Multi-Modal Graph-Aware Transformer with Contrastive Fusion for Brain Tumor Segmentation

Accurate segmentation of brain tumors in MRI images is critical for early diagnosis, surgical planning, and effective treatment strategies. Traditional deep learning models such as U-Net, Attention U-Net, and Swin-U-Net have demonstrated commendable success in tumor segmentation by leveraging Convol...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronics, electromedical engineering, and medical informatics Vol. 7; no. 4; pp. 1226 - 1239
Main Authors Chowdhury, Rini, Kumar, Prashant, Suganthi, R., Ammu, V., Evance Leethial, R., Roopa, C.
Format Journal Article
LanguageEnglish
Published 15.10.2025
Online AccessGet full text
ISSN2656-8632
2656-8632
DOI10.35882/jeeemi.v7i4.993

Cover

Abstract Accurate segmentation of brain tumors in MRI images is critical for early diagnosis, surgical planning, and effective treatment strategies. Traditional deep learning models such as U-Net, Attention U-Net, and Swin-U-Net have demonstrated commendable success in tumor segmentation by leveraging Convolutional Neural Networks (CNNs) and transformer-based encoders. However, these models often fall short in effectively capturing complex inter-modality interactions and long-range spatial dependencies, particularly in tumor regions with diffuse or poorly defined boundaries. Additionally, they suffer from limited generalization capabilities and demand substantial computational resources. AIM: To overcome these limitations, a novel approach named Graph-Aware Transformer with Contrastive Fusion (GAT-CF) is introduced. This model enhances segmentation performance by integrating spatial attention mechanisms of transformers with graph-based relational reasoning across multiple MRI modalities, namely T1, T2, FLAIR, and T1CE. The graph-aware structure models inter-slice and intra-slice relationships more effectively, promoting better structural understanding of tumor regions. Furthermore, a multi-modal contrastive learning strategy is employed to align semantic features and distinguish complementary modality-specific information, thereby improving the model’s discriminative power. The fusion of these techniques facilitates improved contextual understanding and more accurate boundary delineation in complex tumor regions. When evaluated on the BraTS2021 dataset, the proposed GAT-CF model achieved a Dice score of 99.1% and an IoU of 98.4%, surpassing the performance of state-of-the-art architectures like Swin-UNet and SegResNet. It also demonstrated superior accuracy in detecting and enhancing tumor voxels and core tumor regions, highlighting its robustness, precision, and potential for clinical adoption in neuroimaging applications
AbstractList Accurate segmentation of brain tumors in MRI images is critical for early diagnosis, surgical planning, and effective treatment strategies. Traditional deep learning models such as U-Net, Attention U-Net, and Swin-U-Net have demonstrated commendable success in tumor segmentation by leveraging Convolutional Neural Networks (CNNs) and transformer-based encoders. However, these models often fall short in effectively capturing complex inter-modality interactions and long-range spatial dependencies, particularly in tumor regions with diffuse or poorly defined boundaries. Additionally, they suffer from limited generalization capabilities and demand substantial computational resources. AIM: To overcome these limitations, a novel approach named Graph-Aware Transformer with Contrastive Fusion (GAT-CF) is introduced. This model enhances segmentation performance by integrating spatial attention mechanisms of transformers with graph-based relational reasoning across multiple MRI modalities, namely T1, T2, FLAIR, and T1CE. The graph-aware structure models inter-slice and intra-slice relationships more effectively, promoting better structural understanding of tumor regions. Furthermore, a multi-modal contrastive learning strategy is employed to align semantic features and distinguish complementary modality-specific information, thereby improving the model’s discriminative power. The fusion of these techniques facilitates improved contextual understanding and more accurate boundary delineation in complex tumor regions. When evaluated on the BraTS2021 dataset, the proposed GAT-CF model achieved a Dice score of 99.1% and an IoU of 98.4%, surpassing the performance of state-of-the-art architectures like Swin-UNet and SegResNet. It also demonstrated superior accuracy in detecting and enhancing tumor voxels and core tumor regions, highlighting its robustness, precision, and potential for clinical adoption in neuroimaging applications
Author Kumar, Prashant
Ammu, V.
Roopa, C.
Chowdhury, Rini
Suganthi, R.
Evance Leethial, R.
Author_xml – sequence: 1
  givenname: Rini
  orcidid: 0009-0009-6592-4216
  surname: Chowdhury
  fullname: Chowdhury, Rini
– sequence: 2
  givenname: Prashant
  orcidid: 0009-0007-3378-615X
  surname: Kumar
  fullname: Kumar, Prashant
– sequence: 3
  givenname: R.
  orcidid: 0000-0002-7045-5321
  surname: Suganthi
  fullname: Suganthi, R.
– sequence: 4
  givenname: V.
  orcidid: 0009-0007-1970-6758
  surname: Ammu
  fullname: Ammu, V.
– sequence: 5
  givenname: R.
  orcidid: 0009-0002-6636-060X
  surname: Evance Leethial
  fullname: Evance Leethial, R.
– sequence: 6
  givenname: C.
  orcidid: 0009-0003-1831-0680
  surname: Roopa
  fullname: Roopa, C.
BookMark eNqFkD1vwjAURa2KSqWUvaP_QKg_SGKPFBWoBOrQDN2iR_JcjBIH2QkR_75p6dCt07tPV-cO556MXOOQkEfOZjJWSjwdEbG2s3Nq5zOt5Q0ZiyROIpVIMfqT78g0hCNjTKg0jjkbk49dV7U22jUlVHTt4XSIFj14pJkHF0zja_S0t-2BLhvXegitPSNddcE2jg41ffZgHc26esjv-Fmja6Edygdya6AKOP29E5KtXrLlJtq-rV-Xi21UKCmjVKA2ptCG70HthS4AEyUMyNjoolRSzaWRrEwQh48nWKQSU5GWkiEze67lhPDrbOdOcOmhqvKTtzX4S85Z_iMnv8rJv-Xkg5yBYVem8E0IHs3_yBeSOW5d
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.35882/jeeemi.v7i4.993
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2656-8632
EndPage 1239
ExternalDocumentID 10.35882/jeeemi.v7i4.993
10_35882_jeeemi_v7i4_993
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c833-72e9ffc9f1ba8b29cae682fa35f9cd83843f30d6eecd816ec73e727d30e0fb193
IEDL.DBID UNPAY
ISSN 2656-8632
IngestDate Sun Oct 19 05:41:23 EDT 2025
Sat Oct 25 05:10:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-sa/4.0
cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c833-72e9ffc9f1ba8b29cae682fa35f9cd83843f30d6eecd816ec73e727d30e0fb193
ORCID 0009-0002-6636-060X
0009-0007-3378-615X
0000-0002-7045-5321
0009-0007-1970-6758
0009-0009-6592-4216
0009-0003-1831-0680
OpenAccessLink https://proxy.k.utb.cz/login?url=https://jeeemi.org/index.php/jeeemi/article/download/993/332
PageCount 14
ParticipantIDs unpaywall_primary_10_35882_jeeemi_v7i4_993
crossref_primary_10_35882_jeeemi_v7i4_993
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of electronics, electromedical engineering, and medical informatics
PublicationYear 2025
SSID ssj0002875510
Score 2.3089075
Snippet Accurate segmentation of brain tumors in MRI images is critical for early diagnosis, surgical planning, and effective treatment strategies. Traditional deep...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 1226
Title Multi-Modal Graph-Aware Transformer with Contrastive Fusion for Brain Tumor Segmentation
URI https://jeeemi.org/index.php/jeeemi/article/download/993/332
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2656-8632
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002875510
  issn: 2656-8632
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-6PYgPfouKSh58UcjWNV2Tgi9TnCJsCE6YD1KS9CJ-rJO5Kvrg3-5lbWX6IvrWtEcIdyX3u0vud4TsGekpX4DPMPpJGOJbj0nwNVPKVWImgRDa5SE73fDsKjjvN_sz5LCshbkHgEF-hD-hC3QcEcXLeqHLeuJo5IcqqaNvrXOOG3A1bCISr5DqVfeide36ySFMYTLkfn4yyZsIJMu5X8RdUIsi_s0TzWXpk3p7VY-PU-6lvUhuyoXlt0oeatlY18z7D87G_658iSwUuJO2cpFlMgPpCpmfYiNcJf1JMS7rDBMUPHVE1qz1qkZAeyW4hRF1eVvqKK1G6tntlLSduXwbxc_0yLWboL1sgM-XcDsoyprSNdJrn_SOz1jReIEZyTkTPkTWmsg2tJLaj4yCUPpW8aaNTCK5DLjlXhIC4KgRghEcEAYl3APPakSE66SSDlPYIFRLjYAowJjQupJVjNyFkSAij1thIm43yX5pg_gpp9eIMSyZ2CvOlRc7e8WosE1y8GWkX4W3_iK8TSrjUQY7CC_GepfMdj5Odot_6RPZANlE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA6yPYgP_hYnKnnwRSFb13RNCr5McQ5BEZwwH6Qk6UXUrRtzdehf72VtRX0RfWvaI4S7kvvukvuOkAMjPeUL8BlGPwlDfOsxCb5mSrlKzCQQQrs85OVV2L0NLvqt_gI5LmthngBgmB_hz-kCHUdE8bJR6LKROBr5kUoa6FsbnOMGXA1biMQrpHp7dd2-c_3kEKYwGXI_P5nkLQSS5dyv4jGoRxH_5okWs3Ss3mZqMPjiXjor5L5cWH6r5LmeTXXdvP_gbPzvylfJcoE7aTsXWSMLkK6TpS9shBukPy_GZZejBAXPHZE1a8_UBGivBLcwoS5vSx2l1US9uJ2SdjKXb6P4mZ64dhO0lw3x-QYehkVZU7pJep2z3mmXFY0XmJGcM-FDZK2JbFMrqf3IKAilbxVv2cgkksuAW-4lIQCOmiEYwQFhUMI98KxGRLhFKukohW1CtdQIiAKMCa0rWcXIXRgJIvK4FSbitkYOSxvE45xeI8awZG6vOFde7OwVo8Jq5OjTSL8K7_xFeJdUppMM9hBeTPV-8Rd9AMXz2BM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Graph-Aware+Transformer+with+Contrastive+Fusion+for+Brain+Tumor+Segmentation&rft.jtitle=Journal+of+electronics%2C+electromedical+engineering%2C+and+medical+informatics&rft.au=Chowdhury%2C+Rini&rft.au=Kumar%2C+Prashant&rft.au=Suganthi%2C+R.&rft.au=Ammu%2C+V.&rft.date=2025-10-15&rft.issn=2656-8632&rft.eissn=2656-8632&rft.volume=7&rft.issue=4&rft.spage=1226&rft.epage=1239&rft_id=info:doi/10.35882%2Fjeeemi.v7i4.993&rft.externalDBID=n%2Fa&rft.externalDocID=10_35882_jeeemi_v7i4_993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2656-8632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2656-8632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2656-8632&client=summon