A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose

We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 5; no. 3; p. e1000433
Main Authors Takeuchi, Fumihiko, McGinnis, Ralph, Bourgeois, Stephane, Barnes, Chris, Eriksson, Niclas, Soranzo, Nicole, Whittaker, Pamela, Ranganath, Venkatesh, Kumanduri, Vasudev, McLaren, William, Holm, Lennart, Lindh, Jonatan, Rane, Anders, Wadelius, Mia, Deloukas, Panos
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.03.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1000433

Cover

Abstract We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.
AbstractList We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10−7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ∼30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ∼12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10−78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10−31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3×10−10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. Recently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this “genome-wide association study” (GWAS) method by assaying ∼326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes (VKORC1, CYP2C9) already known to cause ∼40% of the variability in warfarin dose and discovered a new gene (CYP4F2) contributing 1%–2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1, CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future.
  We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10-7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10-78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10-31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3×10-10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x [10.sup.-7]) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<[10.sup.-78]) at SNPs clustering near VKORC1 and the second lowest p-values (p<[10.sup.-31]) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p=8.3 x [10.sup.-10]) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p&1.510 super(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that 630% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another 612% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p&10 super(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p&10 super(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p=8.310 super(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p&0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. Author Summary Recently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this 'genome-wide association study' (GWAS) method by assaying 6326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes (VKORC1, CYP2C9) already known to cause 640% of the variability in warfarin dose and discovered a new gene (CYP4F2) contributing 1%-2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1, CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future.
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance ( p &lt;1.5×10 −7 ) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs ( *2 , *3 ) in the cytochrome P450 warfarin-metabolizing gene CYP2C9 . We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals ( p &lt;10 −78 ) at SNPs clustering near VKORC1 and the second lowest p-values ( p &lt;10 −31 ) emanating from CYP2C9 . No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose ( VKORC1 , CYP2C9 , age, gender) and identified a single SNP (rs2108622) with genome-wide significance ( p = 8.3×10 −10 ) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients ( p &lt;0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. Author Summary Recently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this “genome-wide association study” (GWAS) method by assaying ~326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes ( VKORC1 , CYP2C9 ) already known to cause ~40% of the variability in warfarin dose and discovered a new gene ( CYP4F2 ) contributing 1%–2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1 , CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future.
Audience Academic
Author Deloukas, Panos
Barnes, Chris
Ranganath, Venkatesh
Rane, Anders
McLaren, William
Takeuchi, Fumihiko
Bourgeois, Stephane
Eriksson, Niclas
Kumanduri, Vasudev
Holm, Lennart
Lindh, Jonatan
Wadelius, Mia
Whittaker, Pamela
McGinnis, Ralph
Soranzo, Nicole
AuthorAffiliation 4 Department of Medical Sciences, Clinical Pharmacology, Uppsala University Hospital, Uppsala, Sweden
1 Wellcome Trust Sanger Institute, Hinxton, United Kingdom
3 Department of Clinical Pharmacology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
Queensland Institute of Medical Research, Australia
2 Uppsala Clinical Research Centre, Uppsala, Sweden
AuthorAffiliation_xml – name: 1 Wellcome Trust Sanger Institute, Hinxton, United Kingdom
– name: Queensland Institute of Medical Research, Australia
– name: 4 Department of Medical Sciences, Clinical Pharmacology, Uppsala University Hospital, Uppsala, Sweden
– name: 3 Department of Clinical Pharmacology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
– name: 2 Uppsala Clinical Research Centre, Uppsala, Sweden
Author_xml – sequence: 1
  givenname: Fumihiko
  surname: Takeuchi
  fullname: Takeuchi, Fumihiko
– sequence: 2
  givenname: Ralph
  surname: McGinnis
  fullname: McGinnis, Ralph
– sequence: 3
  givenname: Stephane
  surname: Bourgeois
  fullname: Bourgeois, Stephane
– sequence: 4
  givenname: Chris
  surname: Barnes
  fullname: Barnes, Chris
– sequence: 5
  givenname: Niclas
  surname: Eriksson
  fullname: Eriksson, Niclas
– sequence: 6
  givenname: Nicole
  surname: Soranzo
  fullname: Soranzo, Nicole
– sequence: 7
  givenname: Pamela
  surname: Whittaker
  fullname: Whittaker, Pamela
– sequence: 8
  givenname: Venkatesh
  surname: Ranganath
  fullname: Ranganath, Venkatesh
– sequence: 9
  givenname: Vasudev
  surname: Kumanduri
  fullname: Kumanduri, Vasudev
– sequence: 10
  givenname: William
  surname: McLaren
  fullname: McLaren, William
– sequence: 11
  givenname: Lennart
  surname: Holm
  fullname: Holm, Lennart
– sequence: 12
  givenname: Jonatan
  surname: Lindh
  fullname: Lindh, Jonatan
– sequence: 13
  givenname: Anders
  surname: Rane
  fullname: Rane, Anders
– sequence: 14
  givenname: Mia
  surname: Wadelius
  fullname: Wadelius, Mia
– sequence: 15
  givenname: Panos
  surname: Deloukas
  fullname: Deloukas, Panos
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19300499$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-100082$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:118835860$$DView record from Swedish Publication Index
BookMark eNqVk9tu1DAQhiNURA_wBghyVQmpu9ixc-ICabWlpaKiVQutuLJm7fHWJbGXOGnp2-PsBugiIYpyEWv8zT_jOWxHG9ZZjKLnlIwpy-nra9c1FqrxYo52TAkhnLFH0RZNUzbKOeEb986b0bb314SwtCjzJ9EmLVngy3IrupnEh2hdjaNLozCeeO-kgdY4G5-3nbqLp85q09Q-vvhwcjale_H0y2kyLfdisKo_84MkBh-fNsZKs4Cql8PWyHgfW2xqY8G2PnY6voRGQ6DifefxafRYQ-Xx2fDfiT4fvPs0fT86Pjk8mk6OR7LgpB1JpjRoqhgDBgVRqDKdE52wnGUZKEW0Cq_GAkiGZcIYn1GS5TPgWaYzVhC2E71c6S4q58VQMi8ooywlOeV5II5WhHJwLRaNqaG5Ew6MWBpcMxfQhPdUKJRmkJcEOdEpxwwLOZNZQiWXlM7SEHAnSldanV3A3S1U1S9BSkTftZ8piL5rYuha8But_PwtLrrZWhaD6Ws4oUjTkmR9nL2_8vvmYrLMuuuW-kUS8LdDEbpZjUqibRuo1rzWb6y5EnN3I5IsTYplfruDQOO-dehbURsvsarAouu8yHKSch6G6l9gQtIywH1fxitwDqGwxmoXAsvwKayNDIOuTbBPaJkHWZKkweHVmkNgWvzezqHzXhydn_0H-_Hh7MnFOrt7j71CqNor76qu3xa_Dr64X_DfQzCsXQDerADZOO8b1EKadrl1oQym-te08D-cHzRkPwBlGlPI
CitedBy_id crossref_primary_10_1002_cpt_2357
crossref_primary_10_3109_07853890_2010_507601
crossref_primary_10_2217_pgs_10_49
crossref_primary_10_1371_journal_pgen_1002025
crossref_primary_10_1097_FPC_0b013e3283311347
crossref_primary_10_1111_add_13818
crossref_primary_10_1186_1471_2105_11_S9_S9
crossref_primary_10_1002_wsbm_1199
crossref_primary_10_1111_j_1538_7836_2010_03792_x
crossref_primary_10_1038_nbt_2424
crossref_primary_10_1038_ncomms12460
crossref_primary_10_1038_clpt_2013_235
crossref_primary_10_1038_clpt_2013_234
crossref_primary_10_1007_s00246_012_0592_1
crossref_primary_10_1097_MD_0000000000034204
crossref_primary_10_1080_17425255_2017_1338274
crossref_primary_10_1146_annurev_publhealth_012809_103723
crossref_primary_10_1073_pnas_1001827107
crossref_primary_10_4338_ACI_2016_05_RA_0081
crossref_primary_10_2217_pgs_2017_0148
crossref_primary_10_1038_nrg2751
crossref_primary_10_1158_1078_0432_CCR_11_0724
crossref_primary_10_1080_23808993_2022_2028548
crossref_primary_10_1097_MCP_0b013e32833b1c6c
crossref_primary_10_1517_17425255_2015_1004053
crossref_primary_10_1161_CIRCRESAHA_117_310965
crossref_primary_10_1002_jcph_425
crossref_primary_10_1111_j_1365_2710_2012_01340_x
crossref_primary_10_3390_ijms23126840
crossref_primary_10_2217_pgs_09_74
crossref_primary_10_1002_cpz1_189
crossref_primary_10_2217_pgs_09_71
crossref_primary_10_1038_s41398_018_0150_6
crossref_primary_10_7705_biomedica_v30i3_275
crossref_primary_10_18632_oncotarget_25579
crossref_primary_10_1038_clpt_2014_26
crossref_primary_10_1080_03602532_2021_1909613
crossref_primary_10_3390_jcm8101747
crossref_primary_10_1186_s13104_016_2306_x
crossref_primary_10_1002_cpt_2349
crossref_primary_10_1111_j_1365_2125_2012_04328_x
crossref_primary_10_1007_s00103_013_1930_z
crossref_primary_10_1002_phar_1982
crossref_primary_10_1093_bib_bbaa292
crossref_primary_10_1038_jhg_2013_40
crossref_primary_10_2217_pgs_2017_0046
crossref_primary_10_1080_17425255_2019_1623878
crossref_primary_10_1007_s10340_010_0330_5
crossref_primary_10_2217_pgs_11_36
crossref_primary_10_1515_dmpt_2017_0034
crossref_primary_10_1016_j_mgene_2019_100564
crossref_primary_10_1161_CIRCRESAHA_117_310782
crossref_primary_10_1097_MBC_0000000000000272
crossref_primary_10_1007_s00228_018_2528_z
crossref_primary_10_2217_pgs_2018_0055
crossref_primary_10_1002_wsbm_125
crossref_primary_10_1016_j_cll_2009_05_003
crossref_primary_10_1007_s00228_013_1581_x
crossref_primary_10_1007_s00228_011_1060_1
crossref_primary_10_1160_TH12_05_0362
crossref_primary_10_1371_journal_pone_0168732
crossref_primary_10_1038_s41397_019_0083_3
crossref_primary_10_1124_dmd_110_035378
crossref_primary_10_1056_NEJMra1010600
crossref_primary_10_1016_j_cca_2013_05_008
crossref_primary_10_1097_FPC_0b013e32834f45f9
crossref_primary_10_1038_tpj_2011_7
crossref_primary_10_3390_biomedicines11082308
crossref_primary_10_1038_jhg_2012_94
crossref_primary_10_1007_s12291_011_0133_3
crossref_primary_10_1016_j_rmclc_2015_04_008
crossref_primary_10_1160_TH13_07_0555
crossref_primary_10_1097_FPC_0b013e328338bac2
crossref_primary_10_1371_journal_pone_0064469
crossref_primary_10_1038_s41598_017_17731_1
crossref_primary_10_1007_s00204_013_1013_9
crossref_primary_10_1182_blood_2011_08_372722
crossref_primary_10_1371_journal_pone_0076328
crossref_primary_10_2217_pgs_2017_0186
crossref_primary_10_1038_clpt_2013_7
crossref_primary_10_1093_bioinformatics_btw125
crossref_primary_10_1111_bcp_12220
crossref_primary_10_1016_j_drudis_2011_03_006
crossref_primary_10_1038_clpt_2014_78
crossref_primary_10_1371_journal_pcbi_1002457
crossref_primary_10_1155_2018_1686297
crossref_primary_10_1586_ecp_09_32
crossref_primary_10_1016_j_yamp_2019_08_002
crossref_primary_10_1016_j_cca_2011_07_013
crossref_primary_10_1111_j_1365_2125_2010_03698_x
crossref_primary_10_1007_s00228_012_1448_6
crossref_primary_10_2217_pgs_10_31
crossref_primary_10_1101_cshperspect_a033027
crossref_primary_10_2165_11318240_000000000_00000
crossref_primary_10_1111_cts_13176
crossref_primary_10_2217_pgs_2022_0038
crossref_primary_10_1007_s40262_015_0324_9
crossref_primary_10_1182_bloodadvances_2024014227
crossref_primary_10_1515_cclm_2011_748
crossref_primary_10_1111_cge_12881
crossref_primary_10_1371_journal_pgen_1005663
crossref_primary_10_1177_1358863X13503193
crossref_primary_10_3390_jpm7040020
crossref_primary_10_1007_BF03319099
crossref_primary_10_5582_ddt_2017_01031
crossref_primary_10_1124_dmd_111_038836
crossref_primary_10_1016_S1734_1140_13_70977_0
crossref_primary_10_1051_medsci_201430s203
crossref_primary_10_2217_pgs_11_156
crossref_primary_10_1016_j_tcm_2014_09_001
crossref_primary_10_1097_HJH_0b013e32834091a5
crossref_primary_10_1097_FPC_0b013e328358dd70
crossref_primary_10_1136_ard_2010_146191
crossref_primary_10_1534_genetics_114_162107
crossref_primary_10_1002_psp4_12054
crossref_primary_10_1155_2013_641089
crossref_primary_10_3389_fphar_2017_00323
crossref_primary_10_1038_s41397_019_0116_y
crossref_primary_10_1097_CCM_0b013e3181de09f8
crossref_primary_10_1186_1749_8090_7_97
crossref_primary_10_1186_gm88
crossref_primary_10_2217_pgs_2016_0130
crossref_primary_10_2217_pgs_11_164
crossref_primary_10_1097_MJT_0b013e3181cea0cd
crossref_primary_10_3390_ijms20174274
crossref_primary_10_1007_s10646_012_1032_y
crossref_primary_10_3389_fgene_2022_982955
crossref_primary_10_1161_CIRCRESAHA_110_230995
crossref_primary_10_1038_tpj_2010_71
crossref_primary_10_1186_s13073_018_0513_x
crossref_primary_10_1097_FPC_0000000000000244
crossref_primary_10_1111_bcp_12308
crossref_primary_10_1002_jcph_392
crossref_primary_10_1371_journal_pone_0053049
crossref_primary_10_1002_pbc_24932
crossref_primary_10_1007_s11096_012_9678_3
crossref_primary_10_1371_journal_pone_0105250
crossref_primary_10_2217_pgs_12_174
crossref_primary_10_1038_clpt_2012_184
crossref_primary_10_2217_fca_12_31
crossref_primary_10_1007_s10840_011_9561_5
crossref_primary_10_1177_1076029616683046
crossref_primary_10_1111_j_1365_2125_2011_03942_x
crossref_primary_10_1007_s11910_010_0157_8
crossref_primary_10_3390_jcm12051799
crossref_primary_10_1002_art_37751
crossref_primary_10_2217_pgs_11_147
crossref_primary_10_2217_pgs_2018_0143
crossref_primary_10_5482_HAMO_13_09_0047
crossref_primary_10_1146_annurev_pharmtox_011112_140237
crossref_primary_10_2147_PGPM_S404474
crossref_primary_10_1007_s00228_010_0950_y
crossref_primary_10_2217_pme_09_55
crossref_primary_10_1007_s40142_012_0001_3
crossref_primary_10_1007_s00228_010_0809_2
crossref_primary_10_1097_FPC_0b013e32835a3a6d
crossref_primary_10_1016_j_ihj_2018_02_005
crossref_primary_10_1002_hbm_25712
crossref_primary_10_1038_tpj_2012_32
crossref_primary_10_3389_fphar_2018_00542
crossref_primary_10_1208_s12248_015_9726_8
crossref_primary_10_18632_oncotarget_13075
crossref_primary_10_1371_journal_pone_0183561
crossref_primary_10_1371_journal_pgen_1004648
crossref_primary_10_1371_journal_pone_0099069
crossref_primary_10_35754_0234_5730_2019_64_1_90_98
crossref_primary_10_1038_jhg_2015_78
crossref_primary_10_1186_s13073_015_0255_y
crossref_primary_10_1515_dmpt_2015_0039
crossref_primary_10_1038_tpj_2012_45
crossref_primary_10_1592_phco_31_12_1192
crossref_primary_10_1517_17425255_2011_570260
crossref_primary_10_1002_cpt_2323
crossref_primary_10_1097_FPC_0b013e3283317ab5
crossref_primary_10_1007_s00228_011_0995_6
crossref_primary_10_2217_pgs_10_162
crossref_primary_10_7717_peerj_9995
crossref_primary_10_1007_s11845_013_0978_y
crossref_primary_10_1042_BJ20100522
crossref_primary_10_1007_s11096_011_9486_1
crossref_primary_10_1007_s00228_017_2373_5
crossref_primary_10_1016_j_jacc_2012_01_067
crossref_primary_10_2217_pme_12_34
crossref_primary_10_2217_pme_11_68
crossref_primary_10_3378_027_084_0103
crossref_primary_10_1038_nrcardio_2013_35
crossref_primary_10_4061_2011_212485
crossref_primary_10_1002_phar_1717
crossref_primary_10_1016_j_cll_2016_05_002
crossref_primary_10_1097_FPC_0b013e328350ca5f
crossref_primary_10_1007_BF03257189
crossref_primary_10_4061_2010_754919
crossref_primary_10_1016_j_pain_2014_05_032
crossref_primary_10_1371_journal_pone_0150456
crossref_primary_10_2217_fca_10_6
crossref_primary_10_1124_dmd_115_067900
crossref_primary_10_1038_s41569_021_00549_w
crossref_primary_10_1371_journal_pone_0071505
crossref_primary_10_3389_fphar_2017_00347
crossref_primary_10_1371_journal_pone_0037844
crossref_primary_10_1038_nrg_2016_12
crossref_primary_10_1111_j_1365_2125_2011_04095_x
crossref_primary_10_1182_blood_2009_12_255992
crossref_primary_10_1186_1878_5085_3_10
crossref_primary_10_1097_FTD_0b013e318256a77c
crossref_primary_10_1111_jphp_12084
crossref_primary_10_2217_pgs_11_184
crossref_primary_10_2217_pgs_2016_0152
crossref_primary_10_1007_s12288_016_0725_4
crossref_primary_10_1038_s41397_019_0091_3
crossref_primary_10_1038_s41397_018_0048_y
crossref_primary_10_1016_j_thromres_2012_02_003
crossref_primary_10_1016_j_thromres_2014_06_022
crossref_primary_10_1038_clpt_2010_322
crossref_primary_10_1160_TH13_02_0145
crossref_primary_10_3390_jpm11111180
crossref_primary_10_1146_annurev_pharmtox_010611_134743
crossref_primary_10_1097_FPC_0000000000000100
crossref_primary_10_1007_s40262_012_0009_6
crossref_primary_10_1016_j_ajhg_2012_07_010
crossref_primary_10_1016_j_xphs_2016_11_017
crossref_primary_10_1097_FPC_0000000000000108
crossref_primary_10_1111_bcpt_12024
crossref_primary_10_1371_journal_pgen_1002824
crossref_primary_10_1016_j_cca_2011_05_035
crossref_primary_10_1007_s40256_013_0024_5
crossref_primary_10_1160_TH11_12_0848
crossref_primary_10_1161_CIRCRESAHA_115_306360
crossref_primary_10_2217_pgs_2019_0149
crossref_primary_10_1016_j_canlet_2018_02_012
crossref_primary_10_2217_pgs_2015_0007
crossref_primary_10_1371_journal_pone_0027808
crossref_primary_10_1007_s11239_010_0467_3
crossref_primary_10_1038_clpt_2010_142
crossref_primary_10_1160_TH14_02_0189
crossref_primary_10_1309_AJCPAO82OTNPUBLW
crossref_primary_10_3389_fphar_2022_866058
crossref_primary_10_1007_s00228_009_0651_6
crossref_primary_10_1038_tpj_2017_8
crossref_primary_10_1002_ps_4797
crossref_primary_10_1038_tpj_2014_39
crossref_primary_10_1093_aje_kwab295
crossref_primary_10_2217_pgs_13_152
crossref_primary_10_1038_tpj_2014_36
crossref_primary_10_1007_s13546_011_0336_x
crossref_primary_10_1016_j_clinthera_2016_10_014
crossref_primary_10_2217_pgs_14_88
crossref_primary_10_1016_j_clinthera_2012_02_009
crossref_primary_10_2217_pgs_2019_0124
crossref_primary_10_2217_pgs_2016_0061
crossref_primary_10_1371_journal_pcbi_1002817
crossref_primary_10_7861_clinmedicine_9_5_493
crossref_primary_10_1016_S2211_9698_11_71437_6
crossref_primary_10_1111_j_1365_2125_2012_04354_x
crossref_primary_10_1182_blood_2013_05_505123
crossref_primary_10_2217_pgs_13_149
crossref_primary_10_1371_journal_pone_0011210
crossref_primary_10_1016_j_gene_2013_03_128
crossref_primary_10_2217_pgs_15_89
crossref_primary_10_1214_15_AOAS808
crossref_primary_10_1586_erc_09_137
crossref_primary_10_1016_j_thromres_2015_02_019
crossref_primary_10_1111_j_1748_720X_2012_00717_x
crossref_primary_10_2976_1_3292182
crossref_primary_10_2217_pgs_15_73
crossref_primary_10_1016_j_thromres_2013_05_002
crossref_primary_10_1093_hmg_dds341
crossref_primary_10_1097_FJC_0000000000001048
crossref_primary_10_1016_j_thromres_2011_11_043
crossref_primary_10_1253_circj_CJ_09_0876
crossref_primary_10_2217_pgs_11_115
crossref_primary_10_1016_j_pharmthera_2011_11_002
crossref_primary_10_1093_eurheartj_ehr239
crossref_primary_10_2217_pgs_15_26
crossref_primary_10_1038_clpt_2009_178
crossref_primary_10_1146_annurev_med_101712_122545
crossref_primary_10_1016_j_cell_2013_09_006
crossref_primary_10_1016_S0140_6736_19_31276_0
crossref_primary_10_1038_clpt_2009_291
crossref_primary_10_1097_FPC_0b013e32833d7b45
crossref_primary_10_1016_j_pharmthera_2017_02_036
crossref_primary_10_1007_s10528_024_10748_y
crossref_primary_10_1155_2011_739751
crossref_primary_10_3390_genes11111337
crossref_primary_10_2217_pgs_12_164
crossref_primary_10_1124_dmd_123_001389
crossref_primary_10_1146_annurev_pharmtox_010818_021154
crossref_primary_10_1182_blood_2011_07_367763
crossref_primary_10_1371_journal_pone_0094573
crossref_primary_10_1002_wsbm_1302
crossref_primary_10_4103_MJBL_MJBL_382_23
crossref_primary_10_1038_clpt_2011_179
crossref_primary_10_1073_pnas_1508425112
crossref_primary_10_1002_cpt_2818
crossref_primary_10_1124_pharmrev_123_000750
crossref_primary_10_1038_tpj_2014_83
crossref_primary_10_1007_s11033_020_05416_4
crossref_primary_10_1038_nrcardio_2015_64
crossref_primary_10_2174_1568026622666220801115040
crossref_primary_10_1016_j_ijcard_2015_02_025
crossref_primary_10_2133_dmpk_DMPK_12_RG_078
crossref_primary_10_3109_00498254_2014_952800
crossref_primary_10_1002_jcph_1444
crossref_primary_10_1101_gr_115832_110
crossref_primary_10_3923_pjbs_2009_1160_1163
crossref_primary_10_1016_j_gpb_2016_03_008
crossref_primary_10_1517_17530059_2011_540567
crossref_primary_10_1371_journal_pone_0172880
crossref_primary_10_1007_s00228_011_1143_z
crossref_primary_10_1038_nrg3352
crossref_primary_10_1111_cts_12522
crossref_primary_10_1002_eji_201344270
crossref_primary_10_1097_MD_0000000000014365
crossref_primary_10_1586_eci_12_51
crossref_primary_10_1016_j_cjca_2012_08_020
crossref_primary_10_4070_kcj_2019_0293
crossref_primary_10_1186_1471_2350_12_80
crossref_primary_10_1016_S0140_6736_13_60681_9
crossref_primary_10_1016_j_etap_2015_05_008
crossref_primary_10_1016_j_medcli_2010_05_001
crossref_primary_10_1111_j_1460_9592_2011_03533_x
crossref_primary_10_1042_CS20160379
crossref_primary_10_1007_s11096_010_9448_z
crossref_primary_10_1208_s12248_017_0161_x
crossref_primary_10_2217_pgs_14_18
crossref_primary_10_1016_j_thromres_2010_05_016
crossref_primary_10_2217_pgs_14_10
crossref_primary_10_1007_s40142_016_0096_z
crossref_primary_10_1002_phar_1329
crossref_primary_10_2217_pgs_12_2
crossref_primary_10_3109_03014460_2015_1068372
crossref_primary_10_2217_pgs_09_106
crossref_primary_10_1002_gepi_21719
crossref_primary_10_3724_SP_J_1263_2012_04162
crossref_primary_10_1038_tpj_2013_4
crossref_primary_10_1586_ecp_11_15
crossref_primary_10_1146_annurev_pharmtox_010510_100502
crossref_primary_10_4997_JRCPE_2012_312
crossref_primary_10_1155_2013_136524
crossref_primary_10_1097_HCO_0b013e32835220e3
crossref_primary_10_1248_yakushi_14_00230_1
crossref_primary_10_2217_pgs_12_62
crossref_primary_10_1371_journal_pone_0156000
crossref_primary_10_1093_hmg_ddq389
crossref_primary_10_1038_s41397_024_00329_y
crossref_primary_10_1007_s12288_018_0987_0
crossref_primary_10_1080_17425255_2017_1363887
crossref_primary_10_1111_j_1365_2796_2011_02509_x
crossref_primary_10_1111_jcpt_12835
crossref_primary_10_1007_s13206_020_4209_0
crossref_primary_10_1016_j_advnut_2024_100344
crossref_primary_10_2217_PGS_15_54
crossref_primary_10_1007_s11886_013_0381_3
crossref_primary_10_1038_tpj_2012_7
crossref_primary_10_2217_pgs_09_127
crossref_primary_10_1080_17425255_2020_1711883
crossref_primary_10_1038_clpt_2009_307
crossref_primary_10_2217_pgs_09_125
crossref_primary_10_1016_j_drudis_2011_09_001
crossref_primary_10_4065_mcp_2011_0337
crossref_primary_10_2217_pgs_2017_0207
crossref_primary_10_1158_1078_0432_CCR_13_2755
crossref_primary_10_1371_journal_pone_0294226
crossref_primary_10_1016_j_cjca_2012_07_845
crossref_primary_10_3390_jpm12091394
crossref_primary_10_1016_j_jns_2014_04_039
crossref_primary_10_1111_j_1538_7836_2010_03800_x
crossref_primary_10_1097_FPC_0b013e32834f288f
crossref_primary_10_1016_j_sder_2010_04_006
crossref_primary_10_2217_pgs_09_138
crossref_primary_10_3389_fgene_2020_491895
crossref_primary_10_1002_ddr_21050
crossref_primary_10_1111_jth_12647
crossref_primary_10_1016_j_bcp_2016_03_025
crossref_primary_10_1287_mnsc_2022_01985
crossref_primary_10_2217_pgs_10_99
crossref_primary_10_1016_j_jvn_2016_05_002
crossref_primary_10_1007_s40291_016_0190_7
crossref_primary_10_1258_acb_2011_011084
crossref_primary_10_1016_j_cca_2013_07_010
crossref_primary_10_2217_pgs_14_153
crossref_primary_10_2217_pgs_10_8
crossref_primary_10_1016_j_xhgg_2022_100100
crossref_primary_10_1111_cts_13230
crossref_primary_10_1038_jhg_2010_73
crossref_primary_10_2217_pgs_09_149
crossref_primary_10_4065_mcp_2009_0278
crossref_primary_10_1007_s00439_013_1268_5
crossref_primary_10_3233_JAD_201256
crossref_primary_10_1586_erc_09_117
crossref_primary_10_2217_pgs_13_232
crossref_primary_10_3390_jpm8010001
crossref_primary_10_1016_j_pmu_2015_04_002
crossref_primary_10_1002_pbc_24592
crossref_primary_10_1182_blood_2011_07_365502
crossref_primary_10_4236_ojgen_2012_24024
crossref_primary_10_1002_pbc_26653
crossref_primary_10_1016_j_abb_2014_10_006
crossref_primary_10_1016_j_cell_2019_09_019
crossref_primary_10_1124_pr_112_007252
crossref_primary_10_1517_17425255_2014_894020
crossref_primary_10_1007_s43440_021_00297_1
crossref_primary_10_1111_bcp_13157
crossref_primary_10_1517_17425255_2015_976201
crossref_primary_10_1007_s00228_010_0857_7
crossref_primary_10_1051_medsci_2010266_7641
crossref_primary_10_1161_CIRCULATIONAHA_112_105908
crossref_primary_10_1007_s12185_012_1205_8
crossref_primary_10_1007_s00228_013_1617_2
crossref_primary_10_1002_clc_22200
crossref_primary_10_2217_pgs_13_29
crossref_primary_10_1016_j_tips_2015_01_003
crossref_primary_10_1097_HCO_0b013e32835f0bbc
crossref_primary_10_1111_j_1365_2044_2011_06918_x
crossref_primary_10_1038_s41397_017_0007_z
crossref_primary_10_1038_clpt_2011_76
crossref_primary_10_1097_PAT_0b013e32834f4d69
crossref_primary_10_3390_diagnostics12071560
crossref_primary_10_1111_jcpt_12527
crossref_primary_10_1038_clpt_2009_223
crossref_primary_10_2217_pgs_09_171
crossref_primary_10_3390_genes5020430
crossref_primary_10_3390_jpm9030042
crossref_primary_10_1371_journal_pone_0095366
crossref_primary_10_1109_JBHI_2014_2336974
crossref_primary_10_2217_pgs_11_76
crossref_primary_10_1097_MBC_0000000000000213
Cites_doi 10.1161/CIRCULATIONAHA.107.737312
10.1038/sj.tpj.6500182
10.1182/blood-2007-11-122010
10.1007/s11239-007-0048-2
10.1182/blood-2004-06-2111
10.1093/genetics/135.1.205
10.1016/j.clpt.2005.08.006
10.1016/j.ajhg.2007.10.002
10.2307/2529947
10.1002/gepi.20015
10.1592/phco.28.9.1084
10.1038/nature06258
10.1038/sj.tpj.6500220
10.1160/TH04-08-0542
10.1086/519795
10.1038/ng.180
10.1086/521987
10.1016/S0140-6736(98)04474-2
10.1101/gr.5402306
10.1038/ng1416
10.1097/00008571-199610000-00007
10.1038/sj.tpj.6500313
10.1111/j.1365-2125.2004.02206.x
10.1038/sj.ejhg.5202011
10.1038/sj.clpt.6100316
10.1186/gb-2007-8-10-r228
10.1038/ng.206
10.1345/aph.1L127
10.1124/mi.6.4.8
10.1086/321275
10.1093/biostatistics/kxh008
10.1111/j.1538-7836.2008.03095.x
10.1007/s00439-006-0260-8
10.1038/nature05911
10.1056/NEJMoa044503
10.1182/blood-2008-04-149070
10.1097/00008571-200305000-00002
10.1182/blood-2008-01-134247
10.3121/cmr.3.3.137
10.1038/hdy.1992.131
ContentType Journal Article
Copyright COPYRIGHT 2009 Public Library of Science
Takeuchi et al. 2009
2009 Takeuchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, et al. (2009) A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose. PLoS Genet 5(3): e1000433. doi:10.1371/journal.pgen.1000433
Copyright_xml – notice: COPYRIGHT 2009 Public Library of Science
– notice: Takeuchi et al. 2009
– notice: 2009 Takeuchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, et al. (2009) A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose. PLoS Genet 5(3): e1000433. doi:10.1371/journal.pgen.1000433
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
8FD
FR3
P64
RC3
7X8
5PM
ADTPV
AOWAS
DF2
D8T
ZZAVC
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pgen.1000433
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Canada in Context
Gale In Context: Science
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Uppsala universitet
SWEPUB Freely available online
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



Genetics Abstracts



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
DocumentTitleAlternate GWAS of Warfarin Dose
EISSN 1553-7404
EndPage e1000433
ExternalDocumentID 1313507147
oai_doaj_org_article_df3a790e40f54e6e8cbc621c4c11b5f6
10.1371/journal.pgen.1000433
oai_swepub_ki_se_559066
oai_DiVA_org_uu_100082
PMC2652833
A197419025
19300499
10_1371_journal_pgen_1000433
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
Sweden
GeographicLocations_xml – name: Sweden
– name: Australia
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
PV9
QF4
RIG
RZL
WOQ
8FD
FR3
P64
RC3
7X8
5PM
ADTPV
AOWAS
DF2
D8T
ZZAVC
ACCTH
ADTOC
AFFHD
BBTPI
UNPAY
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c840t-c3dfaf1d33a3a80ded6f70f237366add0fd433e8a06e92334b1067ba466f63803
IEDL.DBID DOA
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:28 EDT 2023
Fri Oct 03 12:47:50 EDT 2025
Wed Oct 29 11:56:11 EDT 2025
Mon Oct 20 03:26:12 EDT 2025
Tue Sep 09 23:44:06 EDT 2025
Tue Sep 30 16:04:04 EDT 2025
Thu Sep 04 15:03:52 EDT 2025
Thu Sep 04 17:34:12 EDT 2025
Mon Oct 20 17:16:42 EDT 2025
Thu Oct 16 16:16:26 EDT 2025
Thu Oct 16 14:18:14 EDT 2025
Thu Oct 16 16:22:02 EDT 2025
Thu May 22 20:57:27 EDT 2025
Sat Mar 22 01:33:31 EDT 2025
Wed Oct 01 01:54:59 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c840t-c3dfaf1d33a3a80ded6f70f237366add0fd433e8a06e92334b1067ba466f63803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: MW PD. Performed the experiments: SB CB NE NS PW VR VK. Analyzed the data: FT RM. Contributed reagents/materials/analysis tools: WM AR MW PD. Wrote the paper: FT RM. Assembled clinical data: NE LH JL AR MW.
OpenAccessLink https://doaj.org/article/df3a790e40f54e6e8cbc621c4c11b5f6
PMID 19300499
PQID 20596700
PQPubID 23462
ParticipantIDs plos_journals_1313507147
doaj_primary_oai_doaj_org_article_df3a790e40f54e6e8cbc621c4c11b5f6
unpaywall_primary_10_1371_journal_pgen_1000433
swepub_primary_oai_swepub_ki_se_559066
swepub_primary_oai_DiVA_org_uu_100082
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652833
proquest_miscellaneous_67054419
proquest_miscellaneous_20596700
gale_infotracacademiconefile_A197419025
gale_incontextgauss_ISR_A197419025
gale_incontextgauss_ISN_A197419025
gale_incontextgauss_IOV_A197419025
gale_healthsolutions_A197419025
pubmed_primary_19300499
crossref_citationtrail_10_1371_journal_pgen_1000433
crossref_primary_10_1371_journal_pgen_1000433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-01
PublicationDateYYYYMMDD 2009-03-01
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AE Rettie (ref7) 2006; 6
MJ Stubbins (ref15) 1996; 6
DA Peiffer (ref30) 2006; 16
R Jansen (ref14) 1993; 135
AB Olshen (ref32) 2004; 5
JK Pritchard (ref17) 2001; 69
GP Aithal (ref16) 1999; 353
JL Anderson (ref21) 2007; 116
AJ Iafrate (ref33) 2004; 36
M Wadelius (ref38) 2004; 4
SR Browning (ref35) 2007; 81
D Zaykin (ref44) 2004; 271
G D'Andrea (ref6) 2005; 105
M Rieder (ref11) 2005; 352
DM Evans (ref19) 2008; 16
L Hynicka (ref25) 2008; 42
M Wadelius (ref3) 2009; 113
M Hillman (ref27) 2006; 3
M Wadelius (ref5) 2005; 5
KA Frazer (ref36) 2007; 449
JD Lindh (ref28) 2008; 25
B Weir (ref42) 1996
JD Lindh (ref29) 2004; 58
S Purcell (ref34) 2007; 81
JD Lindh (ref4) 2005; 78
TR Bhangale (ref18) 2008; 40
C Haley (ref13) 1992; 69
N Limdi (ref26) 2008; 28
K Knight (ref40) 2000
M Wadelius (ref8) 2007; 121
A Stuart (ref39) 1999
RR Sokal (ref41) 1995
P Lenzini (ref23) 2008; 6
AK Daly (ref1) 2003; 13
GM Cooper (ref10) 2008; 112
(ref9) 2007; 447
JC Marioni (ref31) 2007; 8
S Scott (ref20) 2008; 82
D Voora (ref24) 2005; 93
B Weir (ref43) 1979; 35
M Caldwell (ref12) 2008; 111
Y Caraco (ref22) 2008; 83
C Barnes (ref37) 2008; 40
H Takahashi (ref2) 2003; 3
References_xml – volume: 116
  start-page: 2563
  year: 2007
  ident: ref21
  article-title: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation.
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.107.737312
– year: 1995
  ident: ref41
  article-title: Biometry
– volume: 3
  start-page: 202
  year: 2003
  ident: ref2
  article-title: Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin.
  publication-title: Pharmacogenomics J
  doi: 10.1038/sj.tpj.6500182
– volume: 111
  start-page: 4106
  year: 2008
  ident: ref12
  article-title: CYP4F2 genetic variant alters required warfarin dose.
  publication-title: Blood
  doi: 10.1182/blood-2007-11-122010
– volume: 25
  start-page: 151
  year: 2008
  ident: ref28
  article-title: Incidence and predictors of severe bleeding during warfarin treatment.
  publication-title: J Thromb Thrombolysis
  doi: 10.1007/s11239-007-0048-2
– year: 2000
  ident: ref40
  article-title: Mathematical statistics
– volume: 105
  start-page: 645
  year: 2005
  ident: ref6
  article-title: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin.
  publication-title: Blood
  doi: 10.1182/blood-2004-06-2111
– volume: 135
  start-page: 205
  year: 1993
  ident: ref14
  article-title: Interval mapping of multiple quantitative trait loci.
  publication-title: Genetics
  doi: 10.1093/genetics/135.1.205
– year: 1996
  ident: ref42
  article-title: Genetic Data Analysis II
– volume: 78
  start-page: 540
  year: 2005
  ident: ref4
  article-title: Several-fold increase in risk of overanticoagulation by CYP2C9 mutations.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2005.08.006
– volume: 82
  start-page: 495
  year: 2008
  ident: ref20
  article-title: Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations.
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2007.10.002
– volume: 35
  start-page: 235
  year: 1979
  ident: ref43
  article-title: Inferences about linkage disequilibrium.
  publication-title: Biometrics
  doi: 10.2307/2529947
– volume: 271
  start-page: 252
  year: 2004
  ident: ref44
  article-title: Bounds and normalization of the composite disequilibrium coefficient.
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.20015
– volume: 28
  start-page: 1084
  year: 2008
  ident: ref26
  article-title: Warfarin Pharmacogenetics.
  publication-title: Pharmacotherapy
  doi: 10.1592/phco.28.9.1084
– volume: 449
  start-page: 851
  year: 2007
  ident: ref36
  article-title: A second generation human haplotype map of over 3.1 million SNPs.
  publication-title: Nature
  doi: 10.1038/nature06258
– volume: 4
  start-page: 40
  year: 2004
  ident: ref38
  article-title: Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors.
  publication-title: Pharmacogenomics J
  doi: 10.1038/sj.tpj.6500220
– volume: 93
  start-page: 700
  year: 2005
  ident: ref24
  article-title: Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype.
  publication-title: Thromb Haemost
  doi: 10.1160/TH04-08-0542
– volume: 81
  start-page: 559
  year: 2007
  ident: ref34
  article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses.
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 40
  start-page: 841
  year: 2008
  ident: ref18
  article-title: Estimating coverage and power for genetic association studies using near-complete variation data.
  publication-title: Nat Genet
  doi: 10.1038/ng.180
– volume: 81
  start-page: 1084
  year: 2007
  ident: ref35
  article-title: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering.
  publication-title: Am J Hum Genet
  doi: 10.1086/521987
– volume: 353
  start-page: 717
  year: 1999
  ident: ref16
  article-title: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(98)04474-2
– volume: 16
  start-page: 1136
  year: 2006
  ident: ref30
  article-title: High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping.
  publication-title: Genome Res
  doi: 10.1101/gr.5402306
– volume: 36
  start-page: 949
  year: 2004
  ident: ref33
  article-title: Detection of large-scale variation in the human genome.
  publication-title: Nat Genet
  doi: 10.1038/ng1416
– volume: 6
  start-page: 429
  year: 1996
  ident: ref15
  article-title: Genetic analysis of the human cytochrome P450 CYP2C9 locus.
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-199610000-00007
– volume: 5
  start-page: 262
  year: 2005
  ident: ref5
  article-title: Common VKORC1 and GGCX polymorphisms associated with warfarin dose.
  publication-title: Pharmacogenomics J
  doi: 10.1038/sj.tpj.6500313
– year: 1999
  ident: ref39
  article-title: Kendall's advanced theory of statistics
– volume: 58
  start-page: 482
  year: 2004
  ident: ref29
  article-title: Internet based clinical trial protocols – as applied to a study of warfarin pharmacogenetics.
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2004.02206.x
– volume: 16
  start-page: 718
  year: 2008
  ident: ref19
  article-title: To what extent do scans of non-synonymous SNPs complement denser genome-wide association studies?
  publication-title: Eur J Hum Genet
  doi: 10.1038/sj.ejhg.5202011
– volume: 83
  start-page: 460
  year: 2008
  ident: ref22
  article-title: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study.
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/sj.clpt.6100316
– volume: 8
  start-page: R228
  year: 2007
  ident: ref31
  article-title: Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization.
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-10-r228
– volume: 40
  start-page: 1245
  year: 2008
  ident: ref37
  article-title: A robust statistical method for case-control association testing with copy number variation.
  publication-title: Nat Genet
  doi: 10.1038/ng.206
– volume: 42
  start-page: 1298
  year: 2008
  ident: ref25
  article-title: Genetic testing for warfarin therapy initiation.
  publication-title: Ann Pharmacother
  doi: 10.1345/aph.1L127
– volume: 6
  start-page: 223
  year: 2006
  ident: ref7
  article-title: The pharmocogenomics of warfarin: closing in on personalized medicine.
  publication-title: Mol Interv
  doi: 10.1124/mi.6.4.8
– volume: 69
  start-page: 1
  year: 2001
  ident: ref17
  article-title: Linkage disequilibrium in humans: models and data.
  publication-title: Am J Hum Genet
  doi: 10.1086/321275
– volume: 5
  start-page: 557
  year: 2004
  ident: ref32
  article-title: Circular binary segmentation for the analysis of array-based DNA copy number data.
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxh008
– volume: 6
  start-page: 1655
  year: 2008
  ident: ref23
  article-title: Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients.
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2008.03095.x
– volume: 121
  start-page: 23
  year: 2007
  ident: ref8
  article-title: Association of warfarin dose with genes involved in its action and metabolism.
  publication-title: Hum Genet
  doi: 10.1007/s00439-006-0260-8
– volume: 447
  start-page: 661
  year: 2007
  ident: ref9
  article-title: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
  publication-title: Nature
  doi: 10.1038/nature05911
– volume: 352
  start-page: 2285
  year: 2005
  ident: ref11
  article-title: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa044503
– volume: 113
  start-page: 784
  year: 2009
  ident: ref3
  article-title: The largest prospective warfarin-treated cohort supports genetic forecasting.
  publication-title: Blood
  doi: 10.1182/blood-2008-04-149070
– volume: 13
  start-page: 247
  year: 2003
  ident: ref1
  article-title: Pharmacogenetics of oral anticoagulants.
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-200305000-00002
– volume: 112
  start-page: 1022
  year: 2008
  ident: ref10
  article-title: A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose.
  publication-title: Blood
  doi: 10.1182/blood-2008-01-134247
– volume: 3
  start-page: 137
  year: 2006
  ident: ref27
  article-title: A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data.
  publication-title: Clinical Medicine & Research
  doi: 10.3121/cmr.3.3.137
– volume: 69
  start-page: 315
  year: 1992
  ident: ref13
  article-title: A simple regression method for mapping quantitative trait loci in line crosses using flanking markers.
  publication-title: Heredity
  doi: 10.1038/hdy.1992.131
SSID ssj0035897
Score 2.4981344
Snippet We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance...
  We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide...
SourceID plos
doaj
unpaywall
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000433
SubjectTerms Anticoagulants
Aryl Hydrocarbon Hydroxylases - genetics
Clinical pharmacology
Cytochrome P-450
Cytochrome P-450 CYP2C9
Cytochrome P-450 Enzyme System - genetics
Cytochrome P450 Family 4
Dosage and administration
Drug dosages
Farmakologisk forskning
Fysiologi och farmakologi
Genes
Genetic aspects
Genetics
Genetics and Genomics/Pharmacogenomics
Genetik
Genome-Wide Association Study
Genomes
Genotype & phenotype
Humans
Klinisk farmakologi
Mathematics/Statistics
MEDICIN
MEDICINE
Metabolism - genetics
Mixed Function Oxygenases - genetics
Patients
Pharmacogenetics
Pharmacogenetics - methods
Pharmacological research
Pharmacology/Personalized Medicine
Physiological aspects
Physiology and pharmacology
Polymorphism, Single Nucleotide
Single nucleotide polymorphisms
Stroke
Sweden
Vitamin K Epoxide Reductases
Warfarin
Warfarin - administration & dosage
Warfarin - metabolism
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6VIAQcEO-a5wrxuNSR7fXzgFAIVAXUFhUSldNqvY8Skdohjgn598zYTlqLVOTAzbJnnWS-mdmdzO43hDxPJETeVDAbJn9h-yxK7URGkZ0iKTbyRbEYzzvvH4R7A__jcXC8RZY9WxsFFmtTO-wnNZiOu79_Lt6Aw7-uujZE7nJQdwIqx6o_cnJdIpdhrkqwmcO-v6orsCCu260EAbMjSPebw3QXvaU1WVWc_qvI3ZmM82LdsvTv3ZUNB-l1crXMJmIxF-PxuTls9ya50Sw-aa-2lltkS2e3yZW6HeXiDvnVo0jZeqrt-UhpKs6QoxULLYXc2YympwUdfjo86rs7tP_ts9dPdqjIFF77ux6MopP6D3z4JHgdHpKk6tymG5obOhdTA0l6RlVe6LtksPv-a3_Pbvoy2BLSwZktmTLCuIoxwUTsKK1CEznGYxELQ4iXjlGgOx0LJ9SwfmR-ijx1qfDD0IC7O-we6WR5prcJ9YSj4sTRhknl4zyphCdjyAlNEIdSJRZhSwC4bEjLsXfGmFeVuAiSl1p1HGHjDWwWsVejJjVpxz_k3yK2K1mk3K5u5NMT3ngwV4aJCL6q75jA16GOZSpDz5W-dN00MKFFnqJl8Pr86ipw8J4LKZuL1VyLPKskkHYjw309J6IsCv7hcLiB0JeDTYSOWkKvGiGTg86kaA5cgOaR86sluY3WvNRNAZpyGSYKfgS_amnhHAIPVpNEpvOy4B42booc52IJeIod7gDE-7VHnIGRsCrXtkjU8pUWAu0n2eh7RX7uhUhHBJC9qL2qNeTdaNirQCvLCtvYs8jLNXLNrR9wpTnk1LDutkh35Z0bGc2D_2E0D8m1ujyJmxofkc5sWurHsMqdpU-qwPUHoTynnA
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88A0Lnxbi46UpSZw6yWNpKQO0bhprtz1FjmNDtS6pmgZU_nrukrQ0sInyFiXnpr7zne9ydz8T8jKQYHkjwUzY_IXpMi8yA-l5ZoSg2IgXxXzsd94b8N2h--mkfbJFmstemPX8PfPstxVHW1NgJ2b0EW_rCtnmbfC8G2R7ODjonBaQqG1meqz4pFJeu5Zbdcpd9jO1nagA7F-Z5cZ0kmYX-Zx_l05WAKM3yLU8mYrFDzGZrG1Q_Vtkbzm1si7lrJXPo5b8-Qfq46Zzv01uVp4q7ZRL6w7ZUsldcrU8u3Jxj3zv0A8qSc-VeTyOFV0TM8XaxAXFXsLx7Dyjo8_7h127SbunB043aFKRxHjt9h0qMnpQfu2HNyECNryL9tYqdGiq6bGYaYjoE9pLM3WfDPvvj7q7ZnWIgykhdpybksVaaDtmTDDhW7GKufYs7TCPcQ7G1dIxTEv5wuIKnE3mRghqFwmXcw22wWIPSCNJE7VDqCOs2A8spZmMXdxUY-FIHwJI3fa5jAODsKVAQ1khnONBG5OwSNt5EOmUrAuRo2HFUYOYq1HTEuHjH_TvcK2saBGfu7gBogsrdQ9jzYQHf9W1dNtVXPkyktyxpSttO2prbpDnuNLCstl1ZWXCjg3xnY2pX4O8KCgQoyPBIqCvIs-y8OP-aAOiL4NNiA5rRG8qIp0Cz6SoujOA8wgQVqPcQe1Y8iYDTtkMowrXg1ktNSYEK4WpJ5GoNM9CB0958izrcgp4isfhgRAflhr2WxgBKwJzg3g13atJoP4kGX8rkNIdjthFILJXpZbWhvTGo04htDwvZOs7Bnl9AV116wyuVAgBODjpBmmttH2jRfPofwc8JtfLvCVWOz4hjfksV0_B_Z1Hzyqr9wsyFavx
  priority: 102
  providerName: Unpaywall
Title A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose
URI https://www.ncbi.nlm.nih.gov/pubmed/19300499
https://www.proquest.com/docview/20596700
https://www.proquest.com/docview/67054419
https://pubmed.ncbi.nlm.nih.gov/PMC2652833
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-100082
http://kipublications.ki.se/Default.aspx?queryparsed=id:118835860
https://doi.org/10.1371/journal.pgen.1000433
https://doaj.org/article/df3a790e40f54e6e8cbc621c4c11b5f6
http://dx.doi.org/10.1371/journal.pgen.1000433
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central Full-text
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M48
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiO-Fj2EhPl6WLYmTOHlsu1UDtK4qdNqeIscfUNGl1dJS7b_nLk67RQytD7y0kXNOlfudz776_DtC3qcSPG8umAuTv3BDxnM3lZy7OZJiI18US_C882EvPhiGX06ikyulvjAnzNIDW8XtKsMETz0deiYKdawTmcs48GUofT-PTEW27SXpMpiyPphFiS2rEkXM5RDW14fmGPd3a4x2pgAQ5gggg1djUqq4-1ceemM6npTXLT__zqKsuUYfkHvzYiouFmI8vjJXdR-Rh_Uik7bsyz0mt3TxhNy1ZScvnpLfLYrUrGfaXYyUpuISIVqxzVKIkc3o_Kykx1-PBh1_m3ZO-0En3aaiUHgddgPoRaf2j3r4JXgcHoak6kpyDZ0YuhDnBoLxgqpJqZ-RYXf_e-fAresvuBLCvpkrmTLC-IoxwUTiKa1iwz0TMM7iGPyiZxToTifCizWsE1mYIx9dLsI4NjCsPfacbBSTQm8SGghPJYCiYVKFOB8qEcgEYj8TJbFUqUPYEoBM1uTkWCNjnFU7bhyCFKu6DGHLatgc4q56TS05xw3ybcR2JYvU2lUDGFxWG1x2k8E55C1aRmbPqa4cRNbyITTzcdfWIe8qCaTXKDB_54eYl2X2-eh4DaFvvXWEBg2hT7WQmYDOpKgPVoDmkdurIbmJ1rzUTQma8hkGBCGHt1paeAYOBneNRKEn8zILsEAT97x_S8BdrGQHIL6wI-ISjJRVMbVDeGOsNBBo3ilGPyuS8yBG2iGA7IMdVY0ue6PjVgXafF5hmwQO-XiNXN30C650BrEzrK8dsrManWsZzcv_YTSvyH27DYnJi6_Jxux8rt_AanaWb5Hb_IRvkTut9l67C9_t_V5_sFW5M_g8DBNoG_b6rdM_DpSkSQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88A0Lnxbi46UpSZw6yWNpKQO0bhprtz1FjmNDtS6pmgZU_nrukrQ0sInyFiXnpr7zne9ydz8T8jKQYHkjwUzY_IXpMi8yA-l5ZoSg2IgXxXzsd94b8N2h--mkfbJFmstemPX8PfPstxVHW1NgJ2b0EW_rCtnmbfC8G2R7ODjonBaQqG1meqz4pFJeu5Zbdcpd9jO1nagA7F-Z5cZ0kmYX-Zx_l05WAKM3yLU8mYrFDzGZrG1Q_Vtkbzm1si7lrJXPo5b8-Qfq46Zzv01uVp4q7ZRL6w7ZUsldcrU8u3Jxj3zv0A8qSc-VeTyOFV0TM8XaxAXFXsLx7Dyjo8_7h127SbunB043aFKRxHjt9h0qMnpQfu2HNyECNryL9tYqdGiq6bGYaYjoE9pLM3WfDPvvj7q7ZnWIgykhdpybksVaaDtmTDDhW7GKufYs7TCPcQ7G1dIxTEv5wuIKnE3mRghqFwmXcw22wWIPSCNJE7VDqCOs2A8spZmMXdxUY-FIHwJI3fa5jAODsKVAQ1khnONBG5OwSNt5EOmUrAuRo2HFUYOYq1HTEuHjH_TvcK2saBGfu7gBogsrdQ9jzYQHf9W1dNtVXPkyktyxpSttO2prbpDnuNLCstl1ZWXCjg3xnY2pX4O8KCgQoyPBIqCvIs-y8OP-aAOiL4NNiA5rRG8qIp0Cz6SoujOA8wgQVqPcQe1Y8iYDTtkMowrXg1ktNSYEK4WpJ5GoNM9CB0958izrcgp4isfhgRAflhr2WxgBKwJzg3g13atJoP4kGX8rkNIdjthFILJXpZbWhvTGo04htDwvZOs7Bnl9AV116wyuVAgBODjpBmmttH2jRfPofwc8JtfLvCVWOz4hjfksV0_B_Z1Hzyqr9wsyFavx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genome-wide+association+study+confirms+VKORC1%2C+CYP2C9%2C+and+CYP4F2+as+principal+genetic+determinants+of+warfarin+dose&rft.jtitle=PLoS+genetics&rft.au=Fumihiko+Takeuchi&rft.au=Ralph+McGinnis&rft.au=Stephane+Bourgeois&rft.au=Chris+Barnes&rft.date=2009-03-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=5&rft.issue=3&rft.spage=e1000433&rft_id=info:doi/10.1371%2Fjournal.pgen.1000433&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_df3a790e40f54e6e8cbc621c4c11b5f6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon