基于多特征融合的粒子滤波生猪采食行为跟踪

针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. z1; pp. 246 - 252
Main Author 李亿杨 孙龙清 孙鑫鑫
Format Journal Article
LanguageChinese
Published 同方股份有限公司,北京 100083 2017
中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.z1.037

Cover

Abstract 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数和采食时间与人工记录结果基本相同,有效跟踪平均精度为93.4%.
AbstractList TP391.41; 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数和采食时间与人工记录结果基本相同,有效跟踪平均精度为93.4%.
针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数和采食时间与人工记录结果基本相同,有效跟踪平均精度为93.4%.
Abstract_FL The basic behavioral characteristics of live pigs are mainly shown through daily food intake frequency, water intake frequency, and excretion frequency. These factors indicate the health states of pig growth. Monitoring and analyzing the behavioral characteristics of pigs are important basis to understand their health situations. Currently, we mainly use artificial way to monitor livestock behavior in China. This method consumes large amounts of human labor and energy, and the observed data obtained in this way is subjective. It is difficult to ensure the accuracy and the continuity of the records. We take good advantage of pig detection and tracking technology based on machine vision to monitor the behavior of pigs to evaluate the health status of pigs in time, and to reduce the morbidity and mortality of pigs and increase the slaughtering rate of pigs. It has important practical significance and application value in improving people's confidence in pork quality and increasing the income of farmers. Target tracking technology is the basis of the moving target identification and abnormal behavior tracking, recording and analysis. We research the real-time monitoring of the target pigs foraging based on the particle filter target tracking technology. Particle filter algorithm closely approximates Bayesian filtering algorithm based on Monte Carlo simulation, and it is used in target tracking widely. Conceptually, a particle filter tracker maintains a probability distribution over the state (location, scale, and so on) of the object being tracked. Particle filters represent this distribution as a set of weighted samples, or particles. Each particle represents a possible instantiation of the state of the object. In other words, each particle is a guess representing one possible location of the object being tracked. The set of particles contain more weight at locations where the object being tracked is more likely to be. This weighted distribution is propagated through time using a set of equations known as the Bayesian filtering equations, and we can determine the trajectory of the tracked object by the particle with the highest weight or the weighted mean of the particle set at each time step. In view of the pig behavior characteristics and the actual situation of the farms' video image acquisition, this paper takes a group of pigs raised as detection tracking target. On the basis of analyzing and summarizing in particle filter tracking algorithm, we carried out particle filter target tracking technology for pigs which is based on the color characteristics to achieve the goal of tracking pigs. In order to solve the problems in the color characteristics of particle filter target tracking for pigs, we fused the color characteristics and the target contour centroid feature. The specific methods were as follows: First of all, according to the particle filter tracking algorithm based on single color feature of target tracking on the position of the rectangle coordinates, and the height and width of the target tracking rectangular box, we calculated the center of the target tracking rectangle coordinates. Secondly, we determined the centroid position of moving pigs on the basis of the comparison and analysis of moving target centroid position and the minimum circumscribed rectangle length-width ratio. Finally, according to the target contour centroid location and the center of the tracking target rectangle coordinates, we calculated the amount of deviation between them. When the deviation of target contour centroid and tracking rectangular box was too large, we took a second correction for tracking the target coordinates based on the particle filter algorithm with multi-feature fusion. The improved algorithm presented in this paper updated the tracking rectangular coordinates through the target contour centroid coordinates, and gave the new tracking rectangular box. This paper constructs the target pig tracking system based on particle filter algorithm, achieves a multi-feature fusion particle filter tracking algorithm through area real-time monitoring, and completes the statistics of the target pig's feeding time and food intake frequency. Experiment results prove that this algorithm can automatically accurately track, record and analyze the feeding behaviour of the target pigs, and effectively deal with the problems such as target short-time missing. The feeding frequency and time of the target pigs are almost the same as the manual statistics.
Author 李亿杨 孙龙清 孙鑫鑫
AuthorAffiliation [1]中国农业大学信息与电气工程学院,北京,100083;[2]中国农业大学信息与电气工程学院,北京 100083,同方股份有限公司,北京 100083
AuthorAffiliation_xml – name: 中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083;同方股份有限公司,北京 100083
Author_FL Sun Longqing
Sun Xinxin
Li Yiyang
Author_FL_xml – sequence: 1
  fullname: Li Yiyang
– sequence: 2
  fullname: Sun Longqing
– sequence: 3
  fullname: Sun Xinxin
Author_xml – sequence: 1
  fullname: 李亿杨 孙龙清 孙鑫鑫
BookMark eNo9jz9Lw0Achm-oYK39GOKUeL_cXe4OXKT4DwouBceSXJKaoqk2iLabIFShShGnDga1U8FFB2sFP03TpN_ClIrTCy8Pz8u7gnJBI3ARWgOsA0jONuq6H4aBDhgbmilA6gYGrrdBx4TnUP6_X0bFMPRtzIBwjCnk0WYcjSfj-3jQT26_4p-r9Oku7t0k_evk_SF-602_B9OPl-QxSrrDWacze43S5-5kNE4_o3Q0XEVLnnUcusW_LKDKznaltKeVD3b3S1tlTQmDazYlimNHOYyCYRrCo7YCIR1BiOURZrquDTZ1XMcFQrkQJibU5h7xKFeuVIIU0PpCe2EFnhXUqvXGeTPIBqtBq6Yu7fnZNmRXM1IuSHXUCGpnfsaeNv0Tq9mqHjqZWnIw5wsmw1RQyZjEVFLBgDHyC88PdO8
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.z1.037
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Automatic tracking of pig feeding behavior based on particle filter with multi-feature fusion
DocumentTitle_FL Automatic tracking of pig feeding behavior based on particle filter with multi-feature fusion
EndPage 252
ExternalDocumentID nygcxb2017z1037
Wd788971678866504849559049485155
GrantInformation_xml – fundername: 国家高技术研究发展计划(863计划)资助项目; "十二五"国家科技计划课题; 山东省自主创新资助项目
  funderid: (2013AA102306); (2014BAD08B05); (2014XGA13054)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c827-b43c70dcd5412628f4bc189d833af356eeb1b4dede1347886034b7f3f47ce9c83
ISSN 1002-6819
IngestDate Thu May 29 04:08:34 EDT 2025
Wed Feb 14 10:02:35 EST 2024
IsPeerReviewed false
IsScholarly true
Issue z1
Keywords algorithms
轮廓形心
生猪
验证
颜色特征
采食
particle filter
tracking
pig
算法
feeding
粒子滤波
跟踪
contour centroid
color feature
verification
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c827-b43c70dcd5412628f4bc189d833af356eeb1b4dede1347886034b7f3f47ce9c83
Notes 11-2047/S
feeding;tracking;algorithms;particle filter;color feature;contour centroid;verification;pig
The basic behavioral characteristics of live pigs are mainly shown through daily food intake frequency, water intake frequency, and excretion frequency. These factors indicate the health states of pig growth. Monitoring and analyzing the behavioral characteristics of pigs are important basis to understand their health situations. Currently, we mainly use artificial way to monitor livestock behavior in China. This method consumes large amounts of human labor and energy, and the observed data obtained in this way is subjective. It is difficult to ensure the accuracy and the continuity of the records. We take good advantage of pig detection and tracking technology based on machine vision to monitor the behavior of pigs to evaluate the health status of pigs in time, and to reduce the morbidity and mortality of pigs and increase the slaughtering rate of pigs. It has important practical significance and application v
PageCount 7
ParticipantIDs wanfang_journals_nygcxb2017z1037
chongqing_primary_Wd788971678866504849559049485155
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 同方股份有限公司,北京 100083
中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083
Publisher_xml – name: 同方股份有限公司,北京 100083
– name: 中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1774256
Snippet 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒...
TP391.41; 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 246
SubjectTerms 采食;跟踪;算法;粒子滤波;颜色特征;轮廓形心;验证;生猪
Title 基于多特征融合的粒子滤波生猪采食行为跟踪
URI http://lib.cqvip.com/qk/90712X/2017z1/Wd788971678866504849559049485155.html
https://d.wanfangdata.com.cn/periodical/nygcxb2017z1037
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNPQDRA_iJ9YvejAnmXUnycwk4CWzO0sR6qlib8vO13raam1B9yYIVahSxFMPLmpPBS96sFbw13S723_he5nsdqjFLxjC4-XNey95M3kvIXkh5AZLBeZJU04gq7kjVB474OdTp8VlnsUtlsbmurf5u_7cPXFn0VucmJwv7VpaXYkrSffYcyX_Y1XAgV3xlOw_WHbMFBAAg32hBAtD-Vc2ppFHVYOGmkYCSxkhRguqABNQqWioEBNGEDDSSFIFQN28VaVSIg1QSoFAyKhi5vU61kY-DUNkhQCnmhligeKQc41qEKGoDPABQHNTJal2sRb1kUYxKANbBRity9EwipM-VSN6VNtDeu2hFC2pDK1K2kdNpIaq0TeCCFU3jTatDxsWo-UhSdEehSpCLyDgoyTpHUuiXKrDMVBeESmOfpqvd9R_NSPON30MHBk2HTUJaVg3VTW0ADJTpkehrSCqZoAGKsEKuEZVYJugazddE6-WfAU6E1_aEd86E85LP03XLbsGu9RaRBmsyNv7qwNTgWc8GIqojEXgHsSg0nUr1SJFzpEc4Z2n7eRJjDRdPPc5SaYZLk9NkWkd1sPGYXzs4hLAeABnmAbBP5xvei7H2w7Ge6Rwh4BntgtYNU4QOlLy1u9UxEQlD5Y67UcQfpnTcJ281WmXAreFM-S0nXHN6uL3OUsmug_OkVO6vWyzzmTnye1-b3dv93V_a3Pw8lv_x7Phu1f9jReDzeeDz2_6nzb2v2_tf_kweNsbrG8frK0dfOwN36_v7ewOv_aGO9sXyEIjWqjNOfZaESeRLHBiwZOgmiapJ1zmM5mLOHGlSiXnrZx7fgbRSyzSLM3wlLWUfpWLOMh5LoIkU4nkF8lUZ6mTXSKzXpp7iWK-VK4QGXBJRCoznvkJU0ngujOEjbuh-bDIHtO8nwJTTNyGvGF-JKTALJBFniaI7mfIrO2vph1qHjeP2Pfyn0mukJMIF4uFV8nUyvJqdg3C55X4uv0ofgJCQ5nQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E7%89%B9%E5%BE%81%E8%9E%8D%E5%90%88%E7%9A%84%E7%B2%92%E5%AD%90%E6%BB%A4%E6%B3%A2%E7%94%9F%E7%8C%AA%E9%87%87%E9%A3%9F%E8%A1%8C%E4%B8%BA%E8%B7%9F%E8%B8%AA&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E4%BA%BF%E6%9D%A8&rft.au=%E5%AD%99%E9%BE%99%E6%B8%85&rft.au=%E5%AD%99%E9%91%AB%E9%91%AB&rft.date=2017&rft.pub=%E5%90%8C%E6%96%B9%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%8C%97%E4%BA%AC+100083&rft.issn=1002-6819&rft.volume=33&rft.issue=z1&rft.spage=246&rft.epage=252&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.z1.037&rft.externalDocID=nygcxb2017z1037
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg