Examining the Relationship of Breast Cancer Data With Survival Chance and Comparison of Algorithms on Breast Cancer Prediction

This article compares the performance of machine learning algorithms on breast cancer data. The aim is to predict the survival status of breast cancer patients and contribute to the development of clinical decision support systems. Using a dataset obtained from the National Cancer Institute, XGBoost...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Applied Methods in Electronics and Computers
Main Authors Tiryaki, Ali Murat, Ahmet Can Mermer, Ahmet Can x, Ugurlu, Bora
Format Journal Article
LanguageEnglish
Published 31.03.2025
Online AccessGet full text
ISSN3023-4409
3023-4409
DOI10.58190/ijamec.2025.117

Cover

Abstract This article compares the performance of machine learning algorithms on breast cancer data. The aim is to predict the survival status of breast cancer patients and contribute to the development of clinical decision support systems. Using a dataset obtained from the National Cancer Institute, XGBoost, Random Forest, Support Vector Machines (SVM), and Logistic Regression algorithms were compared. Data preprocessing steps were applied, correlation analysis was performed, and it was determined that the XGBoost algorithm showed the best performance with hyperparameter optimization. The metrics obtained after hyperparameter optimization of the XGBoost algorithm show an overall accuracy of 92%. Optimization has resulted in high performance for class 0 (precision 92%, recall 98%), but the recall for class 1 remains at 54%. The article discusses the effect of data imbalance on the results and offers suggestions for future studies. This article compares the performance of machine learning algorithms on breast cancer data. The aim is to predict the survival status of breast cancer patients and contribute to the development of clinical decision support systems. Using a dataset obtained from the National Cancer Institute, XGBoost, Random Forest, Support Vector Machines (SVM), and Logistic Regression algorithms were compared. Data preprocessing steps were applied, correlation analysis was performed, and it was determined that the XGBoost algorithm showed the best performance with hyperparameter optimization. The metrics obtained after hyperparameter optimization of the XGBoost algorithm show an overall accuracy of 92%. Optimization has resulted in high performance for class 0 (precision 92%, recall 98%), but the recall for class 1 remains at 54%. The article discusses the effect of data imbalance on the results and offers suggestions for future studies.
AbstractList This article compares the performance of machine learning algorithms on breast cancer data. The aim is to predict the survival status of breast cancer patients and contribute to the development of clinical decision support systems. Using a dataset obtained from the National Cancer Institute, XGBoost, Random Forest, Support Vector Machines (SVM), and Logistic Regression algorithms were compared. Data preprocessing steps were applied, correlation analysis was performed, and it was determined that the XGBoost algorithm showed the best performance with hyperparameter optimization. The metrics obtained after hyperparameter optimization of the XGBoost algorithm show an overall accuracy of 92%. Optimization has resulted in high performance for class 0 (precision 92%, recall 98%), but the recall for class 1 remains at 54%. The article discusses the effect of data imbalance on the results and offers suggestions for future studies. This article compares the performance of machine learning algorithms on breast cancer data. The aim is to predict the survival status of breast cancer patients and contribute to the development of clinical decision support systems. Using a dataset obtained from the National Cancer Institute, XGBoost, Random Forest, Support Vector Machines (SVM), and Logistic Regression algorithms were compared. Data preprocessing steps were applied, correlation analysis was performed, and it was determined that the XGBoost algorithm showed the best performance with hyperparameter optimization. The metrics obtained after hyperparameter optimization of the XGBoost algorithm show an overall accuracy of 92%. Optimization has resulted in high performance for class 0 (precision 92%, recall 98%), but the recall for class 1 remains at 54%. The article discusses the effect of data imbalance on the results and offers suggestions for future studies.
Author Ahmet Can Mermer, Ahmet Can x
Ugurlu, Bora
Tiryaki, Ali Murat
Author_xml – sequence: 1
  givenname: Ali Murat
  orcidid: 0000-0001-8224-6319
  surname: Tiryaki
  fullname: Tiryaki, Ali Murat
– sequence: 2
  givenname: Ahmet Can x
  orcidid: 0009-0000-9587-8251
  surname: Ahmet Can Mermer
  fullname: Ahmet Can Mermer, Ahmet Can x
– sequence: 3
  givenname: Bora
  orcidid: 0000-0001-6769-9563
  surname: Ugurlu
  fullname: Ugurlu, Bora
BookMark eNqFkE1PwzAMhiM0JMbYnWP-QEfSpGtzHGV8SJNAMIlj5aXuGtSmVdINduG30zIOcOJky_bzWnrOycg2Fgm55GwWJVyxK_MGNepZyMJoxnl8QsaChSKQkqnRr_6MTL03GxZJIaOEiTH5XH5AbayxW9qVSJ-xgs401pempU1Brx2C72gKVqOjN9ABfTVdSV92bm_2UNG0HFYUbE7Tpm7BGd_YgVxU28b1p7Wn_eBvzpPD3OjhzwU5LaDyOP2pE7K-Xa7T-2D1ePeQLlaBTkQcSCGYjGOtNQIWSiquWVJIliipQw4SpVAIMBfJBqQq4hzjOJqjFipnLC9CMSH8GLuzLRzeoaqy1pka3CHjLPtWmB0VZoPCrFfYM-zIaNd477D4H_kCCOl5NA
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.58190/ijamec.2025.117
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 3023-4409
ExternalDocumentID 10.58190/ijamec.2025.117
10_58190_ijamec_2025_117
GroupedDBID AAYXX
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c837-4330477ccceaef9491c08f40894c21a4e439eaa638ba49f7de7756ec39d00df23
IEDL.DBID UNPAY
ISSN 3023-4409
IngestDate Tue Aug 19 23:30:30 EDT 2025
Wed Oct 01 06:32:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c837-4330477ccceaef9491c08f40894c21a4e439eaa638ba49f7de7756ec39d00df23
ORCID 0009-0000-9587-8251
0000-0001-8224-6319
0000-0001-6769-9563
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ijamec.org/index.php/ijamec/article/download/444/377
ParticipantIDs unpaywall_primary_10_58190_ijamec_2025_117
crossref_primary_10_58190_ijamec_2025_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-31
PublicationDateYYYYMMDD 2025-03-31
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-31
  day: 31
PublicationDecade 2020
PublicationTitle International Journal of Applied Methods in Electronics and Computers
PublicationYear 2025
SSID ssib054345803
Score 2.2896357
Snippet This article compares the performance of machine learning algorithms on breast cancer data. The aim is to predict the survival status of breast cancer patients...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Examining the Relationship of Breast Cancer Data With Survival Chance and Comparison of Algorithms on Breast Cancer Prediction
URI https://ijamec.org/index.php/ijamec/article/download/444/377
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD : Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 3023-4409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib054345803
  issn: 3023-4409
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG54HDz5iBoxSnrwosnCAu12m3hBhBATDIkQ8WBIt-0KCgtZl_g48NudsstGvBi9NrPdpjPtfJPOfIPQmaAAOioazjfXVYv4VFrcp8pyararAI97nmfqnTu3TrtPbgZ0kEGXaS3Ms5jqmCB4RRdoOCKSwXKyl2VlaORnQpUJIeUaY1mUdygg8RzK92-79QfTmAxckUUgdolfJqnxe-u5Idyn5q1ywxNtLYK5-HgTk8k399LaQY_rhcVZJS-lReSV5OcPzsb_rnwXbSe4E9djkT2U0cE-WjbfxXTVIQIDDsRpYtxoPMczH1-ZhPUIN4xhhPhaRALfj6MRvlvA_QIWik1pgtRYBAo30n6G5sv65GkWguj0FcPA5jzd0LwNmf8coF6r2Wu0raQhgyUhjjXFVTZhTEqphfY54RVpuz6xXU5ktSKIBnCjhYAT7QnCfaY0Y9TRssaVbSu_WjtEuWAW6COEAVgKl_KqI11GpFRcVZiC2M3zmO0LzQrofK2b4Tym3RhCuLLS4zDe1KHRo-EqL6CLVHm_Ch__RfgE5aJwoU8BdkReEWU7y2YxsbEvOGHfgg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QDp58RI0aNT140WTZB-12m3hBhBATCYkQ8WBIt-0KCgvBJT4O_nan7LIRL0avzWy36Uw736Qz3yB0KiiADlfD-ebas0hEpcUjqiy_4gQK8HgYhqbe-ablN7vkukd7BXSR18I8ibFOCYIXdIGGIyIbtLO9tJWhkZ8IZRNC7Apja6jkU0DiRVTqttrVe9OYDFyRRSB2SV8mqfF7y7kh3KfmrXLFE63P46l4fxWj0Tf30thED8uFpVklz-V5Epblxw_Oxv-ufAttZLgTV1ORbVTQ8Q76rL-J8aJDBAYciPPEuMFwiicRvjQJ6wmuGcOY4SuRCHw3TAb4dg73C1goNqUJUmMRK1zL-xmaL6ujx8kMRMcvGAZW52nPzNuQ-c8u6jTqnVrTyhoyWBLiWFNc5RDGpJRa6IgT7koniIgTcCI9VxAN4EYLASc6FIRHTGnGqK9lhSvHUZFX2UPFeBLrfYQBWIqAcs-XASNSKq5cpiB2C0PmREKzA3S21E1_mtJu9CFcWeixn25q3-jRcJUfoPNceb8KH_5F-AgVk9lcHwPsSMKTzLq-AP_R3lE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+the+Relationship+of+Breast+Cancer+Data+With+Survival+Chance+and+Comparison+of+Algorithms+on+Breast+Cancer+Prediction&rft.jtitle=International+Journal+of+Applied+Methods+in+Electronics+and+Computers&rft.au=Tiryaki%2C+Ali+Murat&rft.au=Ahmet+Can+Mermer%2C+Ahmet+Can+x&rft.au=Ugurlu%2C+Bora&rft.date=2025-03-31&rft.issn=3023-4409&rft.eissn=3023-4409&rft_id=info:doi/10.58190%2Fijamec.2025.117&rft.externalDBID=n%2Fa&rft.externalDocID=10_58190_ijamec_2025_117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3023-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3023-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3023-4409&client=summon