Hierarchical DeepPruner: A Novel Framework for Search Space Reduction
Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics have been developed to provide near-optimal solutions. In the big data era, the high dimensionality of these problems poses significant challeng...
Saved in:
| Published in | Proceedings of the International Symposium on Combinatorial Search Vol. 18; pp. 101 - 109 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
19.07.2025
|
| Online Access | Get full text |
| ISSN | 2832-9171 2832-9163 2832-9163 |
| DOI | 10.1609/socs.v18i1.35981 |
Cover
| Abstract | Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics have been developed to provide near-optimal solutions. In the big data era, the high dimensionality of these problems poses significant challenges for existing heuristic methods, which struggle to scale efficiently. In this paper, we propose Hierarchical DeepPruner, an adaptive framework that employs a two-stage approach to efficiently prune the search space of CO problems on graphs. Compared to state-of-the-art pruning heuristics, our algorithm offers two key advantages: 1) it does not require extensive feature engineering or domain-specific knowledge, and 2) it outperforms all previous methods while consistently pruning over 95% of the ground set, resulting in up to several of tenfold speedups—typically with minimal impact on solution quality. Additionally, our algorithm can successfully reduce the search space of instances even if they lie outside the training distribution, resulting in small optimality gaps across multiple budgets |
|---|---|
| AbstractList | Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics have been developed to provide near-optimal solutions. In the big data era, the high dimensionality of these problems poses significant challenges for existing heuristic methods, which struggle to scale efficiently. In this paper, we propose Hierarchical DeepPruner, an adaptive framework that employs a two-stage approach to efficiently prune the search space of CO problems on graphs. Compared to state-of-the-art pruning heuristics, our algorithm offers two key advantages: 1) it does not require extensive feature engineering or domain-specific knowledge, and 2) it outperforms all previous methods while consistently pruning over 95% of the ground set, resulting in up to several of tenfold speedups—typically with minimal impact on solution quality. Additionally, our algorithm can successfully reduce the search space of instances even if they lie outside the training distribution, resulting in small optimality gaps across multiple budgets |
| Author | Nath, Ankur Kuhnle, Alan |
| Author_xml | – sequence: 1 givenname: Ankur surname: Nath fullname: Nath, Ankur – sequence: 2 givenname: Alan surname: Kuhnle fullname: Kuhnle, Alan |
| BookMark | eNqFkE1PAjEURRuDiYjsXfYPDPZNO9OOO4IgJkSNsJ-8Ka9x4jCdtALh38uHcevq3sU9d3FuWa_1LTF2D2IEuSgeordxtANTw0hmhYEr1k-NTJMCctn76xpu2DDGuhKZ0FILoftsOq8pYLCftcWGPxF172HbUnjkY_7qd9TwWcAN7X344s4HvqTTmC87tMQ_aL2137Vv79i1wybS8DcHbDWbribzZPH2_DIZLxJrJCRS6UqRAaycNlQYp7IcMzDp2lmLxq2rrBAghcpdrhSQEzoTqqpSVFIUiHLA4HK7bTs87LFpyi7UGwyHEkR5MlGeTJRnE-XZxJERF8YGH2Mg9z_yA-IRZIc |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1609/socs.v18i1.35981 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2832-9163 |
| EndPage | 109 |
| ExternalDocumentID | 10.1609/socs.v18i1.35981 10_1609_socs_v18i1_35981 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E ADTOC UNPAY |
| ID | FETCH-LOGICAL-c831-347b4e81abf78e98f456a5182dfcca8fdb59013046f6441ef07504bb2a4309aa3 |
| IEDL.DBID | UNPAY |
| ISSN | 2832-9171 2832-9163 |
| IngestDate | Sun Aug 24 08:55:59 EDT 2025 Wed Oct 01 05:46:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c831-347b4e81abf78e98f456a5182dfcca8fdb59013046f6441ef07504bb2a4309aa3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ojs.aaai.org/index.php/SOCS/article/download/35981/38136 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1609_socs_v18i1_35981 crossref_primary_10_1609_socs_v18i1_35981 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-19 |
| PublicationDateYYYYMMDD | 2025-07-19 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the International Symposium on Combinatorial Search |
| PublicationYear | 2025 |
| SSID | ssib050737007 |
| Score | 1.9186242 |
| Snippet | Combinatorial optimization (CO) problems on graphs arise in various applications across diverse domains. Many of these problems are NP-hard, and heuristics... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 101 |
| Title | Hierarchical DeepPruner: A Novel Framework for Search Space Reduction |
| URI | https://ojs.aaai.org/index.php/SOCS/article/download/35981/38136 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2832-9163 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050737007 issn: 2832-9163 databaseCode: M~E dateStart: 0 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1se_DkBypWtOzBi0K-N2nirdSWIliLbaGewmx2A9WSlLap6MHf7k6SSvUi4i2HIWTn7TJvMjtvCLm0OERc2qD50gONYRMXV3FSk9x1TMFUAiLw18B93-uN2d3EnWx18afPSx0AiiJ-LhiIKhHG8KE9NEpfGgJl5FMQBqrPWYaKOY5XITXPVWy8Smrj_qD1hDPl1GZVZzkfplY-N62yUumZgaFWv9TXlj-19PxF3yLTbpbM4e0VZrOtcNPdJ7D50OKWyYuerbgevf_QcPzPSg7IXslFaaswOyQ7Mjkind4Ue5LzESkzeivlfLDIErm4oS3aT9dyRrub-1xUEV5a3FemQ5V7S_qIQrAI9TEZdTujdk8rZy1oke9YmsOanEnfAh43fRn4seJV4KrcQ8QKYj8WHHtUsYoaI4GSMTINxrkNzDEDAOeEVJM0kaeEBi6LJANm25FKtUwvCGxuYdnYjqTgIOrkauPmcF4oaoSYiShIQoQkzCEJc4_UyfUXDr8an_3F-JxUV4tMXihGseINUrn_6DTKrfMJnSTNPQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60PXjygYqKyh68KOSxySZNvJXaUgRrsS3UU5jNbqAaktKX6K93J0mlehHxlsMQsvPtMt9kdr4h5IoJiIVywAiUDwbHJi6h46ShhOfakusEROKvgYee3x3x-7E33ujiz1_mJgCURfxCMBBVIqzBY2tgVb60JMrI5yAtVJ9jlo45rr9N6r6n2XiN1Ee9fvMZZ8rpzarPcjFMrXpusKpS6duhpVc_N1csmDCzeNG3yLSzzKbw_gZpuhFuOnsE1h9a3jJ5NZcLYcYfPzQc_7OSfbJbcVHaLM0OyJbKDkm7O8Ge5GJESkrvlJr2Z8tMzW5pk_bylUppZ32fi2rCS8v7ynSgc29Fn1AIFqE-IsNOe9jqGtWsBSMOXGa4vCG4ChiIpBGoMEg0rwJP5x4y0RAHiRTYo4pV1AQJlEqQaXAhHOCuHQK4x6SW5Zk6ITT0eKw4cMeJdapl-2HoCIZlYydWUoA8JddrN0fTUlEjwkxEQxIhJFEBSVR45JTcfOHwq_HZX4zPSW0xW6oLzSgW4rLaNJ_SQcwM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+DeepPruner%3A+A+Novel+Framework+for+Search+Space+Reduction&rft.jtitle=Proceedings+of+the+International+Symposium+on+Combinatorial+Search&rft.au=Nath%2C+Ankur&rft.au=Kuhnle%2C+Alan&rft.date=2025-07-19&rft.issn=2832-9171&rft.eissn=2832-9163&rft.volume=18&rft.spage=101&rft.epage=109&rft_id=info:doi/10.1609%2Fsocs.v18i1.35981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_socs_v18i1_35981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2832-9171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2832-9171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2832-9171&client=summon |