基于Niblack自适应修正系数的温室成熟番茄目标提取方法

番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求.该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信息与局部区域信息之间的关联性,提出了一种基于Niblack自适应修正系数的温室成熟番茄目标提取新方法.首先对R-G番茄灰度图像,采用基于自适应修正系数选取的Niblack算法进行阈值分割,从理论意义上确定修正系数的选取原则,归一化局部标准差,实现修正值的计算及二值化过程,然后对分割后的图像去噪,最后采用最小临界矩形法提取成熟番茄果实.试验结果表明,该方法对温室成熟番茄图像有较好的提取效果,识别正确率达到98.3%,与基于归一化红绿色差灰...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. z1; pp. 322 - 327
Main Author 王丽丽 魏舒 赵博 毛文华 胡小安 范晋伟
Format Journal Article
LanguageChinese
Published 北京工业大学机械工程及应用电子技术学院,北京100124 2017
中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京100083%中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京,100083%北京工业大学机械工程及应用电子技术学院,北京,100124
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.z1.048

Cover

Abstract 番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求.该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信息与局部区域信息之间的关联性,提出了一种基于Niblack自适应修正系数的温室成熟番茄目标提取新方法.首先对R-G番茄灰度图像,采用基于自适应修正系数选取的Niblack算法进行阈值分割,从理论意义上确定修正系数的选取原则,归一化局部标准差,实现修正值的计算及二值化过程,然后对分割后的图像去噪,最后采用最小临界矩形法提取成熟番茄果实.试验结果表明,该方法对温室成熟番茄图像有较好的提取效果,识别正确率达到98.3%,与基于归一化红绿色差灰度化的Otsu算法和传统的Niblack算法相比有更高的识别率和更快的处理速度,噪声率也明显减少,能够满足后续成熟番茄定位的需要,有效地解决传统方法适应性低,易产生伪噪声块等问题.
AbstractList 番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求.该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信息与局部区域信息之间的关联性,提出了一种基于Niblack自适应修正系数的温室成熟番茄目标提取新方法.首先对R-G番茄灰度图像,采用基于自适应修正系数选取的Niblack算法进行阈值分割,从理论意义上确定修正系数的选取原则,归一化局部标准差,实现修正值的计算及二值化过程,然后对分割后的图像去噪,最后采用最小临界矩形法提取成熟番茄果实.试验结果表明,该方法对温室成熟番茄图像有较好的提取效果,识别正确率达到98.3%,与基于归一化红绿色差灰度化的Otsu算法和传统的Niblack算法相比有更高的识别率和更快的处理速度,噪声率也明显减少,能够满足后续成熟番茄定位的需要,有效地解决传统方法适应性低,易产生伪噪声块等问题.
TP274.5; 番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求.该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信息与局部区域信息之间的关联性,提出了一种基于Niblack自适应修正系数的温室成熟番茄目标提取新方法.首先对R-G番茄灰度图像,采用基于自适应修正系数选取的Niblack算法进行阈值分割,从理论意义上确定修正系数的选取原则,归一化局部标准差,实现修正值的计算及二值化过程,然后对分割后的图像去噪,最后采用最小临界矩形法提取成熟番茄果实.试验结果表明,该方法对温室成熟番茄图像有较好的提取效果,识别正确率达到98.3%,与基于归一化红绿色差灰度化的Otsu算法和传统的Niblack算法相比有更高的识别率和更快的处理速度,噪声率也明显减少,能够满足后续成熟番茄定位的需要,有效地解决传统方法适应性低,易产生伪噪声块等问题.
Abstract_FL Tomato is one of the most popular and widely grown vegetables in the world. Manual harvesting of tomatoes is laborious, time-consuming and inefficient, thus making it somewhat impractical for large-scale plantations. Intelligent robots have been developed for harvesting tomato. However, as the tomato is very soft and thus especially prone to bruising, many significant technical challenges remain to be solved. In China, the research on the harvesting robot is still in its infancy, but considerable progress has been made in many aspects, such as the manipulator, image recognition, and motion control. Tomato targets extraction is the basis for location and picking of tomato. Early extraction methods have certain limitations, which are difficult to meet the demand of harvest. In this study, Niblack self-adaptive adjustment parameter selection method was put forward and successfully applied in extracting ripe tomato in greenhouse. This segmentation algorithm was based on traditional Niblack algorithm using the correlation between global and local grayscale change information of tomato image. The original tomato image was firstly transformed to gray space, and the gray-level image was obtained using the normalized color difference method, and segmented into the foreground and the background. The normalized color difference method could eliminate the light intensity information in the red and green components. Then a new Niblack threshold segmentation algorithm was used to segment the gray image. The adjustment parameter was calculated through the expected value of each window and normalized standard deviation. After denoising, the ripe tomato object could be easily extracted from segmented image by using the minimum critical rectangle method. In order to compare different segmentation algorithms, traditional Niblack algorithm, Otsu algorithm and Niblack self-adaptive adjustment parameter selection algorithm had been selected to perform the comparative analysis. Experiments showed that the Otsu algorithm could extract the target of interest in the image, which contributed significantly to the subsequent target recognition and the reduction in computation time. However, this method may fail to segment overlapping tomatoes into individual ones. For Otsu algorithm, the threshold selection in each region lacked the image characteristics, which caused the binary result to contain a lot of background noise. Traditional Niblack algorithm exaggerated image details and got a lot of unnecessary edge information, which made it difficult to separate the target from background. Niblack self-adaptive adjustment parameter selection algorithm could effectively overcome the problem of pseudo noise. This approach has gotten a good applying result in the extraction of ripe tomato object from original images in greenhouse environment. The accuracy rate of ripe tomato recognition could reach 98.3%. Compared with Otsu algorithm based on normalized difference of red and green, and traditional Niblack segmentation algorithm, segmentation algorithm based on Niblack self-adaptive adjustment parameter selection is more efficient, and its noise is smaller and the process is faster. It can meet the need of the subsequent identification of tomato image and solve the problems of low adaptation and pseudo noise block with traditional methods. But because of the complexity of the object-picking environment, the new algorithm remains to be further improved in the practical application.
Author 王丽丽 魏舒 赵博 毛文华 胡小安 范晋伟
AuthorAffiliation [1]北京工业大学机械工程及应用电子技术学院,北京100124,中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京100083;[2]中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京,100083;[3]北京工业大学机械工程及应用电子技术学院,北京,100124
AuthorAffiliation_xml – name: 北京工业大学机械工程及应用电子技术学院,北京100124;中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京100083%中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京,100083%北京工业大学机械工程及应用电子技术学院,北京,100124
Author_xml – sequence: 1
  fullname: 王丽丽 魏舒 赵博 毛文华 胡小安 范晋伟
BookMark eNo9j09LAkEAxedgkJUfIzrtNrO78-8Y0h9B6iJ0lJnZXVuzsVyi9BQh2SHSQ3qog0FdEpLAS9mhL6O79i3aMDq9x-PHe7wlkNJV7QGwiqCJEKd4vWwGYahNBKFlEIa4aUFEzQYyocNSIP2fL4JMGAYSYmRTCB2UBrlpfzwZ3-4GsiLU4aw1-L64nI7vJl_D6PUpHn1G3bf4vhm9v0yHz9F1J77qx93B7KYZPwyjx1bU7kzbvaj3EY26K2DBF5XQy_zpMihsbRayO0Z-bzuX3cgbilnMcIjylKRE2VTYtsAeIoK5kCgiqVTEVQJKC1rCQYpSK_FKMI9D6nMuPeS79jJYm9eeCe0LXSqWq6c1nQwWdb2kzuXv8wZKfickn5PqoKpLJ0HCHteCI1GrF_ddyhiniCRCCE5oh2PMocMdhi1M7B9HEnxP
ClassificationCodes TP274.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.z1.048
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Target extraction method of ripe tomato in greenhouse based on Niblack self-adaptive adjustment parameter
DocumentTitle_FL Target extraction method of ripe tomato in greenhouse based on Niblack self-adaptive adjustment parameter
EndPage 327
ExternalDocumentID nygcxb2017z1048
Wd788971678866504849559049485256
GrantInformation_xml – fundername: 国家 863 计划项目-设施农业装备的数字化设计与智能控制技术
  funderid: (2013AA102406)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c828-46cecb76c37a33a5e16a8d06c6b7bc6dca0b202a41c7720b2ca8e907f99be1fd3
ISSN 1002-6819
IngestDate Thu May 29 04:08:34 EDT 2025
Wed Feb 14 10:02:35 EST 2024
IsPeerReviewed false
IsScholarly true
Issue z1
Keywords 算法
algorithms
番茄
Image processing
图像处理
自适应修正系数
提取
tomato
extraction
adaptive adjustment parameter
Niblack
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c828-46cecb76c37a33a5e16a8d06c6b7bc6dca0b202a41c7720b2ca8e907f99be1fd3
Notes Image processing;extraction;algorithms;tomato;Niblack;adaptive adjustment parameter
11-2047/S
Tomato is one of the most popular and widely grown vegetables in the world. Manual harvesting of tomatoes is laborious, time-consuming and inefficient, thus making it somewhat impractical for large-scale plantations. Intelligent robots have been developed for harvesting tomato. However, as the tomato is very soft and thus especially prone to bruising, many significant technical challenges remain to be solved. In China, the research on the harvesting robot is still in its infancy, but considerable progress has been made in many aspects, such as the manipulator, image recognition, and motion control. Tomato targets extraction is the basis for location and picking of tomato. Early extraction methods have certain limitations, which are difficult to meet the demand of harvest. In this study, Niblack self-adaptive adjustment parameter selection method was put forward and successfully applied in extracting ripe tomato in gree
PageCount 6
ParticipantIDs wanfang_journals_nygcxb2017z1048
chongqing_primary_Wd788971678866504849559049485256
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 北京工业大学机械工程及应用电子技术学院,北京100124
中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京100083%中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京,100083%北京工业大学机械工程及应用电子技术学院,北京,100124
Publisher_xml – name: 北京工业大学机械工程及应用电子技术学院,北京100124
– name: 中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京100083%中国农业机械化科学研究院土壤植物机器系统技术国家重点实验室,北京,100083%北京工业大学机械工程及应用电子技术学院,北京,100124
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1773198
Snippet 番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求.该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信息与局部区...
TP274.5; 番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求.该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 322
SubjectTerms 图像处理;提取;算法;番茄;Niblack;自适应修正系数
Title 基于Niblack自适应修正系数的温室成熟番茄目标提取方法
URI http://lib.cqvip.com/qk/90712X/2017z1/Wd788971678866504849559049485256.html
https://d.wanfangdata.com.cn/periodical/nygcxb2017z1048
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdGhTED2In1i_KOKcQuLOfszOHHeTDVWwp4q9hdnJbuol1ZqC5iRSrAexPdge9FBBLxYsQi9aD_6ZZlP_he_NbtIixY9C2Axv39e8t7vvzTDzhpCbLSeJXcjjKwyCU8VViagolVoV6dsxkz6z0wQn9O_O8Ol77p05b25s_MahVUtL3biqe0fuKzmOVwEGfsVdsv_h2RFTAEAb_AtX8DBc_8nHNPKobNAwoJGLVxHNPIhxRo5GgsIoP4AbEtcyCBtRAUO6BrVBg4hGnAZ1Gjg08mno0DBEiAQ0CyES2LkICQUNJJIDSWAgQlBpcARH8YjsGVkgtGaoABIORVioCVI1DJVnGtzIAubSiHBofgbmME02aIBQM9oKVAb1hx55yDwAQaFRCfQ3rEQAt4YPj1EtMiiGOqyPGmU0CFCBDqgtcLbL2Ao9_KHUOggrG8Ub2IlcTeyBuScigy4cGjCjkmVYGeMIWR6awDF0cqhCDcx0eHol30daxAIMFlwUX_QiWORVO4qXoseODkLS90wUQjbVERtcR-hXe6xq5bVFf6vzfb_lC4EFveCPQ97sCherA-b1eyAxHScTNs45lchEENbDxkHSy3BcP_oqMzwRgR3shrax1gE_GFR6zMEjDUYLoXAZgGfWBBR6niB02Itbf-oDViOZX-i0H0GOZba8dVLVaR_KzmbPkNPFsGoqyN-Rs2SsN3-OnArai0VpmeQ8ud3f3N3bfV28IfsrWz-fPe_vvtn7sZ19_jDY-Z6tfxm8Xc6-fupvf8xerg1ebA7Wt_ZfLQ_ebWfvV7LVtf7qRrbxLdtZv0BmG9FsbbpSHCRS0QInj7lOdOxz7fjKcZSXMK5Ey-Kax36seUsrK7YtW7lMw1gT2lqJRFp-KmWcsLTlXCSlzkInuUSmfJ60Ui24YkK6kPzGqZ1CUNQJVzjLpCaJPbJJ82FeL6b5N89OkqnCeM3i4_K42Xna1k9itHaPAcHl4_C9Qk4ig3zC8CopdReXkmuQQnfj68Uz9At2OJf9
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ENiblack%E8%87%AA%E9%80%82%E5%BA%94%E4%BF%AE%E6%AD%A3%E7%B3%BB%E6%95%B0%E7%9A%84%E6%B8%A9%E5%AE%A4%E6%88%90%E7%86%9F%E7%95%AA%E8%8C%84%E7%9B%AE%E6%A0%87%E6%8F%90%E5%8F%96%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E4%B8%BD%E4%B8%BD+%E9%AD%8F%E8%88%92+%E8%B5%B5%E5%8D%9A+%E6%AF%9B%E6%96%87%E5%8D%8E+%E8%83%A1%E5%B0%8F%E5%AE%89+%E8%8C%83%E6%99%8B%E4%BC%9F&rft.date=2017&rft.issn=1002-6819&rft.volume=33&rft.issue=z1&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.z1.048&rft.externalDocID=Wd788971678866504849559049485256
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg