Solving Saint Venant torsion problems for rectangular beams using single finite Fourier sine transform method

This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem is a common theme in the theory of elasticity of unrestrained torsion which was previously expressed by Prandtl using Prandtl stress functio...

Full description

Saved in:
Bibliographic Details
Published inJournal of Mechatronics and Artificial Intelligence in Engineering Vol. 5; no. 1; pp. 31 - 41
Main Author Ike, Charles Chinwuba
Format Journal Article
LanguageEnglish
Published 30.06.2024
Online AccessGet full text
ISSN2669-1116
2669-1116
DOI10.21595/jmai.2024.23927

Cover

Abstract This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem is a common theme in the theory of elasticity of unrestrained torsion which was previously expressed by Prandtl using Prandtl stress functions ϕ ( x , y ) as a Poisson type nonhomogeneous partial differential equation (PDE) called the stress compatibility equation. In this work the SFSTM was applied to the stress compatibility equation, converting the PDE to an easier to solve ordinary differential equation (ODE) in the transformed domain. The boundary conditions were used to find the integration constant and inversion was used to find the solution in the physical domain. The non vanishing stresses and torsional moments were thus found as a single series of infinite terms with rapid convergence. The maximum stresses and moments were found in standard form in terms of torsional parameters which were tabulated for various ratios of the cross-sectional dimensions. A comparison of the torsional parameters with previous results show that the present results are identical with previous results illustrating the accuracy of the SFSTM used. The sine kernel of the SFSTM satisfies the boundary conditions of the problem and contributed to the exact solution obtained. The SFSTM simplified the PDE to an ODE which is simpler to solve.
AbstractList This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem is a common theme in the theory of elasticity of unrestrained torsion which was previously expressed by Prandtl using Prandtl stress functions ϕ ( x , y ) as a Poisson type nonhomogeneous partial differential equation (PDE) called the stress compatibility equation. In this work the SFSTM was applied to the stress compatibility equation, converting the PDE to an easier to solve ordinary differential equation (ODE) in the transformed domain. The boundary conditions were used to find the integration constant and inversion was used to find the solution in the physical domain. The non vanishing stresses and torsional moments were thus found as a single series of infinite terms with rapid convergence. The maximum stresses and moments were found in standard form in terms of torsional parameters which were tabulated for various ratios of the cross-sectional dimensions. A comparison of the torsional parameters with previous results show that the present results are identical with previous results illustrating the accuracy of the SFSTM used. The sine kernel of the SFSTM satisfies the boundary conditions of the problem and contributed to the exact solution obtained. The SFSTM simplified the PDE to an ODE which is simpler to solve.
Author Ike, Charles Chinwuba
Author_xml – sequence: 1
  givenname: Charles Chinwuba
  surname: Ike
  fullname: Ike, Charles Chinwuba
BookMark eNqFkE1LAzEQhoNUsNbePeYPbM1kv5KjFKtCwUOL1yXJztbIblKSXaX_3t3Wgzcv8w4vPAPz3JKZ8w4JuQe24pDL_OGzU3bFGc9WPJW8vCJzXhQyAYBi9me_IcsYrWZZVmY5Az4n3c63X9Yd6E5Z19N3dGqM3odovaPH4HWLXaSNDzSg6ZU7DK0KVKMa2yFO5DRapI11tke68UOwGKYWaR-UiyPb0Q77D1_fketGtRGXv7kg-83Tfv2SbN-eX9eP28SItEwwZdxkYAByBUoJnjVGNsC1KFFjzQB0YWpRcCFNMb4v0lQDq4WSjRZaynRB4HJ2cEd1-lZtWx2D7VQ4VcCqs7FqMlZNxqqzsZFhF8YEH2PA5n_kBxKHc0k
Cites_doi 10.1016/j.ijsolstr.2010.07.007
10.15554/pcij66.3-01
10.1177/1687814015581979
10.20944/preprints202203.0410.v3
10.1016/j.euromechsol.2012.01.007
10.1016/j.compstruc.2014.01.010
10.18280/ama_a.560103
10.1016/j.euromechsol.2009.03.010
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.21595/jmai.2024.23927
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2669-1116
EndPage 41
ExternalDocumentID 10.21595/jmai.2024.23927
10_21595_jmai_2024_23927
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
ADTOC
UNPAY
ID FETCH-LOGICAL-c837-e302c41c115a1aa824fc9f12b87ebed011b6cd86289c6159833b10d8a9fb8b993
IEDL.DBID UNPAY
ISSN 2669-1116
IngestDate Sun Oct 12 06:12:20 EDT 2025
Tue Jul 01 01:05:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c837-e302c41c115a1aa824fc9f12b87ebed011b6cd86289c6159833b10d8a9fb8b993
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.21595/jmai.2024.23927
PageCount 11
ParticipantIDs unpaywall_primary_10_21595_jmai_2024_23927
crossref_primary_10_21595_jmai_2024_23927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-6-30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-6-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of Mechatronics and Artificial Intelligence in Engineering
PublicationYear 2024
References key-10.21595/jmai.2024.23927-cit17
key-10.21595/jmai.2024.23927-cit16
key-10.21595/jmai.2024.23927-cit15
key-10.21595/jmai.2024.23927-cit14
key-10.21595/jmai.2024.23927-cit3
key-10.21595/jmai.2024.23927-cit4
key-10.21595/jmai.2024.23927-cit1
key-10.21595/jmai.2024.23927-cit2
key-10.21595/jmai.2024.23927-cit18
key-10.21595/jmai.2024.23927-cit13
key-10.21595/jmai.2024.23927-cit12
key-10.21595/jmai.2024.23927-cit11
key-10.21595/jmai.2024.23927-cit10
key-10.21595/jmai.2024.23927-cit7
key-10.21595/jmai.2024.23927-cit8
key-10.21595/jmai.2024.23927-cit5
key-10.21595/jmai.2024.23927-cit6
key-10.21595/jmai.2024.23927-cit9
References_xml – ident: key-10.21595/jmai.2024.23927-cit4
  doi: 10.1016/j.ijsolstr.2010.07.007
– ident: key-10.21595/jmai.2024.23927-cit10
– ident: key-10.21595/jmai.2024.23927-cit11
– ident: key-10.21595/jmai.2024.23927-cit14
  doi: 10.15554/pcij66.3-01
– ident: key-10.21595/jmai.2024.23927-cit7
  doi: 10.1177/1687814015581979
– ident: key-10.21595/jmai.2024.23927-cit18
– ident: key-10.21595/jmai.2024.23927-cit12
– ident: key-10.21595/jmai.2024.23927-cit16
  doi: 10.20944/preprints202203.0410.v3
– ident: key-10.21595/jmai.2024.23927-cit17
– ident: key-10.21595/jmai.2024.23927-cit15
– ident: key-10.21595/jmai.2024.23927-cit2
– ident: key-10.21595/jmai.2024.23927-cit13
  doi: 10.1016/j.euromechsol.2012.01.007
– ident: key-10.21595/jmai.2024.23927-cit6
  doi: 10.1016/j.compstruc.2014.01.010
– ident: key-10.21595/jmai.2024.23927-cit8
– ident: key-10.21595/jmai.2024.23927-cit9
  doi: 10.18280/ama_a.560103
– ident: key-10.21595/jmai.2024.23927-cit1
– ident: key-10.21595/jmai.2024.23927-cit3
– ident: key-10.21595/jmai.2024.23927-cit5
  doi: 10.1016/j.euromechsol.2009.03.010
SSID ssib044745012
ssib051329752
Score 2.2631269
Snippet This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 31
Title Solving Saint Venant torsion problems for rectangular beams using single finite Fourier sine transform method
URI https://doi.org/10.21595/jmai.2024.23927
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2669-1116
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044745012
  issn: 2669-1116
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uO3jyBypOdOTgRSFzTdMfOQ7ZGMKGsE3mqSRpItOuG65D9ODf7kvbyRRBvfQQEijv5fV9X_L6PoTOPT-kgWcCwnRLEeYKQ6TxFLHel0DFFM31U_oDvzdmNxNvUp532H9hNu7vIRlx7-pxJqZA4yhrUkjlQQXVfA9QdxXVxoPb9r3VjvN9TiBky1vIH5d9yTrbq3QhXl9Ekmykku5u0ddomXcgtBUkT81VJpvq7Vt_xr-85R7aKfEkbhcbYB9t6fQAzYbzxB4U4CHw_gzfaVvtgq2uDngBlxoySwx4FdsPnj2yBIKLpRYwaivhH7B9JBqbqcWkuFso29lRjbM11sWF_PQhGnU7o-seKXUViAI6SrTbooo5CrCgcIQIKTOKG4fKMACPxhDw0lcxMJ2QK8A7PHRd6bTiUHAjQwl45ghV03mqjxGWDiyP_ZhxRzAjqdRcALP1jAPRbFhcRxdrs0eLontGBKwjt1lkbRZZm0W5zero8tMvv04--c_kU1TNnlf6DNBDJhuo0n_vNMrt8wHB78Ty
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3aHjz5gYoVlRy8KKR20-xHjkUsRVCEtlJPS5JNpLrdFrtF9Nc7s7uVKoJ62UNIYJnJ7LyXzM4j5NQPIh76LmTCtgwTbeWYdr5h6H0NVMzwQj_l5jboDcX1yB9V5x34L8zK_T0kI-lfPE3UGGgcF00OqTxcJ_XAB9RdI_Xh7V3nAbXjgkAyCNnqFvLHZV-yzsYim6m3V5WmK6mku1X2NZoXHQixguS5uch107x_68_4l7fcJpsVnqSdcgPskDWb7ZJJf5riQQHtA-_P6b3FaheKujrgBVppyMwp4FWKHzw8sgSCS7VVMIqV8I8UH6mlboyYlHZLZTsctTRfYl1ayk_vkUH3anDZY5WuAjNAR5ltt7gRngEsqDylIi6ckc7jOgrBowkEvA5MAkwnkgbwjozabe21kkhJpyMNeGaf1LJpZg8I1R4sT4JESE8Jp7m2UgGz9Z0H0exE0iBnS7PHs7J7Rgyso7BZjDaL0WZxYbMGOf_0y6-TD_8z-YjU8peFPQb0kOuTauN8ACjdw8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Saint+Venant+torsion+problems+for+rectangular+beams+using+single+finite+Fourier+sine+transform+method&rft.jtitle=Journal+of+Mechatronics+and+Artificial+Intelligence+in+Engineering&rft.au=Ike%2C+Charles+Chinwuba&rft.date=2024-06-30&rft.issn=2669-1116&rft.eissn=2669-1116&rft.volume=5&rft.issue=1&rft.spage=31&rft.epage=41&rft_id=info:doi/10.21595%2Fjmai.2024.23927&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jmai_2024_23927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2669-1116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2669-1116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2669-1116&client=summon