Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the gl...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 5; no. 1; p. e8
Main Authors Faith, Jeremiah J, Hayete, Boris, Thaden, Joshua T, Mogno, Ilaria, Wierzbowski, Jamey, Cottarel, Guillaume, Kasif, Simon, Collins, James J, Gardner, Timothy S
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.01.2007
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.0050008

Cover

Abstract Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data.
AbstractList Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data.Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data.
Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. Organisms can adapt to changing environments—becoming more virulent, for example, or activating stress responses—thanks to a flexible gene expression program controlled by the dynamic interactions of hundreds of transcriptional regulators. To unravel this regulatory complexity, multiple computational algorithms have been developed to analyze gene expression profiles and detect dependencies among genes over different conditions. It has been difficult to judge whether these algorithms can generate accurate global maps of regulatory interactions, however, because of the absence of a model organism with both a compendium of gene expression data and a corresponding network of experimentally determined regulatory interactions. To address this issue, we assembled 445 Escherichia coli microarrays, applied four classes of inference algorithms to the dataset, and validated the predictions against 3,216 experimentally determined E. coli interactions. The top-performing algorithm identifies 1,079 regulatory interactions at a confidence level of 60% or higher. Of these predicted interactions, 741 are novel and illuminate the regulation of amino acid biosynthesis, flagella biosynthesis, osmotic stress response, antibiotic resistance, and iron regulation. By defining the capabilities and limitations of network inference algorithms for large-scale mapping of prokaryotic regulatory networks, our work should facilitate their application to the mapping of novel microbes. A novel, machine-learning method is developed to predict transcriptional regulatory interactions, making use of microarray data. One interaction identified appears to be important for the control of iron transport.
Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data.
  Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data.
Audience Academic
Author Cottarel, Guillaume
Kasif, Simon
Thaden, Joshua T
Gardner, Timothy S
Wierzbowski, Jamey
Collins, James J
Faith, Jeremiah J
Mogno, Ilaria
Hayete, Boris
AuthorAffiliation 4 Department of Computer and Systems Science A. Ruberti, University of Rome, La Sapienza, Rome, Italy
1 Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
3 Boston University School of Medicine, Boston, Massachusetts, United States of America
5 Cellicon Biotechnologies, Boston, Massachusetts, United States of America
Johns Hopkins University, United States of America
2 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
– name: 1 Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
– name: Johns Hopkins University, United States of America
– name: 4 Department of Computer and Systems Science A. Ruberti, University of Rome, La Sapienza, Rome, Italy
– name: 3 Boston University School of Medicine, Boston, Massachusetts, United States of America
– name: 5 Cellicon Biotechnologies, Boston, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Jeremiah J
  surname: Faith
  fullname: Faith, Jeremiah J
– sequence: 2
  givenname: Boris
  surname: Hayete
  fullname: Hayete, Boris
– sequence: 3
  givenname: Joshua T
  surname: Thaden
  fullname: Thaden, Joshua T
– sequence: 4
  givenname: Ilaria
  surname: Mogno
  fullname: Mogno, Ilaria
– sequence: 5
  givenname: Jamey
  surname: Wierzbowski
  fullname: Wierzbowski, Jamey
– sequence: 6
  givenname: Guillaume
  surname: Cottarel
  fullname: Cottarel, Guillaume
– sequence: 7
  givenname: Simon
  surname: Kasif
  fullname: Kasif, Simon
– sequence: 8
  givenname: James J
  surname: Collins
  fullname: Collins, James J
– sequence: 9
  givenname: Timothy S
  surname: Gardner
  fullname: Gardner, Timothy S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17214507$$D View this record in MEDLINE/PubMed
BookMark eNqVk91r1TAYxotM3If-B6IFQfDiHJN-JKkXwhhTDxydbHO34T356DLSpCatbv71tjtVd8ZgM71IaH7Pw5s8b3aTLeedSpLnGM1xTvHbC98HB3beroyfI1QihNijZAeXRTmjjJVbN9bbyW6MFwhlWZWxJ8k2phkuSkR3kl9LCLWanQiwKv0MbWtcnYKT6RlYI6Ez3qVep4dRnKtgxLmBVHhr0tMALopg2pEAmx6rurdrXAffpJAe-KZVTpq-uTa4bIOKcdz_Grw2VsWnyWMNNqpn07yXfPtweHrwabY8-rg42F_OBCOom5FM4hVRutL5cBLCEEMa4ZzJIs8xqxQwWiGsGCECshIKgpTUQJAUbBgqy_eSl2vf1vrIp2uLHGfVIKcYkYFYrAnp4YK3wTQQrrgHw69_-FBzCJ0RVvFVgUiJCCOKoSKnsqJEV0IDlbJYaWCDV7n26l0LVz_B2r-GGPExuT8l8DE5PiU36N5PVfarRkmhXBfAbhSzuePMOa_9D44pKYp8NHg9GQT_vVex442JQlkLTvk-coryimFa3AviqiwqSkfHV7fAuy9vouqhhbhx2g_lidGS72OCaYlJNnrN76CGT6rGiKGzx5bYFLzZEAxMpy67GvoY-eLk-D_YLw9nj8422Rc3M_kX5PR8BuDdGhDBxxiU5sJ0169gOJ2x9yVe3BI_qFF-A6-SQik
CitedBy_id crossref_primary_10_1093_bioinformatics_btw422
crossref_primary_10_1371_journal_pone_0006799
crossref_primary_10_1016_j_molcel_2019_04_001
crossref_primary_10_1016_j_ajpath_2019_03_009
crossref_primary_10_1093_jxb_eru322
crossref_primary_10_1093_nar_gkp792
crossref_primary_10_1371_journal_pcbi_1002597
crossref_primary_10_1093_bib_bbac586
crossref_primary_10_1093_bib_bbab495
crossref_primary_10_1371_journal_pgen_1004201
crossref_primary_10_1186_1471_2164_13_S8_S22
crossref_primary_10_1186_1471_2105_12_233
crossref_primary_10_1186_1752_0509_8_3
crossref_primary_10_1093_bib_bbab009
crossref_primary_10_1142_S0219720019500185
crossref_primary_10_1155_2016_5283937
crossref_primary_10_1196_annals_1407_021
crossref_primary_10_1080_01621459_2020_1778482
crossref_primary_10_1016_j_resmic_2007_09_001
crossref_primary_10_1093_bioinformatics_btm529
crossref_primary_10_3389_fgene_2019_00294
crossref_primary_10_1016_j_compbiolchem_2017_08_012
crossref_primary_10_1109_TCBB_2017_2758786
crossref_primary_10_5812_ircmj_41119
crossref_primary_10_1007_s12539_018_0297_0
crossref_primary_10_3390_ijms18010037
crossref_primary_10_1007_s11060_010_0332_4
crossref_primary_10_1016_j_jcyt_2021_02_118
crossref_primary_10_1371_journal_pcbi_1004765
crossref_primary_10_1371_journal_pcbi_1000166
crossref_primary_10_1038_msb_2009_42
crossref_primary_10_3389_fpls_2017_02029
crossref_primary_10_3390_metabo11050326
crossref_primary_10_1038_s41598_017_11159_3
crossref_primary_10_1186_s12866_020_01904_6
crossref_primary_10_1371_journal_pcbi_1002589
crossref_primary_10_15252_msb_20156236
crossref_primary_10_1186_1471_2164_13_S8_S14
crossref_primary_10_1007_s10994_018_5700_x
crossref_primary_10_1073_pnas_1104318108
crossref_primary_10_1186_s12885_019_6235_7
crossref_primary_10_1093_bib_bbad413
crossref_primary_10_1111_j_1574_6976_2008_00145_x
crossref_primary_10_1093_bioinformatics_btx748
crossref_primary_10_1196_annals_1407_013
crossref_primary_10_1134_S0006350911060078
crossref_primary_10_1186_1752_0509_4_64
crossref_primary_10_1093_bioinformatics_btv118
crossref_primary_10_1093_database_bat008
crossref_primary_10_1109_TMBMC_2019_2933391
crossref_primary_10_5808_GI_2013_11_4_200
crossref_primary_10_1016_j_coisb_2017_04_001
crossref_primary_10_1104_pp_110_168641
crossref_primary_10_1109_TCBB_2017_2688355
crossref_primary_10_1016_j_compbiolchem_2018_10_014
crossref_primary_10_1186_s12864_020_07079_8
crossref_primary_10_1093_bioinformatics_btm309
crossref_primary_10_1093_bib_bbz089
crossref_primary_10_1038_nchembio_122
crossref_primary_10_1186_1752_0509_4_53
crossref_primary_10_1080_15592324_2015_1034421
crossref_primary_10_1038_nmeth_1418
crossref_primary_10_1038_ncomms7315
crossref_primary_10_1177_1471082X18776577
crossref_primary_10_1186_s12864_016_2791_2
crossref_primary_10_1186_s12918_019_0695_x
crossref_primary_10_3390_cancers13051045
crossref_primary_10_3390_app132111902
crossref_primary_10_1016_j_cnsns_2008_09_015
crossref_primary_10_1038_s41598_024_67329_7
crossref_primary_10_1038_nbt_1582
crossref_primary_10_1016_j_ygeno_2010_10_003
crossref_primary_10_1016_j_neucom_2016_02_087
crossref_primary_10_1049_iet_syb_2018_5015
crossref_primary_10_1080_01621459_2016_1256812
crossref_primary_10_1371_journal_pone_0092709
crossref_primary_10_15252_msb_20167150
crossref_primary_10_1088_1367_2630_13_1_013004
crossref_primary_10_1093_bioinformatics_btu285
crossref_primary_10_3390_informatics11020014
crossref_primary_10_1128_AEM_02392_09
crossref_primary_10_3390_cancers13030393
crossref_primary_10_1039_c2mb25236h
crossref_primary_10_1186_1471_2180_14_14
crossref_primary_10_3390_plants12010071
crossref_primary_10_1093_bioinformatics_btn658
crossref_primary_10_1146_annurev_micro_112408_134247
crossref_primary_10_1016_j_tplants_2022_08_018
crossref_primary_10_3389_fmicb_2016_01819
crossref_primary_10_1093_bioinformatics_btt186
crossref_primary_10_3389_fgene_2021_652189
crossref_primary_10_1371_journal_pcbi_1011254
crossref_primary_10_1186_1756_0500_5_518
crossref_primary_10_1007_s11103_024_01547_5
crossref_primary_10_1088_1367_2630_13_8_083002
crossref_primary_10_1186_s12920_019_0515_6
crossref_primary_10_11922_csdata_180_2015_0011
crossref_primary_10_1109_TCBB_2013_3
crossref_primary_10_1016_j_cmi_2016_04_014
crossref_primary_10_1007_s13721_016_0135_4
crossref_primary_10_1186_1471_2164_11_578
crossref_primary_10_1111_nph_19426
crossref_primary_10_1016_j_coisb_2017_12_009
crossref_primary_10_1155_2013_856325
crossref_primary_10_1088_1751_8113_47_34_343001
crossref_primary_10_1016_j_foodres_2013_02_050
crossref_primary_10_1038_s41396_018_0145_6
crossref_primary_10_1038_srep39709
crossref_primary_10_1016_j_jbi_2008_01_011
crossref_primary_10_7717_peerj_10
crossref_primary_10_1093_bioinformatics_btu290
crossref_primary_10_1186_s12859_018_2558_7
crossref_primary_10_1038_s42256_022_00469_5
crossref_primary_10_1093_bioinformatics_btx563
crossref_primary_10_1371_journal_pcbi_1004748
crossref_primary_10_1371_journal_pone_0100842
crossref_primary_10_1016_j_febslet_2013_07_032
crossref_primary_10_1038_nbt_2635
crossref_primary_10_3390_jof7090765
crossref_primary_10_1016_j_compbiolchem_2015_04_012
crossref_primary_10_1098_rstb_2014_0376
crossref_primary_10_1111_j_1529_8817_2009_00674_x
crossref_primary_10_1093_nargab_lqad018
crossref_primary_10_1089_cmb_2014_0290
crossref_primary_10_1007_s00249_013_0888_y
crossref_primary_10_1038_s41598_021_87074_5
crossref_primary_10_3390_cells12010101
crossref_primary_10_1371_journal_pcbi_1000340
crossref_primary_10_1021_acs_jproteome_6b00704
crossref_primary_10_1093_bioinformatics_btz529
crossref_primary_10_1177_11779322241287120
crossref_primary_10_3390_biology12040558
crossref_primary_10_1186_s12859_021_03987_y
crossref_primary_10_3389_fimmu_2023_1251067
crossref_primary_10_1111_tpj_15725
crossref_primary_10_1111_tpj_14628
crossref_primary_10_1016_j_csbj_2021_08_028
crossref_primary_10_3390_computation9040048
crossref_primary_10_1039_C5MB00174A
crossref_primary_10_1002_bdd_1875
crossref_primary_10_1016_j_physa_2011_02_021
crossref_primary_10_1186_s40246_022_00431_x
crossref_primary_10_1002_wsbm_105
crossref_primary_10_1038_s41598_020_80745_9
crossref_primary_10_1007_s11425_017_9206_0
crossref_primary_10_1093_bioinformatics_btn476
crossref_primary_10_1098_rstb_2017_0221
crossref_primary_10_1093_nargab_lqae130
crossref_primary_10_1098_rstb_2017_0222
crossref_primary_10_1038_nbt_2601
crossref_primary_10_3390_nano10040708
crossref_primary_10_1111_tpj_13750
crossref_primary_10_1186_s12859_016_0885_0
crossref_primary_10_1128_JB_00646_20
crossref_primary_10_1371_journal_pbio_1000096
crossref_primary_10_1186_s12918_015_0165_z
crossref_primary_10_1073_pnas_1702581114
crossref_primary_10_1371_journal_pcbi_1002528
crossref_primary_10_1109_TCBB_2019_2900614
crossref_primary_10_1007_s00404_014_3264_y
crossref_primary_10_1186_1471_2105_14_273
crossref_primary_10_1371_journal_pone_0028713
crossref_primary_10_1186_s13637_014_0012_3
crossref_primary_10_1002_bit_26791
crossref_primary_10_1016_j_cell_2013_11_046
crossref_primary_10_1016_j_compbiomed_2014_08_020
crossref_primary_10_1038_nmeth0307_198
crossref_primary_10_1093_bioinformatics_btn220
crossref_primary_10_1093_bioinformatics_btv186
crossref_primary_10_1186_1471_2105_14_278
crossref_primary_10_1093_bioinformatics_btaa267
crossref_primary_10_1093_nar_gkt983
crossref_primary_10_1186_1471_2105_12_286
crossref_primary_10_3389_fphys_2017_00915
crossref_primary_10_1016_j_jbi_2018_07_012
crossref_primary_10_1158_1541_7786_MCR_12_0690
crossref_primary_10_1109_TCBB_2016_2535267
crossref_primary_10_1016_j_cell_2012_09_016
crossref_primary_10_1186_s12859_015_0588_y
crossref_primary_10_2139_ssrn_3253573
crossref_primary_10_3233_JAD_170011
crossref_primary_10_3182_20080706_5_KR_1001_02684
crossref_primary_10_1093_nar_gks467
crossref_primary_10_1093_bioinformatics_btab367
crossref_primary_10_1038_s41540_021_00208_3
crossref_primary_10_1039_c0mb00107d
crossref_primary_10_1155_2016_4241293
crossref_primary_10_1186_gb_2009_10_3_r27
crossref_primary_10_1534_genetics_107_080069
crossref_primary_10_1016_j_cmpb_2008_11_003
crossref_primary_10_1186_s12918_018_0531_8
crossref_primary_10_1016_j_copbio_2011_12_005
crossref_primary_10_1016_j_tibtech_2007_09_004
crossref_primary_10_1101_gr_153916_112
crossref_primary_10_1142_S0219720010004859
crossref_primary_10_2976_1_3366829
crossref_primary_10_1186_s12859_017_1550_y
crossref_primary_10_1080_19336918_2016_1183867
crossref_primary_10_1186_1471_2105_11_228
crossref_primary_10_1371_journal_pone_0127216
crossref_primary_10_1093_bioinformatics_btp423
crossref_primary_10_1038_srep41174
crossref_primary_10_1128_msystems_01456_21
crossref_primary_10_1016_j_isci_2019_03_021
crossref_primary_10_1371_journal_pone_0220279
crossref_primary_10_1016_j_semcancer_2021_03_011
crossref_primary_10_17706_ijbbb_2015_5_5_296_310
crossref_primary_10_1080_07391102_2012_691368
crossref_primary_10_1209_0295_5075_113_18005
crossref_primary_10_3389_fgene_2015_00256
crossref_primary_10_1093_bioinformatics_btn273
crossref_primary_10_1093_nar_gkr593
crossref_primary_10_1186_s13059_021_02568_9
crossref_primary_10_1098_rsif_2013_0505
crossref_primary_10_1038_s41540_023_00312_6
crossref_primary_10_12677_AAM_2019_89178
crossref_primary_10_1186_1471_2164_16_S12_S4
crossref_primary_10_1016_j_copbio_2020_02_014
crossref_primary_10_1039_B816845H
crossref_primary_10_1109_TPDS_2010_65
crossref_primary_10_1016_j_automatica_2014_08_003
crossref_primary_10_12688_f1000research_7118_2
crossref_primary_10_1186_1471_2105_11_454
crossref_primary_10_1016_j_mbs_2015_06_006
crossref_primary_10_12688_f1000research_7118_1
crossref_primary_10_1016_j_gene_2016_03_045
crossref_primary_10_1039_b908108a
crossref_primary_10_1186_1471_2105_12_S10_S20
crossref_primary_10_1093_bioinformatics_btz105
crossref_primary_10_1016_j_mbs_2010_07_003
crossref_primary_10_1186_1752_0509_6_38
crossref_primary_10_1186_gb_2009_10_2_r19
crossref_primary_10_1002_cppb_20100
crossref_primary_10_1186_1471_2105_12_243
crossref_primary_10_1038_s41467_018_03214_y
crossref_primary_10_1186_s12859_016_0981_1
crossref_primary_10_1371_journal_pone_0152648
crossref_primary_10_1155_2016_2090286
crossref_primary_10_1186_s12885_016_2937_2
crossref_primary_10_1186_s12918_017_0463_8
crossref_primary_10_1093_bioinformatics_btr626
crossref_primary_10_1093_hmg_ddu202
crossref_primary_10_1186_gb_2009_10_9_r96
crossref_primary_10_1142_S0219720018500099
crossref_primary_10_3389_fgene_2023_1143382
crossref_primary_10_1186_s12859_016_1398_6
crossref_primary_10_1109_TCBB_2015_2424411
crossref_primary_10_1186_s12859_016_0913_0
crossref_primary_10_1371_journal_pcbi_1008223
crossref_primary_10_1371_journal_pcbi_1009312
crossref_primary_10_1038_s41593_019_0489_x
crossref_primary_10_1016_j_biosystems_2018_10_008
crossref_primary_10_3390_ijms20153730
crossref_primary_10_1080_14789450_2020_1766975
crossref_primary_10_1039_c1ib00117e
crossref_primary_10_1093_nar_gkr1265
crossref_primary_10_1039_c2mb25030f
crossref_primary_10_1049_iet_syb_2011_0004
crossref_primary_10_1186_s12859_019_3104_y
crossref_primary_10_1109_TCBB_2015_2415931
crossref_primary_10_1038_onc_2017_185
crossref_primary_10_3389_fmicb_2016_01191
crossref_primary_10_1038_nprot_2017_022
crossref_primary_10_1093_bioinformatics_bts619
crossref_primary_10_3390_cells2020306
crossref_primary_10_1007_s40496_019_0214_6
crossref_primary_10_1371_journal_pone_0037510
crossref_primary_10_1101_gr_096305_109
crossref_primary_10_1126_sciadv_adq3073
crossref_primary_10_1186_1471_2105_15_S7_S10
crossref_primary_10_1126_scitranslmed_aal3973
crossref_primary_10_1038_nchembio_1063
crossref_primary_10_1007_s10142_021_00821_9
crossref_primary_10_1371_journal_pone_0012776
crossref_primary_10_1038_s41586_024_07141_5
crossref_primary_10_1371_journal_pone_0171240
crossref_primary_10_1038_s41698_021_00185_0
crossref_primary_10_1002_wrna_1508
crossref_primary_10_1093_nar_gkac377
crossref_primary_10_1093_nar_gkm815
crossref_primary_10_1038_nrmicro2333
crossref_primary_10_1371_journal_pone_0002981
crossref_primary_10_1042_BST20190840
crossref_primary_10_1128_msystems_00064_24
crossref_primary_10_1093_nar_gkw737
crossref_primary_10_1093_bioinformatics_btad256
crossref_primary_10_1145_3154524
crossref_primary_10_1101_gr_259655_119
crossref_primary_10_1534_g3_120_401067
crossref_primary_10_7717_peerj_5692
crossref_primary_10_1155_2017_8514071
crossref_primary_10_1038_nrmicro2107
crossref_primary_10_1093_nar_gkr1050
crossref_primary_10_3390_e22060627
crossref_primary_10_1371_journal_pone_0069374
crossref_primary_10_3390_ijms20102570
crossref_primary_10_1016_j_csbj_2020_10_022
crossref_primary_10_1038_ncomms2743
crossref_primary_10_1186_gm340
crossref_primary_10_1186_s12920_016_0202_9
crossref_primary_10_1186_s12859_016_1038_1
crossref_primary_10_3389_fimmu_2023_1107397
crossref_primary_10_1128_mBio_01349_20
crossref_primary_10_1016_j_procs_2014_05_183
crossref_primary_10_1038_ni_2420
crossref_primary_10_1093_bioinformatics_btab099
crossref_primary_10_1371_journal_pcbi_1005379
crossref_primary_10_1007_s12539_016_0185_4
crossref_primary_10_1128_JB_00350_11
crossref_primary_10_1371_journal_pcbi_1008647
crossref_primary_10_1016_j_jbi_2019_103211
crossref_primary_10_1371_journal_pcbi_1004295
crossref_primary_10_1534_g3_118_200867
crossref_primary_10_1016_j_plrev_2007_10_003
crossref_primary_10_1111_j_1749_6632_2008_03943_x
crossref_primary_10_1371_journal_pcbi_1007324
crossref_primary_10_1371_journal_pone_0020124
crossref_primary_10_3390_genes14020269
crossref_primary_10_1016_j_stem_2024_10_004
crossref_primary_10_1038_s41598_017_17143_1
crossref_primary_10_1371_journal_pone_0036465
crossref_primary_10_1186_1471_2105_10_85
crossref_primary_10_1016_j_jmb_2008_04_008
crossref_primary_10_1186_s12859_021_04197_2
crossref_primary_10_1038_nbt_3184
crossref_primary_10_1093_bioinformatics_btu863
crossref_primary_10_3389_fimmu_2024_1446453
crossref_primary_10_1186_gb_2010_11_3_r32
crossref_primary_10_1016_j_compbiolchem_2019_107120
crossref_primary_10_1093_bioinformatics_btp177
crossref_primary_10_4109_jslab_22_3
crossref_primary_10_1089_cmb_2024_0607
crossref_primary_10_1371_journal_pone_0170340
crossref_primary_10_1371_journal_pcbi_1010991
crossref_primary_10_1093_nargab_lqad083
crossref_primary_10_1128_JB_00031_15
crossref_primary_10_3389_fcell_2014_00038
crossref_primary_10_1016_j_cell_2008_12_016
crossref_primary_10_3390_e18090328
crossref_primary_10_1016_j_cj_2024_05_006
crossref_primary_10_1093_bioinformatics_btr580
crossref_primary_10_1073_pnas_0807227105
crossref_primary_10_1093_bioinformatics_bts434
crossref_primary_10_1016_j_compbiomed_2020_103656
crossref_primary_10_1093_nar_gkw777
crossref_primary_10_1038_ncomms3830
crossref_primary_10_1371_journal_pone_0166084
crossref_primary_10_1534_genetics_120_303186
crossref_primary_10_1093_bioinformatics_btq259
crossref_primary_10_1186_gm367
crossref_primary_10_3389_fbioe_2018_00165
crossref_primary_10_1038_s41598_022_06658_x
crossref_primary_10_1155_2015_540297
crossref_primary_10_1016_j_cels_2016_08_010
crossref_primary_10_1016_j_ymeth_2012_10_012
crossref_primary_10_1186_s12918_017_0517_y
crossref_primary_10_1016_j_asoc_2016_01_014
crossref_primary_10_1371_journal_pone_0096732
crossref_primary_10_1093_bioinformatics_btr373
crossref_primary_10_1016_j_ymeth_2013_04_023
crossref_primary_10_3389_fnmol_2014_00064
crossref_primary_10_1103_PhysRevE_79_061916
crossref_primary_10_1016_j_cell_2007_06_049
crossref_primary_10_1186_1752_0509_4_8
crossref_primary_10_1371_journal_pone_0082146
crossref_primary_10_1007_s12539_021_00478_9
crossref_primary_10_1016_j_asoc_2018_05_009
crossref_primary_10_15252_msb_20145160
crossref_primary_10_1038_s41588_018_0138_4
crossref_primary_10_1186_s12859_018_2217_z
crossref_primary_10_4137_CIN_S13630
crossref_primary_10_1007_s40484_014_0025_7
crossref_primary_10_1093_bib_bbs071
crossref_primary_10_1016_j_cell_2018_05_015
crossref_primary_10_1016_j_celrep_2024_114339
crossref_primary_10_1093_bioinformatics_btr366
crossref_primary_10_1186_1471_2105_12_S12_S2
crossref_primary_10_1093_nar_gkr902
crossref_primary_10_3390_cancers14082043
crossref_primary_10_1016_j_mbs_2011_11_008
crossref_primary_10_1093_gigascience_gix078
crossref_primary_10_1103_PhysRevE_87_012915
crossref_primary_10_1038_s41467_023_42967_z
crossref_primary_10_1038_srep20533
crossref_primary_10_1021_sb5003407
crossref_primary_10_1016_j_gene_2014_03_010
crossref_primary_10_1186_s13040_017_0136_6
crossref_primary_10_1021_acs_jproteome_7b00106
crossref_primary_10_1103_PhysRevE_103_042417
crossref_primary_10_18632_oncotarget_21268
crossref_primary_10_1093_nar_gkn515
crossref_primary_10_1093_bfgp_elae036
crossref_primary_10_3390_f11030287
crossref_primary_10_1038_s41598_020_61758_w
crossref_primary_10_1111_biom_13457
crossref_primary_10_1038_ncomms10105
crossref_primary_10_1128_msystems_00729_19
crossref_primary_10_1007_s00216_019_02011_w
crossref_primary_10_1128_JB_06112_11
crossref_primary_10_1021_acs_jproteome_8b00781
crossref_primary_10_1021_pr501075r
crossref_primary_10_1016_j_compbiomed_2024_108850
crossref_primary_10_1371_journal_pone_0094360
crossref_primary_10_1371_journal_pone_0105942
crossref_primary_10_1038_srep20518
crossref_primary_10_1088_1674_1056_27_3_030503
crossref_primary_10_1093_bioinformatics_btq051
crossref_primary_10_1186_s12859_022_05047_5
crossref_primary_10_1038_nrc_2016_124
crossref_primary_10_1073_pnas_0913357107
crossref_primary_10_1093_nar_gky750
crossref_primary_10_1016_j_sigpro_2011_11_028
crossref_primary_10_1038_s41556_022_00884_1
crossref_primary_10_1093_bioinformatics_btq080
crossref_primary_10_3389_fbioe_2015_00157
crossref_primary_10_4161_sysb_22816
crossref_primary_10_1039_c9mt00186g
crossref_primary_10_1093_bioinformatics_btu446
crossref_primary_10_1515_sagmb_2021_0025
crossref_primary_10_1371_journal_pone_0089815
crossref_primary_10_1371_journal_pone_0178258
crossref_primary_10_1186_1752_0509_6_6
crossref_primary_10_1371_journal_pcbi_1003370
crossref_primary_10_1002_1873_3468_12192
crossref_primary_10_1016_j_ymeth_2013_03_011
crossref_primary_10_1002_wsbm_1159
crossref_primary_10_1109_TCBB_2015_2450740
crossref_primary_10_1186_s12918_016_0336_6
crossref_primary_10_1093_nar_gkq612
crossref_primary_10_1186_s12859_020_03651_x
crossref_primary_10_1093_bioinformatics_btr166
crossref_primary_10_1109_TCBB_2018_2866836
crossref_primary_10_26508_lsa_202302415
crossref_primary_10_1089_cmb_2017_0022
crossref_primary_10_1038_nrg3096
crossref_primary_10_1093_bib_bbab166
crossref_primary_10_1038_s41598_017_09094_4
crossref_primary_10_1093_bioinformatics_btaa840
crossref_primary_10_1038_srep15147
crossref_primary_10_1371_journal_pcbi_1003361
crossref_primary_10_1158_2159_8290_CD_20_1677
crossref_primary_10_3390_ijms241914473
crossref_primary_10_1186_s12859_015_0754_2
crossref_primary_10_1093_bioinformatics_btt108
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_1007_s10844_018_0506_7
crossref_primary_10_1109_TPAMI_2012_96
crossref_primary_10_1371_journal_pntd_0004533
crossref_primary_10_1101_gr_275107_120
crossref_primary_10_15252_msb_20145108
crossref_primary_10_3389_fpls_2016_01936
crossref_primary_10_1093_bioinformatics_btx730
crossref_primary_10_1007_s10710_013_9183_z
crossref_primary_10_1016_j_ccr_2014_03_017
crossref_primary_10_1038_s41467_023_41572_4
crossref_primary_10_1111_j_1742_4658_2012_08616_x
crossref_primary_10_1093_jxb_erac394
crossref_primary_10_1111_pce_12156
crossref_primary_10_1186_s12864_022_09020_7
crossref_primary_10_1016_j_jbiotec_2009_07_013
crossref_primary_10_1093_bib_bbad129
crossref_primary_10_1021_acssynbio_8b00236
crossref_primary_10_1038_s41467_023_37897_9
crossref_primary_10_1111_j_1365_2958_2010_07072_x
crossref_primary_10_1214_17_AOAS1051
crossref_primary_10_1016_j_compbiolchem_2022_107769
crossref_primary_10_1109_TCBB_2009_58
crossref_primary_10_1007_s12033_023_00929_2
crossref_primary_10_1016_j_csbj_2022_12_022
crossref_primary_10_3892_etm_2017_4481
crossref_primary_10_1109_TCBB_2020_3029846
crossref_primary_10_1371_journal_pone_0204100
crossref_primary_10_1038_srep37140
crossref_primary_10_1109_TCBB_2010_40
crossref_primary_10_1093_bioinformatics_btab718
crossref_primary_10_1016_j_jprot_2013_09_018
crossref_primary_10_1109_ACCESS_2020_2991664
crossref_primary_10_1371_journal_pone_0188016
crossref_primary_10_1128_msystems_00057_20
crossref_primary_10_1186_s12859_018_2481_y
crossref_primary_10_1016_j_automatica_2011_03_008
crossref_primary_10_1101_gr_079715_108
crossref_primary_10_1093_bioinformatics_btv215
crossref_primary_10_1155_2008_253894
crossref_primary_10_1186_1471_2105_14_S1_S3
crossref_primary_10_1371_journal_pone_0004495
crossref_primary_10_1158_1055_9965_EPI_17_0461
crossref_primary_10_1515_sagmb_2017_0052
crossref_primary_10_1038_srep11432
crossref_primary_10_1371_journal_pone_0166115
crossref_primary_10_1155_2007_79879
crossref_primary_10_1111_j_1749_6632_2008_04100_x
crossref_primary_10_1186_s12859_020_03930_7
crossref_primary_10_1111_nph_19993
crossref_primary_10_1128_JB_01017_08
crossref_primary_10_1371_journal_pone_0142147
crossref_primary_10_1007_s11306_018_1335_y
crossref_primary_10_1038_s41467_020_16019_9
crossref_primary_10_1371_journal_pgen_1002377
crossref_primary_10_1371_journal_pone_0109569
crossref_primary_10_1371_journal_pone_0087446
crossref_primary_10_1128_MMBR_00037_08
crossref_primary_10_7554_eLife_06974
crossref_primary_10_1093_nar_gky015
crossref_primary_10_1016_j_compbiolchem_2024_108223
crossref_primary_10_1186_1752_0509_6_147
crossref_primary_10_1186_s12918_015_0233_4
crossref_primary_10_1186_1752_0509_6_145
crossref_primary_10_7717_peerj_cs_363
crossref_primary_10_1109_TSP_2014_2358956
crossref_primary_10_1186_1752_0509_5_100
crossref_primary_10_1016_j_bbagrm_2019_194416
crossref_primary_10_1038_nbt_2530
crossref_primary_10_1038_s41598_020_67878_7
crossref_primary_10_1093_bioinformatics_btac717
crossref_primary_10_3390_ncrna8040045
crossref_primary_10_1093_bioinformatics_btt290
crossref_primary_10_1073_pnas_0812551106
crossref_primary_10_1089_cmb_2018_0225
crossref_primary_10_1038_msb4100168
crossref_primary_10_3390_cancers13030495
crossref_primary_10_1155_2009_308959
crossref_primary_10_1016_j_compbiomed_2024_108690
crossref_primary_10_1089_ars_2017_7256
crossref_primary_10_1016_j_cels_2017_04_010
crossref_primary_10_3390_microorganisms10050922
crossref_primary_10_1021_acs_jproteome_5b00344
crossref_primary_10_3389_fmicb_2016_00442
crossref_primary_10_3389_fpls_2017_01044
crossref_primary_10_1016_j_pbi_2018_10_005
crossref_primary_10_1186_1471_2105_13_193
crossref_primary_10_1186_1756_0500_7_886
crossref_primary_10_1093_bioinformatics_btx407
crossref_primary_10_1142_S0219720016500104
crossref_primary_10_1126_science_1171347
crossref_primary_10_1007_s10142_025_01549_6
crossref_primary_10_1093_bioinformatics_bty764
crossref_primary_10_1186_s12918_018_0547_0
crossref_primary_10_1016_j_jbi_2025_104797
crossref_primary_10_1093_nar_gkp231
crossref_primary_10_1111_j_1749_6632_2008_03762_x
crossref_primary_10_1093_gigascience_giy118
crossref_primary_10_1089_cmb_2010_0222
crossref_primary_10_1186_s12859_018_2402_0
crossref_primary_10_1186_s13059_018_1536_8
crossref_primary_10_1016_j_imu_2021_100773
crossref_primary_10_1093_bib_bbab325
crossref_primary_10_5402_2012_304021
crossref_primary_10_1007_s13721_019_0187_3
crossref_primary_10_1093_bib_bbab568
crossref_primary_10_1016_j_cell_2009_03_032
crossref_primary_10_1186_1752_0509_3_39
crossref_primary_10_1002_pmic_201800363
crossref_primary_10_1039_C2MB25287B
crossref_primary_10_1007_s11010_008_9857_7
crossref_primary_10_1371_journal_pone_0033624
crossref_primary_10_1016_j_biopsych_2023_08_006
crossref_primary_10_1128_JB_01829_08
crossref_primary_10_4137_BBI_S12467
crossref_primary_10_1371_journal_pone_0288174
crossref_primary_10_1007_s11103_017_0617_5
crossref_primary_10_3390_ijms21217886
crossref_primary_10_1186_1756_0500_6_430
crossref_primary_10_3389_fphys_2015_00364
crossref_primary_10_1016_j_semcdb_2016_01_012
crossref_primary_10_1016_j_tim_2018_02_004
crossref_primary_10_1109_JBHI_2019_2931997
crossref_primary_10_1186_1471_2164_12_S5_S13
crossref_primary_10_1038_s42003_022_03584_6
crossref_primary_10_1371_journal_pone_0028646
crossref_primary_10_1093_bib_bbac442
crossref_primary_10_1093_bioinformatics_btu182
crossref_primary_10_1186_s12864_016_3317_7
crossref_primary_10_1049_iet_syb_2010_0041
crossref_primary_10_3934_mbe_2016041
crossref_primary_10_1371_journal_pone_0013397
crossref_primary_10_3390_cancers16040822
crossref_primary_10_1186_1752_0509_6_134
crossref_primary_10_1093_bib_bbab104
crossref_primary_10_1038_s41540_020_0140_1
crossref_primary_10_1186_s12859_018_2426_5
crossref_primary_10_1258_ebm_2011_010264
crossref_primary_10_1089_wound_2012_0386
crossref_primary_10_1049_iet_syb_2017_0013
crossref_primary_10_1371_journal_pcbi_1009095
crossref_primary_10_1016_j_bbagrm_2019_194444
crossref_primary_10_1186_1752_0509_3_41
crossref_primary_10_1039_C7IB00135E
crossref_primary_10_1093_bioinformatics_btad619
crossref_primary_10_1038_ncomms6302
crossref_primary_10_1038_srep18238
crossref_primary_10_1155_2014_540679
crossref_primary_10_1016_j_micres_2015_01_003
crossref_primary_10_1093_bib_bbac424
crossref_primary_10_1103_PhysRevE_88_062812
crossref_primary_10_1016_j_cell_2014_07_020
crossref_primary_10_1186_1752_0509_3_49
crossref_primary_10_1016_j_virusres_2013_02_011
crossref_primary_10_1021_acs_jproteome_7b00404
crossref_primary_10_1016_j_exphem_2018_10_009
crossref_primary_10_1039_C6IB00093B
crossref_primary_10_1186_1752_0509_4_153
crossref_primary_10_1016_j_csbj_2021_01_029
crossref_primary_10_1016_j_nancom_2015_04_002
crossref_primary_10_1186_s13637_015_0027_4
crossref_primary_10_3390_ijms242115593
crossref_primary_10_1016_j_cpb_2015_04_001
crossref_primary_10_1371_journal_pone_0067434
crossref_primary_10_1093_gbe_evw104
crossref_primary_10_1161_CIRCRESAHA_110_226357
crossref_primary_10_1186_1752_0509_5_197
crossref_primary_10_1186_1471_2105_13_328
crossref_primary_10_1186_1471_2105_11_154
crossref_primary_10_1038_s41540_020_00154_6
crossref_primary_10_1152_japplphysiol_01110_2014
crossref_primary_10_1007_s10994_013_5423_y
crossref_primary_10_1016_j_indcrop_2024_118504
crossref_primary_10_1039_b800446n
crossref_primary_10_1007_s12041_010_0013_2
crossref_primary_10_1186_1752_0509_4_148
crossref_primary_10_1007_s10646_011_0623_3
crossref_primary_10_1016_j_cels_2020_02_003
crossref_primary_10_1039_C7RA01557G
crossref_primary_10_1371_journal_pone_0171097
crossref_primary_10_1042_ETLS20180176
crossref_primary_10_1186_1752_0509_5_86
crossref_primary_10_1186_s12859_015_0685_y
crossref_primary_10_3389_fpls_2018_01770
crossref_primary_10_1016_j_compbiolchem_2019_02_006
crossref_primary_10_1038_s41589_022_00970_3
crossref_primary_10_1111_ppl_14537
crossref_primary_10_1039_c1mb05006k
crossref_primary_10_1093_nar_gkaa264
crossref_primary_10_3389_fcell_2019_00200
crossref_primary_10_1073_pnas_1009747107
crossref_primary_10_1126_science_1219192
crossref_primary_10_1080_10641963_2017_1416120
crossref_primary_10_1093_bioinformatics_bty584
crossref_primary_10_1534_g3_120_401477
crossref_primary_10_1002_qub2_26
crossref_primary_10_1038_nrmicro1949
crossref_primary_10_1038_nrmicro1947
crossref_primary_10_1093_bioinformatics_btq629
crossref_primary_10_1101_gr_150904_112
crossref_primary_10_1016_j_csbj_2020_06_033
crossref_primary_10_1016_j_csbj_2020_06_036
crossref_primary_10_12688_f1000research_8923_2
crossref_primary_10_12688_f1000research_8923_1
crossref_primary_10_1093_nar_gkp022
crossref_primary_10_1093_nar_gkr440
crossref_primary_10_1038_s41467_019_09522_1
crossref_primary_10_1038_s41598_018_21715_0
crossref_primary_10_1088_1742_6596_2701_1_012139
crossref_primary_10_1371_journal_pone_0014673
crossref_primary_10_3390_genes10100798
crossref_primary_10_3390_a14020061
crossref_primary_10_1186_s12859_015_0719_5
crossref_primary_10_1016_j_pbiomolbio_2024_04_002
crossref_primary_10_1098_rsif_2011_0585
crossref_primary_10_1186_s12859_016_1308_y
crossref_primary_10_48130_FR_2021_0006
crossref_primary_10_1513_AnnalsATS_201306_190AW
crossref_primary_10_1186_1471_2105_14_S13_S5
crossref_primary_10_1038_s41597_022_01706_7
crossref_primary_10_1186_1752_0509_5_53
crossref_primary_10_1186_1752_0509_4_116
crossref_primary_10_1093_bib_bbaf098
crossref_primary_10_1016_j_celrep_2012_07_008
crossref_primary_10_1186_1471_2105_12_7
crossref_primary_10_1016_j_ygcen_2014_03_022
crossref_primary_10_1186_1752_0509_5_152
crossref_primary_10_1038_sdata_2015_10
crossref_primary_10_1016_j_heliyon_2023_e16811
crossref_primary_10_1155_2017_8307530
crossref_primary_10_1109_TCBB_2019_2892450
crossref_primary_10_1093_bib_bbx163
crossref_primary_10_1093_nar_gku1315
crossref_primary_10_1021_cr068309
crossref_primary_10_1093_nar_gku777
crossref_primary_10_1128_JB_01027_07
crossref_primary_10_1007_s00299_024_03250_7
crossref_primary_10_1073_pnas_1603577113
crossref_primary_10_1038_s41598_022_19005_x
crossref_primary_10_3389_fpls_2021_708286
crossref_primary_10_1039_B916989J
crossref_primary_10_1128_ecosalplus_10_2_1
crossref_primary_10_1371_journal_pcbi_1000403
crossref_primary_10_1038_msb_2011_46
crossref_primary_10_1371_journal_pcbi_1008379
crossref_primary_10_7717_peerj_7211
crossref_primary_10_1038_nrg3885
crossref_primary_10_1103_PhysRevE_91_032807
crossref_primary_10_1093_nar_gkm807
crossref_primary_10_3390_biom13030526
crossref_primary_10_1016_j_cell_2007_10_053
crossref_primary_10_1093_bib_bbx151
crossref_primary_10_1109_TCBB_2011_143
crossref_primary_10_3389_fgene_2022_855770
crossref_primary_10_1038_ncomms13090
crossref_primary_10_1371_journal_pone_0183103
crossref_primary_10_1214_12_AOAS550
crossref_primary_10_1016_j_biotechadv_2021_107858
crossref_primary_10_1158_1055_9965_EPI_14_1270
crossref_primary_10_1039_C4MB00419A
crossref_primary_10_1038_nmeth_2016
crossref_primary_10_1016_j_ygcen_2014_03_042
crossref_primary_10_1093_bib_bbab507
crossref_primary_10_1186_s12859_015_0728_4
crossref_primary_10_1109_TCBB_2020_3034861
crossref_primary_10_1155_2017_4827171
crossref_primary_10_1016_j_chembiol_2010_05_010
crossref_primary_10_1016_j_coisb_2018_05_005
crossref_primary_10_1615_JMachLearnModelComput_2023047230
crossref_primary_10_1186_s12864_020_07281_8
crossref_primary_10_1155_2019_4273108
crossref_primary_10_1016_j_cnsns_2019_01_010
crossref_primary_10_1111_j_1749_6632_2008_04099_x
crossref_primary_10_1186_s12859_015_0717_7
crossref_primary_10_1186_s12918_017_0440_2
crossref_primary_10_1145_2688909
crossref_primary_10_1016_j_jbi_2014_08_010
crossref_primary_10_3389_fimmu_2019_01283
crossref_primary_10_1093_comnet_cnaa036
crossref_primary_10_1371_journal_pone_0113496
crossref_primary_10_3390_genes15121530
crossref_primary_10_1038_s41540_024_00361_5
crossref_primary_10_1093_bioinformatics_btae433
crossref_primary_10_18632_aging_102275
crossref_primary_10_1093_bioinformatics_btae435
crossref_primary_10_1186_1471_2164_9_495
crossref_primary_10_1007_s13721_012_0008_4
crossref_primary_10_1109_ACCESS_2020_3000432
crossref_primary_10_1038_s41380_022_01439_4
crossref_primary_10_1186_1471_2164_14_324
crossref_primary_10_1093_nar_gkr172
crossref_primary_10_1093_bib_bbv065
crossref_primary_10_1186_1471_2105_15_336
crossref_primary_10_1038_s41467_023_38183_4
crossref_primary_10_1073_pnas_1707566114
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1038_nature07389
crossref_primary_10_1186_1752_0509_8_77
crossref_primary_10_1109_ACCESS_2019_2936794
crossref_primary_10_1186_1754_1611_4_10
crossref_primary_10_1103_PhysRevE_91_012814
crossref_primary_10_3390_sym13091559
crossref_primary_10_1371_journal_pcbi_1007241
crossref_primary_10_1016_j_cels_2017_08_014
crossref_primary_10_1002_biot_201000349
crossref_primary_10_1186_s12859_014_0395_x
crossref_primary_10_3390_ijms25052705
crossref_primary_10_2217_fmb_10_1
crossref_primary_10_1152_ajplung_00316_2017
crossref_primary_10_1016_j_tranon_2020_100781
crossref_primary_10_1093_bioinformatics_bty063
crossref_primary_10_1186_s12967_024_04879_4
crossref_primary_10_1111_j_1749_6632_2008_03746_x
crossref_primary_10_1016_j_compbiomed_2023_106653
crossref_primary_10_1093_bioinformatics_btad373
crossref_primary_10_1039_C4IB00086B
crossref_primary_10_1186_1471_2164_15_106
crossref_primary_10_4137_BBI_S3445
crossref_primary_10_1186_1471_2164_15_362
crossref_primary_10_1186_s12859_017_1489_z
crossref_primary_10_1186_1471_2164_15_121
crossref_primary_10_1242_dev_174441
crossref_primary_10_1002_bies_202300210
crossref_primary_10_1016_j_biosystems_2008_12_004
crossref_primary_10_1017_nws_2014_13
crossref_primary_10_1111_j_1749_6632_2008_03757_x
crossref_primary_10_1016_j_copbio_2007_07_009
crossref_primary_10_1016_j_cell_2009_01_055
crossref_primary_10_1021_acs_jproteome_6b00454
crossref_primary_10_1186_s12864_021_07659_2
crossref_primary_10_1016_j_jprot_2012_09_036
crossref_primary_10_1016_j_molcel_2009_11_024
crossref_primary_10_1016_j_copbio_2007_07_002
crossref_primary_10_1016_j_csbj_2021_11_012
crossref_primary_10_3390_cells7030019
crossref_primary_10_1371_journal_pcbi_1000812
crossref_primary_10_1186_1752_0509_8_47
crossref_primary_10_1016_j_copbio_2011_02_007
crossref_primary_10_1093_bioinformatics_btr696
crossref_primary_10_1016_j_algal_2019_101580
crossref_primary_10_1093_bioinformatics_btp277
crossref_primary_10_1534_g3_117_300172
crossref_primary_10_1186_1471_2105_10_262
crossref_primary_10_1016_j_softx_2017_06_006
crossref_primary_10_1002_etc_374
crossref_primary_10_1016_j_smim_2023_101735
crossref_primary_10_1038_nbt_3035
crossref_primary_10_1371_journal_pone_0037664
crossref_primary_10_1371_journal_pone_0185475
crossref_primary_10_1016_j_cels_2024_07_006
crossref_primary_10_1186_s12859_016_1235_y
crossref_primary_10_3233_IDA_173681
crossref_primary_10_1093_jxb_erad178
crossref_primary_10_1073_pnas_2009192117
crossref_primary_10_1186_s12859_017_1576_1
crossref_primary_10_1021_cr068308h
crossref_primary_10_1007_s11427_011_4194_6
crossref_primary_10_1016_j_stem_2012_07_018
crossref_primary_10_1016_j_gde_2016_02_002
crossref_primary_10_1186_1471_2105_9_75
crossref_primary_10_1371_journal_pcbi_1005024
crossref_primary_10_1038_s41592_019_0690_6
crossref_primary_10_3390_life5021127
crossref_primary_10_1093_bioadv_vbae066
crossref_primary_10_1007_s11816_017_0433_z
crossref_primary_10_1016_j_biosystems_2022_104757
crossref_primary_10_1016_j_ijar_2012_05_007
crossref_primary_10_1038_s41467_018_06992_7
crossref_primary_10_1021_acs_analchem_8b04096
crossref_primary_10_1093_bioinformatics_btad166
crossref_primary_10_1016_j_stemcr_2021_12_018
crossref_primary_10_1002_biot_200900247
crossref_primary_10_1186_s12859_016_0912_1
crossref_primary_10_1089_cmb_2008_04TT
crossref_primary_10_1158_2159_8290_CD_12_0111
crossref_primary_10_1186_1471_2164_12_23
crossref_primary_10_1016_j_artmed_2017_05_004
crossref_primary_10_1142_S0219720021500025
crossref_primary_10_1021_acs_est_7b01567
crossref_primary_10_1093_bioinformatics_bts312
crossref_primary_10_1371_journal_pone_0083308
crossref_primary_10_1038_s41598_022_05402_9
crossref_primary_10_1371_journal_pone_0231658
crossref_primary_10_1016_j_bbagrm_2016_09_003
crossref_primary_10_1016_j_mib_2011_09_003
crossref_primary_10_1186_s12870_018_1329_y
crossref_primary_10_1093_nar_gkt147
crossref_primary_10_1093_bfgp_elt030
crossref_primary_10_1111_nph_15739
crossref_primary_10_1093_bfgp_elad040
crossref_primary_10_3389_fmicb_2015_00409
crossref_primary_10_4018_ijncr_2014070101
crossref_primary_10_1186_s12864_021_07940_4
crossref_primary_10_1038_nm_2941
crossref_primary_10_1371_journal_pone_0075931
crossref_primary_10_1039_C4MB00053F
crossref_primary_10_1016_j_tig_2016_08_009
crossref_primary_10_1186_1471_2105_11_73
crossref_primary_10_1038_s41467_019_13483_w
crossref_primary_10_1371_journal_pone_0029279
crossref_primary_10_1016_j_physrep_2016_06_004
crossref_primary_10_1186_s13015_015_0054_4
crossref_primary_10_1109_TCBB_2018_2861698
crossref_primary_10_1093_bib_bbae361
crossref_primary_10_1093_bioinformatics_btp072
crossref_primary_10_1371_journal_pone_0030827
crossref_primary_10_1105_tpc_114_131417
crossref_primary_10_1371_journal_pone_0064832
crossref_primary_10_1098_rsif_2020_0600
crossref_primary_10_1371_journal_pone_0171532
crossref_primary_10_1088_2632_072X_ac5567
crossref_primary_10_1186_1471_2164_13_372
crossref_primary_10_1186_1471_2105_11_S1_S8
crossref_primary_10_1186_1759_2208_1_6
crossref_primary_10_1093_nar_gkz1209
crossref_primary_10_1214_13_AOAS645
crossref_primary_10_1007_s00357_013_9120_0
crossref_primary_10_1186_s12918_014_0111_5
crossref_primary_10_1093_bib_bbt034
crossref_primary_10_1093_bioinformatics_btp068
crossref_primary_10_1093_bib_bbt028
crossref_primary_10_1093_bioinformatics_bts363
crossref_primary_10_1093_bioinformatics_btu542
crossref_primary_10_1142_S1793524516500406
crossref_primary_10_1007_s12551_020_00665_w
crossref_primary_10_1016_j_ccell_2018_01_003
crossref_primary_10_1371_journal_pcbi_1005489
crossref_primary_10_1093_nar_gky626
crossref_primary_10_3389_fgene_2021_617282
crossref_primary_10_1093_bib_bbae382
crossref_primary_10_1128_mBio_01343_17
crossref_primary_10_1016_j_stemcr_2013_07_004
crossref_primary_10_1111_nph_14458
crossref_primary_10_1186_1752_0509_7_106
crossref_primary_10_1016_j_ebiom_2019_06_039
crossref_primary_10_1021_acs_jproteome_1c00406
crossref_primary_10_1016_j_ymeth_2014_06_005
crossref_primary_10_1186_1471_2164_13_356
crossref_primary_10_1093_bioinformatics_btt687
crossref_primary_10_1016_j_bspc_2024_105992
crossref_primary_10_1080_15384047_2020_1818518
crossref_primary_10_1016_j_csda_2019_06_012
crossref_primary_10_1186_1471_2105_8_344
crossref_primary_10_1371_journal_pgen_1008734
crossref_primary_10_1093_nar_gkaf138
crossref_primary_10_1039_c1mb05193h
crossref_primary_10_1002_wsbm_1489
crossref_primary_10_1109_TCBB_2024_3442536
crossref_primary_10_1093_nar_gks904
crossref_primary_10_3892_mmr_2018_9092
crossref_primary_10_1093_bioinformatics_bts143
crossref_primary_10_1098_rsta_2011_0548
crossref_primary_10_1093_bioinformatics_btv414
crossref_primary_10_1039_b904400k
crossref_primary_10_1002_wsbm_1273
crossref_primary_10_1016_j_ccell_2017_07_003
crossref_primary_10_1016_j_compbiomed_2020_104017
crossref_primary_10_1039_b917571g
crossref_primary_10_1155_2012_245968
crossref_primary_10_1038_s41593_024_01806_0
crossref_primary_10_1371_journal_pone_0017258
crossref_primary_10_1038_s41467_018_06382_z
crossref_primary_10_1371_journal_pcbi_1003252
crossref_primary_10_1186_s13029_015_0043_5
crossref_primary_10_3389_fgene_2022_815692
crossref_primary_10_1007_s11009_017_9554_7
crossref_primary_10_1126_scisignal_2003994
crossref_primary_10_1093_bib_bbaa190
crossref_primary_10_1186_1471_2164_12_S1_S3
crossref_primary_10_1093_bioinformatics_btr288
crossref_primary_10_1016_j_ymeth_2020_06_005
crossref_primary_10_1007_s12539_024_00604_3
crossref_primary_10_1016_j_semcdb_2015_12_007
crossref_primary_10_1007_s10142_024_01491_z
crossref_primary_10_1371_journal_pone_0031969
crossref_primary_10_4103_0973_1482_180678
crossref_primary_10_1016_j_jmva_2017_07_012
crossref_primary_10_1371_journal_pcbi_1002391
crossref_primary_10_1100_2012_435257
crossref_primary_10_1515_sagmb_2016_0013
crossref_primary_10_1016_j_copbio_2019_12_002
crossref_primary_10_1186_s12859_016_1324_y
crossref_primary_10_1002_bit_26293
crossref_primary_10_1093_bioinformatics_btt229
crossref_primary_10_1016_j_ygeno_2009_01_010
crossref_primary_10_2174_1574893617666220823114108
crossref_primary_10_1038_msb4100118
crossref_primary_10_1089_cmb_2008_08TT
crossref_primary_10_1016_j_amc_2012_07_006
crossref_primary_10_18632_oncotarget_15749
crossref_primary_10_1128_JB_00034_09
crossref_primary_10_1093_bioinformatics_btab829
crossref_primary_10_1186_1752_0509_1_39
crossref_primary_10_1371_journal_pone_0206634
crossref_primary_10_1371_journal_pone_0021969
crossref_primary_10_1093_nar_gkt1190
crossref_primary_10_1038_nrmicro2419
crossref_primary_10_1038_s41587_019_0159_2
crossref_primary_10_1186_1471_2105_14_S18_S5
crossref_primary_10_1186_s12859_021_04074_y
crossref_primary_10_1093_bib_bbac156
crossref_primary_10_1371_journal_pcbi_1004103
crossref_primary_10_1073_pnas_1200030109
crossref_primary_10_1016_j_biortech_2010_10_033
crossref_primary_10_1038_srep39684
crossref_primary_10_1371_journal_ppat_1000306
crossref_primary_10_1016_j_cell_2008_09_038
crossref_primary_10_1088_1742_6596_604_1_012022
crossref_primary_10_1186_1471_2105_8_149
crossref_primary_10_1038_nchembio_710
crossref_primary_10_1038_msb4100135
crossref_primary_10_1111_j_1749_6632_2009_04497_x
crossref_primary_10_1007_s00500_019_04185_y
Cites_doi 1091-6490(2000)097[12182:DFRBRE]2.0.CO;2
1091-6490(1998)095[14863:CAADOG]2.0.CO;2
1471-2105(2006)007[S7:AAAFTR]2.0.CO;2
1091-6490(2002)099[4632:GDCBCA]2.0.CO;2
1367-4803(2003)019[1917:PORNGI]2.0.CO;2
0168-9525(2002)018[0395:LTGIQG]2.0.CO;2
1091-6490(2002)099[10555:ANTTAP]2.0.CO;2
0021-9258(2005)280[15921:GTPRAC]2.0.CO;2
0305-1048(2005)033[D334:EACDRF]2.0.CO;2
1061-4036(2005)037[0382:REORNI]2.0.CO;2
0021-9193(2003)185[6392:GAOTUO]2.0.CO;2
0092-8674(2004)117[0185:PGEFS]2.0.CO;2
1061-4036(1999)022[0281:SDOGNA]2.0.CO;2
0193-4511(2001)292[0929:IGAPAO]2.0.CO;2
1091-6490(2003)100[5944:REGNIG]2.0.CO;2
1465-6914(2006)007[R36:TIAAFL]2.0.CO;2
1476-4687(2004)431[0099:TRCOAE]2.0.CO;2
1476-4687(2004)431[0308:GAORND]2.0.CO;2
0021-9193(2005)187[0304:PRGFFM]2.0.CO;2
0006-3592(2005)090[0116:AACORP]2.0.CO;2
1087-0156(2004)022[0841:EREPCO]2.0.CO;2
0958-1669(2004)015[0070:ROMTRN]2.0.CO;2
1553-0833(1994)002[0028:FAMMBE]2.0.CO;2
1367-4803(2006)022[0477:LARNAO]2.0.CO;2
0006-3592(2005)090[0127:TPFHRA]2.0.CO;2
1061-4036(2003)034[0166:MNIRMA]2.0.CO;2
0305-1048(2003)031[e15:SOAGPL]2.0.CO;2
0021-9193(2004)186[6714:GTEOAS]2.0.CO;2
0162-1459(2004)099[0909:AMBAFO]2.0.CO;2
0950-382X(2000)035[1560:IOAGBT]2.0.CO;2
0092-8674(2005)121[0511:SBIPAC]2.0.CO;2
1091-6490(2002)099[12841:UTWAST]2.0.CO;2
1471-2105(2004)005[0118:EMIUBF]2.0.CO;2
0014-5793(2002)529[0078:ITASIE]2.0.CO;2
1066-5277(2000)007[0601:UBNTAE]2.0.CO;2
1087-0156(2005)023[0377:CPOAGS]2.0.CO;2
0193-4511(2002)298[0799:TRNISC]2.0.CO;2
10.1103/PhysRevA.33.1134
1088-9051(2004)014[1654:EOGINT]2.0.CO;2
1091-6490(2003)100[15522:NCAROR]2.0.CO;2
0193-4511(2003)301[0102:IGNAIC]2.0.CO;2
0021-9193(2004)186[3254:GAOLEI]2.0.CO;2
0021-9193(2005)187[1135:GEAITF]2.0.CO;2
1091-6490(2001)098[0031:MAOOAE]2.0.CO;2
1476-4687(2004)429[0092:IHACDE]2.0.CO;2
1087-0156(2003)021[1337:CDOGMA]2.0.CO;2
1367-4803(2004)020[1241:GGRNFS]2.0.CO;2
0167-2789(1997)110[0062:STOITF]2.0.CO;2
1741-8364(2004)002[0070:MTMOIP]2.0.CO;2
0305-1048(2006)034[D394:RVECKT]2.0.CO;2
1091-6490(2000)097[6640:OIOCGI]2.0.CO;2
1091-6490(2003)100[3339:IRMDAG]2.0.CO;2
0021-9193(2003)185[5611:PSOECS]2.0.CO;2
ContentType Journal Article
Copyright COPYRIGHT 2007 Public Library of Science
2007 Faith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol 5(1): e8. doi:10.1371/journal.pbio.0050008
2007 Faith et al. 2007
Copyright_xml – notice: COPYRIGHT 2007 Public Library of Science
– notice: 2007 Faith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. (2007) Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles. PLoS Biol 5(1): e8. doi:10.1371/journal.pbio.0050008
– notice: 2007 Faith et al. 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
CZG
DOI 10.1371/journal.pbio.0050008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Bacteriology Abstracts (Microbiology B)

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate MappingE. coli Transcription Regulation
EISSN 1545-7885
ExternalDocumentID 1291897106
oai_doaj_org_article_b40650686e80437d976f9cfa7dd4bfa8
10.1371/journal.pbio.0050008
PMC1764438
2897869621
A161751628
17214507
10_1371_journal_pbio_0050008
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: PHS HHS
  grantid: HHSN268200248178C
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
IPNFZ
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PYCSY
QN7
RIG
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
YZZ
~8M
.GJ
3V.
AGJBV
ALIPV
CGR
CUY
CVF
ECM
EIF
M~E
NPM
PV9
QF4
RZL
YIN
ABUFD
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ACCTH
ADTOC
ADXHL
AFFHD
BBTPI
UNPAY
AAPBV
ABPTK
CZG
ZA5
ID FETCH-LOGICAL-c860t-62d1b6ef9f388568080f0138d433189ea87901e866ca25a460edfa60dc8888e23
IEDL.DBID BENPR
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:30 EDT 2023
Tue Oct 14 19:05:45 EDT 2025
Wed Oct 29 12:09:26 EDT 2025
Tue Sep 30 16:42:04 EDT 2025
Thu Oct 02 11:49:18 EDT 2025
Tue Oct 07 09:27:09 EDT 2025
Tue Oct 07 06:21:48 EDT 2025
Mon Oct 20 22:47:51 EDT 2025
Mon Oct 20 16:54:20 EDT 2025
Thu Oct 16 15:47:08 EDT 2025
Thu Oct 16 15:46:42 EDT 2025
Thu Oct 16 15:47:13 EDT 2025
Wed Feb 19 01:46:54 EST 2025
Wed Oct 01 02:06:53 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Reproducibility of Results
Algorithms
Biological Transport
Oligonucleotide Array Sequence Analysis
Operon
Escherichia coli
Transcription, Genetic
Gene Expression Profiling
Iron
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c860t-62d1b6ef9f388568080f0138d433189ea87901e866ca25a460edfa60dc8888e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1291897106?pq-origsite=%requestingapplication%&accountid=15518
PMID 17214507
PQID 1291897106
PQPubID 1436341
PageCount 13
ParticipantIDs plos_journals_1291897106
doaj_primary_oai_doaj_org_article_b40650686e80437d976f9cfa7dd4bfa8
unpaywall_primary_10_1371_journal_pbio_0050008
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1764438
proquest_miscellaneous_70398174
proquest_miscellaneous_19549778
proquest_journals_1291897106
gale_infotracmisc_A161751628
gale_infotracacademiconefile_A161751628
gale_incontextgauss_ISR_A161751628
gale_incontextgauss_ISN_A161751628
gale_incontextgauss_IOV_A161751628
pubmed_primary_17214507
crossref_citationtrail_10_1371_journal_pbio_0050008
crossref_primary_10_1371_journal_pbio_0050008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2007
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Laub (journal-pbio-0050008-b039) 2002; 99
Schmitt (journal-pbio-0050008-b013) 2004; 14
Liao (journal-pbio-0050008-b010) 2003; 100
van Someren (journal-pbio-0050008-b017) 2006; 22
Friedman (journal-pbio-0050008-b007) 2000; 7
Bonomo (journal-pbio-0050008-b051) 2005; 90
Rice (journal-pbio-0050008-b021) 2004; 2
Gardner (journal-pbio-0050008-b040) 2003; 301
Kang (journal-pbio-0050008-b054) 2005; 187
Bailey (journal-pbio-0050008-b034) 1994; 2
Fraser (journal-pbio-0050008-b032) 1986; 33
Luscombe (journal-pbio-0050008-b022) 2004; 431
Brokx (journal-pbio-0050008-b053) 2004; 186
Li (journal-pbio-0050008-b046) 2001; 98
Braun (journal-pbio-0050008-b038) 2002; 529
Earheart (journal-pbio-0050008-b037) 1996
Soupene (journal-pbio-0050008-b042) 2003; 185
Bonneau (journal-pbio-0050008-b018) 2006; 7
Roulston (journal-pbio-0050008-b033) 1997; 110
Liu (journal-pbio-0050008-b056) 2005; 280
Conlon (journal-pbio-0050008-b004) 2003; 100
Salgado (journal-pbio-0050008-b027) 2006; 34
Margolin (journal-pbio-0050008-b030) 2006; 7
Wu (journal-pbio-0050008-b045) 2004; 99
Haddadin (journal-pbio-0050008-b050) 2005; 90
Beer (journal-pbio-0050008-b003) 2004; 117
Isaacs (journal-pbio-0050008-b043) 2004; 22
Keseler (journal-pbio-0050008-b036) 2005; 33
Butte (journal-pbio-0050008-b028) 2000
Butte (journal-pbio-0050008-b029) 2000; 97
Eisen (journal-pbio-0050008-b031) 1998; 95
Daub (journal-pbio-0050008-b047) 2004; 5
Basso (journal-pbio-0050008-b002) 2005; 37
Datsenko (journal-pbio-0050008-b041) 2000; 97
Qian (journal-pbio-0050008-b011) 2003; 19
Aderem (journal-pbio-0050008-b001) 2005; 121
Bar-Joseph (journal-pbio-0050008-b026) 2003; 21
Irizarry (journal-pbio-0050008-b044) 2003; 31
Herring (journal-pbio-0050008-b055) 2004; 186
Segal (journal-pbio-0050008-b014) 2003; 34
Ronen (journal-pbio-0050008-b012) 2002; 99
Herrgard (journal-pbio-0050008-b024) 2004; 15
Harbison (journal-pbio-0050008-b019) 2004; 431
Covert (journal-pbio-0050008-b048) 2004; 429
Kholodenko (journal-pbio-0050008-b009) 2002; 99
de la Fuente (journal-pbio-0050008-b005) 2002; 18
Ideker (journal-pbio-0050008-b023) 2001; 292
Maurer (journal-pbio-0050008-b052) 2005; 187
Hartemink (journal-pbio-0050008-b025) 2002
Hashimoto (journal-pbio-0050008-b008) 2004; 20
di Bernardo (journal-pbio-0050008-b006) 2005; 23
Fernandez De Henestrosa (journal-pbio-0050008-b035) 2000; 35
Allen (journal-pbio-0050008-b049) 2003; 185
Lee (journal-pbio-0050008-b020) 2002; 298
Tavazoie (journal-pbio-0050008-b015) 1999; 22
Tegner (journal-pbio-0050008-b016) 2003; 100
15289483 - Genome Res. 2004 Aug;14(8):1654-63
15339346 - BMC Bioinformatics. 2004 Aug 31;5:118
12354617 - FEBS Lett. 2002 Oct 2;529(1):78-85
15742388 - Biotechnol Bioeng. 2005 Apr 20;90(2):127-53
15601715 - J Bacteriol. 2005 Jan;187(1):304-19
14871865 - Bioinformatics. 2004 May 22;20(8):1241-7
12626739 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3339-44
15765094 - Nat Biotechnol. 2005 Mar;23(3):377-83
12843395 - Science. 2003 Jul 4;301(5629):102-5
16332709 - Bioinformatics. 2006 Feb 15;22(4):477-84
12949114 - J Bacteriol. 2003 Sep;185(18):5611-26
11930012 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4632-7
14673099 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15522-7
12730377 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5944-9
15372033 - Nature. 2004 Sep 16;431(7006):308-12
11928497 - Pac Symp Biocomput. 2002;:437-49
11027309 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12182-6
15343339 - Nature. 2004 Sep 2;431(7004):99-104
10760155 - Mol Microbiol. 2000 Mar;35(6):1560-72
15129285 - Nature. 2004 May 6;429(6987):92-6
15705577 - J Biol Chem. 2005 Apr 22;280(16):15921-7
11340206 - Science. 2001 May 4;292(5518):929-34
14563874 - J Bacteriol. 2003 Nov;185(21):6392-9
12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
14555958 - Nat Biotechnol. 2003 Nov;21(11):1337-42
15208640 - Nat Biotechnol. 2004 Jul;22(7):841-7
12740579 - Nat Genet. 2003 Jun;34(2):166-76
12242336 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12841-6
12399584 - Science. 2002 Oct 25;298(5594):799-804
15466022 - J Bacteriol. 2004 Oct;186(20):6714-20
14555624 - Bioinformatics. 2003 Oct 12;19(15):1917-26
10391217 - Nat Genet. 1999 Jul;22(3):281-5
16686963 - Genome Biol. 2006;7(5):R36
10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
15126489 - J Bacteriol. 2004 May;186(10):3254-8
7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
16723010 - BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7
15736162 - Biotechnol Bioeng. 2005 Apr 5;90(1):116-26
9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7
11108481 - J Comput Biol. 2000;7(3-4):601-20
15778709 - Nat Genet. 2005 Apr;37(4):382-90
15907465 - Cell. 2005 May 20;121(4):511-3
15659690 - J Bacteriol. 2005 Feb;187(3):1135-60
12142007 - Trends Genet. 2002 Aug;18(8):395-8
15102470 - Curr Opin Biotechnol. 2004 Feb;15(1):70-7
15084257 - Cell. 2004 Apr 16;117(2):185-98
11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
10902190 - Pac Symp Biocomput. 2000;:418-29
9896728 - Phys Rev A Gen Phys. 1986 Feb;33(2):1134-1140
12145321 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10555-60
16381895 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D394-7
References_xml – volume: 97
  start-page: 12182
  issn: 1091-6490
  year: 2000
  ident: journal-pbio-0050008-b029
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2000)097[12182:DFRBRE]2.0.CO;2
– volume: 95
  start-page: 14863
  issn: 1091-6490
  year: 1998
  ident: journal-pbio-0050008-b031
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(1998)095[14863:CAADOG]2.0.CO;2
– volume: 7
  start-page: S7
  issn: 1471-2105
  year: 2006
  ident: journal-pbio-0050008-b030
  publication-title: BMC Bioinformatics
  doi: 1471-2105(2006)007[S7:AAAFTR]2.0.CO;2
– volume: 99
  start-page: 4632
  issn: 1091-6490
  year: 2002
  ident: journal-pbio-0050008-b039
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2002)099[4632:GDCBCA]2.0.CO;2
– volume: 19
  start-page: 1917
  issn: 1367-4803
  year: 2003
  ident: journal-pbio-0050008-b011
  publication-title: Bioinformatics
  doi: 1367-4803(2003)019[1917:PORNGI]2.0.CO;2
– volume: 18
  start-page: 395
  issn: 0168-9525
  year: 2002
  ident: journal-pbio-0050008-b005
  publication-title: Trends Genet
  doi: 0168-9525(2002)018[0395:LTGIQG]2.0.CO;2
– volume: 99
  start-page: 10555
  issn: 1091-6490
  year: 2002
  ident: journal-pbio-0050008-b012
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2002)099[10555:ANTTAP]2.0.CO;2
– volume: 280
  start-page: 15921
  issn: 0021-9258
  year: 2005
  ident: journal-pbio-0050008-b056
  publication-title: J Biol Chem
  doi: 0021-9258(2005)280[15921:GTPRAC]2.0.CO;2
– volume: 33
  start-page: D334
  issn: 0305-1048
  year: 2005
  ident: journal-pbio-0050008-b036
  publication-title: Nucleic Acids Res
  doi: 0305-1048(2005)033[D334:EACDRF]2.0.CO;2
– volume: 37
  start-page: 382
  issn: 1061-4036
  year: 2005
  ident: journal-pbio-0050008-b002
  publication-title: Nat Genet
  doi: 1061-4036(2005)037[0382:REORNI]2.0.CO;2
– volume: 185
  start-page: 6392
  issn: 0021-9193
  year: 2003
  ident: journal-pbio-0050008-b049
  publication-title: J Bacteriol
  doi: 0021-9193(2003)185[6392:GAOTUO]2.0.CO;2
– volume: 117
  start-page: 185
  issn: 0092-8674
  year: 2004
  ident: journal-pbio-0050008-b003
  publication-title: Cell
  doi: 0092-8674(2004)117[0185:PGEFS]2.0.CO;2
– volume: 22
  start-page: 281
  issn: 1061-4036
  year: 1999
  ident: journal-pbio-0050008-b015
  publication-title: Nat Genet
  doi: 1061-4036(1999)022[0281:SDOGNA]2.0.CO;2
– volume: 292
  start-page: 929
  issn: 0193-4511
  year: 2001
  ident: journal-pbio-0050008-b023
  publication-title: Science
  doi: 0193-4511(2001)292[0929:IGAPAO]2.0.CO;2
– volume: 100
  start-page: 5944
  issn: 1091-6490
  year: 2003
  ident: journal-pbio-0050008-b016
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2003)100[5944:REGNIG]2.0.CO;2
– volume: 7
  start-page: R36
  issn: 1465-6914
  year: 2006
  ident: journal-pbio-0050008-b018
  publication-title: Genome Biol
  doi: 1465-6914(2006)007[R36:TIAAFL]2.0.CO;2
– volume: 431
  start-page: 99
  issn: 1476-4687
  year: 2004
  ident: journal-pbio-0050008-b019
  publication-title: Nature
  doi: 1476-4687(2004)431[0099:TRCOAE]2.0.CO;2
– volume: 431
  start-page: 308
  issn: 1476-4687
  year: 2004
  ident: journal-pbio-0050008-b022
  publication-title: Nature
  doi: 1476-4687(2004)431[0308:GAORND]2.0.CO;2
– volume: 187
  start-page: 304
  issn: 0021-9193
  year: 2005
  ident: journal-pbio-0050008-b052
  publication-title: J Bacteriol
  doi: 0021-9193(2005)187[0304:PRGFFM]2.0.CO;2
– start-page: 437
  year: 2002
  ident: journal-pbio-0050008-b025
  publication-title: Pac Symp Biocomput
– volume: 90
  start-page: 116
  issn: 0006-3592
  year: 2005
  ident: journal-pbio-0050008-b051
  publication-title: Biotechnol Bioeng
  doi: 0006-3592(2005)090[0116:AACORP]2.0.CO;2
– volume: 22
  start-page: 841
  issn: 1087-0156
  year: 2004
  ident: journal-pbio-0050008-b043
  publication-title: Nat Biotechnol
  doi: 1087-0156(2004)022[0841:EREPCO]2.0.CO;2
– volume: 15
  start-page: 70
  issn: 0958-1669
  year: 2004
  ident: journal-pbio-0050008-b024
  publication-title: Curr Opin Biotechnol
  doi: 0958-1669(2004)015[0070:ROMTRN]2.0.CO;2
– start-page: 1075
  year: 1996
  ident: journal-pbio-0050008-b037
  publication-title: Escherichia coli and Salmonella: Cellular and molecular biology
– volume: 2
  start-page: 28
  issn: 1553-0833
  year: 1994
  ident: journal-pbio-0050008-b034
  publication-title: Proc Int Conf Intell Syst Mol Biol
  doi: 1553-0833(1994)002[0028:FAMMBE]2.0.CO;2
– start-page: 418
  year: 2000
  ident: journal-pbio-0050008-b028
  publication-title: Pac Symp Biocomput
– volume: 22
  start-page: 477
  issn: 1367-4803
  year: 2006
  ident: journal-pbio-0050008-b017
  publication-title: Bioinformatics
  doi: 1367-4803(2006)022[0477:LARNAO]2.0.CO;2
– volume: 90
  start-page: 127
  issn: 0006-3592
  year: 2005
  ident: journal-pbio-0050008-b050
  publication-title: Biotechnol Bioeng
  doi: 0006-3592(2005)090[0127:TPFHRA]2.0.CO;2
– volume: 34
  start-page: 166
  issn: 1061-4036
  year: 2003
  ident: journal-pbio-0050008-b014
  publication-title: Nat Genet
  doi: 1061-4036(2003)034[0166:MNIRMA]2.0.CO;2
– volume: 31
  start-page: e15
  issn: 0305-1048
  year: 2003
  ident: journal-pbio-0050008-b044
  publication-title: Nucleic Acids Res
  doi: 0305-1048(2003)031[e15:SOAGPL]2.0.CO;2
– volume: 186
  start-page: 6714
  issn: 0021-9193
  year: 2004
  ident: journal-pbio-0050008-b055
  publication-title: J Bacteriol
  doi: 0021-9193(2004)186[6714:GTEOAS]2.0.CO;2
– volume: 99
  start-page: 909
  issn: 0162-1459
  year: 2004
  ident: journal-pbio-0050008-b045
  publication-title: J Am Stat Assoc
  doi: 0162-1459(2004)099[0909:AMBAFO]2.0.CO;2
– volume: 35
  start-page: 1560
  issn: 0950-382X
  year: 2000
  ident: journal-pbio-0050008-b035
  publication-title: Mol Microbiol
  doi: 0950-382X(2000)035[1560:IOAGBT]2.0.CO;2
– volume: 121
  start-page: 511
  issn: 0092-8674
  year: 2005
  ident: journal-pbio-0050008-b001
  publication-title: Cell
  doi: 0092-8674(2005)121[0511:SBIPAC]2.0.CO;2
– volume: 99
  start-page: 12841
  issn: 1091-6490
  year: 2002
  ident: journal-pbio-0050008-b009
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2002)099[12841:UTWAST]2.0.CO;2
– volume: 5
  start-page: 118
  issn: 1471-2105
  year: 2004
  ident: journal-pbio-0050008-b047
  publication-title: BMC Bioinformatics
  doi: 1471-2105(2004)005[0118:EMIUBF]2.0.CO;2
– volume: 529
  start-page: 78
  issn: 0014-5793
  year: 2002
  ident: journal-pbio-0050008-b038
  publication-title: FEBS Lett
  doi: 0014-5793(2002)529[0078:ITASIE]2.0.CO;2
– volume: 7
  start-page: 601
  issn: 1066-5277
  year: 2000
  ident: journal-pbio-0050008-b007
  publication-title: J Comput Biol
  doi: 1066-5277(2000)007[0601:UBNTAE]2.0.CO;2
– volume: 23
  start-page: 377
  issn: 1087-0156
  year: 2005
  ident: journal-pbio-0050008-b006
  publication-title: Nat Biotechnol
  doi: 1087-0156(2005)023[0377:CPOAGS]2.0.CO;2
– volume: 298
  start-page: 799
  issn: 0193-4511
  year: 2002
  ident: journal-pbio-0050008-b020
  publication-title: Science
  doi: 0193-4511(2002)298[0799:TRNISC]2.0.CO;2
– volume: 33
  start-page: 1134
  year: 1986
  ident: journal-pbio-0050008-b032
  publication-title: Phy Rev A
  doi: 10.1103/PhysRevA.33.1134
– volume: 14
  start-page: 1654
  issn: 1088-9051
  year: 2004
  ident: journal-pbio-0050008-b013
  publication-title: Genome Res
  doi: 1088-9051(2004)014[1654:EOGINT]2.0.CO;2
– volume: 100
  start-page: 15522
  issn: 1091-6490
  year: 2003
  ident: journal-pbio-0050008-b010
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2003)100[15522:NCAROR]2.0.CO;2
– volume: 301
  start-page: 102
  issn: 0193-4511
  year: 2003
  ident: journal-pbio-0050008-b040
  publication-title: Science
  doi: 0193-4511(2003)301[0102:IGNAIC]2.0.CO;2
– volume: 186
  start-page: 3254
  issn: 0021-9193
  year: 2004
  ident: journal-pbio-0050008-b053
  publication-title: J Bacteriol
  doi: 0021-9193(2004)186[3254:GAOLEI]2.0.CO;2
– volume: 187
  start-page: 1135
  issn: 0021-9193
  year: 2005
  ident: journal-pbio-0050008-b054
  publication-title: J Bacteriol
  doi: 0021-9193(2005)187[1135:GEAITF]2.0.CO;2
– volume: 98
  start-page: 31
  issn: 1091-6490
  year: 2001
  ident: journal-pbio-0050008-b046
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2001)098[0031:MAOOAE]2.0.CO;2
– volume: 429
  start-page: 92
  issn: 1476-4687
  year: 2004
  ident: journal-pbio-0050008-b048
  publication-title: Nature
  doi: 1476-4687(2004)429[0092:IHACDE]2.0.CO;2
– volume: 21
  start-page: 1337
  issn: 1087-0156
  year: 2003
  ident: journal-pbio-0050008-b026
  publication-title: Nat Biotechnol
  doi: 1087-0156(2003)021[1337:CDOGMA]2.0.CO;2
– volume: 20
  start-page: 1241
  issn: 1367-4803
  year: 2004
  ident: journal-pbio-0050008-b008
  publication-title: Bioinformatics
  doi: 1367-4803(2004)020[1241:GGRNFS]2.0.CO;2
– volume: 110
  start-page: 62
  issn: 0167-2789
  year: 1997
  ident: journal-pbio-0050008-b033
  publication-title: Physica D
  doi: 0167-2789(1997)110[0062:STOITF]2.0.CO;2
– volume: 2
  start-page: 70
  issn: 1741-8364
  year: 2004
  ident: journal-pbio-0050008-b021
  publication-title: Drug Discovery Today: BioSilico
  doi: 1741-8364(2004)002[0070:MTMOIP]2.0.CO;2
– volume: 34
  start-page: D394
  issn: 0305-1048
  year: 2006
  ident: journal-pbio-0050008-b027
  publication-title: Nucleic Acids Res
  doi: 0305-1048(2006)034[D394:RVECKT]2.0.CO;2
– volume: 97
  start-page: 6640
  issn: 1091-6490
  year: 2000
  ident: journal-pbio-0050008-b041
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2000)097[6640:OIOCGI]2.0.CO;2
– volume: 100
  start-page: 3339
  issn: 1091-6490
  year: 2003
  ident: journal-pbio-0050008-b004
  publication-title: Proc Natl Acad Sci U S A
  doi: 1091-6490(2003)100[3339:IRMDAG]2.0.CO;2
– volume: 185
  start-page: 5611
  issn: 0021-9193
  year: 2003
  ident: journal-pbio-0050008-b042
  publication-title: J Bacteriol
  doi: 0021-9193(2003)185[5611:PSOECS]2.0.CO;2
– reference: 15736162 - Biotechnol Bioeng. 2005 Apr 5;90(1):116-26
– reference: 12730377 - Proc Natl Acad Sci U S A. 2003 May 13;100(10):5944-9
– reference: 14871865 - Bioinformatics. 2004 May 22;20(8):1241-7
– reference: 15343339 - Nature. 2004 Sep 2;431(7004):99-104
– reference: 12399584 - Science. 2002 Oct 25;298(5594):799-804
– reference: 11930012 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4632-7
– reference: 12843395 - Science. 2003 Jul 4;301(5629):102-5
– reference: 12626739 - Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3339-44
– reference: 15126489 - J Bacteriol. 2004 May;186(10):3254-8
– reference: 10760155 - Mol Microbiol. 2000 Mar;35(6):1560-72
– reference: 10829079 - Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5
– reference: 12145321 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10555-60
– reference: 16723010 - BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7
– reference: 9896728 - Phys Rev A Gen Phys. 1986 Feb;33(2):1134-1140
– reference: 15778709 - Nat Genet. 2005 Apr;37(4):382-90
– reference: 14673099 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15522-7
– reference: 12740579 - Nat Genet. 2003 Jun;34(2):166-76
– reference: 11928497 - Pac Symp Biocomput. 2002;:437-49
– reference: 15084257 - Cell. 2004 Apr 16;117(2):185-98
– reference: 15608210 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D334-7
– reference: 15765094 - Nat Biotechnol. 2005 Mar;23(3):377-83
– reference: 10902190 - Pac Symp Biocomput. 2000;:418-29
– reference: 14555958 - Nat Biotechnol. 2003 Nov;21(11):1337-42
– reference: 15289483 - Genome Res. 2004 Aug;14(8):1654-63
– reference: 15601715 - J Bacteriol. 2005 Jan;187(1):304-19
– reference: 15208640 - Nat Biotechnol. 2004 Jul;22(7):841-7
– reference: 11340206 - Science. 2001 May 4;292(5518):929-34
– reference: 12142007 - Trends Genet. 2002 Aug;18(8):395-8
– reference: 11134512 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31-6
– reference: 16686963 - Genome Biol. 2006;7(5):R36
– reference: 15129285 - Nature. 2004 May 6;429(6987):92-6
– reference: 15339346 - BMC Bioinformatics. 2004 Aug 31;5:118
– reference: 12242336 - Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12841-6
– reference: 16381895 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D394-7
– reference: 15742388 - Biotechnol Bioeng. 2005 Apr 20;90(2):127-53
– reference: 14563874 - J Bacteriol. 2003 Nov;185(21):6392-9
– reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
– reference: 15372033 - Nature. 2004 Sep 16;431(7006):308-12
– reference: 12582260 - Nucleic Acids Res. 2003 Feb 15;31(4):e15
– reference: 15659690 - J Bacteriol. 2005 Feb;187(3):1135-60
– reference: 15907465 - Cell. 2005 May 20;121(4):511-3
– reference: 14555624 - Bioinformatics. 2003 Oct 12;19(15):1917-26
– reference: 12949114 - J Bacteriol. 2003 Sep;185(18):5611-26
– reference: 15102470 - Curr Opin Biotechnol. 2004 Feb;15(1):70-7
– reference: 15466022 - J Bacteriol. 2004 Oct;186(20):6714-20
– reference: 12354617 - FEBS Lett. 2002 Oct 2;529(1):78-85
– reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
– reference: 11108481 - J Comput Biol. 2000;7(3-4):601-20
– reference: 11027309 - Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12182-6
– reference: 16332709 - Bioinformatics. 2006 Feb 15;22(4):477-84
– reference: 10391217 - Nat Genet. 1999 Jul;22(3):281-5
– reference: 15705577 - J Biol Chem. 2005 Apr 22;280(16):15921-7
SSID ssj0022928
Score 2.4906795
Snippet Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression...
  Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e8
SubjectTerms Algorithms
Biological Transport
Biosynthesis
Chromosome mapping
Computational Biology
DNA repair
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Experiments
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Gene Regulatory Networks
Genetic aspects
Genetics and Genomics
Genomes
Iron - metabolism
Methods
Microbiology
Observations
Oligonucleotide Array Sequence Analysis
Operon - genetics
Proteins
Reproducibility of Results
Transcription, Genetic - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSgguiO-GFrAQEqds82k7x4JaFQRFAop6i-zYbiPtJqtmo1J-PTOJEzaiVXvgun5JtH5je8YevyHkbaSSlGslfJGqxAcLSXxpMunLzKQq5polCjf0vxyxw-Pk00l6slHqC3PCenngvuN2VYJOBBPMCJTh0bB82qywkmudKCu7a76ByIZgyoVaUdZVVUWpGRjOPHaX5mIe7jqO5itV1nOUPwmwtOTGotRp948z9Gy1qJur3M9_syjvtdVKXl7IxWJjiTp4SB4435Lu9f_pEbljqsfkbl9t8vIJ-f0Zs779BlgxdClRmOGUykpTMLayL61Ea0v3G-SxxBxoClZS0jUuZ8PkAu8_78vXIxwvp1CELbGUbtku8QXml0uurairCN48JccH-z8-HPqu9IJfCBasfRbpUDFjMxsLkWJ5jsDimabGC1YiM1JwcCSMYKyQUSoTFhhtJQt0ARG1MFH8jMyqujJbhEYCnNBQxSy1RRJyLZS24PWkmcksBDPGI_HQ93nhdMmxPMYi7w7bOMQnffflyFjuGPOIPz616nU5bsC_R1pHLKpqdz-AreXO1vKbbM0jb9AoctTNqDAx51S2TZN__Poz38M4MQ1ZdC3o-9FtQN8moHcOZGvokUK6GxPQr8jdBLkzQcIUUUyat9CKh45pcnDygEVwLhk8OVj21c2vx2Z8KWbkVaZuAYPnw5yL6xGwlmQCAl6PPO8Hyl-iOOrjB9wjfDKEJuxMW6ryrNM-Dzk48DF8dT4Otlvx_-J_8L9N7vdb-7gDt0Nm6_PWvASfdK1eddPPHzyJilE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGEYIXxPcKAyyE4ClV82U7DwgNtGkgOtBGp71FdmyXSiXpmlas_PXcJU4gooW91mdH9d357nzn-xHyMlBRzLUSnohV5IGERJ40ifRkYmIVcs0ihRf6o2N2NI4-nsfnO6RJtLsNLDeGdognNV7MBpcX67eg8G8q1AbuN5MGczUtBtjQBOzaq_mFh9BSmIJ1OBvXyHUwXwniO4yiNtUQBEkFwIpdaUDzeeje121buGO_qjb_7WHem8-KcpOn-nfB5c1VPpfrH3I2-8OaHd4ht50bSvdrublLdkx-j9yogSnX98nPT1gg7p0CAw0dSezhMKEy1_QM3PYahYkWlh6UyPIplktTEKgprSxfcw7B-ic10j2S4zsWKimePybX09X3aoFLV4eb0y81eHj5gIwPD76-P_IcSoOXCTZceizQvmLGJjYUIkYkj6HF9KfGt1giMVJw8DmMYCyTQSwjNjTaSjbUGQTfwgThQ9LLi9zsEhoI8Fd9FbLYZpHPtVDagoMUJyaxEPeYPgmbvU8z18IckTRmaZWX4xDK1NuXIsdSx7E-8dpZ87qFx3_o3yFbW1pswF39UCwmqdPnVEXo2zLBjMDuUBq8OptkVnKtI2UlLPIChSLFFhs51vBM5Kos0w-fz9J9DCljnwVbiU6Pr0J00iF67YhsATuSSfe4AvYVedeh3OtQwmmSdYZ3UYqbjSlT8AeBi-CHMpjZSPbm4eftMC6KxXu5KVZAg6lkzsV2CjA7iYDYuE8e1Yrym1EcW-kPeZ_wjgp1uNMdyaffqjbpPgdfP4SvDlpluxL_H__7fz4ht-r7fbyG2yO95WJlnoJjulTPqoPlF7hIjdI
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfI8VBlgIwVOy5st2HgvaNBAr08am8RTZsV0qSlqRRrA98pdzlziFwCrGA32q6rNT3Z3tu9zd7wh5Fqo44VoJTyQq9kBDYk-aVHoyNYmKuGaxwhf6-yO2dxy_OU1O14hsa2EcB8FHnM7KOpKPXxwg0bbj5jZiFjURVD-IeNDO8udA6COkCdxsz2vUIXw7tsAipCtknSVgrvfI-vHoYPihxlGNY9jsdRQaLQnMrEtced2qVTvXV43yvzzLe_hPLzJU_8y3vFYVc3n2VU6nv1xmuzfJ95YNTQ7LJ79aKD8__w0h8r_y6Ra54UxhOmxWuU3WTHGHXG2aY57dJedvMUndOwIlMnRfIo7EmMpC0xNwHZpOUHRm6U6JajfBlG0KSj2h9e3bnoWw_qEZuxZlFGtpqKR4BppCT6rP9QLfXC5wQQ-aBublPXK8u_P-1Z7nOkV4uWCDhcdCHShmbGojECF2ExlYDMFqrAcTqZGCg91jBGO5DBMZs4HRVrKBzgV8TBhtkF4xK8wmoaEAmzlQEUtsHgdcC6UtGGlJalILvpfpk6hVgCx3MOrYzWOa1bFBDu5Uw74MmZw5JveJt5w1b2BE_kL_EnVrSYsg4PUPIOnMSTdTMdrXTDAjEKFKg2Vp09xKrnWsrIRFnqJmZgjzUWAe0VhWZZm9fneSDdGtTQIWriQ6Gl2G6LBD9MIR2RlwJJeuwAP4irLrUG51KOFEyzvDm6jMLWPKDGxSkCLYwgxmttvr4uEny2FcFBMICzOrgAbD2ZyL1RRw9aUC_PM-ud_s1p-C4gjnP-B9wjv7uCOd7kgx-VhDtQcc_I0Inuovd_yl5P_gXyc8JNebqAO-HNwivcWXyjwCc3mhHrsD7weA_cOP
  priority: 102
  providerName: Unpaywall
Title Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles
URI https://www.ncbi.nlm.nih.gov/pubmed/17214507
https://www.proquest.com/docview/1291897106
https://www.proquest.com/docview/19549778
https://www.proquest.com/docview/70398174
https://pubmed.ncbi.nlm.nih.gov/PMC1764438
https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0050008&type=printable
https://doaj.org/article/b40650686e80437d976f9cfa7dd4bfa8
http://dx.doi.org/10.1371/journal.pbio.0050008
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: KQ8
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: KQ8
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: ABDBF
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: 7X7
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1545-7885
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: BENPR
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1545-7885
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0022928
  issn: 1545-7885
  databaseCode: M48
  dateStart: 20031001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2VgheEPcVRokQEk_pcrWdB4Q61GlcWkrHpu4pcmK7VCpJWVrB-PWckzjdIjbYSx7qE1fxudvH3yHklZcEIZMJt3mYBDZISGALFQlbRCpMfCZpkOCG_nBED4-DD9NwukVG9V0YLKusbWJpqGWe4h75Hvgll0fgD-nb5Q8bu0bh6WrdQkOY1gryTQkxtk3aHiJjtUh7fzAaTzYpmBeV3VYRggbUnPnmMp3P3D3Du94ymec9hEVxsOXkJWdVYvpvLHdruciLq8LSv6srb6-zpTj_KRaLS67r4B65a2JOq18JyX2ypbIH5FbVhfL8Ifn9CavB7SPglrKGAgEbZpbIpHUCMXrVcsnKtTUokL9zrI22QHrmVunmaqMD80-qtvZIjpdWLGGhsVGZnK-_lxP8MkW3mTWuOoUXj8jxweDru0PbtGSwU06dlU096SZU6Uj7nIfYtsPReNYp8eIVj5TgDAIMxSlNhReKgDpKakEdmUKmzZXnPyatLM_UDrE8DsGpm_g01GngMskTqSEaCiMVaUhyVIf49drHqcErx7YZi7g8hGOQt1TLFyPHYsOxDrE3by0rvI7_0O8jWze0iLZd_pCfzWKjvHESYCBLOVUcoaAkhHA6SrVgUgaJFjDJSxSKGPE0MizYmYl1UcTvP5_EfcwfQ5d61xIdjW5CNGkQvTZEOocVSYW5SQHrirxrUO42KMF0pI3hHZTiemGK-ELJ4M1asq8efrEZxkmxUi9T-Rpo8NyYMX49BfiYiEMi3CFPKkW5YBRD3HyHdQhrqFCDO82RbP6txER3GQT2Pvxrb6NsN-L_039_5zNyp9rMxz23XdJana3Vc4hCV0mXbLMp6xoD0y33cuD58QuH5zCAZ_t4NO6f_gFoooxv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTWi8IO4rDGYhEE_pmpvtPExog04ta8vUXbS34MROqVSSsrQa5cfx2zgncbpFbLCXvdYnjupzfC7x8fcR8taJPJ-rSFjCjzwLLMSzpA6kJQPtRy5XzIvwg35_wDon3ucz_2yF_K7uwmBbZeUTC0etshi_kW9DXLJFAPGQfZj-sJA1Ck9XKwoNaagV1E4BMWYudhzoxQWUcPlO9xPo-53j7LePP3YswzJgxYK1ZhZzlB0xnQSJK4SPTBStBI_vFN4lEoGWgkPM1IKxWDq-9FhLq0SyloqheBQagQ8gBKx5rhdA8be21x4cDpclnxMU7K4IeQNuhbvm8p7L7W1jK81pNM6aCMPSQorLK8Gx4BBYRorV6STLr0uD_-7mXJ-nU7m4kJPJlVC5_5A8MDku3S2N8hFZ0eljcq9kvVw8Ib962H1uHYF1aNqXCBAxojJV9BRqgpLiiWYJbedoT2PsxaZgrWNahNXKycH8Qz0y3GMUL8lQSdG56VSN59-LCX6aJt-UHpbM5PlTcnInynlGVtMs1RuEOgKSYTtymZ_Ens2ViFQC2Zcf6CCBoko3iFutfRgbfHSk6ZiExaEfhzqpXL4QNRYajTWItXxqWuKD_Ed-D9W6lEV07-KH7HwUGmcRRh4mzkwwLRB6SkHKmARxIrlSXpRImOQNGkWI-B0pNgiN5DzPw-6X03AX61XfZs6NQkeD2wgNa0LvjVCSwYrE0tzcgHVF3dUkN2uS4Kri2vAGWnG1MHl4uanhycqyrx_eWg7jpNgZmOpsDjJ4Ts25uFkCYlogoPBukOflRrlUFEec_hZvEF7bQjXt1EfS8bcCg93mUEi48NbmcrPdSv8v_v0_t8h657jfC3vdwcFLcr88SMDvfZtkdXY-168gA55Fr42boeTrXXu2P0Mawo4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIS4viPsKg1kIxFPaXG3nAaHBVq1sK9PGpr5lTmyXSiUpS6tRfhq_jnNyaRexwV72Wp84qs_xucTH30fIGzf2A65iYYkg9i2wEN-SOpSWDHUQe1wxP8YP-vt9tnPsfx4EgxXyu74Lg22VtU8sHLXKEvxG3oG45IgQ4iHrmKot4mCr-2Hyw0IGKTxprek0ShPZ1fNzKN_y970t0PVb1-1uf_20Y1UMA1YimD21mKucmGkTGk-IAFkobINHdwrvEYlQS8EhXmrBWCLdQPrM1spIZqsECkehEfQA3P8t7nkhthPywbLYc8OC1xXBbsChcK-6tudxp1NZSXsSj7I2ArDYSG55ISwW7AGLGLE6GWf5ZQnw332cd2fpRM7P5Xh8IUh2H5D7VXZLN0tzfEhWdPqI3C75LuePya897Du3jsAuNN2XCA0xpDJV9ASqgZLciWaGbudoSSPswqZgpyNaBNTavcH8h3pYsY5RvB5DJUW3plM1mn0vJvhZtfem9KDkJM-fkOMbUc1TsppmqV4j1BWQBjuxxwKT-A5XIlYG8q4g1KGBckq3iFevfZRUyOhI0DGOiuM-DhVSuXwRaiyqNNYi1uKpSYkM8h_5j6jWhSziehc_ZGfDqHITUexjyswE0wJBpxQkiyZMjORK-bGRMMlrNIoIkTtS3ANDOcvzqPflJNrESjVwmHul0FH_OkKHDaF3lZDJYEUSWd3ZgHVF3TUk1xuS4KSSxvAaWnG9MHm03M7wZG3Zlw9vLIZxUuwJTHU2Axk8oeZcXC0B0SwUUHK3yLNyoywVxRGh3-YtwhtbqKGd5kg6-lagrzscSggP3tpebLZr6f_5v__nBrkD_iza6_V3X5B75QkCfuhbJ6vTs5l-CanvNH5V-BhKTm_aqf0B55_AKA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQvfI8VBlgIwVOy5st2HgvaNBAr08am8RTZsV0qSlqRRrA98pdzlziFwCrGA32q6rNT3Z3tu9zd7wh5Fqo44VoJTyQq9kBDYk-aVHoyNYmKuGaxwhf6-yO2dxy_OU1O14hsa2EcB8FHnM7KOpKPXxwg0bbj5jZiFjURVD-IeNDO8udA6COkCdxsz2vUIXw7tsAipCtknSVgrvfI-vHoYPihxlGNY9jsdRQaLQnMrEtced2qVTvXV43yvzzLe_hPLzJU_8y3vFYVc3n2VU6nv1xmuzfJ95YNTQ7LJ79aKD8__w0h8r_y6Ra54UxhOmxWuU3WTHGHXG2aY57dJedvMUndOwIlMnRfIo7EmMpC0xNwHZpOUHRm6U6JajfBlG0KSj2h9e3bnoWw_qEZuxZlFGtpqKR4BppCT6rP9QLfXC5wQQ-aBublPXK8u_P-1Z7nOkV4uWCDhcdCHShmbGojECF2ExlYDMFqrAcTqZGCg91jBGO5DBMZs4HRVrKBzgV8TBhtkF4xK8wmoaEAmzlQEUtsHgdcC6UtGGlJalILvpfpk6hVgCx3MOrYzWOa1bFBDu5Uw74MmZw5JveJt5w1b2BE_kL_EnVrSYsg4PUPIOnMSTdTMdrXTDAjEKFKg2Vp09xKrnWsrIRFnqJmZgjzUWAe0VhWZZm9fneSDdGtTQIWriQ6Gl2G6LBD9MIR2RlwJJeuwAP4irLrUG51KOFEyzvDm6jMLWPKDGxSkCLYwgxmttvr4uEny2FcFBMICzOrgAbD2ZyL1RRw9aUC_PM-ud_s1p-C4gjnP-B9wjv7uCOd7kgx-VhDtQcc_I0Inuovd_yl5P_gXyc8JNebqAO-HNwivcWXyjwCc3mhHrsD7weA_cOP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Mapping+and+Validation+of+Escherichia+coli+Transcriptional+Regulation+from+a+Compendium+of+Expression+Profiles&rft.jtitle=PLoS+biology&rft.au=Faith%2C+Jeremiah+J&rft.au=Hayete%2C+Boris&rft.au=Thaden%2C+Joshua+T&rft.au=Mogno%2C+Ilaria&rft.date=2007-01-01&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pbio.0050008&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2897869621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon