基于多特征融合的粒子滤波生猪采食行为跟踪
针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数...
Saved in:
| Published in | 农业工程学报 Vol. 33; no. z1; pp. 246 - 252 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
同方股份有限公司,北京 100083
2017
中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.11975/j.issn.1002-6819.2017.z1.037 |
Cover
| Abstract | 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数和采食时间与人工记录结果基本相同,有效跟踪平均精度为93.4%. |
|---|---|
| AbstractList | TP391.41; 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数和采食时间与人工记录结果基本相同,有效跟踪平均精度为93.4%. 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒子滤波算法实现生猪采食行为跟踪,当目标跟踪矩形框中心坐标和跟踪目标轮廓形心坐标之间的横坐标偏差大于跟踪目标轮廓横坐标方向的最大值与最小值的差的一半时,或其之间的纵坐标偏差大于跟踪目标轮廓纵坐标方向的最大值与最小值的差一半时,对基于颜色特征粒子滤波算法得到的跟踪矩形框的中心坐标进行二次修正,提高了目标生猪跟踪的可靠性和鲁棒性;通过对比试验,结果表明:该方法能够对目标生猪的采食行为进行自动跟踪、记录和分析,记录的目标生猪一天内的采食次数和采食时间与人工记录结果基本相同,有效跟踪平均精度为93.4%. |
| Abstract_FL | The basic behavioral characteristics of live pigs are mainly shown through daily food intake frequency, water intake frequency, and excretion frequency. These factors indicate the health states of pig growth. Monitoring and analyzing the behavioral characteristics of pigs are important basis to understand their health situations. Currently, we mainly use artificial way to monitor livestock behavior in China. This method consumes large amounts of human labor and energy, and the observed data obtained in this way is subjective. It is difficult to ensure the accuracy and the continuity of the records. We take good advantage of pig detection and tracking technology based on machine vision to monitor the behavior of pigs to evaluate the health status of pigs in time, and to reduce the morbidity and mortality of pigs and increase the slaughtering rate of pigs. It has important practical significance and application value in improving people's confidence in pork quality and increasing the income of farmers. Target tracking technology is the basis of the moving target identification and abnormal behavior tracking, recording and analysis. We research the real-time monitoring of the target pigs foraging based on the particle filter target tracking technology. Particle filter algorithm closely approximates Bayesian filtering algorithm based on Monte Carlo simulation, and it is used in target tracking widely. Conceptually, a particle filter tracker maintains a probability distribution over the state (location, scale, and so on) of the object being tracked. Particle filters represent this distribution as a set of weighted samples, or particles. Each particle represents a possible instantiation of the state of the object. In other words, each particle is a guess representing one possible location of the object being tracked. The set of particles contain more weight at locations where the object being tracked is more likely to be. This weighted distribution is propagated through time using a set of equations known as the Bayesian filtering equations, and we can determine the trajectory of the tracked object by the particle with the highest weight or the weighted mean of the particle set at each time step. In view of the pig behavior characteristics and the actual situation of the farms' video image acquisition, this paper takes a group of pigs raised as detection tracking target. On the basis of analyzing and summarizing in particle filter tracking algorithm, we carried out particle filter target tracking technology for pigs which is based on the color characteristics to achieve the goal of tracking pigs. In order to solve the problems in the color characteristics of particle filter target tracking for pigs, we fused the color characteristics and the target contour centroid feature. The specific methods were as follows: First of all, according to the particle filter tracking algorithm based on single color feature of target tracking on the position of the rectangle coordinates, and the height and width of the target tracking rectangular box, we calculated the center of the target tracking rectangle coordinates. Secondly, we determined the centroid position of moving pigs on the basis of the comparison and analysis of moving target centroid position and the minimum circumscribed rectangle length-width ratio. Finally, according to the target contour centroid location and the center of the tracking target rectangle coordinates, we calculated the amount of deviation between them. When the deviation of target contour centroid and tracking rectangular box was too large, we took a second correction for tracking the target coordinates based on the particle filter algorithm with multi-feature fusion. The improved algorithm presented in this paper updated the tracking rectangular coordinates through the target contour centroid coordinates, and gave the new tracking rectangular box. This paper constructs the target pig tracking system based on particle filter algorithm, achieves a multi-feature fusion particle filter tracking algorithm through area real-time monitoring, and completes the statistics of the target pig's feeding time and food intake frequency. Experiment results prove that this algorithm can automatically accurately track, record and analyze the feeding behaviour of the target pigs, and effectively deal with the problems such as target short-time missing. The feeding frequency and time of the target pigs are almost the same as the manual statistics. |
| Author | 李亿杨 孙龙清 孙鑫鑫 |
| AuthorAffiliation | [1]中国农业大学信息与电气工程学院,北京,100083;[2]中国农业大学信息与电气工程学院,北京 100083,同方股份有限公司,北京 100083 |
| AuthorAffiliation_xml | – name: 中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083;同方股份有限公司,北京 100083 |
| Author_FL | Sun Longqing Sun Xinxin Li Yiyang |
| Author_FL_xml | – sequence: 1 fullname: Li Yiyang – sequence: 2 fullname: Sun Longqing – sequence: 3 fullname: Sun Xinxin |
| Author_xml | – sequence: 1 fullname: 李亿杨 孙龙清 孙鑫鑫 |
| BookMark | eNo9jz9Lw0Achm-oYK39GOKUeL_cXe4OXKT4DwouBceSXJKaoqk2iLabIFShShGnDga1U8FFB2sFP03TpN_ClIrTCy8Pz8u7gnJBI3ARWgOsA0jONuq6H4aBDhgbmilA6gYGrrdBx4TnUP6_X0bFMPRtzIBwjCnk0WYcjSfj-3jQT26_4p-r9Oku7t0k_evk_SF-602_B9OPl-QxSrrDWacze43S5-5kNE4_o3Q0XEVLnnUcusW_LKDKznaltKeVD3b3S1tlTQmDazYlimNHOYyCYRrCo7YCIR1BiOURZrquDTZ1XMcFQrkQJibU5h7xKFeuVIIU0PpCe2EFnhXUqvXGeTPIBqtBq6Yu7fnZNmRXM1IuSHXUCGpnfsaeNv0Tq9mqHjqZWnIw5wsmw1RQyZjEVFLBgDHyC88PdO8 |
| ClassificationCodes | TP391.41 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11975/j.issn.1002-6819.2017.z1.037 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitleAlternate | Automatic tracking of pig feeding behavior based on particle filter with multi-feature fusion |
| DocumentTitle_FL | Automatic tracking of pig feeding behavior based on particle filter with multi-feature fusion |
| EndPage | 252 |
| ExternalDocumentID | nygcxb2017z1037 Wd788971678866504849559049485155 |
| GrantInformation_xml | – fundername: 国家高技术研究发展计划(863计划)资助项目; "十二五"国家科技计划课题; 山东省自主创新资助项目 funderid: (2013AA102306); (2014BAD08B05); (2014XGA13054) |
| GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N ~WA 4A8 93N ACUHS PSX |
| ID | FETCH-LOGICAL-c827-b43c70dcd5412628f4bc189d833af356eeb1b4dede1347886034b7f3f47ce9c83 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:08:34 EDT 2025 Wed Feb 14 10:02:35 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | z1 |
| Keywords | algorithms 轮廓形心 生猪 验证 颜色特征 采食 particle filter tracking pig 算法 feeding 粒子滤波 跟踪 contour centroid color feature verification |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c827-b43c70dcd5412628f4bc189d833af356eeb1b4dede1347886034b7f3f47ce9c83 |
| Notes | 11-2047/S feeding;tracking;algorithms;particle filter;color feature;contour centroid;verification;pig The basic behavioral characteristics of live pigs are mainly shown through daily food intake frequency, water intake frequency, and excretion frequency. These factors indicate the health states of pig growth. Monitoring and analyzing the behavioral characteristics of pigs are important basis to understand their health situations. Currently, we mainly use artificial way to monitor livestock behavior in China. This method consumes large amounts of human labor and energy, and the observed data obtained in this way is subjective. It is difficult to ensure the accuracy and the continuity of the records. We take good advantage of pig detection and tracking technology based on machine vision to monitor the behavior of pigs to evaluate the health status of pigs in time, and to reduce the morbidity and mortality of pigs and increase the slaughtering rate of pigs. It has important practical significance and application v |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_nygcxb2017z1037 chongqing_primary_Wd788971678866504849559049485155 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 农业工程学报 |
| PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2017 |
| Publisher | 同方股份有限公司,北京 100083 中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083 |
| Publisher_xml | – name: 同方股份有限公司,北京 100083 – name: 中国农业大学信息与电气工程学院,北京,100083%中国农业大学信息与电气工程学院,北京 100083 |
| SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.1774256 |
| Snippet | 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征融合,基于粒... TP391.41; 针对中国养猪业规模化、集约化迅猛发展过程中,人工观察监测记录生猪生长情况需损耗大量人力和物力,得到数据误差大的问题,该文提出将颜色特征与目标轮廓形心特征... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 246 |
| SubjectTerms | 采食;跟踪;算法;粒子滤波;颜色特征;轮廓形心;验证;生猪 |
| Title | 基于多特征融合的粒子滤波生猪采食行为跟踪 |
| URI | http://lib.cqvip.com/qk/90712X/2017z1/Wd788971678866504849559049485155.html https://d.wanfangdata.com.cn/periodical/nygcxb2017z1037 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNPQDRA_iJ9YvejAnmXUnycwk4CWzO0sR6qlib8vO13raam1B9yYIVahSxFMPLmpPBS96sFbw13S723_he5nsdqjFLxjC4-XNey95M3kvIXkh5AZLBeZJU04gq7kjVB474OdTp8VlnsUtlsbmurf5u_7cPXFn0VucmJwv7VpaXYkrSffYcyX_Y1XAgV3xlOw_WHbMFBAAg32hBAtD-Vc2ppFHVYOGmkYCSxkhRguqABNQqWioEBNGEDDSSFIFQN28VaVSIg1QSoFAyKhi5vU61kY-DUNkhQCnmhligeKQc41qEKGoDPABQHNTJal2sRb1kUYxKANbBRity9EwipM-VSN6VNtDeu2hFC2pDK1K2kdNpIaq0TeCCFU3jTatDxsWo-UhSdEehSpCLyDgoyTpHUuiXKrDMVBeESmOfpqvd9R_NSPON30MHBk2HTUJaVg3VTW0ADJTpkehrSCqZoAGKsEKuEZVYJugazddE6-WfAU6E1_aEd86E85LP03XLbsGu9RaRBmsyNv7qwNTgWc8GIqojEXgHsSg0nUr1SJFzpEc4Z2n7eRJjDRdPPc5SaYZLk9NkWkd1sPGYXzs4hLAeABnmAbBP5xvei7H2w7Ge6Rwh4BntgtYNU4QOlLy1u9UxEQlD5Y67UcQfpnTcJ281WmXAreFM-S0nXHN6uL3OUsmug_OkVO6vWyzzmTnye1-b3dv93V_a3Pw8lv_x7Phu1f9jReDzeeDz2_6nzb2v2_tf_kweNsbrG8frK0dfOwN36_v7ewOv_aGO9sXyEIjWqjNOfZaESeRLHBiwZOgmiapJ1zmM5mLOHGlSiXnrZx7fgbRSyzSLM3wlLWUfpWLOMh5LoIkU4nkF8lUZ6mTXSKzXpp7iWK-VK4QGXBJRCoznvkJU0ngujOEjbuh-bDIHtO8nwJTTNyGvGF-JKTALJBFniaI7mfIrO2vph1qHjeP2Pfyn0mukJMIF4uFV8nUyvJqdg3C55X4uv0ofgJCQ5nQ |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E7%89%B9%E5%BE%81%E8%9E%8D%E5%90%88%E7%9A%84%E7%B2%92%E5%AD%90%E6%BB%A4%E6%B3%A2%E7%94%9F%E7%8C%AA%E9%87%87%E9%A3%9F%E8%A1%8C%E4%B8%BA%E8%B7%9F%E8%B8%AA&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E4%BA%BF%E6%9D%A8&rft.au=%E5%AD%99%E9%BE%99%E6%B8%85&rft.au=%E5%AD%99%E9%91%AB%E9%91%AB&rft.date=2017&rft.pub=%E5%90%8C%E6%96%B9%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%8C%97%E4%BA%AC+100083&rft.issn=1002-6819&rft.volume=33&rft.issue=z1&rft.spage=246&rft.epage=252&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.z1.037&rft.externalDocID=nygcxb2017z1037 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |