Hierarchical DeepPruner: A Novel Framework for Search Space Reduction

Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics have been developed to provide near-optimal solutions. In the big data era, the high dimensionality of these problems poses significant challeng...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the International Symposium on Combinatorial Search Vol. 18; pp. 101 - 109
Main Authors Nath, Ankur, Kuhnle, Alan
Format Journal Article
LanguageEnglish
Published 19.07.2025
Online AccessGet full text
ISSN2832-9171
2832-9163
2832-9163
DOI10.1609/socs.v18i1.35981

Cover

Abstract Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics have been developed to provide near-optimal solutions. In the big data era, the high dimensionality of these problems poses significant challenges for existing heuristic methods, which struggle to scale efficiently. In this paper, we propose Hierarchical DeepPruner, an adaptive framework that employs a two-stage approach to efficiently prune the search space of CO problems on graphs. Compared to state-of-the-art pruning heuristics, our algorithm offers two key advantages: 1) it does not require extensive feature engineering or domain-specific knowledge, and 2) it outperforms all previous methods while consistently pruning over 95% of the ground set, resulting in up to several of tenfold speedups—typically with minimal impact on solution quality. Additionally, our algorithm can successfully reduce the search space of instances even if they lie outside the training distribution, resulting in small optimality gaps across multiple budgets
AbstractList Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics have been developed to provide near-optimal solutions. In the big data era, the high dimensionality of these problems poses significant challenges for existing heuristic methods, which struggle to scale efficiently. In this paper, we propose Hierarchical DeepPruner, an adaptive framework that employs a two-stage approach to efficiently prune the search space of CO problems on graphs. Compared to state-of-the-art pruning heuristics, our algorithm offers two key advantages: 1) it does not require extensive feature engineering or domain-specific knowledge, and 2) it outperforms all previous methods while consistently pruning over 95% of the ground set, resulting in up to several of tenfold speedups—typically with minimal impact on solution quality. Additionally, our algorithm can successfully reduce the search space of instances even if they lie outside the training distribution, resulting in small optimality gaps across multiple budgets
Author Nath, Ankur
Kuhnle, Alan
Author_xml – sequence: 1
  givenname: Ankur
  surname: Nath
  fullname: Nath, Ankur
– sequence: 2
  givenname: Alan
  surname: Kuhnle
  fullname: Kuhnle, Alan
BookMark eNqFkE1PAjEURRuDiYjsXfYPDPZNO9OOO4IgJkSNsJ-8Ka9x4jCdtALh38uHcevq3sU9d3FuWa_1LTF2D2IEuSgeordxtANTw0hmhYEr1k-NTJMCctn76xpu2DDGuhKZ0FILoftsOq8pYLCftcWGPxF172HbUnjkY_7qd9TwWcAN7X344s4HvqTTmC87tMQ_aL2137Vv79i1wybS8DcHbDWbribzZPH2_DIZLxJrJCRS6UqRAaycNlQYp7IcMzDp2lmLxq2rrBAghcpdrhSQEzoTqqpSVFIUiHLA4HK7bTs87LFpyi7UGwyHEkR5MlGeTJRnE-XZxJERF8YGH2Mg9z_yA-IRZIc
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1609/socs.v18i1.35981
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2832-9163
EndPage 109
ExternalDocumentID 10.1609/socs.v18i1.35981
10_1609_socs_v18i1_35981
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c831-347b4e81abf78e98f456a5182dfcca8fdb59013046f6441ef07504bb2a4309aa3
IEDL.DBID UNPAY
ISSN 2832-9171
2832-9163
IngestDate Sun Aug 24 08:55:59 EDT 2025
Wed Oct 01 05:46:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c831-347b4e81abf78e98f456a5182dfcca8fdb59013046f6441ef07504bb2a4309aa3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ojs.aaai.org/index.php/SOCS/article/download/35981/38136
PageCount 9
ParticipantIDs unpaywall_primary_10_1609_socs_v18i1_35981
crossref_primary_10_1609_socs_v18i1_35981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-19
PublicationDateYYYYMMDD 2025-07-19
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-19
  day: 19
PublicationDecade 2020
PublicationTitle Proceedings of the International Symposium on Combinatorial Search
PublicationYear 2025
SSID ssib050737007
Score 1.9186242
Snippet Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 101
Title Hierarchical DeepPruner: A Novel Framework for Search Space Reduction
URI https://ojs.aaai.org/index.php/SOCS/article/download/35981/38136
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2832-9163
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050737007
  issn: 2832-9163
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1se_DkBypWtOzBi0K-N2nirdSWIliLbaGewmx2A9WSlLap6MHf7k6SSvUi4i2HIWTn7TJvMjtvCLm0OERc2qD50gONYRMXV3FSk9x1TMFUAiLw18B93-uN2d3EnWx18afPSx0AiiJ-LhiIKhHG8KE9NEpfGgJl5FMQBqrPWYaKOY5XITXPVWy8Smrj_qD1hDPl1GZVZzkfplY-N62yUumZgaFWv9TXlj-19PxF3yLTbpbM4e0VZrOtcNPdJ7D50OKWyYuerbgevf_QcPzPSg7IXslFaaswOyQ7Mjkind4Ue5LzESkzeivlfLDIErm4oS3aT9dyRrub-1xUEV5a3FemQ5V7S_qIQrAI9TEZdTujdk8rZy1oke9YmsOanEnfAh43fRn4seJV4KrcQ8QKYj8WHHtUsYoaI4GSMTINxrkNzDEDAOeEVJM0kaeEBi6LJANm25FKtUwvCGxuYdnYjqTgIOrkauPmcF4oaoSYiShIQoQkzCEJc4_UyfUXDr8an_3F-JxUV4tMXihGseINUrn_6DTKrfMJnSTNPQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60PXjygYqKyh68KOSxySZNvJXaUgRrsS3UU5jNbqAaktKX6K93J0mlehHxlsMQsvPtMt9kdr4h5IoJiIVywAiUDwbHJi6h46ShhOfakusEROKvgYee3x3x-7E33ujiz1_mJgCURfxCMBBVIqzBY2tgVb60JMrI5yAtVJ9jlo45rr9N6r6n2XiN1Ee9fvMZZ8rpzarPcjFMrXpusKpS6duhpVc_N1csmDCzeNG3yLSzzKbw_gZpuhFuOnsE1h9a3jJ5NZcLYcYfPzQc_7OSfbJbcVHaLM0OyJbKDkm7O8Ge5GJESkrvlJr2Z8tMzW5pk_bylUppZ32fi2rCS8v7ynSgc29Fn1AIFqE-IsNOe9jqGtWsBSMOXGa4vCG4ChiIpBGoMEg0rwJP5x4y0RAHiRTYo4pV1AQJlEqQaXAhHOCuHQK4x6SW5Zk6ITT0eKw4cMeJdapl-2HoCIZlYydWUoA8JddrN0fTUlEjwkxEQxIhJFEBSVR45JTcfOHwq_HZX4zPSW0xW6oLzSgW4rLaNJ_SQcwM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+DeepPruner%3A+A+Novel+Framework+for+Search+Space+Reduction&rft.jtitle=Proceedings+of+the+International+Symposium+on+Combinatorial+Search&rft.au=Nath%2C+Ankur&rft.au=Kuhnle%2C+Alan&rft.date=2025-07-19&rft.issn=2832-9171&rft.eissn=2832-9163&rft.volume=18&rft.spage=101&rft.epage=109&rft_id=info:doi/10.1609%2Fsocs.v18i1.35981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_socs_v18i1_35981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2832-9171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2832-9171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2832-9171&client=summon