A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for...
        Saved in:
      
    
          | Published in | PLoS genetics Vol. 5; no. 3; p. e1000433 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        01.03.2009
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1553-7404 1553-7390 1553-7404  | 
| DOI | 10.1371/journal.pgen.1000433 | 
Cover
| Abstract | We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. | 
    
|---|---|
| AbstractList | We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x 10(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that approximately 30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another approximately 12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p<10(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3 x 10(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10−7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ∼30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ∼12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10−78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10−31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3×10−10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. Recently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this “genome-wide association study” (GWAS) method by assaying ∼326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes (VKORC1, CYP2C9) already known to cause ∼40% of the variability in warfarin dose and discovered a new gene (CYP4F2) contributing 1%–2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1, CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future. We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10-7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10-78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10-31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3×10-10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5 x [10.sup.-7]) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<[10.sup.-78]) at SNPs clustering near VKORC1 and the second lowest p-values (p<[10.sup.-31]) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p=8.3 x [10.sup.-10]) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p&1.510 super(-7)) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that 630% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another 612% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p&10 super(-78)) at SNPs clustering near VKORC1 and the second lowest p-values (p&10 super(-31)) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p=8.310 super(-10)) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p&0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. Author Summary Recently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this 'genome-wide association study' (GWAS) method by assaying 6326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes (VKORC1, CYP2C9) already known to cause 640% of the variability in warfarin dose and discovered a new gene (CYP4F2) contributing 1%-2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1, CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future. We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance ( p <1.5×10 −7 ) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs ( *2 , *3 ) in the cytochrome P450 warfarin-metabolizing gene CYP2C9 . We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals ( p <10 −78 ) at SNPs clustering near VKORC1 and the second lowest p-values ( p <10 −31 ) emanating from CYP2C9 . No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose ( VKORC1 , CYP2C9 , age, gender) and identified a single SNP (rs2108622) with genome-wide significance ( p = 8.3×10 −10 ) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients ( p <0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose. Author Summary Recently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this “genome-wide association study” (GWAS) method by assaying ~326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes ( VKORC1 , CYP2C9 ) already known to cause ~40% of the variability in warfarin dose and discovered a new gene ( CYP4F2 ) contributing 1%–2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1 , CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future.  | 
    
| Audience | Academic | 
    
| Author | Deloukas, Panos Barnes, Chris Ranganath, Venkatesh Rane, Anders McLaren, William Takeuchi, Fumihiko Bourgeois, Stephane Eriksson, Niclas Kumanduri, Vasudev Holm, Lennart Lindh, Jonatan Wadelius, Mia Whittaker, Pamela McGinnis, Ralph Soranzo, Nicole  | 
    
| AuthorAffiliation | 4 Department of Medical Sciences, Clinical Pharmacology, Uppsala University Hospital, Uppsala, Sweden 1 Wellcome Trust Sanger Institute, Hinxton, United Kingdom 3 Department of Clinical Pharmacology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden Queensland Institute of Medical Research, Australia 2 Uppsala Clinical Research Centre, Uppsala, Sweden  | 
    
| AuthorAffiliation_xml | – name: 1 Wellcome Trust Sanger Institute, Hinxton, United Kingdom – name: Queensland Institute of Medical Research, Australia – name: 4 Department of Medical Sciences, Clinical Pharmacology, Uppsala University Hospital, Uppsala, Sweden – name: 3 Department of Clinical Pharmacology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden – name: 2 Uppsala Clinical Research Centre, Uppsala, Sweden  | 
    
| Author_xml | – sequence: 1 givenname: Fumihiko surname: Takeuchi fullname: Takeuchi, Fumihiko – sequence: 2 givenname: Ralph surname: McGinnis fullname: McGinnis, Ralph – sequence: 3 givenname: Stephane surname: Bourgeois fullname: Bourgeois, Stephane – sequence: 4 givenname: Chris surname: Barnes fullname: Barnes, Chris – sequence: 5 givenname: Niclas surname: Eriksson fullname: Eriksson, Niclas – sequence: 6 givenname: Nicole surname: Soranzo fullname: Soranzo, Nicole – sequence: 7 givenname: Pamela surname: Whittaker fullname: Whittaker, Pamela – sequence: 8 givenname: Venkatesh surname: Ranganath fullname: Ranganath, Venkatesh – sequence: 9 givenname: Vasudev surname: Kumanduri fullname: Kumanduri, Vasudev – sequence: 10 givenname: William surname: McLaren fullname: McLaren, William – sequence: 11 givenname: Lennart surname: Holm fullname: Holm, Lennart – sequence: 12 givenname: Jonatan surname: Lindh fullname: Lindh, Jonatan – sequence: 13 givenname: Anders surname: Rane fullname: Rane, Anders – sequence: 14 givenname: Mia surname: Wadelius fullname: Wadelius, Mia – sequence: 15 givenname: Panos surname: Deloukas fullname: Deloukas, Panos  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19300499$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-100082$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:118835860$$DView record from Swedish Publication Index  | 
    
| BookMark | eNqVk9tu1DAQhiNURA_wBghyVQmpu9ixc-ICabWlpaKiVQutuLJm7fHWJbGXOGnp2-PsBugiIYpyEWv8zT_jOWxHG9ZZjKLnlIwpy-nra9c1FqrxYo52TAkhnLFH0RZNUzbKOeEb986b0bb314SwtCjzJ9EmLVngy3IrupnEh2hdjaNLozCeeO-kgdY4G5-3nbqLp85q09Q-vvhwcjale_H0y2kyLfdisKo_84MkBh-fNsZKs4Cql8PWyHgfW2xqY8G2PnY6voRGQ6DifefxafRYQ-Xx2fDfiT4fvPs0fT86Pjk8mk6OR7LgpB1JpjRoqhgDBgVRqDKdE52wnGUZKEW0Cq_GAkiGZcIYn1GS5TPgWaYzVhC2E71c6S4q58VQMi8ooywlOeV5II5WhHJwLRaNqaG5Ew6MWBpcMxfQhPdUKJRmkJcEOdEpxwwLOZNZQiWXlM7SEHAnSldanV3A3S1U1S9BSkTftZ8piL5rYuha8But_PwtLrrZWhaD6Ws4oUjTkmR9nL2_8vvmYrLMuuuW-kUS8LdDEbpZjUqibRuo1rzWb6y5EnN3I5IsTYplfruDQOO-dehbURsvsarAouu8yHKSch6G6l9gQtIywH1fxitwDqGwxmoXAsvwKayNDIOuTbBPaJkHWZKkweHVmkNgWvzezqHzXhydn_0H-_Hh7MnFOrt7j71CqNor76qu3xa_Dr64X_DfQzCsXQDerADZOO8b1EKadrl1oQym-te08D-cHzRkPwBlGlPI | 
    
| CitedBy_id | crossref_primary_10_1002_cpt_2357 crossref_primary_10_3109_07853890_2010_507601 crossref_primary_10_2217_pgs_10_49 crossref_primary_10_1371_journal_pgen_1002025 crossref_primary_10_1097_FPC_0b013e3283311347 crossref_primary_10_1111_add_13818 crossref_primary_10_1186_1471_2105_11_S9_S9 crossref_primary_10_1002_wsbm_1199 crossref_primary_10_1111_j_1538_7836_2010_03792_x crossref_primary_10_1038_nbt_2424 crossref_primary_10_1038_ncomms12460 crossref_primary_10_1038_clpt_2013_235 crossref_primary_10_1038_clpt_2013_234 crossref_primary_10_1007_s00246_012_0592_1 crossref_primary_10_1097_MD_0000000000034204 crossref_primary_10_1080_17425255_2017_1338274 crossref_primary_10_1146_annurev_publhealth_012809_103723 crossref_primary_10_1073_pnas_1001827107 crossref_primary_10_4338_ACI_2016_05_RA_0081 crossref_primary_10_2217_pgs_2017_0148 crossref_primary_10_1038_nrg2751 crossref_primary_10_1158_1078_0432_CCR_11_0724 crossref_primary_10_1080_23808993_2022_2028548 crossref_primary_10_1097_MCP_0b013e32833b1c6c crossref_primary_10_1517_17425255_2015_1004053 crossref_primary_10_1161_CIRCRESAHA_117_310965 crossref_primary_10_1002_jcph_425 crossref_primary_10_1111_j_1365_2710_2012_01340_x crossref_primary_10_3390_ijms23126840 crossref_primary_10_2217_pgs_09_74 crossref_primary_10_1002_cpz1_189 crossref_primary_10_2217_pgs_09_71 crossref_primary_10_1038_s41398_018_0150_6 crossref_primary_10_7705_biomedica_v30i3_275 crossref_primary_10_18632_oncotarget_25579 crossref_primary_10_1038_clpt_2014_26 crossref_primary_10_1080_03602532_2021_1909613 crossref_primary_10_3390_jcm8101747 crossref_primary_10_1186_s13104_016_2306_x crossref_primary_10_1002_cpt_2349 crossref_primary_10_1111_j_1365_2125_2012_04328_x crossref_primary_10_1007_s00103_013_1930_z crossref_primary_10_1002_phar_1982 crossref_primary_10_1093_bib_bbaa292 crossref_primary_10_1038_jhg_2013_40 crossref_primary_10_2217_pgs_2017_0046 crossref_primary_10_1080_17425255_2019_1623878 crossref_primary_10_1007_s10340_010_0330_5 crossref_primary_10_2217_pgs_11_36 crossref_primary_10_1515_dmpt_2017_0034 crossref_primary_10_1016_j_mgene_2019_100564 crossref_primary_10_1161_CIRCRESAHA_117_310782 crossref_primary_10_1097_MBC_0000000000000272 crossref_primary_10_1007_s00228_018_2528_z crossref_primary_10_2217_pgs_2018_0055 crossref_primary_10_1002_wsbm_125 crossref_primary_10_1016_j_cll_2009_05_003 crossref_primary_10_1007_s00228_013_1581_x crossref_primary_10_1007_s00228_011_1060_1 crossref_primary_10_1160_TH12_05_0362 crossref_primary_10_1371_journal_pone_0168732 crossref_primary_10_1038_s41397_019_0083_3 crossref_primary_10_1124_dmd_110_035378 crossref_primary_10_1056_NEJMra1010600 crossref_primary_10_1016_j_cca_2013_05_008 crossref_primary_10_1097_FPC_0b013e32834f45f9 crossref_primary_10_1038_tpj_2011_7 crossref_primary_10_3390_biomedicines11082308 crossref_primary_10_1038_jhg_2012_94 crossref_primary_10_1007_s12291_011_0133_3 crossref_primary_10_1016_j_rmclc_2015_04_008 crossref_primary_10_1160_TH13_07_0555 crossref_primary_10_1097_FPC_0b013e328338bac2 crossref_primary_10_1371_journal_pone_0064469 crossref_primary_10_1038_s41598_017_17731_1 crossref_primary_10_1007_s00204_013_1013_9 crossref_primary_10_1182_blood_2011_08_372722 crossref_primary_10_1371_journal_pone_0076328 crossref_primary_10_2217_pgs_2017_0186 crossref_primary_10_1038_clpt_2013_7 crossref_primary_10_1093_bioinformatics_btw125 crossref_primary_10_1111_bcp_12220 crossref_primary_10_1016_j_drudis_2011_03_006 crossref_primary_10_1038_clpt_2014_78 crossref_primary_10_1371_journal_pcbi_1002457 crossref_primary_10_1155_2018_1686297 crossref_primary_10_1586_ecp_09_32 crossref_primary_10_1016_j_yamp_2019_08_002 crossref_primary_10_1016_j_cca_2011_07_013 crossref_primary_10_1111_j_1365_2125_2010_03698_x crossref_primary_10_1007_s00228_012_1448_6 crossref_primary_10_2217_pgs_10_31 crossref_primary_10_1101_cshperspect_a033027 crossref_primary_10_2165_11318240_000000000_00000 crossref_primary_10_1111_cts_13176 crossref_primary_10_2217_pgs_2022_0038 crossref_primary_10_1007_s40262_015_0324_9 crossref_primary_10_1182_bloodadvances_2024014227 crossref_primary_10_1515_cclm_2011_748 crossref_primary_10_1111_cge_12881 crossref_primary_10_1371_journal_pgen_1005663 crossref_primary_10_1177_1358863X13503193 crossref_primary_10_3390_jpm7040020 crossref_primary_10_1007_BF03319099 crossref_primary_10_5582_ddt_2017_01031 crossref_primary_10_1124_dmd_111_038836 crossref_primary_10_1016_S1734_1140_13_70977_0 crossref_primary_10_1051_medsci_201430s203 crossref_primary_10_2217_pgs_11_156 crossref_primary_10_1016_j_tcm_2014_09_001 crossref_primary_10_1097_HJH_0b013e32834091a5 crossref_primary_10_1097_FPC_0b013e328358dd70 crossref_primary_10_1136_ard_2010_146191 crossref_primary_10_1534_genetics_114_162107 crossref_primary_10_1002_psp4_12054 crossref_primary_10_1155_2013_641089 crossref_primary_10_3389_fphar_2017_00323 crossref_primary_10_1038_s41397_019_0116_y crossref_primary_10_1097_CCM_0b013e3181de09f8 crossref_primary_10_1186_1749_8090_7_97 crossref_primary_10_1186_gm88 crossref_primary_10_2217_pgs_2016_0130 crossref_primary_10_2217_pgs_11_164 crossref_primary_10_1097_MJT_0b013e3181cea0cd crossref_primary_10_3390_ijms20174274 crossref_primary_10_1007_s10646_012_1032_y crossref_primary_10_3389_fgene_2022_982955 crossref_primary_10_1161_CIRCRESAHA_110_230995 crossref_primary_10_1038_tpj_2010_71 crossref_primary_10_1186_s13073_018_0513_x crossref_primary_10_1097_FPC_0000000000000244 crossref_primary_10_1111_bcp_12308 crossref_primary_10_1002_jcph_392 crossref_primary_10_1371_journal_pone_0053049 crossref_primary_10_1002_pbc_24932 crossref_primary_10_1007_s11096_012_9678_3 crossref_primary_10_1371_journal_pone_0105250 crossref_primary_10_2217_pgs_12_174 crossref_primary_10_1038_clpt_2012_184 crossref_primary_10_2217_fca_12_31 crossref_primary_10_1007_s10840_011_9561_5 crossref_primary_10_1177_1076029616683046 crossref_primary_10_1111_j_1365_2125_2011_03942_x crossref_primary_10_1007_s11910_010_0157_8 crossref_primary_10_3390_jcm12051799 crossref_primary_10_1002_art_37751 crossref_primary_10_2217_pgs_11_147 crossref_primary_10_2217_pgs_2018_0143 crossref_primary_10_5482_HAMO_13_09_0047 crossref_primary_10_1146_annurev_pharmtox_011112_140237 crossref_primary_10_2147_PGPM_S404474 crossref_primary_10_1007_s00228_010_0950_y crossref_primary_10_2217_pme_09_55 crossref_primary_10_1007_s40142_012_0001_3 crossref_primary_10_1007_s00228_010_0809_2 crossref_primary_10_1097_FPC_0b013e32835a3a6d crossref_primary_10_1016_j_ihj_2018_02_005 crossref_primary_10_1002_hbm_25712 crossref_primary_10_1038_tpj_2012_32 crossref_primary_10_3389_fphar_2018_00542 crossref_primary_10_1208_s12248_015_9726_8 crossref_primary_10_18632_oncotarget_13075 crossref_primary_10_1371_journal_pone_0183561 crossref_primary_10_1371_journal_pgen_1004648 crossref_primary_10_1371_journal_pone_0099069 crossref_primary_10_35754_0234_5730_2019_64_1_90_98 crossref_primary_10_1038_jhg_2015_78 crossref_primary_10_1186_s13073_015_0255_y crossref_primary_10_1515_dmpt_2015_0039 crossref_primary_10_1038_tpj_2012_45 crossref_primary_10_1592_phco_31_12_1192 crossref_primary_10_1517_17425255_2011_570260 crossref_primary_10_1002_cpt_2323 crossref_primary_10_1097_FPC_0b013e3283317ab5 crossref_primary_10_1007_s00228_011_0995_6 crossref_primary_10_2217_pgs_10_162 crossref_primary_10_7717_peerj_9995 crossref_primary_10_1007_s11845_013_0978_y crossref_primary_10_1042_BJ20100522 crossref_primary_10_1007_s11096_011_9486_1 crossref_primary_10_1007_s00228_017_2373_5 crossref_primary_10_1016_j_jacc_2012_01_067 crossref_primary_10_2217_pme_12_34 crossref_primary_10_2217_pme_11_68 crossref_primary_10_3378_027_084_0103 crossref_primary_10_1038_nrcardio_2013_35 crossref_primary_10_4061_2011_212485 crossref_primary_10_1002_phar_1717 crossref_primary_10_1016_j_cll_2016_05_002 crossref_primary_10_1097_FPC_0b013e328350ca5f crossref_primary_10_1007_BF03257189 crossref_primary_10_4061_2010_754919 crossref_primary_10_1016_j_pain_2014_05_032 crossref_primary_10_1371_journal_pone_0150456 crossref_primary_10_2217_fca_10_6 crossref_primary_10_1124_dmd_115_067900 crossref_primary_10_1038_s41569_021_00549_w crossref_primary_10_1371_journal_pone_0071505 crossref_primary_10_3389_fphar_2017_00347 crossref_primary_10_1371_journal_pone_0037844 crossref_primary_10_1038_nrg_2016_12 crossref_primary_10_1111_j_1365_2125_2011_04095_x crossref_primary_10_1182_blood_2009_12_255992 crossref_primary_10_1186_1878_5085_3_10 crossref_primary_10_1097_FTD_0b013e318256a77c crossref_primary_10_1111_jphp_12084 crossref_primary_10_2217_pgs_11_184 crossref_primary_10_2217_pgs_2016_0152 crossref_primary_10_1007_s12288_016_0725_4 crossref_primary_10_1038_s41397_019_0091_3 crossref_primary_10_1038_s41397_018_0048_y crossref_primary_10_1016_j_thromres_2012_02_003 crossref_primary_10_1016_j_thromres_2014_06_022 crossref_primary_10_1038_clpt_2010_322 crossref_primary_10_1160_TH13_02_0145 crossref_primary_10_3390_jpm11111180 crossref_primary_10_1146_annurev_pharmtox_010611_134743 crossref_primary_10_1097_FPC_0000000000000100 crossref_primary_10_1007_s40262_012_0009_6 crossref_primary_10_1016_j_ajhg_2012_07_010 crossref_primary_10_1016_j_xphs_2016_11_017 crossref_primary_10_1097_FPC_0000000000000108 crossref_primary_10_1111_bcpt_12024 crossref_primary_10_1371_journal_pgen_1002824 crossref_primary_10_1016_j_cca_2011_05_035 crossref_primary_10_1007_s40256_013_0024_5 crossref_primary_10_1160_TH11_12_0848 crossref_primary_10_1161_CIRCRESAHA_115_306360 crossref_primary_10_2217_pgs_2019_0149 crossref_primary_10_1016_j_canlet_2018_02_012 crossref_primary_10_2217_pgs_2015_0007 crossref_primary_10_1371_journal_pone_0027808 crossref_primary_10_1007_s11239_010_0467_3 crossref_primary_10_1038_clpt_2010_142 crossref_primary_10_1160_TH14_02_0189 crossref_primary_10_1309_AJCPAO82OTNPUBLW crossref_primary_10_3389_fphar_2022_866058 crossref_primary_10_1007_s00228_009_0651_6 crossref_primary_10_1038_tpj_2017_8 crossref_primary_10_1002_ps_4797 crossref_primary_10_1038_tpj_2014_39 crossref_primary_10_1093_aje_kwab295 crossref_primary_10_2217_pgs_13_152 crossref_primary_10_1038_tpj_2014_36 crossref_primary_10_1007_s13546_011_0336_x crossref_primary_10_1016_j_clinthera_2016_10_014 crossref_primary_10_2217_pgs_14_88 crossref_primary_10_1016_j_clinthera_2012_02_009 crossref_primary_10_2217_pgs_2019_0124 crossref_primary_10_2217_pgs_2016_0061 crossref_primary_10_1371_journal_pcbi_1002817 crossref_primary_10_7861_clinmedicine_9_5_493 crossref_primary_10_1016_S2211_9698_11_71437_6 crossref_primary_10_1111_j_1365_2125_2012_04354_x crossref_primary_10_1182_blood_2013_05_505123 crossref_primary_10_2217_pgs_13_149 crossref_primary_10_1371_journal_pone_0011210 crossref_primary_10_1016_j_gene_2013_03_128 crossref_primary_10_2217_pgs_15_89 crossref_primary_10_1214_15_AOAS808 crossref_primary_10_1586_erc_09_137 crossref_primary_10_1016_j_thromres_2015_02_019 crossref_primary_10_1111_j_1748_720X_2012_00717_x crossref_primary_10_2976_1_3292182 crossref_primary_10_2217_pgs_15_73 crossref_primary_10_1016_j_thromres_2013_05_002 crossref_primary_10_1093_hmg_dds341 crossref_primary_10_1097_FJC_0000000000001048 crossref_primary_10_1016_j_thromres_2011_11_043 crossref_primary_10_1253_circj_CJ_09_0876 crossref_primary_10_2217_pgs_11_115 crossref_primary_10_1016_j_pharmthera_2011_11_002 crossref_primary_10_1093_eurheartj_ehr239 crossref_primary_10_2217_pgs_15_26 crossref_primary_10_1038_clpt_2009_178 crossref_primary_10_1146_annurev_med_101712_122545 crossref_primary_10_1016_j_cell_2013_09_006 crossref_primary_10_1016_S0140_6736_19_31276_0 crossref_primary_10_1038_clpt_2009_291 crossref_primary_10_1097_FPC_0b013e32833d7b45 crossref_primary_10_1016_j_pharmthera_2017_02_036 crossref_primary_10_1007_s10528_024_10748_y crossref_primary_10_1155_2011_739751 crossref_primary_10_3390_genes11111337 crossref_primary_10_2217_pgs_12_164 crossref_primary_10_1124_dmd_123_001389 crossref_primary_10_1146_annurev_pharmtox_010818_021154 crossref_primary_10_1182_blood_2011_07_367763 crossref_primary_10_1371_journal_pone_0094573 crossref_primary_10_1002_wsbm_1302 crossref_primary_10_4103_MJBL_MJBL_382_23 crossref_primary_10_1038_clpt_2011_179 crossref_primary_10_1073_pnas_1508425112 crossref_primary_10_1002_cpt_2818 crossref_primary_10_1124_pharmrev_123_000750 crossref_primary_10_1038_tpj_2014_83 crossref_primary_10_1007_s11033_020_05416_4 crossref_primary_10_1038_nrcardio_2015_64 crossref_primary_10_2174_1568026622666220801115040 crossref_primary_10_1016_j_ijcard_2015_02_025 crossref_primary_10_2133_dmpk_DMPK_12_RG_078 crossref_primary_10_3109_00498254_2014_952800 crossref_primary_10_1002_jcph_1444 crossref_primary_10_1101_gr_115832_110 crossref_primary_10_3923_pjbs_2009_1160_1163 crossref_primary_10_1016_j_gpb_2016_03_008 crossref_primary_10_1517_17530059_2011_540567 crossref_primary_10_1371_journal_pone_0172880 crossref_primary_10_1007_s00228_011_1143_z crossref_primary_10_1038_nrg3352 crossref_primary_10_1111_cts_12522 crossref_primary_10_1002_eji_201344270 crossref_primary_10_1097_MD_0000000000014365 crossref_primary_10_1586_eci_12_51 crossref_primary_10_1016_j_cjca_2012_08_020 crossref_primary_10_4070_kcj_2019_0293 crossref_primary_10_1186_1471_2350_12_80 crossref_primary_10_1016_S0140_6736_13_60681_9 crossref_primary_10_1016_j_etap_2015_05_008 crossref_primary_10_1016_j_medcli_2010_05_001 crossref_primary_10_1111_j_1460_9592_2011_03533_x crossref_primary_10_1042_CS20160379 crossref_primary_10_1007_s11096_010_9448_z crossref_primary_10_1208_s12248_017_0161_x crossref_primary_10_2217_pgs_14_18 crossref_primary_10_1016_j_thromres_2010_05_016 crossref_primary_10_2217_pgs_14_10 crossref_primary_10_1007_s40142_016_0096_z crossref_primary_10_1002_phar_1329 crossref_primary_10_2217_pgs_12_2 crossref_primary_10_3109_03014460_2015_1068372 crossref_primary_10_2217_pgs_09_106 crossref_primary_10_1002_gepi_21719 crossref_primary_10_3724_SP_J_1263_2012_04162 crossref_primary_10_1038_tpj_2013_4 crossref_primary_10_1586_ecp_11_15 crossref_primary_10_1146_annurev_pharmtox_010510_100502 crossref_primary_10_4997_JRCPE_2012_312 crossref_primary_10_1155_2013_136524 crossref_primary_10_1097_HCO_0b013e32835220e3 crossref_primary_10_1248_yakushi_14_00230_1 crossref_primary_10_2217_pgs_12_62 crossref_primary_10_1371_journal_pone_0156000 crossref_primary_10_1093_hmg_ddq389 crossref_primary_10_1038_s41397_024_00329_y crossref_primary_10_1007_s12288_018_0987_0 crossref_primary_10_1080_17425255_2017_1363887 crossref_primary_10_1111_j_1365_2796_2011_02509_x crossref_primary_10_1111_jcpt_12835 crossref_primary_10_1007_s13206_020_4209_0 crossref_primary_10_1016_j_advnut_2024_100344 crossref_primary_10_2217_PGS_15_54 crossref_primary_10_1007_s11886_013_0381_3 crossref_primary_10_1038_tpj_2012_7 crossref_primary_10_2217_pgs_09_127 crossref_primary_10_1080_17425255_2020_1711883 crossref_primary_10_1038_clpt_2009_307 crossref_primary_10_2217_pgs_09_125 crossref_primary_10_1016_j_drudis_2011_09_001 crossref_primary_10_4065_mcp_2011_0337 crossref_primary_10_2217_pgs_2017_0207 crossref_primary_10_1158_1078_0432_CCR_13_2755 crossref_primary_10_1371_journal_pone_0294226 crossref_primary_10_1016_j_cjca_2012_07_845 crossref_primary_10_3390_jpm12091394 crossref_primary_10_1016_j_jns_2014_04_039 crossref_primary_10_1111_j_1538_7836_2010_03800_x crossref_primary_10_1097_FPC_0b013e32834f288f crossref_primary_10_1016_j_sder_2010_04_006 crossref_primary_10_2217_pgs_09_138 crossref_primary_10_3389_fgene_2020_491895 crossref_primary_10_1002_ddr_21050 crossref_primary_10_1111_jth_12647 crossref_primary_10_1016_j_bcp_2016_03_025 crossref_primary_10_1287_mnsc_2022_01985 crossref_primary_10_2217_pgs_10_99 crossref_primary_10_1016_j_jvn_2016_05_002 crossref_primary_10_1007_s40291_016_0190_7 crossref_primary_10_1258_acb_2011_011084 crossref_primary_10_1016_j_cca_2013_07_010 crossref_primary_10_2217_pgs_14_153 crossref_primary_10_2217_pgs_10_8 crossref_primary_10_1016_j_xhgg_2022_100100 crossref_primary_10_1111_cts_13230 crossref_primary_10_1038_jhg_2010_73 crossref_primary_10_2217_pgs_09_149 crossref_primary_10_4065_mcp_2009_0278 crossref_primary_10_1007_s00439_013_1268_5 crossref_primary_10_3233_JAD_201256 crossref_primary_10_1586_erc_09_117 crossref_primary_10_2217_pgs_13_232 crossref_primary_10_3390_jpm8010001 crossref_primary_10_1016_j_pmu_2015_04_002 crossref_primary_10_1002_pbc_24592 crossref_primary_10_1182_blood_2011_07_365502 crossref_primary_10_4236_ojgen_2012_24024 crossref_primary_10_1002_pbc_26653 crossref_primary_10_1016_j_abb_2014_10_006 crossref_primary_10_1016_j_cell_2019_09_019 crossref_primary_10_1124_pr_112_007252 crossref_primary_10_1517_17425255_2014_894020 crossref_primary_10_1007_s43440_021_00297_1 crossref_primary_10_1111_bcp_13157 crossref_primary_10_1517_17425255_2015_976201 crossref_primary_10_1007_s00228_010_0857_7 crossref_primary_10_1051_medsci_2010266_7641 crossref_primary_10_1161_CIRCULATIONAHA_112_105908 crossref_primary_10_1007_s12185_012_1205_8 crossref_primary_10_1007_s00228_013_1617_2 crossref_primary_10_1002_clc_22200 crossref_primary_10_2217_pgs_13_29 crossref_primary_10_1016_j_tips_2015_01_003 crossref_primary_10_1097_HCO_0b013e32835f0bbc crossref_primary_10_1111_j_1365_2044_2011_06918_x crossref_primary_10_1038_s41397_017_0007_z crossref_primary_10_1038_clpt_2011_76 crossref_primary_10_1097_PAT_0b013e32834f4d69 crossref_primary_10_3390_diagnostics12071560 crossref_primary_10_1111_jcpt_12527 crossref_primary_10_1038_clpt_2009_223 crossref_primary_10_2217_pgs_09_171 crossref_primary_10_3390_genes5020430 crossref_primary_10_3390_jpm9030042 crossref_primary_10_1371_journal_pone_0095366 crossref_primary_10_1109_JBHI_2014_2336974 crossref_primary_10_2217_pgs_11_76 crossref_primary_10_1097_MBC_0000000000000213  | 
    
| Cites_doi | 10.1161/CIRCULATIONAHA.107.737312 10.1038/sj.tpj.6500182 10.1182/blood-2007-11-122010 10.1007/s11239-007-0048-2 10.1182/blood-2004-06-2111 10.1093/genetics/135.1.205 10.1016/j.clpt.2005.08.006 10.1016/j.ajhg.2007.10.002 10.2307/2529947 10.1002/gepi.20015 10.1592/phco.28.9.1084 10.1038/nature06258 10.1038/sj.tpj.6500220 10.1160/TH04-08-0542 10.1086/519795 10.1038/ng.180 10.1086/521987 10.1016/S0140-6736(98)04474-2 10.1101/gr.5402306 10.1038/ng1416 10.1097/00008571-199610000-00007 10.1038/sj.tpj.6500313 10.1111/j.1365-2125.2004.02206.x 10.1038/sj.ejhg.5202011 10.1038/sj.clpt.6100316 10.1186/gb-2007-8-10-r228 10.1038/ng.206 10.1345/aph.1L127 10.1124/mi.6.4.8 10.1086/321275 10.1093/biostatistics/kxh008 10.1111/j.1538-7836.2008.03095.x 10.1007/s00439-006-0260-8 10.1038/nature05911 10.1056/NEJMoa044503 10.1182/blood-2008-04-149070 10.1097/00008571-200305000-00002 10.1182/blood-2008-01-134247 10.3121/cmr.3.3.137 10.1038/hdy.1992.131  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2009 Public Library of Science Takeuchi et al. 2009 2009 Takeuchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, et al. (2009) A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose. PLoS Genet 5(3): e1000433. doi:10.1371/journal.pgen.1000433  | 
    
| Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: Takeuchi et al. 2009 – notice: 2009 Takeuchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, et al. (2009) A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose. PLoS Genet 5(3): e1000433. doi:10.1371/journal.pgen.1000433  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 8FD FR3 P64 RC3 7X8 5PM ADTPV AOWAS DF2 D8T ZZAVC ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pgen.1000433 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Canada in Context Gale In Context: Science Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Uppsala universitet SWEPUB Freely available online SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology Medicine  | 
    
| DocumentTitleAlternate | GWAS of Warfarin Dose | 
    
| EISSN | 1553-7404 | 
    
| EndPage | e1000433 | 
    
| ExternalDocumentID | 1313507147 oai_doaj_org_article_df3a790e40f54e6e8cbc621c4c11b5f6 10.1371/journal.pgen.1000433 oai_swepub_ki_se_559066 oai_DiVA_org_uu_100082 PMC2652833 A197419025 19300499 10_1371_journal_pgen_1000433  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GeographicLocations | Australia Sweden  | 
    
| GeographicLocations_xml | – name: Sweden – name: Australia  | 
    
| GrantInformation_xml | – fundername: Wellcome Trust | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M ALIPV CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 QF4 RIG RZL WOQ 8FD FR3 P64 RC3 7X8 5PM ADTPV AOWAS DF2 D8T ZZAVC ACCTH ADTOC AFFHD BBTPI UNPAY 3V. AAPBV ABPTK M~E  | 
    
| ID | FETCH-LOGICAL-c840t-c3dfaf1d33a3a80ded6f70f237366add0fd433e8a06e92334b1067ba466f63803 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1553-7404 1553-7390  | 
    
| IngestDate | Sun Oct 01 00:20:28 EDT 2023 Fri Oct 03 12:47:50 EDT 2025 Wed Oct 29 11:56:11 EDT 2025 Mon Oct 20 03:26:12 EDT 2025 Tue Sep 09 23:44:06 EDT 2025 Tue Sep 30 16:04:04 EDT 2025 Thu Sep 04 15:03:52 EDT 2025 Thu Sep 04 17:34:12 EDT 2025 Mon Oct 20 17:16:42 EDT 2025 Thu Oct 16 16:16:26 EDT 2025 Thu Oct 16 14:18:14 EDT 2025 Thu Oct 16 16:22:02 EDT 2025 Thu May 22 20:57:27 EDT 2025 Sat Mar 22 01:33:31 EDT 2025 Wed Oct 01 01:54:59 EDT 2025 Thu Apr 24 23:03:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c840t-c3dfaf1d33a3a80ded6f70f237366add0fd433e8a06e92334b1067ba466f63803 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: MW PD. Performed the experiments: SB CB NE NS PW VR VK. Analyzed the data: FT RM. Contributed reagents/materials/analysis tools: WM AR MW PD. Wrote the paper: FT RM. Assembled clinical data: NE LH JL AR MW.  | 
    
| OpenAccessLink | https://doaj.org/article/df3a790e40f54e6e8cbc621c4c11b5f6 | 
    
| PMID | 19300499 | 
    
| PQID | 20596700 | 
    
| PQPubID | 23462 | 
    
| ParticipantIDs | plos_journals_1313507147 doaj_primary_oai_doaj_org_article_df3a790e40f54e6e8cbc621c4c11b5f6 unpaywall_primary_10_1371_journal_pgen_1000433 swepub_primary_oai_swepub_ki_se_559066 swepub_primary_oai_DiVA_org_uu_100082 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2652833 proquest_miscellaneous_67054419 proquest_miscellaneous_20596700 gale_infotracacademiconefile_A197419025 gale_incontextgauss_ISR_A197419025 gale_incontextgauss_ISN_A197419025 gale_incontextgauss_IOV_A197419025 gale_healthsolutions_A197419025 pubmed_primary_19300499 crossref_citationtrail_10_1371_journal_pgen_1000433 crossref_primary_10_1371_journal_pgen_1000433  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-03-01 | 
    
| PublicationDateYYYYMMDD | 2009-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco, USA  | 
    
| PublicationTitle | PLoS genetics | 
    
| PublicationTitleAlternate | PLoS Genet | 
    
| PublicationYear | 2009 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | AE Rettie (ref7) 2006; 6 MJ Stubbins (ref15) 1996; 6 DA Peiffer (ref30) 2006; 16 R Jansen (ref14) 1993; 135 AB Olshen (ref32) 2004; 5 JK Pritchard (ref17) 2001; 69 GP Aithal (ref16) 1999; 353 JL Anderson (ref21) 2007; 116 AJ Iafrate (ref33) 2004; 36 M Wadelius (ref38) 2004; 4 SR Browning (ref35) 2007; 81 D Zaykin (ref44) 2004; 271 G D'Andrea (ref6) 2005; 105 M Rieder (ref11) 2005; 352 DM Evans (ref19) 2008; 16 L Hynicka (ref25) 2008; 42 M Wadelius (ref3) 2009; 113 M Hillman (ref27) 2006; 3 M Wadelius (ref5) 2005; 5 KA Frazer (ref36) 2007; 449 JD Lindh (ref28) 2008; 25 B Weir (ref42) 1996 JD Lindh (ref29) 2004; 58 S Purcell (ref34) 2007; 81 JD Lindh (ref4) 2005; 78 TR Bhangale (ref18) 2008; 40 C Haley (ref13) 1992; 69 N Limdi (ref26) 2008; 28 K Knight (ref40) 2000 M Wadelius (ref8) 2007; 121 A Stuart (ref39) 1999 RR Sokal (ref41) 1995 P Lenzini (ref23) 2008; 6 AK Daly (ref1) 2003; 13 GM Cooper (ref10) 2008; 112 (ref9) 2007; 447 JC Marioni (ref31) 2007; 8 S Scott (ref20) 2008; 82 D Voora (ref24) 2005; 93 B Weir (ref43) 1979; 35 M Caldwell (ref12) 2008; 111 Y Caraco (ref22) 2008; 83 C Barnes (ref37) 2008; 40 H Takahashi (ref2) 2003; 3  | 
    
| References_xml | – volume: 116 start-page: 2563 year: 2007 ident: ref21 article-title: Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.737312 – year: 1995 ident: ref41 article-title: Biometry – volume: 3 start-page: 202 year: 2003 ident: ref2 article-title: Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. publication-title: Pharmacogenomics J doi: 10.1038/sj.tpj.6500182 – volume: 111 start-page: 4106 year: 2008 ident: ref12 article-title: CYP4F2 genetic variant alters required warfarin dose. publication-title: Blood doi: 10.1182/blood-2007-11-122010 – volume: 25 start-page: 151 year: 2008 ident: ref28 article-title: Incidence and predictors of severe bleeding during warfarin treatment. publication-title: J Thromb Thrombolysis doi: 10.1007/s11239-007-0048-2 – year: 2000 ident: ref40 article-title: Mathematical statistics – volume: 105 start-page: 645 year: 2005 ident: ref6 article-title: A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. publication-title: Blood doi: 10.1182/blood-2004-06-2111 – volume: 135 start-page: 205 year: 1993 ident: ref14 article-title: Interval mapping of multiple quantitative trait loci. publication-title: Genetics doi: 10.1093/genetics/135.1.205 – year: 1996 ident: ref42 article-title: Genetic Data Analysis II – volume: 78 start-page: 540 year: 2005 ident: ref4 article-title: Several-fold increase in risk of overanticoagulation by CYP2C9 mutations. publication-title: Clin Pharmacol Ther doi: 10.1016/j.clpt.2005.08.006 – volume: 82 start-page: 495 year: 2008 ident: ref20 article-title: Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2007.10.002 – volume: 35 start-page: 235 year: 1979 ident: ref43 article-title: Inferences about linkage disequilibrium. publication-title: Biometrics doi: 10.2307/2529947 – volume: 271 start-page: 252 year: 2004 ident: ref44 article-title: Bounds and normalization of the composite disequilibrium coefficient. publication-title: Genetic Epidemiology doi: 10.1002/gepi.20015 – volume: 28 start-page: 1084 year: 2008 ident: ref26 article-title: Warfarin Pharmacogenetics. publication-title: Pharmacotherapy doi: 10.1592/phco.28.9.1084 – volume: 449 start-page: 851 year: 2007 ident: ref36 article-title: A second generation human haplotype map of over 3.1 million SNPs. publication-title: Nature doi: 10.1038/nature06258 – volume: 4 start-page: 40 year: 2004 ident: ref38 article-title: Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. publication-title: Pharmacogenomics J doi: 10.1038/sj.tpj.6500220 – volume: 93 start-page: 700 year: 2005 ident: ref24 article-title: Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. publication-title: Thromb Haemost doi: 10.1160/TH04-08-0542 – volume: 81 start-page: 559 year: 2007 ident: ref34 article-title: PLINK: a tool set for whole-genome association and population-based linkage analyses. publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 40 start-page: 841 year: 2008 ident: ref18 article-title: Estimating coverage and power for genetic association studies using near-complete variation data. publication-title: Nat Genet doi: 10.1038/ng.180 – volume: 81 start-page: 1084 year: 2007 ident: ref35 article-title: Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. publication-title: Am J Hum Genet doi: 10.1086/521987 – volume: 353 start-page: 717 year: 1999 ident: ref16 article-title: Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. publication-title: Lancet doi: 10.1016/S0140-6736(98)04474-2 – volume: 16 start-page: 1136 year: 2006 ident: ref30 article-title: High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. publication-title: Genome Res doi: 10.1101/gr.5402306 – volume: 36 start-page: 949 year: 2004 ident: ref33 article-title: Detection of large-scale variation in the human genome. publication-title: Nat Genet doi: 10.1038/ng1416 – volume: 6 start-page: 429 year: 1996 ident: ref15 article-title: Genetic analysis of the human cytochrome P450 CYP2C9 locus. publication-title: Pharmacogenetics doi: 10.1097/00008571-199610000-00007 – volume: 5 start-page: 262 year: 2005 ident: ref5 article-title: Common VKORC1 and GGCX polymorphisms associated with warfarin dose. publication-title: Pharmacogenomics J doi: 10.1038/sj.tpj.6500313 – year: 1999 ident: ref39 article-title: Kendall's advanced theory of statistics – volume: 58 start-page: 482 year: 2004 ident: ref29 article-title: Internet based clinical trial protocols – as applied to a study of warfarin pharmacogenetics. publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2004.02206.x – volume: 16 start-page: 718 year: 2008 ident: ref19 article-title: To what extent do scans of non-synonymous SNPs complement denser genome-wide association studies? publication-title: Eur J Hum Genet doi: 10.1038/sj.ejhg.5202011 – volume: 83 start-page: 460 year: 2008 ident: ref22 article-title: CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. publication-title: Clin Pharmacol Ther doi: 10.1038/sj.clpt.6100316 – volume: 8 start-page: R228 year: 2007 ident: ref31 article-title: Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization. publication-title: Genome Biol doi: 10.1186/gb-2007-8-10-r228 – volume: 40 start-page: 1245 year: 2008 ident: ref37 article-title: A robust statistical method for case-control association testing with copy number variation. publication-title: Nat Genet doi: 10.1038/ng.206 – volume: 42 start-page: 1298 year: 2008 ident: ref25 article-title: Genetic testing for warfarin therapy initiation. publication-title: Ann Pharmacother doi: 10.1345/aph.1L127 – volume: 6 start-page: 223 year: 2006 ident: ref7 article-title: The pharmocogenomics of warfarin: closing in on personalized medicine. publication-title: Mol Interv doi: 10.1124/mi.6.4.8 – volume: 69 start-page: 1 year: 2001 ident: ref17 article-title: Linkage disequilibrium in humans: models and data. publication-title: Am J Hum Genet doi: 10.1086/321275 – volume: 5 start-page: 557 year: 2004 ident: ref32 article-title: Circular binary segmentation for the analysis of array-based DNA copy number data. publication-title: Biostatistics doi: 10.1093/biostatistics/kxh008 – volume: 6 start-page: 1655 year: 2008 ident: ref23 article-title: Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients. publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2008.03095.x – volume: 121 start-page: 23 year: 2007 ident: ref8 article-title: Association of warfarin dose with genes involved in its action and metabolism. publication-title: Hum Genet doi: 10.1007/s00439-006-0260-8 – volume: 447 start-page: 661 year: 2007 ident: ref9 article-title: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. publication-title: Nature doi: 10.1038/nature05911 – volume: 352 start-page: 2285 year: 2005 ident: ref11 article-title: Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. publication-title: N Engl J Med doi: 10.1056/NEJMoa044503 – volume: 113 start-page: 784 year: 2009 ident: ref3 article-title: The largest prospective warfarin-treated cohort supports genetic forecasting. publication-title: Blood doi: 10.1182/blood-2008-04-149070 – volume: 13 start-page: 247 year: 2003 ident: ref1 article-title: Pharmacogenetics of oral anticoagulants. publication-title: Pharmacogenetics doi: 10.1097/00008571-200305000-00002 – volume: 112 start-page: 1022 year: 2008 ident: ref10 article-title: A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. publication-title: Blood doi: 10.1182/blood-2008-01-134247 – volume: 3 start-page: 137 year: 2006 ident: ref27 article-title: A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. publication-title: Clinical Medicine & Research doi: 10.3121/cmr.3.3.137 – volume: 69 start-page: 315 year: 1992 ident: ref13 article-title: A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. publication-title: Heredity doi: 10.1038/hdy.1992.131  | 
    
| SSID | ssj0035897 | 
    
| Score | 2.4981344 | 
    
| Snippet | We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance... We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide...  | 
    
| SourceID | plos doaj unpaywall swepub pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e1000433 | 
    
| SubjectTerms | Anticoagulants Aryl Hydrocarbon Hydroxylases - genetics Clinical pharmacology Cytochrome P-450 Cytochrome P-450 CYP2C9 Cytochrome P-450 Enzyme System - genetics Cytochrome P450 Family 4 Dosage and administration Drug dosages Farmakologisk forskning Fysiologi och farmakologi Genes Genetic aspects Genetics Genetics and Genomics/Pharmacogenomics Genetik Genome-Wide Association Study Genomes Genotype & phenotype Humans Klinisk farmakologi Mathematics/Statistics MEDICIN MEDICINE Metabolism - genetics Mixed Function Oxygenases - genetics Patients Pharmacogenetics Pharmacogenetics - methods Pharmacological research Pharmacology/Personalized Medicine Physiological aspects Physiology and pharmacology Polymorphism, Single Nucleotide Single nucleotide polymorphisms Stroke Sweden Vitamin K Epoxide Reductases Warfarin Warfarin - administration & dosage Warfarin - metabolism  | 
    
| SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6VIAQcEO-a5wrxuNSR7fXzgFAIVAXUFhUSldNqvY8Skdohjgn598zYTlqLVOTAzbJnnWS-mdmdzO43hDxPJETeVDAbJn9h-yxK7URGkZ0iKTbyRbEYzzvvH4R7A__jcXC8RZY9WxsFFmtTO-wnNZiOu79_Lt6Aw7-uujZE7nJQdwIqx6o_cnJdIpdhrkqwmcO-v6orsCCu260EAbMjSPebw3QXvaU1WVWc_qvI3ZmM82LdsvTv3ZUNB-l1crXMJmIxF-PxuTls9ya50Sw-aa-2lltkS2e3yZW6HeXiDvnVo0jZeqrt-UhpKs6QoxULLYXc2YympwUdfjo86rs7tP_ts9dPdqjIFF77ux6MopP6D3z4JHgdHpKk6tymG5obOhdTA0l6RlVe6LtksPv-a3_Pbvoy2BLSwZktmTLCuIoxwUTsKK1CEznGYxELQ4iXjlGgOx0LJ9SwfmR-ijx1qfDD0IC7O-we6WR5prcJ9YSj4sTRhknl4zyphCdjyAlNEIdSJRZhSwC4bEjLsXfGmFeVuAiSl1p1HGHjDWwWsVejJjVpxz_k3yK2K1mk3K5u5NMT3ngwV4aJCL6q75jA16GOZSpDz5W-dN00MKFFnqJl8Pr86ipw8J4LKZuL1VyLPKskkHYjw309J6IsCv7hcLiB0JeDTYSOWkKvGiGTg86kaA5cgOaR86sluY3WvNRNAZpyGSYKfgS_amnhHAIPVpNEpvOy4B42booc52IJeIod7gDE-7VHnIGRsCrXtkjU8pUWAu0n2eh7RX7uhUhHBJC9qL2qNeTdaNirQCvLCtvYs8jLNXLNrR9wpTnk1LDutkh35Z0bGc2D_2E0D8m1ujyJmxofkc5sWurHsMqdpU-qwPUHoTynnA priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88A0Lnxbi46UpSZw6yWNpKQO0bhprtz1FjmNDtS6pmgZU_nrukrQ0sInyFiXnpr7zne9ydz8T8jKQYHkjwUzY_IXpMi8yA-l5ZoSg2IgXxXzsd94b8N2h--mkfbJFmstemPX8PfPstxVHW1NgJ2b0EW_rCtnmbfC8G2R7ODjonBaQqG1meqz4pFJeu5Zbdcpd9jO1nagA7F-Z5cZ0kmYX-Zx_l05WAKM3yLU8mYrFDzGZrG1Q_Vtkbzm1si7lrJXPo5b8-Qfq46Zzv01uVp4q7ZRL6w7ZUsldcrU8u3Jxj3zv0A8qSc-VeTyOFV0TM8XaxAXFXsLx7Dyjo8_7h127SbunB043aFKRxHjt9h0qMnpQfu2HNyECNryL9tYqdGiq6bGYaYjoE9pLM3WfDPvvj7q7ZnWIgykhdpybksVaaDtmTDDhW7GKufYs7TCPcQ7G1dIxTEv5wuIKnE3mRghqFwmXcw22wWIPSCNJE7VDqCOs2A8spZmMXdxUY-FIHwJI3fa5jAODsKVAQ1khnONBG5OwSNt5EOmUrAuRo2HFUYOYq1HTEuHjH_TvcK2saBGfu7gBogsrdQ9jzYQHf9W1dNtVXPkyktyxpSttO2prbpDnuNLCstl1ZWXCjg3xnY2pX4O8KCgQoyPBIqCvIs-y8OP-aAOiL4NNiA5rRG8qIp0Cz6SoujOA8wgQVqPcQe1Y8iYDTtkMowrXg1ktNSYEK4WpJ5GoNM9CB0958izrcgp4isfhgRAflhr2WxgBKwJzg3g13atJoP4kGX8rkNIdjthFILJXpZbWhvTGo04htDwvZOs7Bnl9AV116wyuVAgBODjpBmmttH2jRfPofwc8JtfLvCVWOz4hjfksV0_B_Z1Hzyqr9wsyFavx priority: 102 providerName: Unpaywall  | 
    
| Title | A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/19300499 https://www.proquest.com/docview/20596700 https://www.proquest.com/docview/67054419 https://pubmed.ncbi.nlm.nih.gov/PMC2652833 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-100082 http://kipublications.ki.se/Default.aspx?queryparsed=id:118835860 https://doi.org/10.1371/journal.pgen.1000433 https://doaj.org/article/df3a790e40f54e6e8cbc621c4c11b5f6 http://dx.doi.org/10.1371/journal.pgen.1000433  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: KQ8 dateStart: 20050701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central Full-text customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: 7X7 dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7404 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: BENPR dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7404 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035897 issn: 1553-7404 databaseCode: M48 dateStart: 20050701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiO-Fj2EhPl6WLYmTOHlsu1UDtK4qdNqeIscfUNGl1dJS7b_nLk67RQytD7y0kXNOlfudz776_DtC3qcSPG8umAuTv3BDxnM3lZy7OZJiI18US_C882EvPhiGX06ikyulvjAnzNIDW8XtKsMETz0deiYKdawTmcs48GUofT-PTEW27SXpMpiyPphFiS2rEkXM5RDW14fmGPd3a4x2pgAQ5gggg1djUqq4-1ceemM6npTXLT__zqKsuUYfkHvzYiouFmI8vjJXdR-Rh_Uik7bsyz0mt3TxhNy1ZScvnpLfLYrUrGfaXYyUpuISIVqxzVKIkc3o_Kykx1-PBh1_m3ZO-0En3aaiUHgddgPoRaf2j3r4JXgcHoak6kpyDZ0YuhDnBoLxgqpJqZ-RYXf_e-fAresvuBLCvpkrmTLC-IoxwUTiKa1iwz0TMM7iGPyiZxToTifCizWsE1mYIx9dLsI4NjCsPfacbBSTQm8SGghPJYCiYVKFOB8qEcgEYj8TJbFUqUPYEoBM1uTkWCNjnFU7bhyCFKu6DGHLatgc4q56TS05xw3ybcR2JYvU2lUDGFxWG1x2k8E55C1aRmbPqa4cRNbyITTzcdfWIe8qCaTXKDB_54eYl2X2-eh4DaFvvXWEBg2hT7WQmYDOpKgPVoDmkdurIbmJ1rzUTQma8hkGBCGHt1paeAYOBneNRKEn8zILsEAT97x_S8BdrGQHIL6wI-ISjJRVMbVDeGOsNBBo3ilGPyuS8yBG2iGA7IMdVY0ue6PjVgXafF5hmwQO-XiNXN30C650BrEzrK8dsrManWsZzcv_YTSvyH27DYnJi6_Jxux8rt_AanaWb5Hb_IRvkTut9l67C9_t_V5_sFW5M_g8DBNoG_b6rdM_DpSkSQ | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88A0Lnxbi46UpSZw6yWNpKQO0bhprtz1FjmNDtS6pmgZU_nrukrQ0sInyFiXnpr7zne9ydz8T8jKQYHkjwUzY_IXpMi8yA-l5ZoSg2IgXxXzsd94b8N2h--mkfbJFmstemPX8PfPstxVHW1NgJ2b0EW_rCtnmbfC8G2R7ODjonBaQqG1meqz4pFJeu5Zbdcpd9jO1nagA7F-Z5cZ0kmYX-Zx_l05WAKM3yLU8mYrFDzGZrG1Q_Vtkbzm1si7lrJXPo5b8-Qfq46Zzv01uVp4q7ZRL6w7ZUsldcrU8u3Jxj3zv0A8qSc-VeTyOFV0TM8XaxAXFXsLx7Dyjo8_7h127SbunB043aFKRxHjt9h0qMnpQfu2HNyECNryL9tYqdGiq6bGYaYjoE9pLM3WfDPvvj7q7ZnWIgykhdpybksVaaDtmTDDhW7GKufYs7TCPcQ7G1dIxTEv5wuIKnE3mRghqFwmXcw22wWIPSCNJE7VDqCOs2A8spZmMXdxUY-FIHwJI3fa5jAODsKVAQ1khnONBG5OwSNt5EOmUrAuRo2HFUYOYq1HTEuHjH_TvcK2saBGfu7gBogsrdQ9jzYQHf9W1dNtVXPkyktyxpSttO2prbpDnuNLCstl1ZWXCjg3xnY2pX4O8KCgQoyPBIqCvIs-y8OP-aAOiL4NNiA5rRG8qIp0Cz6SoujOA8wgQVqPcQe1Y8iYDTtkMowrXg1ktNSYEK4WpJ5GoNM9CB0958izrcgp4isfhgRAflhr2WxgBKwJzg3g13atJoP4kGX8rkNIdjthFILJXpZbWhvTGo04htDwvZOs7Bnl9AV116wyuVAgBODjpBmmttH2jRfPofwc8JtfLvCVWOz4hjfksV0_B_Z1Hzyqr9wsyFavx | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+genome-wide+association+study+confirms+VKORC1%2C+CYP2C9%2C+and+CYP4F2+as+principal+genetic+determinants+of+warfarin+dose&rft.jtitle=PLoS+genetics&rft.au=Fumihiko+Takeuchi&rft.au=Ralph+McGinnis&rft.au=Stephane+Bourgeois&rft.au=Chris+Barnes&rft.date=2009-03-01&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=5&rft.issue=3&rft.spage=e1000433&rft_id=info:doi/10.1371%2Fjournal.pgen.1000433&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_df3a790e40f54e6e8cbc621c4c11b5f6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |