15705577 - J Biol Chem. 2005 Apr 22;280(16):15921-7 |
| SSID | ssj0022928 |
| Score | 2.4906795 |
| Snippet | Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression... Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e8 |
| SubjectTerms | Algorithms Biological Transport Biosynthesis Chromosome mapping Computational Biology DNA repair E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Experiments Gene expression Gene Expression Profiling Gene Expression Regulation, Bacterial Gene Regulatory Networks Genetic aspects Genetics and Genomics Genomes Iron - metabolism Methods Microbiology Observations Oligonucleotide Array Sequence Analysis Operon - genetics Proteins Reproducibility of Results Transcription, Genetic - genetics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSgguiO-GFrAQEqds82k7x4JaFQRFAop6i-zYbiPtJqtmo1J-PTOJEzaiVXvgun5JtH5je8YevyHkbaSSlGslfJGqxAcLSXxpMunLzKQq5polCjf0vxyxw-Pk00l6slHqC3PCenngvuN2VYJOBBPMCJTh0bB82qywkmudKCu7a76ByIZgyoVaUdZVVUWpGRjOPHaX5mIe7jqO5itV1nOUPwmwtOTGotRp948z9Gy1qJur3M9_syjvtdVKXl7IxWJjiTp4SB4435Lu9f_pEbljqsfkbl9t8vIJ-f0Zs779BlgxdClRmOGUykpTMLayL61Ea0v3G-SxxBxoClZS0jUuZ8PkAu8_78vXIxwvp1CELbGUbtku8QXml0uurairCN48JccH-z8-HPqu9IJfCBasfRbpUDFjMxsLkWJ5jsDimabGC1YiM1JwcCSMYKyQUSoTFhhtJQt0ARG1MFH8jMyqujJbhEYCnNBQxSy1RRJyLZS24PWkmcksBDPGI_HQ93nhdMmxPMYi7w7bOMQnffflyFjuGPOIPz616nU5bsC_R1pHLKpqdz-AreXO1vKbbM0jb9AoctTNqDAx51S2TZN__Poz38M4MQ1ZdC3o-9FtQN8moHcOZGvokUK6GxPQr8jdBLkzQcIUUUyat9CKh45pcnDygEVwLhk8OVj21c2vx2Z8KWbkVaZuAYPnw5yL6xGwlmQCAl6PPO8Hyl-iOOrjB9wjfDKEJuxMW6ryrNM-Dzk48DF8dT4Otlvx_-J_8L9N7vdb-7gDt0Nm6_PWvASfdK1eddPPHzyJilE priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGEYIXxPcKAyyE4ClV82U7DwgNtGkgOtBGp71FdmyXSiXpmlas_PXcJU4gooW91mdH9d357nzn-xHyMlBRzLUSnohV5IGERJ40ifRkYmIVcs0ihRf6o2N2NI4-nsfnO6RJtLsNLDeGdognNV7MBpcX67eg8G8q1AbuN5MGczUtBtjQBOzaq_mFh9BSmIJ1OBvXyHUwXwniO4yiNtUQBEkFwIpdaUDzeeje121buGO_qjb_7WHem8-KcpOn-nfB5c1VPpfrH3I2-8OaHd4ht50bSvdrublLdkx-j9yogSnX98nPT1gg7p0CAw0dSezhMKEy1_QM3PYahYkWlh6UyPIplktTEKgprSxfcw7B-ic10j2S4zsWKimePybX09X3aoFLV4eb0y81eHj5gIwPD76-P_IcSoOXCTZceizQvmLGJjYUIkYkj6HF9KfGt1giMVJw8DmMYCyTQSwjNjTaSjbUGQTfwgThQ9LLi9zsEhoI8Fd9FbLYZpHPtVDagoMUJyaxEPeYPgmbvU8z18IckTRmaZWX4xDK1NuXIsdSx7E-8dpZ87qFx3_o3yFbW1pswF39UCwmqdPnVEXo2zLBjMDuUBq8OptkVnKtI2UlLPIChSLFFhs51vBM5Kos0w-fz9J9DCljnwVbiU6Pr0J00iF67YhsATuSSfe4AvYVedeh3OtQwmmSdYZ3UYqbjSlT8AeBi-CHMpjZSPbm4eftMC6KxXu5KVZAg6lkzsV2CjA7iYDYuE8e1Yrym1EcW-kPeZ_wjgp1uNMdyaffqjbpPgdfP4SvDlpluxL_H__7fz4ht-r7fbyG2yO95WJlnoJjulTPqoPlF7hIjdI priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfI8VBlgIwVOy5st2HgvaNBAr08am8RTZsV0qSlqRRrA98pdzlziFwCrGA32q6rNT3Z3tu9zd7wh5Fqo44VoJTyQq9kBDYk-aVHoyNYmKuGaxwhf6-yO2dxy_OU1O14hsa2EcB8FHnM7KOpKPXxwg0bbj5jZiFjURVD-IeNDO8udA6COkCdxsz2vUIXw7tsAipCtknSVgrvfI-vHoYPihxlGNY9jsdRQaLQnMrEtced2qVTvXV43yvzzLe_hPLzJU_8y3vFYVc3n2VU6nv1xmuzfJ95YNTQ7LJ79aKD8__w0h8r_y6Ra54UxhOmxWuU3WTHGHXG2aY57dJedvMUndOwIlMnRfIo7EmMpC0xNwHZpOUHRm6U6JajfBlG0KSj2h9e3bnoWw_qEZuxZlFGtpqKR4BppCT6rP9QLfXC5wQQ-aBublPXK8u_P-1Z7nOkV4uWCDhcdCHShmbGojECF2ExlYDMFqrAcTqZGCg91jBGO5DBMZs4HRVrKBzgV8TBhtkF4xK8wmoaEAmzlQEUtsHgdcC6UtGGlJalILvpfpk6hVgCx3MOrYzWOa1bFBDu5Uw74MmZw5JveJt5w1b2BE_kL_EnVrSYsg4PUPIOnMSTdTMdrXTDAjEKFKg2Vp09xKrnWsrIRFnqJmZgjzUWAe0VhWZZm9fneSDdGtTQIWriQ6Gl2G6LBD9MIR2RlwJJeuwAP4irLrUG51KOFEyzvDm6jMLWPKDGxSkCLYwgxmttvr4uEny2FcFBMICzOrgAbD2ZyL1RRw9aUC_PM-ud_s1p-C4gjnP-B9wjv7uCOd7kgx-VhDtQcc_I0Inuovd_yl5P_gXyc8JNebqAO-HNwivcWXyjwCc3mhHrsD7weA_cOP priority: 102 providerName: Unpaywall |
| Title | Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/17214507 https://www.proquest.com/docview/1291897106 https://www.proquest.com/docview/19549778 https://www.proquest.com/docview/70398174 https://pubmed.ncbi.nlm.nih.gov/PMC1764438 https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0050008&type=printable https://doaj.org/article/b40650686e80437d976f9cfa7dd4bfa8 http://dx.doi.org/10.1371/journal.pbio.0050008 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: KQ8 dateStart: 20031001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: KQ8 dateStart: 20031201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: ABDBF dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: 7X7 dateStart: 20031001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1545-7885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: BENPR dateStart: 20031001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1545-7885 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0022928 issn: 1545-7885 databaseCode: M48 dateStart: 20031001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2VgheEPcVRokQEk_pcrWdB4Q61GlcWkrHpu4pcmK7VCpJWVrB-PWckzjdIjbYSx7qE1fxudvH3yHklZcEIZMJt3mYBDZISGALFQlbRCpMfCZpkOCG_nBED4-DD9NwukVG9V0YLKusbWJpqGWe4h75Hvgll0fgD-nb5Q8bu0bh6WrdQkOY1gryTQkxtk3aHiJjtUh7fzAaTzYpmBeV3VYRggbUnPnmMp3P3D3Du94ymec9hEVxsOXkJWdVYvpvLHdruciLq8LSv6srb6-zpTj_KRaLS67r4B65a2JOq18JyX2ypbIH5FbVhfL8Ifn9CavB7SPglrKGAgEbZpbIpHUCMXrVcsnKtTUokL9zrI22QHrmVunmaqMD80-qtvZIjpdWLGGhsVGZnK-_lxP8MkW3mTWuOoUXj8jxweDru0PbtGSwU06dlU096SZU6Uj7nIfYtsPReNYp8eIVj5TgDAIMxSlNhReKgDpKakEdmUKmzZXnPyatLM_UDrE8DsGpm_g01GngMskTqSEaCiMVaUhyVIf49drHqcErx7YZi7g8hGOQt1TLFyPHYsOxDrE3by0rvI7_0O8jWze0iLZd_pCfzWKjvHESYCBLOVUcoaAkhHA6SrVgUgaJFjDJSxSKGPE0MizYmYl1UcTvP5_EfcwfQ5d61xIdjW5CNGkQvTZEOocVSYW5SQHrirxrUO42KMF0pI3hHZTiemGK-ELJ4M1asq8efrEZxkmxUi9T-Rpo8NyYMX49BfiYiEMi3CFPKkW5YBRD3HyHdQhrqFCDO82RbP6txER3GQT2Pvxrb6NsN-L_039_5zNyp9rMxz23XdJana3Vc4hCV0mXbLMp6xoD0y33cuD58QuH5zCAZ_t4NO6f_gFoooxv |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTWi8IO4rDGYhEE_pmpvtPExog04ta8vUXbS34MROqVSSsrQa5cfx2zgncbpFbLCXvdYnjupzfC7x8fcR8taJPJ-rSFjCjzwLLMSzpA6kJQPtRy5XzIvwg35_wDon3ucz_2yF_K7uwmBbZeUTC0etshi_kW9DXLJFAPGQfZj-sJA1Ck9XKwoNaagV1E4BMWYudhzoxQWUcPlO9xPo-53j7LePP3YswzJgxYK1ZhZzlB0xnQSJK4SPTBStBI_vFN4lEoGWgkPM1IKxWDq-9FhLq0SyloqheBQagQ8gBKx5rhdA8be21x4cDpclnxMU7K4IeQNuhbvm8p7L7W1jK81pNM6aCMPSQorLK8Gx4BBYRorV6STLr0uD_-7mXJ-nU7m4kJPJlVC5_5A8MDku3S2N8hFZ0eljcq9kvVw8Ib962H1uHYF1aNqXCBAxojJV9BRqgpLiiWYJbedoT2PsxaZgrWNahNXKycH8Qz0y3GMUL8lQSdG56VSN59-LCX6aJt-UHpbM5PlTcnInynlGVtMs1RuEOgKSYTtymZ_Ens2ViFQC2Zcf6CCBoko3iFutfRgbfHSk6ZiExaEfhzqpXL4QNRYajTWItXxqWuKD_Ed-D9W6lEV07-KH7HwUGmcRRh4mzkwwLRB6SkHKmARxIrlSXpRImOQNGkWI-B0pNgiN5DzPw-6X03AX61XfZs6NQkeD2wgNa0LvjVCSwYrE0tzcgHVF3dUkN2uS4Kri2vAGWnG1MHl4uanhycqyrx_eWg7jpNgZmOpsDjJ4Ts25uFkCYlogoPBukOflRrlUFEec_hZvEF7bQjXt1EfS8bcCg93mUEi48NbmcrPdSv8v_v0_t8h657jfC3vdwcFLcr88SMDvfZtkdXY-168gA55Fr42boeTrXXu2P0Mawo4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIS4viPsKg1kIxFPaXG3nAaHBVq1sK9PGpr5lTmyXSiUpS6tRfhq_jnNyaRexwV72Wp84qs_xucTH30fIGzf2A65iYYkg9i2wEN-SOpSWDHUQe1wxP8YP-vt9tnPsfx4EgxXyu74Lg22VtU8sHLXKEvxG3oG45IgQ4iHrmKot4mCr-2Hyw0IGKTxprek0ShPZ1fNzKN_y970t0PVb1-1uf_20Y1UMA1YimD21mKucmGkTGk-IAFkobINHdwrvEYlQS8EhXmrBWCLdQPrM1spIZqsECkehEfQA3P8t7nkhthPywbLYc8OC1xXBbsChcK-6tudxp1NZSXsSj7I2ArDYSG55ISwW7AGLGLE6GWf5ZQnw332cd2fpRM7P5Xh8IUh2H5D7VXZLN0tzfEhWdPqI3C75LuePya897Du3jsAuNN2XCA0xpDJV9ASqgZLciWaGbudoSSPswqZgpyNaBNTavcH8h3pYsY5RvB5DJUW3plM1mn0vJvhZtfem9KDkJM-fkOMbUc1TsppmqV4j1BWQBjuxxwKT-A5XIlYG8q4g1KGBckq3iFevfZRUyOhI0DGOiuM-DhVSuXwRaiyqNNYi1uKpSYkM8h_5j6jWhSziehc_ZGfDqHITUexjyswE0wJBpxQkiyZMjORK-bGRMMlrNIoIkTtS3ANDOcvzqPflJNrESjVwmHul0FH_OkKHDaF3lZDJYEUSWd3ZgHVF3TUk1xuS4KSSxvAaWnG9MHm03M7wZG3Zlw9vLIZxUuwJTHU2Axk8oeZcXC0B0SwUUHK3yLNyoywVxRGh3-YtwhtbqKGd5kg6-lagrzscSggP3tpebLZr6f_5v__nBrkD_iza6_V3X5B75QkCfuhbJ6vTs5l-CanvNH5V-BhKTm_aqf0B55_AKA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfI8VBlgIwVOy5st2HgvaNBAr08am8RTZsV0qSlqRRrA98pdzlziFwCrGA32q6rNT3Z3tu9zd7wh5Fqo44VoJTyQq9kBDYk-aVHoyNYmKuGaxwhf6-yO2dxy_OU1O14hsa2EcB8FHnM7KOpKPXxwg0bbj5jZiFjURVD-IeNDO8udA6COkCdxsz2vUIXw7tsAipCtknSVgrvfI-vHoYPihxlGNY9jsdRQaLQnMrEtced2qVTvXV43yvzzLe_hPLzJU_8y3vFYVc3n2VU6nv1xmuzfJ95YNTQ7LJ79aKD8__w0h8r_y6Ra54UxhOmxWuU3WTHGHXG2aY57dJedvMUndOwIlMnRfIo7EmMpC0xNwHZpOUHRm6U6JajfBlG0KSj2h9e3bnoWw_qEZuxZlFGtpqKR4BppCT6rP9QLfXC5wQQ-aBublPXK8u_P-1Z7nOkV4uWCDhcdCHShmbGojECF2ExlYDMFqrAcTqZGCg91jBGO5DBMZs4HRVrKBzgV8TBhtkF4xK8wmoaEAmzlQEUtsHgdcC6UtGGlJalILvpfpk6hVgCx3MOrYzWOa1bFBDu5Uw74MmZw5JveJt5w1b2BE_kL_EnVrSYsg4PUPIOnMSTdTMdrXTDAjEKFKg2Vp09xKrnWsrIRFnqJmZgjzUWAe0VhWZZm9fneSDdGtTQIWriQ6Gl2G6LBD9MIR2RlwJJeuwAP4irLrUG51KOFEyzvDm6jMLWPKDGxSkCLYwgxmttvr4uEny2FcFBMICzOrgAbD2ZyL1RRw9aUC_PM-ud_s1p-C4gjnP-B9wjv7uCOd7kgx-VhDtQcc_I0Inuovd_yl5P_gXyc8JNebqAO-HNwivcWXyjwCc3mhHrsD7weA_cOP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Mapping+and+Validation+of+Escherichia+coli+Transcriptional+Regulation+from+a+Compendium+of+Expression+Profiles&rft.jtitle=PLoS+biology&rft.au=Faith%2C+Jeremiah+J&rft.au=Hayete%2C+Boris&rft.au=Thaden%2C+Joshua+T&rft.au=Mogno%2C+Ilaria&rft.date=2007-01-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pbio.0050008&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2897869621 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |