Solving Saint Venant torsion problems for rectangular beams using single finite Fourier sine transform method
This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem is a common theme in the theory of elasticity of unrestrained torsion which was previously expressed by Prandtl using Prandtl stress functio...
Saved in:
| Published in | Journal of Mechatronics and Artificial Intelligence in Engineering Vol. 5; no. 1; pp. 31 - 41 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
30.06.2024
|
| Online Access | Get full text |
| ISSN | 2669-1116 2669-1116 |
| DOI | 10.21595/jmai.2024.23927 |
Cover
| Abstract | This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem is a common theme in the theory of elasticity of unrestrained torsion which was previously expressed by Prandtl using Prandtl stress functions
ϕ
(
x
,
y
)
as a Poisson type nonhomogeneous partial differential equation (PDE) called the stress compatibility equation. In this work the SFSTM was applied to the stress compatibility equation, converting the PDE to an easier to solve ordinary differential equation (ODE) in the transformed domain. The boundary conditions were used to find the integration constant and inversion was used to find the solution in the physical domain. The non vanishing stresses and torsional moments were thus found as a single series of infinite terms with rapid convergence. The maximum stresses and moments were found in standard form in terms of torsional parameters which were tabulated for various ratios of the cross-sectional dimensions. A comparison of the torsional parameters with previous results show that the present results are identical with previous results illustrating the accuracy of the SFSTM used. The sine kernel of the SFSTM satisfies the boundary conditions of the problem and contributed to the exact solution obtained. The SFSTM simplified the PDE to an ODE which is simpler to solve. |
|---|---|
| AbstractList | This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem is a common theme in the theory of elasticity of unrestrained torsion which was previously expressed by Prandtl using Prandtl stress functions
ϕ
(
x
,
y
)
as a Poisson type nonhomogeneous partial differential equation (PDE) called the stress compatibility equation. In this work the SFSTM was applied to the stress compatibility equation, converting the PDE to an easier to solve ordinary differential equation (ODE) in the transformed domain. The boundary conditions were used to find the integration constant and inversion was used to find the solution in the physical domain. The non vanishing stresses and torsional moments were thus found as a single series of infinite terms with rapid convergence. The maximum stresses and moments were found in standard form in terms of torsional parameters which were tabulated for various ratios of the cross-sectional dimensions. A comparison of the torsional parameters with previous results show that the present results are identical with previous results illustrating the accuracy of the SFSTM used. The sine kernel of the SFSTM satisfies the boundary conditions of the problem and contributed to the exact solution obtained. The SFSTM simplified the PDE to an ODE which is simpler to solve. |
| Author | Ike, Charles Chinwuba |
| Author_xml | – sequence: 1 givenname: Charles Chinwuba surname: Ike fullname: Ike, Charles Chinwuba |
| BookMark | eNqFkE1LAzEQhoNUsNbePeYPbM1kv5KjFKtCwUOL1yXJztbIblKSXaX_3t3Wgzcv8w4vPAPz3JKZ8w4JuQe24pDL_OGzU3bFGc9WPJW8vCJzXhQyAYBi9me_IcsYrWZZVmY5Az4n3c63X9Yd6E5Z19N3dGqM3odovaPH4HWLXaSNDzSg6ZU7DK0KVKMa2yFO5DRapI11tke68UOwGKYWaR-UiyPb0Q77D1_fketGtRGXv7kg-83Tfv2SbN-eX9eP28SItEwwZdxkYAByBUoJnjVGNsC1KFFjzQB0YWpRcCFNMb4v0lQDq4WSjRZaynRB4HJ2cEd1-lZtWx2D7VQ4VcCqs7FqMlZNxqqzsZFhF8YEH2PA5n_kBxKHc0k |
| Cites_doi | 10.1016/j.ijsolstr.2010.07.007 10.15554/pcij66.3-01 10.1177/1687814015581979 10.20944/preprints202203.0410.v3 10.1016/j.euromechsol.2012.01.007 10.1016/j.compstruc.2014.01.010 10.18280/ama_a.560103 10.1016/j.euromechsol.2009.03.010 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.21595/jmai.2024.23927 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2669-1116 |
| EndPage | 41 |
| ExternalDocumentID | 10.21595/jmai.2024.23927 10_21595_jmai_2024_23927 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c837-e302c41c115a1aa824fc9f12b87ebed011b6cd86289c6159833b10d8a9fb8b993 |
| IEDL.DBID | UNPAY |
| ISSN | 2669-1116 |
| IngestDate | Sun Oct 12 06:12:20 EDT 2025 Tue Jul 01 01:05:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c837-e302c41c115a1aa824fc9f12b87ebed011b6cd86289c6159833b10d8a9fb8b993 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.21595/jmai.2024.23927 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_21595_jmai_2024_23927 crossref_primary_10_21595_jmai_2024_23927 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-6-30 |
| PublicationDateYYYYMMDD | 2024-06-30 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-6-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Mechatronics and Artificial Intelligence in Engineering |
| PublicationYear | 2024 |
| References | key-10.21595/jmai.2024.23927-cit17 key-10.21595/jmai.2024.23927-cit16 key-10.21595/jmai.2024.23927-cit15 key-10.21595/jmai.2024.23927-cit14 key-10.21595/jmai.2024.23927-cit3 key-10.21595/jmai.2024.23927-cit4 key-10.21595/jmai.2024.23927-cit1 key-10.21595/jmai.2024.23927-cit2 key-10.21595/jmai.2024.23927-cit18 key-10.21595/jmai.2024.23927-cit13 key-10.21595/jmai.2024.23927-cit12 key-10.21595/jmai.2024.23927-cit11 key-10.21595/jmai.2024.23927-cit10 key-10.21595/jmai.2024.23927-cit7 key-10.21595/jmai.2024.23927-cit8 key-10.21595/jmai.2024.23927-cit5 key-10.21595/jmai.2024.23927-cit6 key-10.21595/jmai.2024.23927-cit9 |
| References_xml | – ident: key-10.21595/jmai.2024.23927-cit4 doi: 10.1016/j.ijsolstr.2010.07.007 – ident: key-10.21595/jmai.2024.23927-cit10 – ident: key-10.21595/jmai.2024.23927-cit11 – ident: key-10.21595/jmai.2024.23927-cit14 doi: 10.15554/pcij66.3-01 – ident: key-10.21595/jmai.2024.23927-cit7 doi: 10.1177/1687814015581979 – ident: key-10.21595/jmai.2024.23927-cit18 – ident: key-10.21595/jmai.2024.23927-cit12 – ident: key-10.21595/jmai.2024.23927-cit16 doi: 10.20944/preprints202203.0410.v3 – ident: key-10.21595/jmai.2024.23927-cit17 – ident: key-10.21595/jmai.2024.23927-cit15 – ident: key-10.21595/jmai.2024.23927-cit2 – ident: key-10.21595/jmai.2024.23927-cit13 doi: 10.1016/j.euromechsol.2012.01.007 – ident: key-10.21595/jmai.2024.23927-cit6 doi: 10.1016/j.compstruc.2014.01.010 – ident: key-10.21595/jmai.2024.23927-cit8 – ident: key-10.21595/jmai.2024.23927-cit9 doi: 10.18280/ama_a.560103 – ident: key-10.21595/jmai.2024.23927-cit1 – ident: key-10.21595/jmai.2024.23927-cit3 – ident: key-10.21595/jmai.2024.23927-cit5 doi: 10.1016/j.euromechsol.2009.03.010 |
| SSID | ssib044745012 ssib051329752 |
| Score | 2.2631269 |
| Snippet | This research presents the single Fourier sine transform method (SFSTM) for solving the Saint Venant torsion problem of rectangular prismatic bars. The problem... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 31 |
| Title | Solving Saint Venant torsion problems for rectangular beams using single finite Fourier sine transform method |
| URI | https://doi.org/10.21595/jmai.2024.23927 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2669-1116 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044745012 issn: 2669-1116 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5uO3jyBypOdOTgRSFzTdMfOQ7ZGMKGsE3mqSRpItOuG65D9ODf7kvbyRRBvfQQEijv5fV9X_L6PoTOPT-kgWcCwnRLEeYKQ6TxFLHel0DFFM31U_oDvzdmNxNvUp532H9hNu7vIRlx7-pxJqZA4yhrUkjlQQXVfA9QdxXVxoPb9r3VjvN9TiBky1vIH5d9yTrbq3QhXl9Ekmykku5u0ddomXcgtBUkT81VJpvq7Vt_xr-85R7aKfEkbhcbYB9t6fQAzYbzxB4U4CHw_gzfaVvtgq2uDngBlxoySwx4FdsPnj2yBIKLpRYwaivhH7B9JBqbqcWkuFso29lRjbM11sWF_PQhGnU7o-seKXUViAI6SrTbooo5CrCgcIQIKTOKG4fKMACPxhDw0lcxMJ2QK8A7PHRd6bTiUHAjQwl45ghV03mqjxGWDiyP_ZhxRzAjqdRcALP1jAPRbFhcRxdrs0eLontGBKwjt1lkbRZZm0W5zero8tMvv04--c_kU1TNnlf6DNBDJhuo0n_vNMrt8wHB78Ty |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA3aHjz5gYoVlRy8KKR20-xHjkUsRVCEtlJPS5JNpLrdFrtF9Nc7s7uVKoJ62UNIYJnJ7LyXzM4j5NQPIh76LmTCtgwTbeWYdr5h6H0NVMzwQj_l5jboDcX1yB9V5x34L8zK_T0kI-lfPE3UGGgcF00OqTxcJ_XAB9RdI_Xh7V3nAbXjgkAyCNnqFvLHZV-yzsYim6m3V5WmK6mku1X2NZoXHQixguS5uch107x_68_4l7fcJpsVnqSdcgPskDWb7ZJJf5riQQHtA-_P6b3FaheKujrgBVppyMwp4FWKHzw8sgSCS7VVMIqV8I8UH6mlboyYlHZLZTsctTRfYl1ayk_vkUH3anDZY5WuAjNAR5ltt7gRngEsqDylIi6ckc7jOgrBowkEvA5MAkwnkgbwjozabe21kkhJpyMNeGaf1LJpZg8I1R4sT4JESE8Jp7m2UgGz9Z0H0exE0iBnS7PHs7J7Rgyso7BZjDaL0WZxYbMGOf_0y6-TD_8z-YjU8peFPQb0kOuTauN8ACjdw8E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Saint+Venant+torsion+problems+for+rectangular+beams+using+single+finite+Fourier+sine+transform+method&rft.jtitle=Journal+of+Mechatronics+and+Artificial+Intelligence+in+Engineering&rft.au=Ike%2C+Charles+Chinwuba&rft.date=2024-06-30&rft.issn=2669-1116&rft.eissn=2669-1116&rft.volume=5&rft.issue=1&rft.spage=31&rft.epage=41&rft_id=info:doi/10.21595%2Fjmai.2024.23927&rft.externalDBID=n%2Fa&rft.externalDocID=10_21595_jmai_2024_23927 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2669-1116&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2669-1116&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2669-1116&client=summon |