Performance Analysis of the Decision Tree Classification Algorithm on the Water Quality and Potability Dataset
Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm in predicting water potability using the Water Quality and Potability dataset. Employing a 5-fold cross-validation technique, the model showca...
Saved in:
| Published in | Indonesian Journal of Data and Science Vol. 4; no. 3; pp. 145 - 150 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
31.12.2023
|
| Online Access | Get full text |
| ISSN | 2715-9930 2715-9930 |
| DOI | 10.56705/ijodas.v4i3.113 |
Cover
| Abstract | Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm in predicting water potability using the Water Quality and Potability dataset. Employing a 5-fold cross-validation technique, the model showcased a moderate performance with an average accuracy of approximately 54.33%. While the Decision Tree provides a baseline and interpretable mechanism for classification, the results emphasize the need for further exploration using more intricate models or ensemble methods. This study contributes to the broader effort of leveraging machine learning techniques for water quality assessment and provides insights into the potential and limitations of such models in predicting water safety |
|---|---|
| AbstractList | Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm in predicting water potability using the Water Quality and Potability dataset. Employing a 5-fold cross-validation technique, the model showcased a moderate performance with an average accuracy of approximately 54.33%. While the Decision Tree provides a baseline and interpretable mechanism for classification, the results emphasize the need for further exploration using more intricate models or ensemble methods. This study contributes to the broader effort of leveraging machine learning techniques for water quality assessment and provides insights into the potential and limitations of such models in predicting water safety |
| Author | Sumiyatun, Sumiyatun Naswin, Ahmad Zaky, Umar Murdiyanto, Aris Wahyu |
| Author_xml | – sequence: 1 givenname: Umar surname: Zaky fullname: Zaky, Umar – sequence: 2 givenname: Ahmad surname: Naswin fullname: Naswin, Ahmad – sequence: 3 givenname: Sumiyatun surname: Sumiyatun fullname: Sumiyatun, Sumiyatun – sequence: 4 givenname: Aris Wahyu surname: Murdiyanto fullname: Murdiyanto, Aris Wahyu |
| BookMark | eNqFkE1rAjEQhkOxUGu995g_sDbZZDebo2i_QKiFhR6XMZvUyJpIElv233fVHnrraeYd5hmG5xaNnHcaoXtKZkUpSPFgd76FOPvils0oZVdonAtaZFIyMvrT36BpjDtCSC5JxQgfI7fWwfiwB6c0njvo-mgj9ganrcZLrWy03uE6aI0XHcRojVWQTrN59-mDTds9HsJp-wOSDvj9CJ1NPQbX4rVPsLHnuIQEUac7dG2gi3r6WyeofnqsFy_Z6u35dTFfZapiLKPU6FIUQE3LJQy_lpJrrQhoIQoledluKC0UlYKLkudctAYKxsuNZKyqcsImiF7OHt0B-m_ouuYQ7B5C31DSnJU1F2XNSVkzKBsYcmFU8DEGbf5HfgB1SHRB |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.56705/ijodas.v4i3.113 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2715-9930 |
| EndPage | 150 |
| ExternalDocumentID | 10.56705/ijodas.v4i3.113 10_56705_ijodas_v4i3_113 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E ADTOC UNPAY |
| ID | FETCH-LOGICAL-c833-11fe675a1fd49a290694eec0ae775c946db115c1974764247dfa5346b93388203 |
| IEDL.DBID | UNPAY |
| ISSN | 2715-9930 |
| IngestDate | Tue Aug 19 18:19:56 EDT 2025 Tue Jul 01 00:57:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c833-11fe675a1fd49a290694eec0ae775c946db115c1974764247dfa5346b93388203 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.56705/ijodas.v4i3.113 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_56705_ijodas_v4i3_113 crossref_primary_10_56705_ijodas_v4i3_113 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-31 |
| PublicationDateYYYYMMDD | 2023-12-31 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Indonesian Journal of Data and Science |
| PublicationYear | 2023 |
| SSID | ssj0002908304 |
| Score | 2.245113 |
| Snippet | Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 145 |
| Title | Performance Analysis of the Decision Tree Classification Algorithm on the Water Quality and Potability Dataset |
| URI | https://doi.org/10.56705/ijodas.v4i3.113 |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2715-9930 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002908304 issn: 2715-9930 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHA1uO3jyAxUnOnLwopDZLEm7HofbGMLGDhvOU0mbVKezHV2nzIN_u7-0nV8I6qkUfoXyS-C9l4_3EDp1G1RRFVrEdQJOOAs58S3dILqhpG6GBjHNekd_YPfG_GoiJsV6h7kL82n_XtiOJS6m97GSi_oTnzKTP1JCFVsA6y6jyngwbN2Y7DiHCgIwa-W7kD9-9gV1NpfRXK6e5Wz2CUq627mv0SJzIDQnSB7qy9SvBy_f_Bn_8pc7aKvgk7iVT4BdtKGjPRQNP64D4LXtCI5DDGwPt4tUHTxKtMZZKKY5LpSNEG7NbuNkmt49Yngx1dfARROcO22ssIwUHsZp7u29wm2ZAgim-2jU7Ywue6QIViBBkzFCaahBJ0gaKu5K4_fucq0DS2rHEYHLbeUDTwyokRogT7ijQikYt30X9CwwBnaAylEc6UOEmbC5VEw1gZhwroCrSPPUlPuBw7RdRWfrvnvz3D7DA9mRNc3Lm-aZpoEQYVV0_j4wvxYf_af4GJXTZKlPgD6kfg2V-q-dWjF_3gBu9Mh8 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAGFy0PXjygYoVlT14Udia7T7SHIu1FMHSQ4v1FDbZjVZrUtJUqb_eb5NUqwjqKQS-QPh2YWb2MYPQqdegmurIIZ4bcsJZxEngmAYxDa1MM7KIadc7bnqyO-TXIzEq1zvsXZiV_XshXUdcjB8TrWb1Fz5mNn9kHVWlANZdQdVhr9-6s9lxLhUEYNYpdiF__OwL6mzM46lavKrJZAVKOluFr9EsdyC0J0ie6vMsqIdv3_wZ__KX22iz5JO4VUyAHbRm4l0U9z-vA-Cl7QhOIgxsD7fLVB08SI3BeSimPS6UjxBuTe6TdJw9PGN4sdW3wEVTXDhtLLCKNe4nWeHtvcBtlQEIZnto0LkaXHZJGaxAwiZjhNLIgE5QNNLcU9bv3ePGhI4yritCj0sdAE8MqZUaIE-4qyMlGJeBB3oWGAPbR5U4ic0BwkxIrjTTTSAmnGvgKso-DeVB6DIja-hs2Xd_Wthn-CA78qb5RdN82zQQIqyGzj8G5tfiw_8UH6FKls7NMdCHLDgpZ847wJfHSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Analysis+of+the+Decision+Tree+Classification+Algorithm+on+the+Water+Quality+and+Potability+Dataset&rft.jtitle=Indonesian+Journal+of+Data+and+Science&rft.au=Zaky%2C+Umar&rft.au=Naswin%2C+Ahmad&rft.au=Sumiyatun%2C+Sumiyatun&rft.au=Murdiyanto%2C+Aris+Wahyu&rft.date=2023-12-31&rft.issn=2715-9930&rft.eissn=2715-9930&rft.volume=4&rft.issue=3&rft.spage=145&rft.epage=150&rft_id=info:doi/10.56705%2Fijodas.v4i3.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_56705_ijodas_v4i3_113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2715-9930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2715-9930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2715-9930&client=summon |