THE INFLUENCER PRICING PROGNOSTICATION ON SOCIAL MEDIA DYNAMICS AN ADVANCED EXAMINATION OF LINEAR REGRESSION 2 POLY DEGREE ALGORITHM & NEURAL NETWORK AN ADVANCED EXAMINATION OF LINEAR REGRESSION 2 POLY DEGREE ALGORITHM & NEURAL NETWORK

The pervasive influence of social media has spawned the influencer profession, a potent force shaping audience interest in promoted products and services. Unlike traditional media, the impact of influencer promotion is quantifiable, with rates typically determined by factors such as follower count,...

Full description

Saved in:
Bibliographic Details
Published inMUST Vol. 9; no. 2
Main Authors Canesta, Felicia, Rusdianto Roestam
Format Journal Article
LanguageEnglish
Published 12.12.2024
Online AccessGet full text
ISSN2541-6057
2541-4674
2541-4674
DOI10.30651/must.v9i2.21040

Cover

Abstract The pervasive influence of social media has spawned the influencer profession, a potent force shaping audience interest in promoted products and services. Unlike traditional media, the impact of influencer promotion is quantifiable, with rates typically determined by factors such as follower count, engagement, and reach. However, the absence of a standardized reference for rate determination poses a potential risk of losses for both influencers and clients. This study seeks to address this challenge through the development of an advanced machine learning-based deep learning predictive model, incorporating Linear Regression with a second-degree polynomial algorithm and a neural network to enhance accuracy. This research underscores the potential of machine learning, including advanced regression algorithms and neural networks, in providing a robust framework for predicting influencer rates. The developed model serves as a significant step toward minimizing adverse effects on both influencers and clients by offering a more nuanced and accurate reference for rate determination in the dynamic landscape of social media promotion The Model Evaluation based on Mean Absolute Error (MAE) metrics reveals that the Keras Neural Network outperformed both Simple Linear Regression (10.612) and Linear Regression with a 2nd-degree polynomial (10.089) in predicting influencer rates. With a substantially lower MAE of 7.952, the neural network demonstrated superior accuracy, leveraging its capacity to capture intricate data relationships and learn non-linear patterns. In conclusion, the Keras Neural Network emerges as the most effective model for influencer rate prediction. Pengaruh meresap dari media sosial telah melahirkan profesi sebagai seorang influencer, kekuatan yang signifikan membentuk minat audiens terhadap produk dan layanan yang dipromosikan. Berbeda dengan media tradisional, dampak promosi influencer dapat diukur dengan jelas, dengan tarif yang umumnya ditentukan oleh faktor-faktor seperti jumlah pengikut, keterlibatan, dan jangkauan. Namun, ketiadaan referensi standar untuk penentuan tarif menimbulkan risiko potensial kerugian bagi influencer dan klien. Penelitian ini bertujuan untuk mengatasi tantangan ini melalui pengembangan model prediktif deep learning berbasis machine learning yang canggih, yang mencakup Regresi Linier dengan algoritma polinomial derajat kedua dan jaringan saraf untuk meningkatkan akurasi. Penelitian ini menegaskan potensi machine learning, termasuk algoritma regresi canggih dan jaringan saraf, dalam menyediakan kerangka kerja yang kokoh untuk memprediksi tarif influencer. Model yang dikembangkan merupakan langkah signifikan untuk meminimalkan efek negatif pada kedua belah pihak, influencer dan klien, dengan memberikan referensi yang lebih nuanced dan akurat untuk penentuan tarif dalam dinamika promosi media sosial. Evaluasi Model berdasarkan metrik Mean Absolute Error (MAE) menunjukkan bahwa Keras Neural Network mengungguli baik Simple Linear Regression (10,612) maupun Linear Regression dengan polinomial derajat kedua (10,089) dalam memprediksi tarif influencer. Dengan MAE yang jauh lebih rendah, yakni 7,952, jaringan saraf menunjukkan akurasi yang superior, memanfaatkan kapasitasnya untuk menangkap hubungan data yang rumit dan belajar pola non-linear. Sebagai kesimpulan, Keras Neural Network muncul sebagai model paling efektif untuk memprediksi tarif influencer.
AbstractList The pervasive influence of social media has spawned the influencer profession, a potent force shaping audience interest in promoted products and services. Unlike traditional media, the impact of influencer promotion is quantifiable, with rates typically determined by factors such as follower count, engagement, and reach. However, the absence of a standardized reference for rate determination poses a potential risk of losses for both influencers and clients. This study seeks to address this challenge through the development of an advanced machine learning-based deep learning predictive model, incorporating Linear Regression with a second-degree polynomial algorithm and a neural network to enhance accuracy. This research underscores the potential of machine learning, including advanced regression algorithms and neural networks, in providing a robust framework for predicting influencer rates. The developed model serves as a significant step toward minimizing adverse effects on both influencers and clients by offering a more nuanced and accurate reference for rate determination in the dynamic landscape of social media promotion The Model Evaluation based on Mean Absolute Error (MAE) metrics reveals that the Keras Neural Network outperformed both Simple Linear Regression (10.612) and Linear Regression with a 2nd-degree polynomial (10.089) in predicting influencer rates. With a substantially lower MAE of 7.952, the neural network demonstrated superior accuracy, leveraging its capacity to capture intricate data relationships and learn non-linear patterns. In conclusion, the Keras Neural Network emerges as the most effective model for influencer rate prediction. Pengaruh meresap dari media sosial telah melahirkan profesi sebagai seorang influencer, kekuatan yang signifikan membentuk minat audiens terhadap produk dan layanan yang dipromosikan. Berbeda dengan media tradisional, dampak promosi influencer dapat diukur dengan jelas, dengan tarif yang umumnya ditentukan oleh faktor-faktor seperti jumlah pengikut, keterlibatan, dan jangkauan. Namun, ketiadaan referensi standar untuk penentuan tarif menimbulkan risiko potensial kerugian bagi influencer dan klien. Penelitian ini bertujuan untuk mengatasi tantangan ini melalui pengembangan model prediktif deep learning berbasis machine learning yang canggih, yang mencakup Regresi Linier dengan algoritma polinomial derajat kedua dan jaringan saraf untuk meningkatkan akurasi. Penelitian ini menegaskan potensi machine learning, termasuk algoritma regresi canggih dan jaringan saraf, dalam menyediakan kerangka kerja yang kokoh untuk memprediksi tarif influencer. Model yang dikembangkan merupakan langkah signifikan untuk meminimalkan efek negatif pada kedua belah pihak, influencer dan klien, dengan memberikan referensi yang lebih nuanced dan akurat untuk penentuan tarif dalam dinamika promosi media sosial. Evaluasi Model berdasarkan metrik Mean Absolute Error (MAE) menunjukkan bahwa Keras Neural Network mengungguli baik Simple Linear Regression (10,612) maupun Linear Regression dengan polinomial derajat kedua (10,089) dalam memprediksi tarif influencer. Dengan MAE yang jauh lebih rendah, yakni 7,952, jaringan saraf menunjukkan akurasi yang superior, memanfaatkan kapasitasnya untuk menangkap hubungan data yang rumit dan belajar pola non-linear. Sebagai kesimpulan, Keras Neural Network muncul sebagai model paling efektif untuk memprediksi tarif influencer.
Author Rusdianto Roestam
Canesta, Felicia
Author_xml – sequence: 1
  givenname: Felicia
  surname: Canesta
  fullname: Canesta, Felicia
– sequence: 2
  surname: Rusdianto Roestam
  fullname: Rusdianto Roestam
BookMark eNqFkF1rgzAUhsPoYF3X-13mand2iSZRL4OmNszGonZbryRGhUK_qOtGf8j-77Tt_eDAe3jhORyeRzDY7Xc1AM8YTRzEKH7dntqvybe_tic2RgTdgaFNCbYIc8ngtjNE3Qcwbtt1iQhxqeNSdwh-85mAUk3jpVCBSOEilYFUUZdJpJIslwHPZaJgN1kSSB7DuQglh-FK8bkMMsgV5OE77-AQis-uUzdgCmOpBE9hKqJUZFlf2nCRxCsY9o2API6SVOazOXyBSizT7rgS-UeSvj2B-0Zv2np8yxHIpyIPZlacRN1HsWU8B1lN2WjfVNow7TekboyhXum4rsYN9YxtqqpCmlDmI5sRh9bMocYrGSpRaWPTGGcE8PXsaXfQ5x-92RSH43qrj-cCo-JitujNFr3Z4mK2Y9CVMcd92x7r5n_kD3ccdSg
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.30651/must.v9i2.21040
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2541-4674
ExternalDocumentID 10.30651/must.v9i2.21040
10_30651_must_v9i2_21040
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c830-fbfa9cdac6a9f4efcc58b377a1f58c2cddd0a4569026435e635c8b60b0b21cfc3
IEDL.DBID UNPAY
ISSN 2541-6057
2541-4674
IngestDate Mon Sep 15 10:20:15 EDT 2025
Wed Oct 01 05:42:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-sa/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c830-fbfa9cdac6a9f4efcc58b377a1f58c2cddd0a4569026435e635c8b60b0b21cfc3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journal.um-surabaya.ac.id/matematika/article/download/21040/8580
ParticipantIDs unpaywall_primary_10_30651_must_v9i2_21040
crossref_primary_10_30651_must_v9i2_21040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-12
PublicationDateYYYYMMDD 2024-12-12
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-12
  day: 12
PublicationDecade 2020
PublicationTitle MUST
PublicationYear 2024
SSID ssib044753757
ssj0002511868
Score 2.279294
Snippet The pervasive influence of social media has spawned the influencer profession, a potent force shaping audience interest in promoted products and services....
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Subtitle AN ADVANCED EXAMINATION OF LINEAR REGRESSION 2 POLY DEGREE ALGORITHM & NEURAL NETWORK
Title THE INFLUENCER PRICING PROGNOSTICATION ON SOCIAL MEDIA DYNAMICS AN ADVANCED EXAMINATION OF LINEAR REGRESSION 2 POLY DEGREE ALGORITHM & NEURAL NETWORK
URI https://journal.um-surabaya.ac.id/matematika/article/download/21040/8580
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2541-4674
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044753757
  issn: 2541-6057
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di5tAEF-uuYfSh36Xu9Ie-1AKLRiNrkYfJTHR1qzBMzR5kv2E4-5yRy-2XB_6X_T_7ayao-1LKRQEZRkXnVmc3zg7v0HoTSS5inylLeU6nkXM3hquR4Z137BjCdd12ozpggbpinxY--sDlO5rYXoNDptL66YxWe1bZiYGwwCAa1lMz5ndK9WWhk_-ikkb4hbi2KEfQvB-GPiAygfocEWX8cb0lvMJhElBS8jcXgOCH3cZS9M2fWRfmuKGL9GZO2zn-c1D3W-21-z2K7u4-MXtzB6hs_0Dd7tNzofNjg_Ftz-4HP_HGz1GD3tsiuNO6gk6UNun6MHijtj15hn6UaUJzugsX5lfUyVeltkko3M4F3NanFZ9XTKG47SYZHGODX9kjKcbGpt2iTimGDyh6Ygzxckaxmh_wwznGU3iEpfJvOy-8djFyyLf4KkZSXCcz4syq9IFfotpsiphcppUn4ry43NUzZJqklp9ZwdLhJ5jaa5ZJCQTAYs0UVoIP-TeeMxG2of1IaSUDgNkF0GACHBOASgSIQ8c7nB3JLTwXqDB9mqrjhCOtE8CSUIfnCzRgodEiRFR0mOuR5h0j9G7vTHr646_o4a4pzV8bQxfG8PXrbqP0fs7a_9V-OW_CL9Cg93nRr0G_LLjJ-je4nty0i_Qn6Ug6c8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF-O3oP44Ld4orIPIiik-dqkyWNo0yaabkouxfYp7Cccd9c7vEY5_w__X2eT9FBfRBACCctkSWaWzG8yO79B6G0suYoDpS3lOb5FzN4arl3Dum_YsYTnOV3GdEnDbE0-boLNEcoOtTCDBsftpXXTmqz2LTMTg2EAwHUspufMHpRqS8Mnf8WkDXELcewoiCB4Pw4DQOUjdLymq2RressFBMKksCNk7q4BwU_6jKVpm-7al6a44Wt85o27eX7zUPfa3TW7_cYuLn5xO_OH6OzwwP1uk_Nxu-dj8f0PLsf_8UaP0IMBm-Kkl3qMjtTuCbq_vCN2vXmKftRZinM6L9bm11SFV1U-zekCzuWClqf1UJeM4Tgtp3lSYMMfmeDZliamXSJOKAZPaDrizHC6gTE63DDHRU7TpMJVuqj6bzz28KostnhmRlKcFIuyyutsid9hmq4rmJym9eey-vQM1fO0nmbW0NnBEpHvWJprFgvJRMhiTZQWIoi4P5kwVwewPoSU0mGA7GIIEAHOKQBFIuKhwx3uuUIL_zka7a526gXCsQ5IKEkUgJMlWvCIKOESJX3m-YRJ7wS9Pxizue75OxqIezrDN8bwjTF806n7BH24s_ZfhV_-i_ArNNp_adVrwC97_mZYmj8BLtHong
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THE+INFLUENCER+PRICING+PROGNOSTICATION+ON+SOCIAL+MEDIA+DYNAMICS+AN+ADVANCED+EXAMINATION+OF+LINEAR+REGRESSION+2+POLY+DEGREE+ALGORITHM+%26+NEURAL+NETWORK&rft.jtitle=MUST&rft.au=Canesta%2C+Felicia&rft.au=Rusdianto+Roestam&rft.date=2024-12-12&rft.issn=2541-6057&rft.eissn=2541-4674&rft.volume=9&rft.issue=2&rft_id=info:doi/10.30651%2Fmust.v9i2.21040&rft.externalDBID=n%2Fa&rft.externalDocID=10_30651_must_v9i2_21040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2541-6057&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2541-6057&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2541-6057&client=summon