Invariant G2V algorithm for computing SAGBI-Gröbner bases

Faugère and Rahmany have presented the invariant F 5 algorithm to compute SAGBI-Gröbner bases of ideals of invariant rings. This algorithm has an incremental structure, and it is based on the matrix version of F5 algorithm to use F5 criterion to remove a part of useless reductions. Although this alg...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 56; no. 9; pp. 1781 - 1794
Main Authors Hashemi, Amir, M.-Alizadeh, Benyamin, Riahi, Monireh
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2013
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-012-4506-8

Cover

Abstract Faugère and Rahmany have presented the invariant F 5 algorithm to compute SAGBI-Gröbner bases of ideals of invariant rings. This algorithm has an incremental structure, and it is based on the matrix version of F5 algorithm to use F5 criterion to remove a part of useless reductions. Although this algorithm is more efficient than the Buchberger-like algorithm, however it does not use all the existing criteria (for an incremental structure) to detect superfluous reductions. In this paper, we consider a new algorithm, namely, invariant G 2 V algorithm , to compute SAGBI-Gröbner bases of ideals of invariant rings using more criteria. This algorithm has a new structure and it is based on the G 2 V algorithm; a variant of the F 5 algorithm to compute Gröbner bases. We have implemented our new algorithm in Maple, and we give experimental comparison, via some examples, of performance of this algorithm with the invariant F 5 algorithm.
AbstractList Faugère and Rahmany have presented the invariant F 5 algorithm to compute SAGBI-Gröbner bases of ideals of invariant rings. This algorithm has an incremental structure, and it is based on the matrix version of F5 algorithm to use F5 criterion to remove a part of useless reductions. Although this algorithm is more efficient than the Buchberger-like algorithm, however it does not use all the existing criteria (for an incremental structure) to detect superfluous reductions. In this paper, we consider a new algorithm, namely, invariant G 2 V algorithm , to compute SAGBI-Gröbner bases of ideals of invariant rings using more criteria. This algorithm has a new structure and it is based on the G 2 V algorithm; a variant of the F 5 algorithm to compute Gröbner bases. We have implemented our new algorithm in Maple, and we give experimental comparison, via some examples, of performance of this algorithm with the invariant F 5 algorithm.
Author M.-Alizadeh, Benyamin
Riahi, Monireh
Hashemi, Amir
Author_xml – sequence: 1
  givenname: Amir
  surname: Hashemi
  fullname: Hashemi, Amir
  email: Amir.Hashemi@cc.iut.ac.ir
  organization: Department of Mathematical Sciences, Isfahan University of Technology
– sequence: 2
  givenname: Benyamin
  surname: M.-Alizadeh
  fullname: M.-Alizadeh, Benyamin
  organization: Young Researchers Club, Science and Research Branch, Islamic Azad University
– sequence: 3
  givenname: Monireh
  surname: Riahi
  fullname: Riahi, Monireh
  organization: Department of Mathematics, Damghan University
BookMark eNp9j01OwzAQRi1UJErpAdj5Agb_xg67UkGIVIkFFVvLceyQqnEqO0XiYlyAi-GqrJnFzLeYN5p3DWZhDA6AW4LvCMbyPhHCqUCYUMQFLpC6AHOiihLlRmc5F5IjSRW7AsuUdjgXKzGXbA4e6vBpYm_CBCv6Ds2-G2M_fQzQjxHacTgcpz508G1VPdaoij_fTXARNia5dAMuvdknt_ybC7B9ftquX9DmtarXqw2ySihkrLPSWiFbXwhpSutIaUgrqW2VLw31DHtXeqda7KniwgrTekoLhnHjGG_ZApDzWRvHlKLz-hD7wcQvTbA-6euzvs76-qSvVWbomUl5N3Qu6t14jCF_-Q_0CxC2X24
Cites_doi 10.1016/S0747-7171(88)80048-8
10.1007/978-0-387-35651-8
10.1006/jsco.1996.0006
10.1016/S0022-4049(99)00005-5
10.1016/0001-8708(74)90067-X
10.1006/jsco.1996.0017
10.1112/plms/s1-35.1.3
10.1007/3-540-09519-5_52
10.1016/j.tcs.2011.04.040
10.1007/978-1-4613-9647-5_1
10.1016/j.jsc.2010.06.019
10.1006/jsco.1998.0247
10.1016/j.jsc.2010.06.013
10.1006/jsco.1998.0243
10.1007/s11424-011-0218-3
10.1006/jsco.1998.0210
10.1007/BFb0085537
10.1007/3-540-12868-9_99
10.1145/780506.780516
10.46298/dmtcs.2285
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2012
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2012
DBID AAYXX
CITATION
DOI 10.1007/s11425-012-4506-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1869-1862
EndPage 1794
ExternalDocumentID 10_1007_s11425_012_4506_8
GroupedDBID -5D
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
5XA
5XB
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c858-acec7cc57df657a9ce19a1d72cd8f9a2f30fe9fe8d0f2845c5adf226300be34d3
IEDL.DBID U2A
ISSN 1674-7283
IngestDate Wed Oct 01 04:33:53 EDT 2025
Fri Feb 21 02:33:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords invariant F
invariant G
68W30
G
V algorithm
13P10
SAGBI-Gröbner bases
algorithm
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c858-acec7cc57df657a9ce19a1d72cd8f9a2f30fe9fe8d0f2845c5adf226300be34d3
PageCount 14
ParticipantIDs crossref_primary_10_1007_s11425_012_4506_8
springer_journals_10_1007_s11425_012_4506_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130900
2013-9-00
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 9
  year: 2013
  text: 20130900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Faugère (CR8) 1994; 139
Lazard (CR24) 1983
Sun, Wang (CR32) 2011
Gao, Guan, Volny (CR11) 2010
Miller (CR26) 1996; 21
CR35
CR12
CR34
Thiéry, Thomassé (CR36) 2004
CR31
Göbel (CR14) 1999; 26
CR30
Hochster, Roberts (CR16) 1974; 13
Buchberger (CR5) 1979
Hashemi, M.-Alizadeh (CR15) 2011; 412
Kuroda (CR23) 2002; 39
Gebauer, Möller (CR13) 1988; 6
Becker, Weispfenning (CR3) 1993
Macaulay (CR25) 1902; 35
Adams, Hosten, Loustaunau (CR1) 1999; 27
Faugère, Rahmany (CR10) 2009
Eder, Perry (CR7) 2010; 45
CR4
Faugère (CR9) 2002
Ars, Hashemi (CR2) 2010; 45
Sun, Wang (CR33) 2011; 24
CR28
Kemper (CR19) 1996; 21
Ollivier (CR29) 1991
Kemper (CR20) 1998; XII
Kemper (CR21) 2002
Miller, Miller (CR27) 1998
Kemper (CR18) 1999; 27
Kapur, Madlener, Kaltofen, Watt (CR17) 1989
Kemper, Steel (CR22) 1999; 173
Cox, Little, O’shea (CR6) 2007
D. Kapur (4506_CR17) 1989
M. Kuroda (4506_CR23) 2002; 39
F. Ollivier (4506_CR29) 1991
D. Lazard (4506_CR24) 1983
Y. Sun (4506_CR32) 2011
B. Buchberger (4506_CR5) 1979
J. C. Faugère (4506_CR9) 2002
T. Becker (4506_CR3) 1993
D. Cox (4506_CR6) 2007
J. C. Faugère (4506_CR10) 2009
4506_CR4
S. Gao (4506_CR11) 2010
A. Hashemi (4506_CR15) 2011; 412
4506_CR28
G. Ars (4506_CR2) 2010; 45
Y. Sun (4506_CR33) 2011; 24
J. C. Faugère (4506_CR8) 1994; 139
M. Göbel (4506_CR14) 1999; 26
R. Gebauer (4506_CR13) 1988; 6
G. Kemper (4506_CR21) 2002
N. M. Thiéry (4506_CR36) 2004
W. W. Adams (4506_CR1) 1999; 27
C. Eder (4506_CR7) 2010; 45
G. Kemper (4506_CR19) 1996; 21
F. S. Macaulay (4506_CR25) 1902; 35
J. L. Miller (4506_CR26) 1996; 21
G. Kemper (4506_CR22) 1999; 173
4506_CR30
4506_CR31
G. Kemper (4506_CR18) 1999; 27
J. L. Miller (4506_CR27) 1998
4506_CR12
4506_CR34
4506_CR35
M. Hochster (4506_CR16) 1974; 13
G. Kemper (4506_CR20) 1998; XII
References_xml – volume: 6
  start-page: 275
  year: 1988
  end-page: 286
  ident: CR13
  article-title: On an installation of Buchberger’s algorithm
  publication-title: J Symb Comp
  doi: 10.1016/S0747-7171(88)80048-8
– volume: 39
  start-page: 665
  year: 2002
  end-page: 680
  ident: CR23
  article-title: The finiteness of the SAGBI basis for certain invariant rings
  publication-title: Osaka J Math
– start-page: 379
  year: 1991
  end-page: 400
  ident: CR29
  article-title: Canonical bases: relations with standard bases, finiteness conditions and application to tame automorphisms
  publication-title: MEGA0, Progress in Mathematics, 94
– volume: XII
  start-page: 5
  year: 1998
  end-page: 26
  ident: CR20
  article-title: Computational invariant theory
  publication-title: The Curves Seminar at Queen
– year: 2007
  ident: CR6
  publication-title: Ideals, Varieties, and Algorithms
  doi: 10.1007/978-0-387-35651-8
– ident: CR4
– start-page: 151
  year: 2009
  end-page: 158
  ident: CR10
  article-title: Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases
  publication-title: ISSAC’09
– volume: 21
  start-page: 139
  year: 1996
  end-page: 153
  ident: CR26
  article-title: Analogues of Gröbner bases in polynomial rings over a ring
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1996.0006
– ident: CR12
– ident: CR30
– volume: 139
  start-page: 61
  year: 1994
  end-page: 88
  ident: CR8
  article-title: A new efficient algorithm for computing Gröbner bases (F )
  publication-title: J Pure Appl Algebra
  doi: 10.1016/S0022-4049(99)00005-5
– volume: 13
  start-page: 115
  year: 1974
  end-page: 175
  ident: CR16
  article-title: Ring of invariants of reductive groups acting on regular rings are cohen-macaulay
  publication-title: Adv Math
  doi: 10.1016/0001-8708(74)90067-X
– ident: CR35
– start-page: 259
  year: 2004
  end-page: 263
  ident: CR36
  article-title: Convex cones and SAGBI bases of permutation invariants in invariant theory in all characteristic
  publication-title: CRM Proceedings and Lecture Notes, vol. 35
– volume: 21
  start-page: 351
  year: 1996
  end-page: 366
  ident: CR19
  article-title: Calculating invariant rings of finite groups over arbitrary field
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1996.0017
– volume: 35
  start-page: 3
  year: 1902
  end-page: 27
  ident: CR25
  article-title: Some formulae in elimination
  publication-title: Proc London Math Soc
  doi: 10.1112/plms/s1-35.1.3
– start-page: 3
  year: 1979
  end-page: 21
  ident: CR5
  article-title: A criterion for detecting unnecessary reductions in the construction of Gröbner bases
  publication-title: Symbolic and Algebraic Computation, EUROSAM’79, Intern Sympos, Marseille, 1979
  doi: 10.1007/3-540-09519-5_52
– volume: 412
  start-page: 4592
  year: 2011
  end-page: 4603
  ident: CR15
  article-title: Applying IsRewritten criterion on Buchberger algorithm
  publication-title: J Theor Comp Sci
  doi: 10.1016/j.tcs.2011.04.040
– start-page: 13
  year: 2010
  end-page: 19
  ident: CR11
  article-title: A new incremental algorithm for computing Gröbner bases
  publication-title: ISSAC’10
– start-page: 1
  year: 1989
  end-page: 11
  ident: CR17
  article-title: A completion procedure for computing a canonical basis for a K-subalgebra
  publication-title: Computers and Mathematics
  doi: 10.1007/978-1-4613-9647-5_1
– volume: 45
  start-page: 1442
  year: 2010
  end-page: 1458
  ident: CR7
  article-title: F5C: a variant of Faugère’s F5 algorithm with reduced Gröbner bases
  publication-title: J Symb Comp
  doi: 10.1016/j.jsc.2010.06.019
– year: 2002
  ident: CR21
  publication-title: Computational Invariant Theory
– volume: 27
  start-page: 171
  year: 1999
  end-page: 184
  ident: CR18
  article-title: An algorithm to calculate optimal homogeneous systems of parameters
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1998.0247
– volume: 173
  start-page: 267
  year: 1999
  end-page: 285
  ident: CR22
  article-title: Some algorithms in invariant theory of finite groups
  publication-title: Computational Methods for Representations of Groups and Algebras, Euroconference in Essen, April 1–5, 1997, Progress in Mathematics
– volume: 45
  start-page: 1330
  year: 2010
  end-page: 1340
  ident: CR2
  article-title: Extended F5 criteria
  publication-title: J Symb Comp
  doi: 10.1016/j.jsc.2010.06.013
– start-page: 146
  year: 1983
  end-page: 156
  ident: CR24
  publication-title: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations
– start-page: 421
  year: 1998
  end-page: 433
  ident: CR27
  article-title: Effective algorithms for intrinsically computing SAGBI-Grbner bases in a polynomial ring over a field
  publication-title: London Math Soc Lecture Note Ser, 251
– ident: CR31
– volume: 27
  start-page: 31
  year: 1999
  end-page: 47
  ident: CR1
  article-title: Sagbi and sagbi Gröbner bases over principal ideal domains
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1998.0243
– ident: CR34
– volume: 24
  start-page: 1218
  year: 2011
  end-page: 1231
  ident: CR33
  article-title: The F5 algorithm in Buchberger’s style
  publication-title: J Syst Sci Comp
  doi: 10.1007/s11424-011-0218-3
– ident: CR28
– year: 1993
  ident: CR3
  publication-title: Gröbner Bases, A Computational Approach to Commutative Algebra
– start-page: 75
  year: 2002
  end-page: 83
  ident: CR9
  article-title: A new efficient algorithm for computing Gröbner bases without reduction to zero (F )
  publication-title: ISSAC’02
– start-page: 337
  year: 2011
  end-page: 344
  ident: CR32
  article-title: A generalized criterion for signature related Gröbner basis algorithms
  publication-title: ISSAC’11
– volume: 26
  start-page: 261
  year: 1999
  end-page: 272
  ident: CR14
  article-title: A constructive description of SAGBI bases for polynomial invariants of permutation groups
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1998.0210
– ident: 4506_CR31
  doi: 10.1007/BFb0085537
– volume-title: Gröbner Bases, A Computational Approach to Commutative Algebra
  year: 1993
  ident: 4506_CR3
– start-page: 1
  volume-title: Computers and Mathematics
  year: 1989
  ident: 4506_CR17
  doi: 10.1007/978-1-4613-9647-5_1
– ident: 4506_CR4
– volume: 39
  start-page: 665
  year: 2002
  ident: 4506_CR23
  publication-title: Osaka J Math
– start-page: 379
  volume-title: MEGA0, Progress in Mathematics, 94
  year: 1991
  ident: 4506_CR29
– start-page: 13
  volume-title: ISSAC’10
  year: 2010
  ident: 4506_CR11
– volume-title: Computational Invariant Theory
  year: 2002
  ident: 4506_CR21
– volume: 35
  start-page: 3
  year: 1902
  ident: 4506_CR25
  publication-title: Proc London Math Soc
  doi: 10.1112/plms/s1-35.1.3
– volume: 173
  start-page: 267
  year: 1999
  ident: 4506_CR22
  publication-title: Computational Methods for Representations of Groups and Algebras, Euroconference in Essen, April 1–5, 1997, Progress in Mathematics
– volume: 26
  start-page: 261
  year: 1999
  ident: 4506_CR14
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1998.0210
– volume: 412
  start-page: 4592
  year: 2011
  ident: 4506_CR15
  publication-title: J Theor Comp Sci
  doi: 10.1016/j.tcs.2011.04.040
– volume: 45
  start-page: 1330
  year: 2010
  ident: 4506_CR2
  publication-title: J Symb Comp
  doi: 10.1016/j.jsc.2010.06.013
– volume: 27
  start-page: 171
  year: 1999
  ident: 4506_CR18
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1998.0247
– volume: 45
  start-page: 1442
  year: 2010
  ident: 4506_CR7
  publication-title: J Symb Comp
  doi: 10.1016/j.jsc.2010.06.019
– start-page: 146
  volume-title: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations
  year: 1983
  ident: 4506_CR24
  doi: 10.1007/3-540-12868-9_99
– volume: 21
  start-page: 351
  year: 1996
  ident: 4506_CR19
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1996.0017
– ident: 4506_CR12
– ident: 4506_CR34
– start-page: 421
  volume-title: London Math Soc Lecture Note Ser, 251
  year: 1998
  ident: 4506_CR27
– volume: 27
  start-page: 31
  year: 1999
  ident: 4506_CR1
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1998.0243
– volume: XII
  start-page: 5
  year: 1998
  ident: 4506_CR20
  publication-title: The Curves Seminar at Queen
– start-page: 75
  volume-title: ISSAC’02
  year: 2002
  ident: 4506_CR9
  doi: 10.1145/780506.780516
– ident: 4506_CR28
– start-page: 337
  volume-title: ISSAC’11
  year: 2011
  ident: 4506_CR32
– volume: 139
  start-page: 61
  year: 1994
  ident: 4506_CR8
  publication-title: J Pure Appl Algebra
  doi: 10.1016/S0022-4049(99)00005-5
– volume: 24
  start-page: 1218
  year: 2011
  ident: 4506_CR33
  publication-title: J Syst Sci Comp
  doi: 10.1007/s11424-011-0218-3
– ident: 4506_CR35
  doi: 10.46298/dmtcs.2285
– volume: 21
  start-page: 139
  year: 1996
  ident: 4506_CR26
  publication-title: J Symb Comp
  doi: 10.1006/jsco.1996.0006
– volume: 13
  start-page: 115
  year: 1974
  ident: 4506_CR16
  publication-title: Adv Math
  doi: 10.1016/0001-8708(74)90067-X
– volume: 6
  start-page: 275
  year: 1988
  ident: 4506_CR13
  publication-title: J Symb Comp
  doi: 10.1016/S0747-7171(88)80048-8
– ident: 4506_CR30
– start-page: 259
  volume-title: CRM Proceedings and Lecture Notes, vol. 35
  year: 2004
  ident: 4506_CR36
– volume-title: Ideals, Varieties, and Algorithms
  year: 2007
  ident: 4506_CR6
  doi: 10.1007/978-0-387-35651-8
– start-page: 3
  volume-title: Symbolic and Algebraic Computation, EUROSAM’79, Intern Sympos, Marseille, 1979
  year: 1979
  ident: 4506_CR5
  doi: 10.1007/3-540-09519-5_52
– start-page: 151
  volume-title: ISSAC’09
  year: 2009
  ident: 4506_CR10
SSID ssj0000390473
Score 1.8956909
Snippet Faugère and Rahmany have presented the invariant F 5 algorithm to compute SAGBI-Gröbner bases of ideals of invariant rings. This algorithm has an incremental...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1781
SubjectTerms Applications of Mathematics
Mathematics
Mathematics and Statistics
Title Invariant G2V algorithm for computing SAGBI-Gröbner bases
URI https://link.springer.com/article/10.1007/s11425-012-4506-8
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1869-1862
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000390473
  issn: 1674-7283
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1869-1862
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000390473
  issn: 1674-7283
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXWBAfIryUXlgAllKHDtx2AJq04LKQovKFDmOTQdIUVP4afwB_hjnNGlVCQZ254Z3p7x7vvMdQhe-kCb1bYXRDz3CQNUSwVxBfON4dpwbp8pe6A8e_N6I3Y35uHrHXdTd7nVJsvxTrx67uRBfIH0pYRxksNhETW6neUEQj2i0vFhxQMWzsrJsG-xJAPxZVzN_s7LOR-vF0JJjurtop0oOcbTw5h7a0Pk-2h4sJ6sWB-i6n3-CvAU8cEyfsHx9mYK8n7xhSD6xKlc0gGn8GMU3fRLPvr_SXM-w5ariEA27neFtj1T7D4gSXBCptAqU4kFmfB7IUGk3lG4WUJUJE0pqPMfo0GiROQZIhisuMwPZlOc4qfZY5h2hRj7N9THCnPnChUPwgWDSlWCMSgHuAPgCJdIWuqxBSN4XUy6S1Txji1gCiCUWsUS00FUNU1IFfPH36ZN_nT5FW7TcN2GbuM5QYz770OfA-vO0jZpR_HzfaZfe_gFeuaO9
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIry9MAEspQ4duKwFUQf0HahRd0sx7FhgBQ1hZ_GH-CPcU6TVpVgYL_c8J2Vu893_g6hi1Aom4SuwxjGAWHAaolgviCh9QIn58apdhf6vX7YHrL7ER-V77jzatq9akkWf-rFYzcfzhdQX0oYBxosVtGa069ygvlD2phfrHjA4lnRWXYD9iSC_Fl1M3_zspyPlpuhRY5pbqOtsjjEjVk0d9CKyXbRZm-urJrvoetO9gn0FvDALfqE1evzGOj9yxuG4hPrYkUDuMaPjdZNh7Qm319JZibY5ap8Hw2ad4PbNin3HxAtuCBKGx1pzaPUhjxSsTZ-rPw0ojoVNlbUBp41sTUi9SzAwDVXqYVqKvC8xAQsDQ5QLRtn5hBhzkLhgxF8IJjyFTijSkA4YmAkWiR1dFmBIN9nKhdyoWfsEJOAmHSISVFHVxVMsjzw-d_WR_-yPkfr7UGvK7ud_sMx2qDF7gk30HWCatPJhzmFCmCanBUR_wEFsKUV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOiFWU1QdOIKuJYycOt7J0AVoh0aLeIsex4QBp1RQ-jR_gxxinSatKcOA-9uHNSDPPM36D0JkvpIl922H0Q48wYLVEMFcQ3zielXPjVNkH_U7Xb_XZ3YAPij2nWTntXrYkp38arEpTOqmNElObf3xzIdaABlPCOFBisYxWmNVJgIDu0_rskcUBRs_yLrMdticB5NKys_nbLYu5abExmuebxibaKApFXJ96dgst6XQbrXdmKqvZDrpsp59AdQEb3KTPWL69DIHqv75jKESxytc1wNX4qd68apPm-PsrTvUY27yV7aJe47Z33SLFLgSiBBdEKq0CpXiQGJ8HMlTaDaWbBFQlwoSSGs8xOjRaJI6BhMMVl4mByspznFh7LPH2UCUdpnofYc584YIRHBBMuhIuo1KAa0JgJ0rEVXReghCNpooX0Vzb2CIWAWKRRSwSVXRRwhQVwZ_9bX3wL-tTtPp404ge2t37Q7RG8zUUdrbrCFUm4w99DMXAJD7JHf4DGj2pUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invariant+G2V+algorithm+for+computing+SAGBI-Gr%C3%B6bner+bases&rft.jtitle=Science+China.+Mathematics&rft.au=Hashemi%2C+Amir&rft.au=M.-Alizadeh%2C+Benyamin&rft.au=Riahi%2C+Monireh&rft.date=2013-09-01&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=56&rft.issue=9&rft.spage=1781&rft.epage=1794&rft_id=info:doi/10.1007%2Fs11425-012-4506-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11425_012_4506_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7283&client=summon