Performance Analysis of the Decision Tree Classification Algorithm on the Water Quality and Potability Dataset

Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm in predicting water potability using the Water Quality and Potability dataset. Employing a 5-fold cross-validation technique, the model showca...

Full description

Saved in:
Bibliographic Details
Published inIndonesian Journal of Data and Science Vol. 4; no. 3; pp. 145 - 150
Main Authors Zaky, Umar, Naswin, Ahmad, Sumiyatun, Sumiyatun, Murdiyanto, Aris Wahyu
Format Journal Article
LanguageEnglish
Published 31.12.2023
Online AccessGet full text
ISSN2715-9930
2715-9930
DOI10.56705/ijodas.v4i3.113

Cover

Abstract Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm in predicting water potability using the Water Quality and Potability dataset. Employing a 5-fold cross-validation technique, the model showcased a moderate performance with an average accuracy of approximately 54.33%. While the Decision Tree provides a baseline and interpretable mechanism for classification, the results emphasize the need for further exploration using more intricate models or ensemble methods. This study contributes to the broader effort of leveraging machine learning techniques for water quality assessment and provides insights into the potential and limitations of such models in predicting water safety
AbstractList Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm in predicting water potability using the Water Quality and Potability dataset. Employing a 5-fold cross-validation technique, the model showcased a moderate performance with an average accuracy of approximately 54.33%. While the Decision Tree provides a baseline and interpretable mechanism for classification, the results emphasize the need for further exploration using more intricate models or ensemble methods. This study contributes to the broader effort of leveraging machine learning techniques for water quality assessment and provides insights into the potential and limitations of such models in predicting water safety
Author Sumiyatun, Sumiyatun
Naswin, Ahmad
Zaky, Umar
Murdiyanto, Aris Wahyu
Author_xml – sequence: 1
  givenname: Umar
  surname: Zaky
  fullname: Zaky, Umar
– sequence: 2
  givenname: Ahmad
  surname: Naswin
  fullname: Naswin, Ahmad
– sequence: 3
  givenname: Sumiyatun
  surname: Sumiyatun
  fullname: Sumiyatun, Sumiyatun
– sequence: 4
  givenname: Aris Wahyu
  surname: Murdiyanto
  fullname: Murdiyanto, Aris Wahyu
BookMark eNqFkE1rAjEQhkOxUGu995g_sDbZZDebo2i_QKiFhR6XMZvUyJpIElv233fVHnrraeYd5hmG5xaNnHcaoXtKZkUpSPFgd76FOPvils0oZVdonAtaZFIyMvrT36BpjDtCSC5JxQgfI7fWwfiwB6c0njvo-mgj9ganrcZLrWy03uE6aI0XHcRojVWQTrN59-mDTds9HsJp-wOSDvj9CJ1NPQbX4rVPsLHnuIQEUac7dG2gi3r6WyeofnqsFy_Z6u35dTFfZapiLKPU6FIUQE3LJQy_lpJrrQhoIQoledluKC0UlYKLkudctAYKxsuNZKyqcsImiF7OHt0B-m_ouuYQ7B5C31DSnJU1F2XNSVkzKBsYcmFU8DEGbf5HfgB1SHRB
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.56705/ijodas.v4i3.113
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2715-9930
EndPage 150
ExternalDocumentID 10.56705/ijodas.v4i3.113
10_56705_ijodas_v4i3_113
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c833-11fe675a1fd49a290694eec0ae775c946db115c1974764247dfa5346b93388203
IEDL.DBID UNPAY
ISSN 2715-9930
IngestDate Tue Aug 19 18:19:56 EDT 2025
Tue Jul 01 00:57:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c833-11fe675a1fd49a290694eec0ae775c946db115c1974764247dfa5346b93388203
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.56705/ijodas.v4i3.113
PageCount 6
ParticipantIDs unpaywall_primary_10_56705_ijodas_v4i3_113
crossref_primary_10_56705_ijodas_v4i3_113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Indonesian Journal of Data and Science
PublicationYear 2023
SSID ssj0002908304
Score 2.245113
Snippet Ensuring water potability is paramount for public health and safety. This research aimed to assess the efficacy of the Decision Tree classification algorithm...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 145
Title Performance Analysis of the Decision Tree Classification Algorithm on the Water Quality and Potability Dataset
URI https://doi.org/10.56705/ijodas.v4i3.113
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2715-9930
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002908304
  issn: 2715-9930
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHA1uO3jyAxUnOnLwopDZLEm7HofbGMLGDhvOU0mbVKezHV2nzIN_u7-0nV8I6qkUfoXyS-C9l4_3EDp1G1RRFVrEdQJOOAs58S3dILqhpG6GBjHNekd_YPfG_GoiJsV6h7kL82n_XtiOJS6m97GSi_oTnzKTP1JCFVsA6y6jyngwbN2Y7DiHCgIwa-W7kD9-9gV1NpfRXK6e5Wz2CUq627mv0SJzIDQnSB7qy9SvBy_f_Bn_8pc7aKvgk7iVT4BdtKGjPRQNP64D4LXtCI5DDGwPt4tUHTxKtMZZKKY5LpSNEG7NbuNkmt49Yngx1dfARROcO22ssIwUHsZp7u29wm2ZAgim-2jU7Ywue6QIViBBkzFCaahBJ0gaKu5K4_fucq0DS2rHEYHLbeUDTwyokRogT7ijQikYt30X9CwwBnaAylEc6UOEmbC5VEw1gZhwroCrSPPUlPuBw7RdRWfrvnvz3D7DA9mRNc3Lm-aZpoEQYVV0_j4wvxYf_af4GJXTZKlPgD6kfg2V-q-dWjF_3gBu9Mh8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAGFy0PXjygYoVlT14Udia7T7SHIu1FMHSQ4v1FDbZjVZrUtJUqb_eb5NUqwjqKQS-QPh2YWb2MYPQqdegmurIIZ4bcsJZxEngmAYxDa1MM7KIadc7bnqyO-TXIzEq1zvsXZiV_XshXUdcjB8TrWb1Fz5mNn9kHVWlANZdQdVhr9-6s9lxLhUEYNYpdiF__OwL6mzM46lavKrJZAVKOluFr9EsdyC0J0ie6vMsqIdv3_wZ__KX22iz5JO4VUyAHbRm4l0U9z-vA-Cl7QhOIgxsD7fLVB08SI3BeSimPS6UjxBuTe6TdJw9PGN4sdW3wEVTXDhtLLCKNe4nWeHtvcBtlQEIZnto0LkaXHZJGaxAwiZjhNLIgE5QNNLcU9bv3ePGhI4yritCj0sdAE8MqZUaIE-4qyMlGJeBB3oWGAPbR5U4ic0BwkxIrjTTTSAmnGvgKso-DeVB6DIja-hs2Xd_Wthn-CA78qb5RdN82zQQIqyGzj8G5tfiw_8UH6FKls7NMdCHLDgpZ847wJfHSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Analysis+of+the+Decision+Tree+Classification+Algorithm+on+the+Water+Quality+and+Potability+Dataset&rft.jtitle=Indonesian+Journal+of+Data+and+Science&rft.au=Zaky%2C+Umar&rft.au=Naswin%2C+Ahmad&rft.au=Sumiyatun%2C+Sumiyatun&rft.au=Murdiyanto%2C+Aris+Wahyu&rft.date=2023-12-31&rft.issn=2715-9930&rft.eissn=2715-9930&rft.volume=4&rft.issue=3&rft.spage=145&rft.epage=150&rft_id=info:doi/10.56705%2Fijodas.v4i3.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_56705_ijodas_v4i3_113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2715-9930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2715-9930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2715-9930&client=summon