The use of propensity scores to assess the generalizability of results from randomized trials

Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? Ther...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series A, Statistics in society Vol. 174; no. 2; pp. 369 - 386
Main Authors Stuart, Elizabeth A., Cole, Stephen R., Bradshaw, Catherine P., Leaf, Philip J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2011
Blackwell Publishing
Blackwell
Royal Statistical Society
Oxford University Press
SeriesJournal of the Royal Statistical Society Series A
Subjects
Online AccessGet full text
ISSN0964-1998
1467-985X
DOI10.1111/j.1467-985X.2010.00673.x

Cover

Abstract Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or `external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called `Positive behavioral interventions and supports'.
AbstractList Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or 'external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called 'Positive behavioral interventions and supports'.
Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or 'external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called 'Positive behavioral interventions and supports'. [PUBLICATION ABSTRACT]
Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: Will the program be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or "external validity," of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify, or weight the control group outcomes to the population, assessing how well the propensity score-adjusted outcomes track the outcomes actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. This paper lays out these ideas, discusses the assumptions underlying the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention program called Positive Behavioral Interventions and Supports.Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: Will the program be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or "external validity," of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify, or weight the control group outcomes to the population, assessing how well the propensity score-adjusted outcomes track the outcomes actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. This paper lays out these ideas, discusses the assumptions underlying the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention program called Positive Behavioral Interventions and Supports.
Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: Will the program be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or "external validity," of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify, or weight the control group outcomes to the population, assessing how well the propensity score-adjusted outcomes track the outcomes actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. This paper lays out these ideas, discusses the assumptions underlying the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention program called Positive Behavioral Interventions and Supports.
Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or 'external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called 'Positive behavioral interventions and supports'. Reprinted by permission of Blackwell Publishers
Author Stuart, Elizabeth A.
Bradshaw, Catherine P.
Cole, Stephen R.
Leaf, Philip J.
AuthorAffiliation 4 Department of Mental Health and Center for the Prevention of Youth Violence, Johns Hopkins Bloomberg School of Public Health, 624 N Broadway, Baltimore, MD
3 Department of Epidemiology, Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, NC
2 Johns Hopkins Bloomberg School of Public Health Departments of Mental Health and Biostatistics, 624 N Broadway, 8th Floor, Baltimore, MD; estuart@jhsph.edu ; 410-502-6222
AuthorAffiliation_xml – name: 2 Johns Hopkins Bloomberg School of Public Health Departments of Mental Health and Biostatistics, 624 N Broadway, 8th Floor, Baltimore, MD; estuart@jhsph.edu ; 410-502-6222
– name: 3 Department of Epidemiology, Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, NC
– name: 4 Department of Mental Health and Center for the Prevention of Youth Violence, Johns Hopkins Bloomberg School of Public Health, 624 N Broadway, Baltimore, MD
Author_xml – sequence: 1
  givenname: Elizabeth A.
  surname: Stuart
  fullname: Stuart, Elizabeth A.
– sequence: 2
  givenname: Stephen R.
  surname: Cole
  fullname: Cole, Stephen R.
– sequence: 3
  givenname: Catherine P.
  surname: Bradshaw
  fullname: Bradshaw, Catherine P.
– sequence: 4
  givenname: Philip J.
  surname: Leaf
  fullname: Leaf, Philip J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23929204$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24926156$$D View this record in MEDLINE/PubMed
http://econpapers.repec.org/article/blajorssa/v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369-386.htm$$DView record in RePEc
BookMark eNqNkl1v0zAUhiM0xLrBTwBFSAhuUuw4_roAaaqgICqo2BDcIMtNT1aXNC52Otr9ek7W0g0uUC2d2Mp5zmsf-z1JjhrfQJKklPQpjpfzPi2EzLTi3_o5wb-ECMn663tJb584SnpEiyKjWqvj5CTGOemGlA-S47zQuaBc9JLvFzNIVxFSX6XL4JfQRNdu0lj6ADFtfWpjhIgrxC6hgWBrd20nru4orEFqVbcxrYJfpME2U79w1zBN2-BsHR8m9yuc4NFuPk2-vH1zMXiXjT4N3w_ORlmpcsoykedKcAqSE21pznihCS8pEGATCSXhXFBbTTjkUqqcySmVVCtm80nJlWAVO01eb3WXq8kCpiU0LR7ULINb2LAx3jrzd6ZxM3Ppr0xBOOWUosDznUDwP1cQW7NwsYS6tg34VTSaKskLcgCphFaEcKKQfPFfkirGBZIFR_TpP-jcr0KDV4Z6BdFSsQKhD1sowBLKfXOT2s59iNGaK8MslQV-NxjoC4qT65YYSwwmtGFKmFm7QLUnd69sL_fHGgg82wE2lrau8HFLF285pnOdk-5YasuVwccYoNojlJjOrWZuOlOazpSmc6u5catZ3z7bvrR0rW2d7x7J1YcIvNoK_HI1bA7e2Hw-Pz_DFdY_3tbPY-vDnd4ILYqb3rJt3sUW1vu8DT8Mlktuvn4cmhEZD8eDgTRj9hvChxrw
CitedBy_id crossref_primary_10_1080_19345747_2013_831154
crossref_primary_10_1007_s40471_020_00241_6
crossref_primary_10_1093_biomet_asy015
crossref_primary_10_1007_s11121_023_01600_7
crossref_primary_10_1080_10543406_2022_2162067
crossref_primary_10_1007_s11121_023_01586_2
crossref_primary_10_1080_19345747_2017_1300719
crossref_primary_10_1111_rssa_12873
crossref_primary_10_1097_EDE_0000000000001097
crossref_primary_10_1080_01621459_2020_1796359
crossref_primary_10_3102_1076998612441947
crossref_primary_10_1515_jci_2024_0002
crossref_primary_10_1007_s10648_013_9239_x
crossref_primary_10_1097_EDE_0000000000001773
crossref_primary_10_1111_rssa_12073
crossref_primary_10_1093_jamia_ocy188
crossref_primary_10_1177_09622802241307642
crossref_primary_10_2139_ssrn_3765106
crossref_primary_10_1186_s12889_020_10004_z
crossref_primary_10_1515_jci_2022_0004
crossref_primary_10_1002_jrsm_1565
crossref_primary_10_3390_jcm9092816
crossref_primary_10_1016_j_ememar_2024_101141
crossref_primary_10_1007_s12564_024_09955_4
crossref_primary_10_1093_rheumatology_kex394
crossref_primary_10_1080_07350015_2019_1639407
crossref_primary_10_1146_annurev_statistics_031219_041205
crossref_primary_10_1177_1740774518806311
crossref_primary_10_1111_biom_13863
crossref_primary_10_1002_pst_2354
crossref_primary_10_1111_rssc_12486
crossref_primary_10_1002_pds_5873
crossref_primary_10_1177_1098214020943302
crossref_primary_10_1111_1475_6773_13046
crossref_primary_10_1111_rssa_12629
crossref_primary_10_1111_1475_6773_12752
crossref_primary_10_1146_annurev_statistics_010814_020249
crossref_primary_10_1080_07350015_2023_2241529
crossref_primary_10_1002_cpt_3543
crossref_primary_10_1111_rssa_12734
crossref_primary_10_1177_0272989X221141381
crossref_primary_10_1093_jrsssa_qnae075
crossref_primary_10_1007_s11121_014_0513_z
crossref_primary_10_1080_19345747_2016_1273412
crossref_primary_10_1080_00273171_2021_1935202
crossref_primary_10_1080_19345747_2021_1938312
crossref_primary_10_3102_1076998617733828
crossref_primary_10_1002_sim_9286
crossref_primary_10_1016_j_jand_2017_01_022
crossref_primary_10_1002_pst_2106
crossref_primary_10_1111_rssb_12027
crossref_primary_10_3390_healthcare10050858
crossref_primary_10_1093_aje_kwv453
crossref_primary_10_1186_s13063_015_1023_4
crossref_primary_10_1111_biom_13609
crossref_primary_10_1177_0193841X13516324
crossref_primary_10_1214_16_STS598
crossref_primary_10_1542_peds_2012_0243
crossref_primary_10_1007_s11292_018_9337_3
crossref_primary_10_1080_19345747_2016_1147628
crossref_primary_10_3390_healthcare9040480
crossref_primary_10_1002_bimj_202100294
crossref_primary_10_1177_0193841X20938497
crossref_primary_10_1093_biomet_asac042
crossref_primary_10_1093_jrsssa_qnae012
crossref_primary_10_1093_wbro_lkx005
crossref_primary_10_1186_s12889_016_3244_1
crossref_primary_10_2490_prm_20210019
crossref_primary_10_1080_19345747_2022_2128952
crossref_primary_10_1093_aje_kwab242
crossref_primary_10_1002_sim_8659
crossref_primary_10_1097_EDE_0000000000001694
crossref_primary_10_1016_j_jfineco_2021_05_042
crossref_primary_10_1016_j_worlddev_2019_104831
crossref_primary_10_1080_01621459_2017_1407322
crossref_primary_10_1080_19345747_2021_1875529
crossref_primary_10_1214_20_AOAS1359
crossref_primary_10_1016_j_jacasi_2021_10_004
crossref_primary_10_1097_EDE_0000000000000926
crossref_primary_10_1093_biomet_asad007
crossref_primary_10_1080_03610918_2024_2316281
crossref_primary_10_1093_aje_kwaa270
crossref_primary_10_1007_s10742_016_0144_x
crossref_primary_10_1016_j_apmr_2023_08_017
crossref_primary_10_29220_CSAM_2024_31_5_467
crossref_primary_10_1177_20531680231187271
crossref_primary_10_1016_j_addbeh_2018_10_033
crossref_primary_10_1214_24_AOAS1963
crossref_primary_10_1257_jep_25_3_17
crossref_primary_10_1002_gepi_22324
crossref_primary_10_1016_j_rie_2024_100964
crossref_primary_10_1002_sim_8549
crossref_primary_10_1002_ev_20207
crossref_primary_10_3102_1076998614558486
crossref_primary_10_1080_19345747_2024_2342852
crossref_primary_10_1093_ije_dyy179
crossref_primary_10_1007_s10488_011_0384_6
crossref_primary_10_1177_1098214018810519
crossref_primary_10_1016_j_annepidem_2019_09_005
crossref_primary_10_1093_jnci_djx240
crossref_primary_10_1002_pam_21660
crossref_primary_10_1002_sim_6361
crossref_primary_10_18553_jmcp_2023_29_12_1321
crossref_primary_10_1080_19466315_2021_1883475
crossref_primary_10_1016_j_jclinepi_2022_11_011
crossref_primary_10_1038_s41467_017_00908_7
crossref_primary_10_2308_JFR_2021_007
crossref_primary_10_1016_j_socscimed_2016_07_045
crossref_primary_10_1186_s12933_021_01300_y
crossref_primary_10_1097_EDE_0000000000001230
crossref_primary_10_1111_rssa_12094
crossref_primary_10_1080_01621459_2024_2360643
crossref_primary_10_1515_jci_2022_0018
crossref_primary_10_1002_mds_29507
crossref_primary_10_1080_01621459_2016_1240683
crossref_primary_10_1016_j_ssresearch_2019_102389
crossref_primary_10_1093_ije_dyv352
crossref_primary_10_1371_journal_pone_0278842
crossref_primary_10_1002_ev_20212
crossref_primary_10_1515_jci_2021_0059
crossref_primary_10_1093_eurpub_ckad016
crossref_primary_10_1177_1098214020927787
crossref_primary_10_1007_s12564_020_09641_1
crossref_primary_10_1214_24_EJS2233
crossref_primary_10_1177_10982140221075092
crossref_primary_10_1186_1471_2482_15_13
crossref_primary_10_1093_jrsssa_qnae043
crossref_primary_10_1002_cpt_1854
crossref_primary_10_1002_jrsm_1700
crossref_primary_10_1016_j_ajo_2024_07_029
crossref_primary_10_1093_biostatistics_kxab029
crossref_primary_10_1097_COH_0000000000000063
crossref_primary_10_1016_j_jval_2019_11_002
crossref_primary_10_1287_mnsc_2023_01225
crossref_primary_10_1093_jssam_smab049
crossref_primary_10_1007_s12564_023_09906_5
crossref_primary_10_1086_704386
crossref_primary_10_2139_ssrn_3786224
crossref_primary_10_1007_s40471_020_00239_0
crossref_primary_10_1111_cts_12764
crossref_primary_10_1515_jci_2021_0042
crossref_primary_10_1177_0193841X16665199
crossref_primary_10_1080_01621459_2025_2453249
crossref_primary_10_1177_09622802231210944
crossref_primary_10_1002_sim_7238
crossref_primary_10_1002_sim_9413
crossref_primary_10_1016_j_socscimed_2018_05_012
crossref_primary_10_1111_add_13327
crossref_primary_10_1016_j_spl_2018_02_044
crossref_primary_10_1542_peds_2019_3138
crossref_primary_10_1016_j_csda_2023_107742
crossref_primary_10_1002_jrsm_1278
crossref_primary_10_1111_rssa_12357
crossref_primary_10_1002_sim_7808
crossref_primary_10_1111_biom_13919
crossref_primary_10_1080_00031305_2023_2267598
crossref_primary_10_1177_17407745211012438
crossref_primary_10_2139_ssrn_2516462
crossref_primary_10_1016_j_jbi_2021_103822
crossref_primary_10_2217_fon_2022_0099
crossref_primary_10_1002_hec_3529
crossref_primary_10_1093_ije_dyaa211
crossref_primary_10_1177_2167696815621645
crossref_primary_10_1016_j_healthplace_2018_11_002
crossref_primary_10_1111_biom_12388
crossref_primary_10_1016_j_jclinepi_2020_05_001
crossref_primary_10_3390_antibiotics12010085
crossref_primary_10_1002_pon_5749
crossref_primary_10_1007_s40471_016_0089_1
crossref_primary_10_1002_pam_21750
crossref_primary_10_1177_0081175019862593
crossref_primary_10_2139_ssrn_4034206
crossref_primary_10_3310_hta20180
crossref_primary_10_1177_0193841X16664456
crossref_primary_10_1111_rssb_12445
crossref_primary_10_1080_10543406_2024_2330216
crossref_primary_10_1080_10437797_2018_1434446
crossref_primary_10_1093_aje_kwaa243
crossref_primary_10_1177_23328584241299346
crossref_primary_10_1002_jrsm_1160
crossref_primary_10_1002_sim_6965
crossref_primary_10_2139_ssrn_4193276
crossref_primary_10_1214_23_STS889
crossref_primary_10_1002_cpp_2163
crossref_primary_10_1080_19345747_2016_1271069
crossref_primary_10_3102_0162373713493129
crossref_primary_10_1016_j_surg_2018_01_018
crossref_primary_10_1186_s12874_023_01958_w
crossref_primary_10_1111_add_13789
crossref_primary_10_1016_j_jhepr_2023_100950
crossref_primary_10_1080_10618600_2022_2141752
crossref_primary_10_1002_pam_22154
crossref_primary_10_1016_j_drugalcdep_2017_02_024
crossref_primary_10_1515_jci_2022_0081
crossref_primary_10_1111_rssb_12213
crossref_primary_10_1136_bmjopen_2017_017715
crossref_primary_10_1097_EDE_0000000000000623
crossref_primary_10_3102_10769986241254286
crossref_primary_10_2967_jnumed_114_142331
crossref_primary_10_1080_19345747_2015_1105895
crossref_primary_10_1214_12_AOAS593
crossref_primary_10_1080_01621459_2016_1243480
crossref_primary_10_1080_01621459_2024_2435656
crossref_primary_10_1093_cid_cix313
crossref_primary_10_1080_19345747_2023_2290546
crossref_primary_10_1093_aje_kwu197
crossref_primary_10_1111_rssc_12550
crossref_primary_10_1080_19345747_2023_2209082
crossref_primary_10_1111_biom_13583
crossref_primary_10_1080_03610926_2021_2020291
crossref_primary_10_1177_0193841X17746740
crossref_primary_10_1016_j_socscimed_2018_04_030
crossref_primary_10_1158_1055_9965_EPI_21_0585
crossref_primary_10_1515_jci_2021_0018
crossref_primary_10_2147_CLEP_S451619
crossref_primary_10_1093_jrsssb_qkad017
crossref_primary_10_1515_em_2023_0015
crossref_primary_10_1080_19345747_2017_1375583
crossref_primary_10_1080_19466315_2021_1942975
crossref_primary_10_1186_s12874_023_02104_2
crossref_primary_10_2139_ssrn_4198189
crossref_primary_10_3899_jrheum_201204
crossref_primary_10_1080_01621459_2015_1023805
crossref_primary_10_3102_0013189X18781522
crossref_primary_10_1214_22_AOAS1712
crossref_primary_10_1007_s11121_021_01234_7
crossref_primary_10_1111_rssa_12564
crossref_primary_10_1146_annurev_soc_030420_015345
crossref_primary_10_1186_s12874_023_02127_9
crossref_primary_10_1007_s11414_012_9290_2
crossref_primary_10_1097_CCM_0000000000000227
crossref_primary_10_1016_j_ypmed_2022_107284
crossref_primary_10_1161_CIRCULATIONAHA_121_056878
crossref_primary_10_1080_01621459_2021_1984926
crossref_primary_10_1080_2372966X_2020_1823797
crossref_primary_10_1007_s40471_019_00222_4
crossref_primary_10_1017_pan_2024_8
crossref_primary_10_1080_19466315_2016_1225596
crossref_primary_10_3102_10769986221104800
crossref_primary_10_1177_0193841X16660663
crossref_primary_10_1002_jrsm_1511
crossref_primary_10_1007_s10654_019_00533_2
crossref_primary_10_1080_19345747_2015_1060282
crossref_primary_10_1186_s12931_016_0461_1
crossref_primary_10_1111_jar_12551
crossref_primary_10_1080_00220973_2024_2435287
crossref_primary_10_1017_pan_2020_32
crossref_primary_10_1177_0163278718772882
crossref_primary_10_1016_j_psychres_2023_115367
crossref_primary_10_57264_cer_2024_0064
crossref_primary_10_1093_jssam_smaa028
crossref_primary_10_1097_BOT_0000000000002704
crossref_primary_10_1177_0193841X16655665
crossref_primary_10_1080_00220973_2022_2088671
crossref_primary_10_1080_00220973_2019_1697191
crossref_primary_10_1080_01621459_2020_1866581
crossref_primary_10_1162_edfp_a_00379
crossref_primary_10_1111_rssb_12483
crossref_primary_10_1177_1470320316656480
crossref_primary_10_1002_pam_22005
crossref_primary_10_1007_s42081_020_00093_w
crossref_primary_10_1287_mnsc_2019_3537
crossref_primary_10_1515_scid_2024_0001
crossref_primary_10_1177_0272989X17725740
crossref_primary_10_1097_EDE_0000000000000774
crossref_primary_10_2139_ssrn_4025639
crossref_primary_10_1002_mpr_1609
crossref_primary_10_1017_rsm_2025_2
crossref_primary_10_1093_aje_kwac067
crossref_primary_10_1016_j_annepidem_2025_03_001
crossref_primary_10_1016_j_econlet_2019_02_020
crossref_primary_10_1093_ehjqcco_qcv005
crossref_primary_10_1177_0193841X16655656
crossref_primary_10_1177_0193841X231169557
crossref_primary_10_1080_02796015_2011_12087528
crossref_primary_10_1177_0272989X16639900
crossref_primary_10_1093_biomtc_ujae095
crossref_primary_10_1111_biom_13274
crossref_primary_10_1586_14737167_2016_1165609
crossref_primary_10_1007_s40801_020_00203_w
crossref_primary_10_1016_j_socscimed_2017_12_005
crossref_primary_10_3102_0013189X20960686
crossref_primary_10_1080_07350015_2020_1800479
crossref_primary_10_1002_pst_2435
crossref_primary_10_1007_s10742_016_0158_4
crossref_primary_10_1016_j_jclinepi_2023_10_009
crossref_primary_10_1097_EDE_0000000000000665
crossref_primary_10_1097_EDE_0000000000001633
crossref_primary_10_1007_s10654_019_00571_w
crossref_primary_10_1097_EDE_0000000000000664
crossref_primary_10_5662_wjm_v14_i1_90590
crossref_primary_10_1111_rssa_12136
crossref_primary_10_1093_ehjcvp_pvac016
crossref_primary_10_1146_annurev_statistics_030718_104951
crossref_primary_10_1080_19345747_2017_1364563
crossref_primary_10_1146_annurev_publhealth_031816_044215
crossref_primary_10_1093_aje_kwy233
crossref_primary_10_1002_sim_7980
crossref_primary_10_1186_1472_6963_14_334
crossref_primary_10_1002_wics_1581
crossref_primary_10_3390_ph14040290
crossref_primary_10_1177_1740774520972687
crossref_primary_10_1093_jamiaopen_ooab077
crossref_primary_10_12973_eu_jer_11_4_2069
crossref_primary_10_1002_cpt_1210
crossref_primary_10_1080_01621459_2015_1123157
crossref_primary_10_1177_0272989X18798833
crossref_primary_10_1093_aje_kwad014
crossref_primary_10_1177_0272989X15585131
crossref_primary_10_1016_j_jclinepi_2018_12_011
crossref_primary_10_1007_s11135_015_0235_8
crossref_primary_10_1002_sim_9817
crossref_primary_10_1111_ajad_12714
crossref_primary_10_1093_pubmed_fdaf002
crossref_primary_10_1111_rssb_12354
crossref_primary_10_1146_annurev_statistics_042522_103837
crossref_primary_10_1136_bmj_2022_072254
crossref_primary_10_1214_16_AOAS1001
Cites_doi 10.1007/s11121-005-5553-y
10.1016/j.amepre.2005.08.037
10.1093/aje/kwj149
10.1093/aje/kwq084
10.1214/08-AOAS187
10.1177/1098300709334798
10.1016/j.drugalcdep.2007.11.013
10.1002/sim.1903
10.1080/02796015.2006.12087989
10.1056/NEJMsr077003
10.1023/A:1021786811186
10.1016/S0140-6736(04)17670-8
10.1002/1097-0258(20001230)19:24<3359::AID-SIM710>3.0.CO;2-N
10.1056/NEJMsb022365
10.1016/S0140-6736(05)17709-5
10.2307/2529685
10.3102/10769986002001001
10.1023/A:1020363010465
10.1016/0091-7435(86)90024-1
10.1214/09-STS313
10.1097/EDE.0b013e3181875e61
10.1198/016214506000000447
10.1007/978-1-4757-3692-2
10.1198/016214504000000647
10.1093/biomet/asn004
10.1177/0748175609333560
10.1111/j.2517-6161.1983.tb01242.x
10.1093/biomet/70.1.41
10.1177/1740774509103868
10.1177/1098300709332067
10.1093/biomet/63.3.581
10.1080/01621459.1952.10483446
10.1093/biomet/79.4.797
10.1037/h0040950
10.1093/poq/nfn066
10.1176/appi.ajp.163.1.5
10.1002/sim.2934
10.1002/sim.3218
10.1007/s10985-008-9102-4
10.1016/0895-4356(94)00150-O
10.1177/1098300707312541
10.1080/01621459.2000.10474233
10.1111/j.2517-6161.1991.tb01848.x
10.1037/0012-1649.44.2.395
10.1177/1740774509102563
10.1159/000197389
10.1007/s11121-008-0114-9
10.1093/pan/mpl013
10.1111/j.1467-985X.2007.00527.x
10.1136/bmj.330.7497.960
ContentType Journal Article
Copyright Copyright © 2011 The Royal Statistical Society and Blackwell Publishing Ltd.
2010 Royal Statistical Society
2015 INIST-CNRS
Copyright Blackwell Publishing Ltd. Apr 2011
Copyright_xml – notice: Copyright © 2011 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2010 Royal Statistical Society
– notice: 2015 INIST-CNRS
– notice: Copyright Blackwell Publishing Ltd. Apr 2011
DBID BSCLL
AAYXX
CITATION
IQODW
NPM
DKI
X2L
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1111/j.1467-985X.2010.00673.x
DatabaseName Istex
CrossRef
Pascal-Francis
PubMed
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
MEDLINE - Academic

PubMed
International Bibliography of the Social Sciences (IBSS)

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-985X
EndPage 386
ExternalDocumentID PMC4051511
2333794861
blajorssa_v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369_386_htm
24926156
23929204
10_1111_j_1467_985X_2010_00673_x
RSSA673
23014404
ark_67375_WNG_L0PGPCC7_P
Genre article
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH067948
– fundername: CDC HHS
  grantid: R49/CCR318627
– fundername: NIMH NIH HHS
  grantid: K25 MH083846
GroupedDBID -~X
.3N
.GA
.Y3
05W
07C
10A
1OC
1OL
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AANHP
AAONW
AARHZ
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEML
ABFAN
ABIVO
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFRR
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACRPL
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AGQPQ
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ANFBD
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EOH
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
UB1
VUG
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
YQT
ZGI
ZL0
ZZTAW
~IA
~WT
1OB
AAHHS
ABYAD
ACCFJ
ACTWD
AEEZP
AELPN
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
JSODD
AAYXX
CITATION
IQODW
NPM
08R
0R
31
3N
8RP
AAGJQ
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AFXKK
AGJLS
AIHXQ
AS
DKI
EFSUC
FSPIC
GA
HZ
IA
IPNFZ
MEWTI
NF
P4A
PQEST
RIG
SAMSI
WRC
WT
X
X2L
Y3
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c8213-6228651e7509a12354905c1e0e3b7ec05561afb5e2778237d171983a2bc5863f3
IEDL.DBID DR2
ISSN 0964-1998
IngestDate Thu Aug 21 18:31:49 EDT 2025
Sat Sep 27 18:47:21 EDT 2025
Tue Sep 09 07:02:32 EDT 2025
Sun Sep 28 10:25:26 EDT 2025
Sat Sep 06 22:24:30 EDT 2025
Wed Aug 18 03:11:52 EDT 2021
Wed Feb 19 02:34:42 EST 2025
Mon Jul 21 09:09:57 EDT 2025
Tue Jul 01 05:25:48 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Wed Jan 22 16:27:56 EST 2025
Thu Jul 03 21:08:00 EDT 2025
Tue Sep 09 05:27:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Statistical method
Prevention
Causal inference
Positive behavioral interventions and supports
Randomized design
Experimental design
Research synthesis
External validity
Statistical estimation
Covariate
Implementation
Positive Behavioral Interventions and Supports
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c8213-6228651e7509a12354905c1e0e3b7ec05561afb5e2778237d171983a2bc5863f3
Notes ark:/67375/WNG-L0PGPCC7-P
istex:695E91B24E76AB2A08E218CEAC9D9B9226FC93CD
ArticleID:RSSA673
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink https://academic.oup.com/jrsssa/article-pdf/174/2/369/49526358/jrsssa_174_2_369.pdf
PMID 24926156
PQID 864097834
PQPubID 105636
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4051511
proquest_miscellaneous_918754011
proquest_miscellaneous_869800508
proquest_miscellaneous_1835605045
proquest_journals_864097834
repec_primary_blajorssa_v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369_386_htm
pubmed_primary_24926156
pascalfrancis_primary_23929204
crossref_primary_10_1111_j_1467_985X_2010_00673_x
crossref_citationtrail_10_1111_j_1467_985X_2010_00673_x
wiley_primary_10_1111_j_1467_985X_2010_00673_x_RSSA673
jstor_primary_23014404
istex_primary_ark_67375_WNG_L0PGPCC7_P
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: April 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationSeriesTitle Journal of the Royal Statistical Society Series A
PublicationTitle Journal of the Royal Statistical Society. Series A, Statistics in society
PublicationTitleAlternate J R Stat Soc Ser A Stat Soc
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Royal Statistical Society
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
– name: Royal Statistical Society
– name: Oxford University Press
References US Department of Health and Human Services (2010) Head start impact study final report. Technical Report. Administration for Children and Families, Washington DC.
Flay, B. R., Biglan, A., Boruch, R. F., Castro, F. G., Gottfredson, D., Kellam, S., Moscicki, E. K., Schinke, S. and Valentine, J. (2005) Standards of evidence: criteria for efficacy, effectiveness and dissemination. Prevn Sci., 6, 151-175.
Insel, T. R. (2006) Beyond efficacy: the STAR*D trial. Am. J. Psychiatr., 163, 5-7.
Sutton, A. J. and Higgins, J. P. (2008) Recent developments in meta-analysis. Statist. Med., 27, 625-650.
Hernán, M., Alonso, A., Logan, R., Grodstein, F., Michels, K., Willett, W., Manson, J. and Robins, J. (2008) Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion). Epidemiology, 19, 766-779.
Grodstein, F., Clarkson, T. and Manson, J. (2003) Understanding the divergent data on post-menopausal hormone therapy. New Engl. J. Med., 348, 645-650.
Rubin, D. B. (2001) Using propensity scores to help design observational studies: application to the tobacco litigation. Hlth Serv. Outcms Res. Methodol., 2, 169-188.
Pan, Q. and Schaubel, D. E. (2009) Evaluating bias correction in weighted proportional hazards regression. Liftime Data Anal., 15, 120-146.
Bradshaw, C., Mitchell, M. and Leaf, P. (2010) Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools. J. Pos. Behav. Intervens, 12, 133-148.
Cochran, W. G. and Rubin, D. B. (1973) Controlling bias in observational studies: a review. Sankhya A, 35, 417-446.
Rosenbaum, P. R. (1991) A characterization of optimal designs for observational studies. J. R. Statist. Soc. B, 53, 597-610.
Institute of Medicine (2006) Improving the Quality of Health Care for Mental and Substance-use Conditions. Washington, DC: National Academies Press.
Sugai, G. and Horner, R. (2006) A promising approach for expanding and sustaining school-wide positive behavior support. School Psychol. Rev., 35, 245-259.
Rosenbaum, P. R. and Rubin, D. B. (1983a) The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55.
Hansen, B. B. (2008) The prognostic analogue of the propensity score. Biometrika, 95, 481-488.
Rosenbaum, P. R. (2002) Observational Studies, 2nd edn. New York: Springer.
Rothwell, P. M. (2005a) External validity of randomised controlled trials: ''To whom do the results of this trial apply?''. Lancet, 365, 82-93.
Rothwell, P. M. (2005b) Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet, 365, 176-186.
Rubin, D. B. (1976) Inference and missing data (with discussion). Biometrika, 63, 581-592.
Bradshaw, C. P., Koth, C. W., Thornton, L. A. and Leaf, P. J. (2009) Altering school climate through school-wise Positive Behavioral Interventions and Supports: findings from a group-randomized effectiveness trial. Prevn Sci., 10, 100-115.
Rubin, D. B. (1977) Assignment to treatment group on the basis of a covariate. J. Educ. Statist., 2, 1-26.
Greenhouse, J. B., Kaizar, E. E., Kelleher, K., Seltman, H. and Gardner, W. (2008) Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users. Statist. Med., 27,1801-1813.
Lunceford, J. K. and Davidian, M. (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statist. Med., 23, 2937-2960.
Flay, B. R. (1986) Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs. Prevn Med., 15, 451-474.
Mamdani, M. M., Sykora, K., Li, P., Normand, S.-L. T., Streiner, D. L., Austin, P. C., Rochon, P. A. and Anderson, G. M. (2005) Reader's guide to critical appraisal of cohort studies: 2, assessing potential for confounding. Br. Med. J., 330, 960-962.
Stuart, E. A. (2010) Matching methods for causal inference: a review and a look forward. Statist. Sci., 25, 1-21.
Rosenbaum, P. R. and Rubin, D. B. (1983b) Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Statist. Soc. B, 45, 212-218.
Hansen, B. B. (2004) Full matching in an observational study of coaching for the SAT. J. Am. Statist. Ass., 99, 609-618.
Barrett, S., Bradshaw, C. and Lewis-Palmer, T. (2008) Maryland state-wide PBIS initiative: systems, evaluation, and next steps. J. Pos. Behav. Intervens, 10, 105-114.
Stuart, E. A. and Green, K. M. (2008) Using full matching to estimate causal effects in non-experimental studies: examining the relationship between adolescent marijuana use and adult outcomes. Devlpmntl Psychol., 44, 395-406.
Horvitz, D. and Thompson, D. (1952) A generalization of sampling without replacement from a finite universe. J. Am. Statist. Ass., 47, 663-685.
Wang, R., Lagakos, S. W., Ware, J. H., Hunter, D. J. and Drazen, J. M. (2007) Statistics in medicine-reporting of subgroup analyses in clinical trials. New Engl. J. Med., 357, 2189-2194.
Rubin, D. B. and Thomas, N. (2000) Combining propensity score matching with additional adjustments for prognostic covariates. J. Am. Statist. Ass., 95, 573-585.
Glasgow, R. E., Nelson, C. C., Strycker, L. A. and King, D. E. (2006) Using RE-AIM metrics to evaulate diabetes self-management support interventions. Am. J. Prev. Med., 30, 67-73.
Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. Burlington: Academic Press.
Kam, C., Greenberg, M. and Walls, C. (2003) Examining the role of implementation quality in school-based prevention using the PATHS curriculum. Prevn Sci., 1, 55-63.
Hong, G. and Raudenbush, S. W. (2006) Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data. J. Am. Statist. Ass., 101, 901-910.
Weisberg, H., Hayden, V. and Pontes, V. (2009) Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant-induced suicidality? Clin. Trials, 6, 109-118.
Rubin, D. B. (1973) The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics, 29, 185-203.
Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J. and Sturmer, T. (2006) Variable selection for propensity score models. Am. J. Epidem., 163, 1149-1156.
Campbell, D. T. (1957) Factors relevant to the validity of experiments in social settings. Psychol. Bull., 54, 297-312.
Kang, J. D. and Schafer, J. L. (2007) Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statist. Sci., 22, 523-539.
Koth, C., Bradshaw, C. and Leaf, P. (2009) Teacher Observation of Classroom Adaptation-Checklist (TOCA-C): development and factor structure. Measmnt Evaln Counsel. Devlpmnt, 42, 15-30.
Couper, M. P. and Miller, P. V. (2008) Web survey methods: introduction. Publ. Opin. Q., 72, 831-835.
Prevost, T. C., Abrams, K. R. and Jones, D. R. (2000) Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening. Statist. Med., 19, 3359-3376.
Ho, D. E., Imai, K., King, G. and Stuart, E. A. (2007) Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal., 15, 199-236.
Eddy, D., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method: the Statistical Synthesis of Evidence. New York: Academic Press.
Imai, K., King, G. and Stuart, E. A. (2008) Misunderstandings between experimentalists and observationalists about causal inference. J. R. Statist. Soc. A, 171, 481-502.
Frangakis, C. E. (2009) The calibration of treatment effects from clinical trials to target populations. Clin. Trials, 6, 136-140.
Rubin, D. B. and Thomas, N. (1992) Characterizing the effect of matching using linear propensity score methods with normal distributions. Biometrika, 79, 797-809.
Brown, C. H., Wang, W., Kellam, S. G., Muthen, B., Petras, H., Toyinbo, P., Poduska, J., Ialongo, N., Wyman, P. A., Chamberlain, P., Sloboda, Z., MacKinnon, D. P., Windham, A. and the Prevention Science Methodology Group (2008) Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and timeDrug Alc. Depend., 95, S74-S104.
Cole, S. R. and Stuart, E. A. (2010) Generalizing evidence from randomized clinical trials to target populations: the ACTG-320 trial. Am. J. Epidem., 172, 107-115.
Rubin, D. B. (2008) For objective causal inference, design trumps analysis. Ann. Appl. Statist., 2, 808-840.
Horner, R., Sugai, G., Smolkowski, K., Eber, L., Nakasato, J., Todd, A. and Esperanza, J. (2009) A randomized, wait-list controlled effectiveness trial assessing school-wide Positive Behavior Support in elementary schools. J. Pos. Behav. Intervens, 11, 133-144.
Shadish, W. R., Cook, T. D. and Campbell, D. T. (2002) Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin.
Kalton, G. and Flores-Cervantes, I. (2003) Weighting methods. J. Off. Statist., 19, 81-97.
Peto, R., Collins, R. and Gray, R. (1995) Large-scale randomized evidence: large, simple trials and overviews of trials. J. Clin. Epidem., 48, 23-40.
Haneuse, S., Schildcrout, J., Crane, P., Sonnen, J., Breitner, J. and Larson, E. (2009) Adjustment for selection bias in observational studies with application to the analysis of autopsy data. Neuroepidemiology, 32, 229-239.
2010; 12
1957; 54
1976; 63
2006; 30
1983b; 45
2009; 42
2005; 330
2006; 35
1991; 53
2004; 23
2000; 95
2003; 19
2008; 72
2008; 2
2009; 11
2000; 19
2009; 10
2010; 25
2008; 27
2006; 163
1985
2003; 1
2005b; 365
2007; 22
2009; 15
1973; 35
2010
2008; 19
1986; 15
2009
2007
2006
2008; 10
1992; 79
1992
2002
2008; 95
2007; 15
1999
2004; 99
2007; 357
1952; 47
2003; 348
2009; 32
1995; 48
2005a; 365
1983a; 70
1973; 29
2005; 6
1977; 2
2010; 172
2009; 6
2001; 2
2008; 44
2006; 101
2008; 171
Mamdani (2023031600060119600_) 2005; 330
Stuart (2023031600060119600_) 2008; 44
Pan (2023031600060119600_) 2009; 15
Rubin (2023031600060119600_) 1973; 29
Rosenbaum (2023031600060119600_) 1983; 45
Stuart (2023031600060119600_) 2010; 25
Rubin (2023031600060119600_) 2008; 2
Hansen (2023031600060119600_) 2004; 99
Prevost (2023031600060119600_) 2000; 19
US Department of Education (2023031600060119600_) 2009
Rubin (2023031600060119600_) 1992; 79
Eddy (2023031600060119600_) 1992
Peto (2023031600060119600_) 1995; 48
Rubin (2023031600060119600_) 2000; 95
Rosenbaum (2023031600060119600_) 1983; 70
US Department of Health and Human Services (2023031600060119600_) 2010
Campbell (2023031600060119600_) 1957; 54
Brookhart (2023031600060119600_) 2006; 163
Rubin (2023031600060119600_) 1977; 2
Kalton (2023031600060119600_) 2003; 19
Bradshaw (2023031600060119600_) 2009; 10
Cook (2023031600060119600_) 2007
Rosenbaum (2023031600060119600_) 1991; 53
Sugai (2023031600060119600_) 2006; 35
Rubin (2023031600060119600_) 2001; 2
Hernán (2023031600060119600_) 2008; 19
Insel (2023031600060119600_) 2006; 163
Lunceford (2023031600060119600_) 2004; 23
Brown (2023031600060119600_) 2008; 95
Sutton (2023031600060119600_) 2008; 27
Glasgow (2023031600060119600_) 2006; 30
Frangakis (2023031600060119600_) 2009; 6
Rubin (2023031600060119600_) 1976; 63
Flay (2023031600060119600_) 2005; 6
Greenhouse (2023031600060119600_) 2008; 27
Kang (2023031600060119600_) 2007; 22
Ho (2023031600060119600_) 2007; 15
National Institute of Mental Health (2023031600060119600_) 1999
Grodstein (2023031600060119600_) 2003; 348
Hong (2023031600060119600_) 2006; 101
Weisberg (2023031600060119600_) 2009; 6
Wang (2023031600060119600_) 2007; 357
Haneuse (2023031600060119600_) 2009; 32
Hansen (2023031600060119600_) 2008; 95
Rosenbaum (2023031600060119600_) 2002
Cochran (2023031600060119600_) 1973; 35
Institute of Medicine (2023031600060119600_) 2006
Cole (2023031600060119600_) 2010; 172
Couper (2023031600060119600_) 2008; 72
Hedges (2023031600060119600_) 1985
Shadish (2023031600060119600_) 2002
Kam (2023031600060119600_) 2003; 1
Flay (2023031600060119600_) 1986; 15
Koth (2023031600060119600_) 2009; 42
Horner (2023031600060119600_) 2009; 11
Horvitz (2023031600060119600_) 1952; 47
Bradshaw (2023031600060119600_) 2010; 12
Imai (2023031600060119600_) 2008; 171
Rothwell (2023031600060119600_) 2005; 365
Barrett (2023031600060119600_) 2008; 10
References_xml – reference: Imai, K., King, G. and Stuart, E. A. (2008) Misunderstandings between experimentalists and observationalists about causal inference. J. R. Statist. Soc. A, 171, 481-502.
– reference: Kang, J. D. and Schafer, J. L. (2007) Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statist. Sci., 22, 523-539.
– reference: Institute of Medicine (2006) Improving the Quality of Health Care for Mental and Substance-use Conditions. Washington, DC: National Academies Press.
– reference: Sugai, G. and Horner, R. (2006) A promising approach for expanding and sustaining school-wide positive behavior support. School Psychol. Rev., 35, 245-259.
– reference: Haneuse, S., Schildcrout, J., Crane, P., Sonnen, J., Breitner, J. and Larson, E. (2009) Adjustment for selection bias in observational studies with application to the analysis of autopsy data. Neuroepidemiology, 32, 229-239.
– reference: Rubin, D. B. and Thomas, N. (2000) Combining propensity score matching with additional adjustments for prognostic covariates. J. Am. Statist. Ass., 95, 573-585.
– reference: Stuart, E. A. (2010) Matching methods for causal inference: a review and a look forward. Statist. Sci., 25, 1-21.
– reference: Prevost, T. C., Abrams, K. R. and Jones, D. R. (2000) Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening. Statist. Med., 19, 3359-3376.
– reference: Ho, D. E., Imai, K., King, G. and Stuart, E. A. (2007) Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal., 15, 199-236.
– reference: Horner, R., Sugai, G., Smolkowski, K., Eber, L., Nakasato, J., Todd, A. and Esperanza, J. (2009) A randomized, wait-list controlled effectiveness trial assessing school-wide Positive Behavior Support in elementary schools. J. Pos. Behav. Intervens, 11, 133-144.
– reference: Kam, C., Greenberg, M. and Walls, C. (2003) Examining the role of implementation quality in school-based prevention using the PATHS curriculum. Prevn Sci., 1, 55-63.
– reference: Greenhouse, J. B., Kaizar, E. E., Kelleher, K., Seltman, H. and Gardner, W. (2008) Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users. Statist. Med., 27,1801-1813.
– reference: Hansen, B. B. (2008) The prognostic analogue of the propensity score. Biometrika, 95, 481-488.
– reference: Bradshaw, C., Mitchell, M. and Leaf, P. (2010) Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools. J. Pos. Behav. Intervens, 12, 133-148.
– reference: Rubin, D. B. (1976) Inference and missing data (with discussion). Biometrika, 63, 581-592.
– reference: Lunceford, J. K. and Davidian, M. (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statist. Med., 23, 2937-2960.
– reference: Hernán, M., Alonso, A., Logan, R., Grodstein, F., Michels, K., Willett, W., Manson, J. and Robins, J. (2008) Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion). Epidemiology, 19, 766-779.
– reference: Rubin, D. B. (1977) Assignment to treatment group on the basis of a covariate. J. Educ. Statist., 2, 1-26.
– reference: Brown, C. H., Wang, W., Kellam, S. G., Muthen, B., Petras, H., Toyinbo, P., Poduska, J., Ialongo, N., Wyman, P. A., Chamberlain, P., Sloboda, Z., MacKinnon, D. P., Windham, A. and the Prevention Science Methodology Group (2008) Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and timeDrug Alc. Depend., 95, S74-S104.
– reference: Rubin, D. B. (1973) The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics, 29, 185-203.
– reference: Frangakis, C. E. (2009) The calibration of treatment effects from clinical trials to target populations. Clin. Trials, 6, 136-140.
– reference: Mamdani, M. M., Sykora, K., Li, P., Normand, S.-L. T., Streiner, D. L., Austin, P. C., Rochon, P. A. and Anderson, G. M. (2005) Reader's guide to critical appraisal of cohort studies: 2, assessing potential for confounding. Br. Med. J., 330, 960-962.
– reference: Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J. and Sturmer, T. (2006) Variable selection for propensity score models. Am. J. Epidem., 163, 1149-1156.
– reference: Wang, R., Lagakos, S. W., Ware, J. H., Hunter, D. J. and Drazen, J. M. (2007) Statistics in medicine-reporting of subgroup analyses in clinical trials. New Engl. J. Med., 357, 2189-2194.
– reference: Cochran, W. G. and Rubin, D. B. (1973) Controlling bias in observational studies: a review. Sankhya A, 35, 417-446.
– reference: Barrett, S., Bradshaw, C. and Lewis-Palmer, T. (2008) Maryland state-wide PBIS initiative: systems, evaluation, and next steps. J. Pos. Behav. Intervens, 10, 105-114.
– reference: Horvitz, D. and Thompson, D. (1952) A generalization of sampling without replacement from a finite universe. J. Am. Statist. Ass., 47, 663-685.
– reference: Rubin, D. B. (2001) Using propensity scores to help design observational studies: application to the tobacco litigation. Hlth Serv. Outcms Res. Methodol., 2, 169-188.
– reference: Eddy, D., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method: the Statistical Synthesis of Evidence. New York: Academic Press.
– reference: Campbell, D. T. (1957) Factors relevant to the validity of experiments in social settings. Psychol. Bull., 54, 297-312.
– reference: Grodstein, F., Clarkson, T. and Manson, J. (2003) Understanding the divergent data on post-menopausal hormone therapy. New Engl. J. Med., 348, 645-650.
– reference: Hansen, B. B. (2004) Full matching in an observational study of coaching for the SAT. J. Am. Statist. Ass., 99, 609-618.
– reference: Peto, R., Collins, R. and Gray, R. (1995) Large-scale randomized evidence: large, simple trials and overviews of trials. J. Clin. Epidem., 48, 23-40.
– reference: Rothwell, P. M. (2005b) Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet, 365, 176-186.
– reference: Couper, M. P. and Miller, P. V. (2008) Web survey methods: introduction. Publ. Opin. Q., 72, 831-835.
– reference: Rosenbaum, P. R. and Rubin, D. B. (1983a) The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55.
– reference: Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. Burlington: Academic Press.
– reference: Rosenbaum, P. R. and Rubin, D. B. (1983b) Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Statist. Soc. B, 45, 212-218.
– reference: Sutton, A. J. and Higgins, J. P. (2008) Recent developments in meta-analysis. Statist. Med., 27, 625-650.
– reference: Cole, S. R. and Stuart, E. A. (2010) Generalizing evidence from randomized clinical trials to target populations: the ACTG-320 trial. Am. J. Epidem., 172, 107-115.
– reference: Bradshaw, C. P., Koth, C. W., Thornton, L. A. and Leaf, P. J. (2009) Altering school climate through school-wise Positive Behavioral Interventions and Supports: findings from a group-randomized effectiveness trial. Prevn Sci., 10, 100-115.
– reference: Rothwell, P. M. (2005a) External validity of randomised controlled trials: ''To whom do the results of this trial apply?''. Lancet, 365, 82-93.
– reference: Rubin, D. B. and Thomas, N. (1992) Characterizing the effect of matching using linear propensity score methods with normal distributions. Biometrika, 79, 797-809.
– reference: Shadish, W. R., Cook, T. D. and Campbell, D. T. (2002) Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin.
– reference: Stuart, E. A. and Green, K. M. (2008) Using full matching to estimate causal effects in non-experimental studies: examining the relationship between adolescent marijuana use and adult outcomes. Devlpmntl Psychol., 44, 395-406.
– reference: Pan, Q. and Schaubel, D. E. (2009) Evaluating bias correction in weighted proportional hazards regression. Liftime Data Anal., 15, 120-146.
– reference: US Department of Health and Human Services (2010) Head start impact study final report. Technical Report. Administration for Children and Families, Washington DC.
– reference: Glasgow, R. E., Nelson, C. C., Strycker, L. A. and King, D. E. (2006) Using RE-AIM metrics to evaulate diabetes self-management support interventions. Am. J. Prev. Med., 30, 67-73.
– reference: Rosenbaum, P. R. (2002) Observational Studies, 2nd edn. New York: Springer.
– reference: Flay, B. R., Biglan, A., Boruch, R. F., Castro, F. G., Gottfredson, D., Kellam, S., Moscicki, E. K., Schinke, S. and Valentine, J. (2005) Standards of evidence: criteria for efficacy, effectiveness and dissemination. Prevn Sci., 6, 151-175.
– reference: Rosenbaum, P. R. (1991) A characterization of optimal designs for observational studies. J. R. Statist. Soc. B, 53, 597-610.
– reference: Rubin, D. B. (2008) For objective causal inference, design trumps analysis. Ann. Appl. Statist., 2, 808-840.
– reference: Kalton, G. and Flores-Cervantes, I. (2003) Weighting methods. J. Off. Statist., 19, 81-97.
– reference: Weisberg, H., Hayden, V. and Pontes, V. (2009) Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant-induced suicidality? Clin. Trials, 6, 109-118.
– reference: Hong, G. and Raudenbush, S. W. (2006) Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data. J. Am. Statist. Ass., 101, 901-910.
– reference: Koth, C., Bradshaw, C. and Leaf, P. (2009) Teacher Observation of Classroom Adaptation-Checklist (TOCA-C): development and factor structure. Measmnt Evaln Counsel. Devlpmnt, 42, 15-30.
– reference: Flay, B. R. (1986) Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs. Prevn Med., 15, 451-474.
– reference: Insel, T. R. (2006) Beyond efficacy: the STAR*D trial. Am. J. Psychiatr., 163, 5-7.
– year: 1985
– year: 2009
– volume: 2
  start-page: 808
  year: 2008
  end-page: 840
  article-title: For objective causal inference, design trumps analysis
  publication-title: Ann. Appl. Statist.
– volume: 6
  start-page: 136
  year: 2009
  end-page: 140
  article-title: The calibration of treatment effects from clinical trials to target populations
  publication-title: Clin. Trials
– volume: 2
  start-page: 1
  year: 1977
  end-page: 26
  article-title: Assignment to treatment group on the basis of a covariate
  publication-title: J. Educ. Statist.
– volume: 101
  start-page: 901
  year: 2006
  end-page: 910
  article-title: Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data
  publication-title: J. Am. Statist. Ass.
– volume: 45
  start-page: 212
  year: 1983b
  end-page: 218
  article-title: Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
  publication-title: J. R. Statist. Soc. B
– volume: 330
  start-page: 960
  year: 2005
  end-page: 962
  article-title: Reader's guide to critical appraisal of cohort studies: 2, assessing potential for confounding
  publication-title: Br. Med. J.
– volume: 72
  start-page: 831
  year: 2008
  end-page: 835
  article-title: Web survey methods: introduction
  publication-title: Publ. Opin. Q.
– volume: 48
  start-page: 23
  year: 1995
  end-page: 40
  article-title: Large‐scale randomized evidence: large, simple trials and overviews of trials
  publication-title: J. Clin. Epidem.
– volume: 54
  start-page: 297
  year: 1957
  end-page: 312
  article-title: Factors relevant to the validity of experiments in social settings
  publication-title: Psychol. Bull.
– volume: 19
  start-page: 3359
  year: 2000
  end-page: 3376
  article-title: Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening
  publication-title: Statist. Med.
– volume: 53
  start-page: 597
  year: 1991
  end-page: 610
  article-title: A characterization of optimal designs for observational studies
  publication-title: J. R. Statist. Soc. B
– volume: 47
  start-page: 663
  year: 1952
  end-page: 685
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: J. Am. Statist. Ass.
– volume: 10
  start-page: 105
  year: 2008
  end-page: 114
  article-title: Maryland state‐wide PBIS initiative: systems, evaluation, and next steps
  publication-title: J. Pos. Behav. Intervens
– volume: 163
  start-page: 1149
  year: 2006
  end-page: 1156
  article-title: Variable selection for propensity score models
  publication-title: Am. J. Epidem.
– volume: 163
  start-page: 5
  year: 2006
  end-page: 7
  article-title: Beyond efficacy: the STAR*D trial
  publication-title: Am. J. Psychiatr.
– volume: 95
  start-page: 481
  year: 2008
  end-page: 488
  article-title: The prognostic analogue of the propensity score
  publication-title: Biometrika
– volume: 2
  start-page: 169
  year: 2001
  end-page: 188
  article-title: Using propensity scores to help design observational studies: application to the tobacco litigation
  publication-title: Hlth Serv. Outcms Res. Methodol.
– volume: 6
  start-page: 109
  year: 2009
  end-page: 118
  article-title: Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant‐induced suicidality?
  publication-title: Clin. Trials
– volume: 79
  start-page: 797
  year: 1992
  end-page: 809
  article-title: Characterizing the effect of matching using linear propensity score methods with normal distributions
  publication-title: Biometrika
– volume: 29
  start-page: 185
  year: 1973
  end-page: 203
  article-title: The use of matched sampling and regression adjustment to remove bias in observational studies
  publication-title: Biometrics
– volume: 32
  start-page: 229
  year: 2009
  end-page: 239
  article-title: Adjustment for selection bias in observational studies with application to the analysis of autopsy data
  publication-title: Neuroepidemiology
– volume: 11
  start-page: 133
  year: 2009
  end-page: 144
  article-title: A randomized, wait‐list controlled effectiveness trial assessing school‐wide Positive Behavior Support in elementary schools
  publication-title: J. Pos. Behav. Intervens
– volume: 44
  start-page: 395
  year: 2008
  end-page: 406
  article-title: Using full matching to estimate causal effects in non‐experimental studies: examining the relationship between adolescent marijuana use and adult outcomes
  publication-title: Devlpmntl Psychol.
– volume: 42
  start-page: 15
  year: 2009
  end-page: 30
  article-title: Teacher Observation of Classroom Adaptation‐Checklist (TOCA‐C): development and factor structure
  publication-title: Measmnt Evaln Counsel. Devlpmnt
– volume: 348
  start-page: 645
  year: 2003
  end-page: 650
  article-title: Understanding the divergent data on post‐menopausal hormone therapy
  publication-title: New Engl. J. Med.
– volume: 27
  start-page: 625
  year: 2008
  end-page: 650
  article-title: Recent developments in meta‐analysis
  publication-title: Statist. Med.
– volume: 99
  start-page: 609
  year: 2004
  end-page: 618
  article-title: Full matching in an observational study of coaching for the SAT
  publication-title: J. Am. Statist. Ass.
– volume: 95
  start-page: S74
  year: 2008
  end-page: S104
  article-title: Methods for testing theory and evaluating impact in randomized field trials: intent‐to‐treat analyses for integrating the perspectives of person, place, and time
  publication-title: Drug Alc. Depend.
– volume: 19
  start-page: 81
  year: 2003
  end-page: 97
  article-title: Weighting methods
  publication-title: J. Off. Statist.
– volume: 10
  start-page: 100
  year: 2009
  end-page: 115
  article-title: Altering school climate through school‐wise Positive Behavioral Interventions and Supports: findings from a group‐randomized effectiveness trial
  publication-title: Prevn Sci.
– volume: 15
  start-page: 451
  year: 1986
  end-page: 474
  article-title: Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs
  publication-title: Prevn Med.
– year: 2007
– volume: 171
  start-page: 481
  year: 2008
  end-page: 502
  article-title: Misunderstandings between experimentalists and observationalists about causal inference
  publication-title: J. R. Statist. Soc. A
– year: 2010
  article-title: Head start impact study final report
  publication-title: Technical Report
– volume: 19
  start-page: 766
  year: 2008
  end-page: 779
  article-title: Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion)
  publication-title: Epidemiology
– volume: 23
  start-page: 2937
  year: 2004
  end-page: 2960
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
  publication-title: Statist. Med.
– volume: 365
  start-page: 176
  year: 2005b
  end-page: 186
  article-title: Subgroup analysis in randomised controlled trials: importance, indications, and interpretation
  publication-title: Lancet
– volume: 30
  start-page: 67
  year: 2006
  end-page: 73
  article-title: Using RE‐AIM metrics to evaulate diabetes self‐management support interventions
  publication-title: Am. J. Prev. Med.
– volume: 15
  start-page: 120
  year: 2009
  end-page: 146
  article-title: Evaluating bias correction in weighted proportional hazards regression
  publication-title: Liftime Data Anal.
– year: 1992
– volume: 12
  start-page: 133
  year: 2010
  end-page: 148
  article-title: Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools
  publication-title: J. Pos. Behav. Intervens
– volume: 172
  start-page: 107
  year: 2010
  end-page: 115
  article-title: Generalizing evidence from randomized clinical trials to target populations: the ACTG‐320 trial
  publication-title: Am. J. Epidem.
– volume: 35
  start-page: 245
  year: 2006
  end-page: 259
  article-title: A promising approach for expanding and sustaining school‐wide positive behavior support
  publication-title: School Psychol. Rev.
– volume: 1
  start-page: 55
  year: 2003
  end-page: 63
  article-title: Examining the role of implementation quality in school‐based prevention using the PATHS curriculum
  publication-title: Prevn Sci.
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  article-title: Inference and missing data (with discussion)
  publication-title: Biometrika
– volume: 6
  start-page: 151
  year: 2005
  end-page: 175
  article-title: Standards of evidence: criteria for efficacy, effectiveness and dissemination
  publication-title: Prevn Sci.
– volume: 27
  start-page: 1801
  year: 2008
  end-page: 1813
  article-title: Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users
  publication-title: Statist. Med.
– volume: 357
  start-page: 2189
  year: 2007
  end-page: 2194
  article-title: Statistics in medicine—reporting of subgroup analyses in clinical trials
  publication-title: New Engl. J. Med.
– volume: 95
  start-page: 573
  year: 2000
  end-page: 585
  article-title: Combining propensity score matching with additional adjustments for prognostic covariates
  publication-title: J. Am. Statist. Ass.
– volume: 70
  start-page: 41
  year: 1983a
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– year: 2002
– year: 2006
– volume: 25
  start-page: 1
  year: 2010
  end-page: 21
  article-title: Matching methods for causal inference: a review and a look forward
  publication-title: Statist. Sci.
– volume: 365
  start-page: 82
  year: 2005a
  end-page: 93
  article-title: External validity of randomised controlled trials: ‘‘To whom do the results of this trial apply?’’
  publication-title: Lancet
– volume: 15
  start-page: 199
  year: 2007
  end-page: 236
  article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
  publication-title: Polit. Anal.
– volume: 22
  start-page: 523
  year: 2007
  end-page: 539
  article-title: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data
  publication-title: Statist. Sci.
– volume: 35
  start-page: 417
  year: 1973
  end-page: 446
  article-title: Controlling bias in observational studies: a review
  publication-title: Sankhya A
– year: 1999
– volume: 6
  start-page: 151
  year: 2005
  ident: 2023031600060119600_
  article-title: Standards of evidence: criteria for efficacy, effectiveness and dissemination
  publication-title: Prevn Sci.
  doi: 10.1007/s11121-005-5553-y
– volume: 30
  start-page: 67
  year: 2006
  ident: 2023031600060119600_
  article-title: Using RE-AIM metrics to evaulate diabetes self-management support interventions
  publication-title: Am. J. Prev. Med.
  doi: 10.1016/j.amepre.2005.08.037
– volume: 163
  start-page: 1149
  year: 2006
  ident: 2023031600060119600_
  article-title: Variable selection for propensity score models
  publication-title: Am. J. Epidem.
  doi: 10.1093/aje/kwj149
– volume: 172
  start-page: 107
  year: 2010
  ident: 2023031600060119600_
  article-title: Generalizing evidence from randomized clinical trials to target populations: the ACTG-320 trial
  publication-title: Am. J. Epidem.
  doi: 10.1093/aje/kwq084
– volume: 19
  start-page: 81
  year: 2003
  ident: 2023031600060119600_
  article-title: Weighting methods
  publication-title: J. Off. Statist.
– volume: 2
  start-page: 808
  year: 2008
  ident: 2023031600060119600_
  article-title: For objective causal inference, design trumps analysis
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/08-AOAS187
– volume: 12
  start-page: 133
  year: 2010
  ident: 2023031600060119600_
  article-title: Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools
  publication-title: J. Pos. Behav. Intervens
  doi: 10.1177/1098300709334798
– volume: 95
  start-page: S74
  year: 2008
  ident: 2023031600060119600_
  article-title: Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and time
  publication-title: Drug Alc. Depend.
  doi: 10.1016/j.drugalcdep.2007.11.013
– volume: 23
  start-page: 2937
  year: 2004
  ident: 2023031600060119600_
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
  publication-title: Statist. Med.
  doi: 10.1002/sim.1903
– volume: 35
  start-page: 245
  year: 2006
  ident: 2023031600060119600_
  article-title: A promising approach for expanding and sustaining school-wide positive behavior support
  publication-title: School Psychol. Rev.
  doi: 10.1080/02796015.2006.12087989
– volume: 357
  start-page: 2189
  year: 2007
  ident: 2023031600060119600_
  article-title: Statistics in medicine—reporting of subgroup analyses in clinical trials
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMsr077003
– volume: 1
  start-page: 55
  year: 2003
  ident: 2023031600060119600_
  article-title: Examining the role of implementation quality in school-based prevention using the PATHS curriculum
  publication-title: Prevn Sci.
  doi: 10.1023/A:1021786811186
– volume-title: Technical Report
  year: 2009
  ident: 2023031600060119600_
– volume: 365
  start-page: 82
  year: 2005
  ident: 2023031600060119600_
  article-title: External validity of randomised controlled trials: ‘‘To whom do the results of this trial apply?’’
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)17670-8
– volume: 22
  start-page: 523
  year: 2007
  ident: 2023031600060119600_
  article-title: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data
  publication-title: Statist. Sci.
– volume: 19
  start-page: 3359
  year: 2000
  ident: 2023031600060119600_
  article-title: Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening
  publication-title: Statist. Med.
  doi: 10.1002/1097-0258(20001230)19:24<3359::AID-SIM710>3.0.CO;2-N
– volume: 348
  start-page: 645
  year: 2003
  ident: 2023031600060119600_
  article-title: Understanding the divergent data on post-menopausal hormone therapy
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMsb022365
– volume: 365
  start-page: 176
  year: 2005
  ident: 2023031600060119600_
  article-title: Subgroup analysis in randomised controlled trials: importance, indications, and interpretation
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)17709-5
– volume: 29
  start-page: 185
  year: 1973
  ident: 2023031600060119600_
  article-title: The use of matched sampling and regression adjustment to remove bias in observational studies
  publication-title: Biometrics
  doi: 10.2307/2529685
– volume: 2
  start-page: 1
  year: 1977
  ident: 2023031600060119600_
  article-title: Assignment to treatment group on the basis of a covariate
  publication-title: J. Educ. Statist.
  doi: 10.3102/10769986002001001
– volume: 2
  start-page: 169
  year: 2001
  ident: 2023031600060119600_
  article-title: Using propensity scores to help design observational studies: application to the tobacco litigation
  publication-title: Hlth Serv. Outcms Res. Methodol.
  doi: 10.1023/A:1020363010465
– volume: 15
  start-page: 451
  year: 1986
  ident: 2023031600060119600_
  article-title: Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs
  publication-title: Prevn Med.
  doi: 10.1016/0091-7435(86)90024-1
– volume: 25
  start-page: 1
  year: 2010
  ident: 2023031600060119600_
  article-title: Matching methods for causal inference: a review and a look forward
  publication-title: Statist. Sci.
  doi: 10.1214/09-STS313
– volume: 19
  start-page: 766
  year: 2008
  ident: 2023031600060119600_
  article-title: Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion)
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181875e61
– volume: 101
  start-page: 901
  year: 2006
  ident: 2023031600060119600_
  article-title: Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214506000000447
– volume-title: Observational Studies
  year: 2002
  ident: 2023031600060119600_
  doi: 10.1007/978-1-4757-3692-2
– volume: 99
  start-page: 609
  year: 2004
  ident: 2023031600060119600_
  article-title: Full matching in an observational study of coaching for the SAT
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214504000000647
– volume: 95
  start-page: 481
  year: 2008
  ident: 2023031600060119600_
  article-title: The prognostic analogue of the propensity score
  publication-title: Biometrika
  doi: 10.1093/biomet/asn004
– volume-title: Improving the Quality of Health Care for Mental and Substance-use Conditions
  year: 2006
  ident: 2023031600060119600_
– volume: 42
  start-page: 15
  year: 2009
  ident: 2023031600060119600_
  article-title: Teacher Observation of Classroom Adaptation-Checklist (TOCA-C): development and factor structure
  publication-title: Measmnt Evaln Counsel. Devlpmnt
  doi: 10.1177/0748175609333560
– volume: 45
  start-page: 212
  year: 1983
  ident: 2023031600060119600_
  article-title: Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1983.tb01242.x
– volume: 70
  start-page: 41
  year: 1983
  ident: 2023031600060119600_
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 6
  start-page: 136
  year: 2009
  ident: 2023031600060119600_
  article-title: The calibration of treatment effects from clinical trials to target populations
  publication-title: Clin. Trials
  doi: 10.1177/1740774509103868
– volume: 11
  start-page: 133
  year: 2009
  ident: 2023031600060119600_
  article-title: A randomized, wait-list controlled effectiveness trial assessing school-wide Positive Behavior Support in elementary schools
  publication-title: J. Pos. Behav. Intervens
  doi: 10.1177/1098300709332067
– volume: 63
  start-page: 581
  year: 1976
  ident: 2023031600060119600_
  article-title: Inference and missing data (with discussion)
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.581
– volume: 47
  start-page: 663
  year: 1952
  ident: 2023031600060119600_
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1952.10483446
– volume: 79
  start-page: 797
  year: 1992
  ident: 2023031600060119600_
  article-title: Characterizing the effect of matching using linear propensity score methods with normal distributions
  publication-title: Biometrika
  doi: 10.1093/biomet/79.4.797
– volume-title: Experimental and Quasi-experimental Designs for Generalized Causal Inference
  year: 2002
  ident: 2023031600060119600_
– volume-title: Proc. 20th A. Res. Conf. System of Care for Children’s Mental Health: Expanding the Research Base
  year: 2007
  ident: 2023031600060119600_
– volume-title: Technical Report
  year: 1999
  ident: 2023031600060119600_
– volume: 54
  start-page: 297
  year: 1957
  ident: 2023031600060119600_
  article-title: Factors relevant to the validity of experiments in social settings
  publication-title: Psychol. Bull.
  doi: 10.1037/h0040950
– volume: 72
  start-page: 831
  year: 2008
  ident: 2023031600060119600_
  article-title: Web survey methods: introduction
  publication-title: Publ. Opin. Q.
  doi: 10.1093/poq/nfn066
– volume: 163
  start-page: 5
  year: 2006
  ident: 2023031600060119600_
  article-title: Beyond efficacy: the STAR*D trial
  publication-title: Am. J. Psychiatr.
  doi: 10.1176/appi.ajp.163.1.5
– volume: 27
  start-page: 625
  year: 2008
  ident: 2023031600060119600_
  article-title: Recent developments in meta-analysis
  publication-title: Statist. Med.
  doi: 10.1002/sim.2934
– volume: 27
  start-page: 1801
  year: 2008
  ident: 2023031600060119600_
  article-title: Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users
  publication-title: Statist. Med.
  doi: 10.1002/sim.3218
– volume: 15
  start-page: 120
  year: 2009
  ident: 2023031600060119600_
  article-title: Evaluating bias correction in weighted proportional hazards regression
  publication-title: Liftime Data Anal.
  doi: 10.1007/s10985-008-9102-4
– volume: 48
  start-page: 23
  year: 1995
  ident: 2023031600060119600_
  article-title: Large-scale randomized evidence: large, simple trials and overviews of trials
  publication-title: J. Clin. Epidem.
  doi: 10.1016/0895-4356(94)00150-O
– volume: 10
  start-page: 105
  year: 2008
  ident: 2023031600060119600_
  article-title: Maryland state-wide PBIS initiative: systems, evaluation, and next steps
  publication-title: J. Pos. Behav. Intervens
  doi: 10.1177/1098300707312541
– year: 2010
  ident: 2023031600060119600_
  article-title: Head start impact study final report
  publication-title: Technical Report
– volume: 35
  start-page: 417
  year: 1973
  ident: 2023031600060119600_
  article-title: Controlling bias in observational studies: a review
  publication-title: Sankhya A
– volume: 95
  start-page: 573
  year: 2000
  ident: 2023031600060119600_
  article-title: Combining propensity score matching with additional adjustments for prognostic covariates
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2000.10474233
– volume: 53
  start-page: 597
  year: 1991
  ident: 2023031600060119600_
  article-title: A characterization of optimal designs for observational studies
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1991.tb01848.x
– volume-title: Meta-analysis by the Confidence Profile Method: the Statistical Synthesis of Evidence
  year: 1992
  ident: 2023031600060119600_
– volume: 44
  start-page: 395
  year: 2008
  ident: 2023031600060119600_
  article-title: Using full matching to estimate causal effects in non-experimental studies: examining the relationship between adolescent marijuana use and adult outcomes
  publication-title: Devlpmntl Psychol.
  doi: 10.1037/0012-1649.44.2.395
– volume-title: Statistical Methods for Meta-analysis
  year: 1985
  ident: 2023031600060119600_
– volume: 6
  start-page: 109
  year: 2009
  ident: 2023031600060119600_
  article-title: Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant-induced suicidality?
  publication-title: Clin. Trials
  doi: 10.1177/1740774509102563
– volume: 32
  start-page: 229
  year: 2009
  ident: 2023031600060119600_
  article-title: Adjustment for selection bias in observational studies with application to the analysis of autopsy data
  publication-title: Neuroepidemiology
  doi: 10.1159/000197389
– volume: 10
  start-page: 100
  year: 2009
  ident: 2023031600060119600_
  article-title: Altering school climate through school-wise Positive Behavioral Interventions and Supports: findings from a group-randomized effectiveness trial
  publication-title: Prevn Sci.
  doi: 10.1007/s11121-008-0114-9
– volume: 15
  start-page: 199
  year: 2007
  ident: 2023031600060119600_
  article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
  publication-title: Polit. Anal.
  doi: 10.1093/pan/mpl013
– volume: 171
  start-page: 481
  year: 2008
  ident: 2023031600060119600_
  article-title: Misunderstandings between experimentalists and observationalists about causal inference
  publication-title: J. R. Statist. Soc. A
  doi: 10.1111/j.1467-985X.2007.00527.x
– volume: 330
  start-page: 960
  year: 2005
  ident: 2023031600060119600_
  article-title: Reader’s guide to critical appraisal of cohort studies: 2, assessing potential for confounding
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.330.7497.960
SSID ssj0000077
Score 2.4838052
Snippet Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary...
SourceID pubmedcentral
proquest
repec
pubmed
pascalfrancis
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 369
SubjectTerms Applications
Causal inference
Combinatorics
Combinatorics. Ordered structures
Control groups
Designs and configurations
Effects
Elementary schools
Empirical research
Estimating techniques
Estimation
Exact sciences and technology
Experimental design
Experimentation
Experiments
External validity
General topics
Generalizability
Generalization
Inference
Intervention
Mathematics
Methodology
Observational studies
Outcomes of education
Population estimates
Population mean
Positive behavioral interventions and supports
Prevention programs
Probability and statistics
Propensity
Random sampling
Research synthesis
Sampling methods
Sciences and techniques of general use
State schools
Statistical analysis
Statistical methods
Statistics
Valuation
Title The use of propensity scores to assess the generalizability of results from randomized trials
URI https://api.istex.fr/ark:/67375/WNG-L0PGPCC7-P/fulltext.pdf
https://www.jstor.org/stable/23014404
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-985X.2010.00673.x
https://www.ncbi.nlm.nih.gov/pubmed/24926156
http://econpapers.repec.org/article/blajorssa/v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369-386.htm
https://www.proquest.com/docview/864097834
https://www.proquest.com/docview/1835605045
https://www.proquest.com/docview/869800508
https://www.proquest.com/docview/918754011
https://pubmed.ncbi.nlm.nih.gov/PMC4051511
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmeGEP-2Bjy9gqT5r2lipfdpxHVAbsA1TB0PoyWY7rjK6lqep0Av763TltRgZIaNpD2ki5i6qLz_ld_fPvCHnHE5UWXDOfFSzxARErH1A48wOtIqa0FsK18zk84genyacBGyz5T7gXptaHaP5ww8xw8zUmuMrtzSTPBBs0DK007iKeDGOOMvq7x9eUpALXhBEAe4LcCtEm9dx6o9abah2DfrEiLSKDUlkIYlF3v7gNnt5kWa7PzczoNgp2r7G9x2S8CkDNXhl3F1Xe1Vd_aUP-nwg9IY-WaJfu1MPzKXlgppvk4WEjFWs3yQbC3Vot-hn5DqOWLqyhZUFnuEwwRcoItai1aWlVUuXWqCn40x-1YDay0pDfe4k-YLWYVJbiphkKQRuW56MrM6SuN4l9Tk73PnztHfjLBhC-FlEY-zzCfbOhQVSjcFNvkgVMhyYwcZ4a7Vp7qiJnJkpTFN0ZhmmYiVhFuWaCx0W8Rdam5dS8JBTLRiy1UIAvycJhxlPOgyHcK08iXRQeSVcPW-qlOjo26ZjIVpWUSoymxGhKF0154ZGw8ZzVCiH38HnvxlPjoOZjZNilTH472pdfgv5-v9dLZd8jW27ANYaRK4GDxCOd1gi8ZpBhAzIw2F4NSbmclqwUPHH7duDq2-YqzCe4SKSmplxYCVM8gGAGSN8j9A4bwTOBwkHibpMshEIYavfQIy_qNPjzC1GjEp4GhLyVII0BKp63r0xHZ075PMGORHjPXZdKjUc-UT_LubVK_pKxgiIbPi_hQHQLXyM8hWMGR8wzGQsuz6pzj3CXPvd-bPL45GQHzl79q-M22ajXJJD59ZqsVfOFeQOgtso7MF19_thxk9ZvMuSReg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQ-sB44GOwEQbDSIi3VPmy4zxOha3AWlX7EH1BluM6rKxrqiZF2_567pw2LGyTJsRD2ki-s6Kzz_ldfP4dIe95pOKMa-ayjEUuIGLlAgpnrqdVwJTWQthyPr0-755EX4ZsuCwHhGdhKn6I-oMbeoZdr9HB8YP0TS9PBBvWKVpx2AZA2bLbdYiQDq9xSXm2DCNA9gizK0QzrefWnhrvqhaa_WKVtog5lKoAM2ZV_YvbAOrNPMvW3MyMbuJg-yLbe0ImKxNU-Stn7UWZtvXVX-yQ_8lGT8njJeClu9UMfUYemOkGedSr2WKLDbKOiLcijH5OvsPEpYvC0DyjM9wpmGLWCC2QbrOgZU6V3aamoE9_VJzZmJiGKb6XqANSi0lZUDw3Q8Fqo_x8fGVG1JYnKV6Qk71Px52uu6wB4WoR-KHLAzw66xsENgrP9UaJx7RvPBOmsdG2uqfKUmaCOEbenZEf-4kIVZBqJniYhZtkbZpPzUtCMXLEaAs5-KLEHyU85twbQV9pFOgsc0i8Gm2plwTpWKdjIhuBUizRmhKtKa015YVD_FpzVpGE3EPng51QtYKan2GSXczkt_6-PPAG-4NOJ5YDh2zaGVcLBjYK9iKH7DSm4DWBBGuQgcD2ak7K5cpUSMEje3QHWt_VrbCk4D6Rmpp8UUhY5QEHMwD7DqF3yAieCOQOEneLJD7EwhC--w7ZqvzgzxMiTSWMBpi84SG1AJKeN1um41NLfh5hUSLs86P1pVojnaif-bwolPwlQwVxNvxewoUAF_7GeAvXDK6QJzIUXJ6W5w7h1n_uPWzy8OhoF-5e_aviW_Kwe9w7kAef-1-3yXq1RYGJYK_JWjlfmDeAcct0x65dvwG0mJSf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQKqHxwI_BRhgMIyHeUuWXneRx6ugGbFW1MdEXZDmOw0q7pGpStO2v585pw8I2aUI8pI2Uu6i6-Jzv6s_fEfKeBzLMuGI2y1hgAyKWNqBwZjtKekwqFUWmnc_RgB-cBp9HbLTkP-FemFofovnDDTPDzNeY4LM0u5nkccRGDUMr9LuAJzsBh7cmAqTja1JSjunCCIg9QHJF1Gb13Hqn1quqg1G_WLEWkUIpS4hiVre_uA2f3qRZduZ6plUbBpv3WP8JmawiUNNXJt1FlXTV1V_ikP8nRE_J4yXcpbv1-HxGHuh8gzw6arRiyw2yjni3lot-Tr7DsKWLUtMiozNcJ8iRM0JLFNssaVVQaRapKfjTH7ViNtLSkOB7iT5gtZhWJcVdMxSClhbn4yudUtOcpHxBTvsfv_YO7GUHCFtFnuvb3MONs65GWCNxV28QO0y52tF-EmplenvKLGHaC0NU3Und0I0jX3qJYhH3M3-TrOVFrl8SinUj1lqowBfEbhrzkHMnhXslgaeyzCLh6mELtZRHxy4dU9Eqk0KB0RQYTWGiKS4s4jaes1oi5B4-H8x4ahzkfIIUu5CJb4N9cegM94e9XiiGFtk0A64x9EwN7AQW2WmNwGsGMXYgA4Pt1ZAUy3mpFBEPzMYduPquuQoTCq4SyVwXi1LAHA8omAHUtwi9wybicYTKQdHdJrELlTAU765Ftuo0-PMLUaQSngaEvJUgjQFKnrev5OMzI30eYEsivOeeSaXGI5nKn8W8LKX4JXwJVTZ8XsKB8Ba-xngKxwwOn8fCj7g4q84twk363PuxieOTk104e_Wvjm_Jw-FeXxx-GnzZJuv1-gSywF6TtWq-0G8A4FbJjpm5fgNonpNO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+propensity+scores+to+assess+the+generalizability+of+results+from+randomized+trials&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Stuart%2C+Elizabeth+A&rft.au=Cole%2C+Stephen+R&rft.au=Bradshaw%2C+Catherine+P&rft.au=Leaf%2C+Philip+J&rft.date=2011-04-01&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=174&rft.issue=2&rft.spage=369&rft.epage=386&rft_id=info:doi/10.1111%2Fj.1467-985X.2010.00673.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon