Secure Image Transmission using Quantum-Resilient and Gate Network for Latent-Key Generation

Recently, deep learning-based techniques have undergone rapid development, yielding promising results in various fields. For making more complex operations in day-to-day tasks, the arbitrary resolution of JPEG image data security requires more than just deep learning in this modern era. To overcome...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronics, electromedical engineering, and medical informatics Vol. 7; no. 4; pp. 1178 - 1198
Main Authors Gangappa, Malige, Satyanarayana, Balla V V, A, Dheeraj
Format Journal Article
LanguageEnglish
Published 06.10.2025
Online AccessGet full text
ISSN2656-8632
2656-8632
DOI10.35882/jeeemi.v7i4.1156

Cover

Abstract Recently, deep learning-based techniques have undergone rapid development, yielding promising results in various fields. For making more complex operations in day-to-day tasks, the arbitrary resolution of JPEG image data security requires more than just deep learning in this modern era. To overcome this, our research introduces a pioneering synergistic framework for a quantum-resistant deep learning technique, which is expected to provide next-generation robust security in the dynamic resolution of multi-JPEG-image-based joint compression-encryption. Our proposed framework features dual-parallel processing of a dynamic gate network, utilizing a convolutional neural network for specialization detailing and quantum-inspired transformations. These transformations leverage Riemann zeta functions for depth feature extraction, integrated with a chaotic sequence and dynamic iterations to generate a latent-fused chaotic key for image joint compression and encryption. Further, the authenticity of an encrypted image that is bound by a secure pattern derived from a random transform variance anchors cryptographic operations. Then, bound data transmitted through a Synergic Curve Key Exchange Engine fused with renowned Chen attractors to generate non-invertible keys for transmission. Finally, experimental results of the image reconstruction quality measured by the structural similarity index metric were 98.82 1.12. Security validation incorporates different metrics by addressing the entropy analysis to quantify resistance against differential and statistical attacks, with a yield of 7.9980 0.0015. In conclusion, the whole implementation uniquely combines latent-fused chaotic with improved key space analysis  for discrete cosine transform quantization with authenticated encryption, establishing an adversarial-resistant pipeline that simultaneously compresses data and validates integrity through pattern-bound authentication
AbstractList Recently, deep learning-based techniques have undergone rapid development, yielding promising results in various fields. For making more complex operations in day-to-day tasks, the arbitrary resolution of JPEG image data security requires more than just deep learning in this modern era. To overcome this, our research introduces a pioneering synergistic framework for a quantum-resistant deep learning technique, which is expected to provide next-generation robust security in the dynamic resolution of multi-JPEG-image-based joint compression-encryption. Our proposed framework features dual-parallel processing of a dynamic gate network, utilizing a convolutional neural network for specialization detailing and quantum-inspired transformations. These transformations leverage Riemann zeta functions for depth feature extraction, integrated with a chaotic sequence and dynamic iterations to generate a latent-fused chaotic key for image joint compression and encryption. Further, the authenticity of an encrypted image that is bound by a secure pattern derived from a random transform variance anchors cryptographic operations. Then, bound data transmitted through a Synergic Curve Key Exchange Engine fused with renowned Chen attractors to generate non-invertible keys for transmission. Finally, experimental results of the image reconstruction quality measured by the structural similarity index metric were 98.82 1.12. Security validation incorporates different metrics by addressing the entropy analysis to quantify resistance against differential and statistical attacks, with a yield of 7.9980 0.0015. In conclusion, the whole implementation uniquely combines latent-fused chaotic with improved key space analysis  for discrete cosine transform quantization with authenticated encryption, establishing an adversarial-resistant pipeline that simultaneously compresses data and validates integrity through pattern-bound authentication
Author Satyanarayana, Balla V V
Gangappa, Malige
A, Dheeraj
Author_xml – sequence: 1
  givenname: Malige
  orcidid: 0000-0002-8423-9646
  surname: Gangappa
  fullname: Gangappa, Malige
– sequence: 2
  givenname: Balla V V
  orcidid: 0009-0002-6900-3050
  surname: Satyanarayana
  fullname: Satyanarayana, Balla V V
– sequence: 3
  givenname: Dheeraj
  orcidid: 0009-0003-3265-1545
  surname: A
  fullname: A, Dheeraj
BookMark eNqNkNFKwzAUhoNMcM49gHd5gc4kXdJ4KUPnsCjqLoVy2pyMzDYdSevY29s5L7z06vwc-H5-vksy8q1HQq45m6VSa3GzRcTGzb4yN59xLtUZGQslVaJVKkZ_8gWZxrhljAmdScnZmHy8Y9UHpKsGNkjXAXxsXIyu9bSPzm_oaw--65vkDaOrHfqOgjd0CR3SZ-z2bfiktg00Hx6-S57wQJfoMUA3VFyRcwt1xOnvnZD1w_168ZjkL8vV4i5PKj0My0RaMSt5WSo1N4ZzLKU2TFk7F9woZqRKZaZvQWRKMJ4pVVlbgpYgjECbphMiTrW938FhD3Vd7IJrIBwKzoofQ8XJUHE0VBwNDRA_QVVoYwxo_8F8A9IWbvE
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.35882/jeeemi.v7i4.1156
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2656-8632
EndPage 1198
ExternalDocumentID 10.35882/jeeemi.v7i4.1156
10_35882_jeeemi_v7i4_1156
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c856-723c0f51bb664dd11eb58d06ff421d60d5635789a276201766cffba85a2d2ef33
IEDL.DBID UNPAY
ISSN 2656-8632
IngestDate Thu Oct 09 05:43:42 EDT 2025
Thu Oct 09 00:26:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-sa/4.0
cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c856-723c0f51bb664dd11eb58d06ff421d60d5635789a276201766cffba85a2d2ef33
ORCID 0009-0002-6900-3050
0009-0003-3265-1545
0000-0002-8423-9646
OpenAccessLink https://proxy.k.utb.cz/login?url=https://jeeemi.org/index.php/jeeemi/article/download/1156/329
PageCount 21
ParticipantIDs unpaywall_primary_10_35882_jeeemi_v7i4_1156
crossref_primary_10_35882_jeeemi_v7i4_1156
PublicationCentury 2000
PublicationDate 2025-10-06
PublicationDateYYYYMMDD 2025-10-06
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-06
  day: 06
PublicationDecade 2020
PublicationTitle Journal of electronics, electromedical engineering, and medical informatics
PublicationYear 2025
SSID ssj0002875510
Score 2.3076062
Snippet Recently, deep learning-based techniques have undergone rapid development, yielding promising results in various fields. For making more complex operations in...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 1178
Title Secure Image Transmission using Quantum-Resilient and Gate Network for Latent-Key Generation
URI https://jeeemi.org/index.php/jeeemi/article/download/1156/329
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2656-8632
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002875510
  issn: 2656-8632
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HsSDb7GiZQ-elDTNbnaTHItY6quotKAghE12I9U2ik0UPfjbnUmiVC-i12USwsxm5pvdmW8I2Q2UMhISHCuIHGW5SsSW8owHOU_s8ViJgAlsFD7rye7APb4SV1VtDvbC3BljxuUVfkEXiBwR1aJd6dLWSCP_oLQNaEbanAWzZE4KgOI1MjfonbevcaAc4BTLl5yVN5lcAJL8fPmzN3Sb-Oy3WDSfp4_q9UWNRlMBprNUTlGdFLyEWFdy38yzqBm__WBt_Pe3L5PFCnrSdimzQmZMukoWpggJ18hNcfxu6NEY3Awt4hjsAzxQo1ggf0svcrBEPrYuzWQ4wlZKqlJN8QiO9sqCcgoomJ7CQppZJ-aVlrzWaP510u8c9g-6VjV_wYp90J7HeNxKhBNFUrpaO46JhK9bMklc5mjZ0gK57PxAMXCoLSSajJMkUr5QTDOTcL5BaulDajYJVQxQD7qSxBeuG_gRhzRN-pzDP5oYL6iTvU9DhI8ly0YI2UlhtbDUYIhWC1FrdbL_Zarfpbf-JL1NatlTbnYAaGRRg8yevR82qk31AXBH2fQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-6PYgPfosTlTz4pHRbkyZtH4c45tdQ2WCCUNImlenWDbcq86_3ru1k-iL6Gq6l3KV3v0vufkfIsa-UkZDgWH5oK8tRIrKUa1zIeSKXR0r4TGCj8E1btrrOZU_0itoc7IV5NsYM8yv8jC4QOSKKxVqhy5pGGvmR0jVAM7LGmb9MylIAFC-Rcrd923jAgXKAUyxPcpbfZHIBSHL-8je371Tx2W-xaCVNxmr2rgaDhQDTXM-nqE4yXkKsK3mpptOwGn38YG3897dvkLUCetJGLrNJlkyyRVYXCAm3yWN2_G7oxRDcDM3iGOwDPFCjWCD_RO9SsEQ6tO7NpD_AVkqqEk3xCI6284JyCiiYXsNCMrWuzIzmvNZo_h3SaZ53zlpWMX_BijzQnst4VI-FHYZSOlrbtgmFp-syjh1ma1nXArnsPF8xcKh1JJqM4jhUnlBMMxNzvktKySgxe4QqBqgHXUnsCcfxvZBDmiY9zuEfjY3rV8jJ3BDBOGfZCCA7yawW5BoM0GoBaq1CTr9M9bv0_p-kD0hp-pqaQwAa0_Co2E6fWRrYww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+Image+Transmission+using+Quantum-Resilient+and+Gate+Network+for+Latent-Key+Generation&rft.jtitle=Journal+of+electronics%2C+electromedical+engineering%2C+and+medical+informatics&rft.au=Gangappa%2C+Malige&rft.au=Satyanarayana%2C+Balla+V+V&rft.au=A%2C+Dheeraj&rft.date=2025-10-06&rft.issn=2656-8632&rft.eissn=2656-8632&rft.volume=7&rft.issue=4&rft.spage=1178&rft.epage=1198&rft_id=info:doi/10.35882%2Fjeeemi.v7i4.1156&rft.externalDBID=n%2Fa&rft.externalDocID=10_35882_jeeemi_v7i4_1156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2656-8632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2656-8632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2656-8632&client=summon