The use of propensity scores to assess the generalizability of results from randomized trials
Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? Ther...
Saved in:
Published in | Journal of the Royal Statistical Society. Series A, Statistics in society Vol. 174; no. 2; pp. 369 - 386 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2011
Blackwell Publishing Blackwell Royal Statistical Society Oxford University Press |
Series | Journal of the Royal Statistical Society Series A |
Subjects | |
Online Access | Get full text |
ISSN | 0964-1998 1467-985X |
DOI | 10.1111/j.1467-985X.2010.00673.x |
Cover
Abstract | Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or `external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called `Positive behavioral interventions and supports'. |
---|---|
AbstractList | Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or 'external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called 'Positive behavioral interventions and supports'. Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or 'external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called 'Positive behavioral interventions and supports'. [PUBLICATION ABSTRACT] Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: Will the program be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or "external validity," of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify, or weight the control group outcomes to the population, assessing how well the propensity score-adjusted outcomes track the outcomes actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. This paper lays out these ideas, discusses the assumptions underlying the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention program called Positive Behavioral Interventions and Supports.Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: Will the program be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or "external validity," of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify, or weight the control group outcomes to the population, assessing how well the propensity score-adjusted outcomes track the outcomes actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. This paper lays out these ideas, discusses the assumptions underlying the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention program called Positive Behavioral Interventions and Supports. Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: Will the program be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or "external validity," of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify, or weight the control group outcomes to the population, assessing how well the propensity score-adjusted outcomes track the outcomes actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. This paper lays out these ideas, discusses the assumptions underlying the approach, and illustrates the metrics using data on the evaluation of a schoolwide prevention program called Positive Behavioral Interventions and Supports. Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary interest: will the programme be effective in a target population in which it may be implemented? In other words, are the results generalizable? There has been very little statistical research on how to assess the generalizability, or 'external validity', of randomized trials. We propose the use of propensity-score-based metrics to quantify the similarity of the participants in a randomized trial and a target population. In this setting the propensity score model predicts participation in the randomized trial, given a set of covariates. The resulting propensity scores are used first to quantify the difference between the trial participants and the target population, and then to match, subclassify or weight the control group outcomes to the population, assessing how well the propensity-score-adjusted outcomes track the outcomes that are actually observed in the population. These metrics can serve as a first step in assessing the generalizability of results from randomized trials to target populations. The paper lays out these ideas, discusses the assumptions underlying the approach and illustrates the metrics by using data on the evaluation of a schoolwide prevention programme called 'Positive behavioral interventions and supports'. Reprinted by permission of Blackwell Publishers |
Author | Stuart, Elizabeth A. Bradshaw, Catherine P. Cole, Stephen R. Leaf, Philip J. |
AuthorAffiliation | 4 Department of Mental Health and Center for the Prevention of Youth Violence, Johns Hopkins Bloomberg School of Public Health, 624 N Broadway, Baltimore, MD 3 Department of Epidemiology, Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, NC 2 Johns Hopkins Bloomberg School of Public Health Departments of Mental Health and Biostatistics, 624 N Broadway, 8th Floor, Baltimore, MD; estuart@jhsph.edu ; 410-502-6222 |
AuthorAffiliation_xml | – name: 2 Johns Hopkins Bloomberg School of Public Health Departments of Mental Health and Biostatistics, 624 N Broadway, 8th Floor, Baltimore, MD; estuart@jhsph.edu ; 410-502-6222 – name: 3 Department of Epidemiology, Gillings School of Global Public Health and Center for AIDS Research, University of North Carolina, Chapel Hill, NC – name: 4 Department of Mental Health and Center for the Prevention of Youth Violence, Johns Hopkins Bloomberg School of Public Health, 624 N Broadway, Baltimore, MD |
Author_xml | – sequence: 1 givenname: Elizabeth A. surname: Stuart fullname: Stuart, Elizabeth A. – sequence: 2 givenname: Stephen R. surname: Cole fullname: Cole, Stephen R. – sequence: 3 givenname: Catherine P. surname: Bradshaw fullname: Bradshaw, Catherine P. – sequence: 4 givenname: Philip J. surname: Leaf fullname: Leaf, Philip J. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23929204$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24926156$$D View this record in MEDLINE/PubMed http://econpapers.repec.org/article/blajorssa/v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369-386.htm$$DView record in RePEc |
BookMark | eNqNkl1v0zAUhiM0xLrBTwBFSAhuUuw4_roAaaqgICqo2BDcIMtNT1aXNC52Otr9ek7W0g0uUC2d2Mp5zmsf-z1JjhrfQJKklPQpjpfzPi2EzLTi3_o5wb-ECMn663tJb584SnpEiyKjWqvj5CTGOemGlA-S47zQuaBc9JLvFzNIVxFSX6XL4JfQRNdu0lj6ADFtfWpjhIgrxC6hgWBrd20nru4orEFqVbcxrYJfpME2U79w1zBN2-BsHR8m9yuc4NFuPk2-vH1zMXiXjT4N3w_ORlmpcsoykedKcAqSE21pznihCS8pEGATCSXhXFBbTTjkUqqcySmVVCtm80nJlWAVO01eb3WXq8kCpiU0LR7ULINb2LAx3jrzd6ZxM3Ppr0xBOOWUosDznUDwP1cQW7NwsYS6tg34VTSaKskLcgCphFaEcKKQfPFfkirGBZIFR_TpP-jcr0KDV4Z6BdFSsQKhD1sowBLKfXOT2s59iNGaK8MslQV-NxjoC4qT65YYSwwmtGFKmFm7QLUnd69sL_fHGgg82wE2lrau8HFLF285pnOdk-5YasuVwccYoNojlJjOrWZuOlOazpSmc6u5catZ3z7bvrR0rW2d7x7J1YcIvNoK_HI1bA7e2Hw-Pz_DFdY_3tbPY-vDnd4ILYqb3rJt3sUW1vu8DT8Mlktuvn4cmhEZD8eDgTRj9hvChxrw |
CitedBy_id | crossref_primary_10_1080_19345747_2013_831154 crossref_primary_10_1007_s40471_020_00241_6 crossref_primary_10_1093_biomet_asy015 crossref_primary_10_1007_s11121_023_01600_7 crossref_primary_10_1080_10543406_2022_2162067 crossref_primary_10_1007_s11121_023_01586_2 crossref_primary_10_1080_19345747_2017_1300719 crossref_primary_10_1111_rssa_12873 crossref_primary_10_1097_EDE_0000000000001097 crossref_primary_10_1080_01621459_2020_1796359 crossref_primary_10_3102_1076998612441947 crossref_primary_10_1515_jci_2024_0002 crossref_primary_10_1007_s10648_013_9239_x crossref_primary_10_1097_EDE_0000000000001773 crossref_primary_10_1111_rssa_12073 crossref_primary_10_1093_jamia_ocy188 crossref_primary_10_1177_09622802241307642 crossref_primary_10_2139_ssrn_3765106 crossref_primary_10_1186_s12889_020_10004_z crossref_primary_10_1515_jci_2022_0004 crossref_primary_10_1002_jrsm_1565 crossref_primary_10_3390_jcm9092816 crossref_primary_10_1016_j_ememar_2024_101141 crossref_primary_10_1007_s12564_024_09955_4 crossref_primary_10_1093_rheumatology_kex394 crossref_primary_10_1080_07350015_2019_1639407 crossref_primary_10_1146_annurev_statistics_031219_041205 crossref_primary_10_1177_1740774518806311 crossref_primary_10_1111_biom_13863 crossref_primary_10_1002_pst_2354 crossref_primary_10_1111_rssc_12486 crossref_primary_10_1002_pds_5873 crossref_primary_10_1177_1098214020943302 crossref_primary_10_1111_1475_6773_13046 crossref_primary_10_1111_rssa_12629 crossref_primary_10_1111_1475_6773_12752 crossref_primary_10_1146_annurev_statistics_010814_020249 crossref_primary_10_1080_07350015_2023_2241529 crossref_primary_10_1002_cpt_3543 crossref_primary_10_1111_rssa_12734 crossref_primary_10_1177_0272989X221141381 crossref_primary_10_1093_jrsssa_qnae075 crossref_primary_10_1007_s11121_014_0513_z crossref_primary_10_1080_19345747_2016_1273412 crossref_primary_10_1080_00273171_2021_1935202 crossref_primary_10_1080_19345747_2021_1938312 crossref_primary_10_3102_1076998617733828 crossref_primary_10_1002_sim_9286 crossref_primary_10_1016_j_jand_2017_01_022 crossref_primary_10_1002_pst_2106 crossref_primary_10_1111_rssb_12027 crossref_primary_10_3390_healthcare10050858 crossref_primary_10_1093_aje_kwv453 crossref_primary_10_1186_s13063_015_1023_4 crossref_primary_10_1111_biom_13609 crossref_primary_10_1177_0193841X13516324 crossref_primary_10_1214_16_STS598 crossref_primary_10_1542_peds_2012_0243 crossref_primary_10_1007_s11292_018_9337_3 crossref_primary_10_1080_19345747_2016_1147628 crossref_primary_10_3390_healthcare9040480 crossref_primary_10_1002_bimj_202100294 crossref_primary_10_1177_0193841X20938497 crossref_primary_10_1093_biomet_asac042 crossref_primary_10_1093_jrsssa_qnae012 crossref_primary_10_1093_wbro_lkx005 crossref_primary_10_1186_s12889_016_3244_1 crossref_primary_10_2490_prm_20210019 crossref_primary_10_1080_19345747_2022_2128952 crossref_primary_10_1093_aje_kwab242 crossref_primary_10_1002_sim_8659 crossref_primary_10_1097_EDE_0000000000001694 crossref_primary_10_1016_j_jfineco_2021_05_042 crossref_primary_10_1016_j_worlddev_2019_104831 crossref_primary_10_1080_01621459_2017_1407322 crossref_primary_10_1080_19345747_2021_1875529 crossref_primary_10_1214_20_AOAS1359 crossref_primary_10_1016_j_jacasi_2021_10_004 crossref_primary_10_1097_EDE_0000000000000926 crossref_primary_10_1093_biomet_asad007 crossref_primary_10_1080_03610918_2024_2316281 crossref_primary_10_1093_aje_kwaa270 crossref_primary_10_1007_s10742_016_0144_x crossref_primary_10_1016_j_apmr_2023_08_017 crossref_primary_10_29220_CSAM_2024_31_5_467 crossref_primary_10_1177_20531680231187271 crossref_primary_10_1016_j_addbeh_2018_10_033 crossref_primary_10_1214_24_AOAS1963 crossref_primary_10_1257_jep_25_3_17 crossref_primary_10_1002_gepi_22324 crossref_primary_10_1016_j_rie_2024_100964 crossref_primary_10_1002_sim_8549 crossref_primary_10_1002_ev_20207 crossref_primary_10_3102_1076998614558486 crossref_primary_10_1080_19345747_2024_2342852 crossref_primary_10_1093_ije_dyy179 crossref_primary_10_1007_s10488_011_0384_6 crossref_primary_10_1177_1098214018810519 crossref_primary_10_1016_j_annepidem_2019_09_005 crossref_primary_10_1093_jnci_djx240 crossref_primary_10_1002_pam_21660 crossref_primary_10_1002_sim_6361 crossref_primary_10_18553_jmcp_2023_29_12_1321 crossref_primary_10_1080_19466315_2021_1883475 crossref_primary_10_1016_j_jclinepi_2022_11_011 crossref_primary_10_1038_s41467_017_00908_7 crossref_primary_10_2308_JFR_2021_007 crossref_primary_10_1016_j_socscimed_2016_07_045 crossref_primary_10_1186_s12933_021_01300_y crossref_primary_10_1097_EDE_0000000000001230 crossref_primary_10_1111_rssa_12094 crossref_primary_10_1080_01621459_2024_2360643 crossref_primary_10_1515_jci_2022_0018 crossref_primary_10_1002_mds_29507 crossref_primary_10_1080_01621459_2016_1240683 crossref_primary_10_1016_j_ssresearch_2019_102389 crossref_primary_10_1093_ije_dyv352 crossref_primary_10_1371_journal_pone_0278842 crossref_primary_10_1002_ev_20212 crossref_primary_10_1515_jci_2021_0059 crossref_primary_10_1093_eurpub_ckad016 crossref_primary_10_1177_1098214020927787 crossref_primary_10_1007_s12564_020_09641_1 crossref_primary_10_1214_24_EJS2233 crossref_primary_10_1177_10982140221075092 crossref_primary_10_1186_1471_2482_15_13 crossref_primary_10_1093_jrsssa_qnae043 crossref_primary_10_1002_cpt_1854 crossref_primary_10_1002_jrsm_1700 crossref_primary_10_1016_j_ajo_2024_07_029 crossref_primary_10_1093_biostatistics_kxab029 crossref_primary_10_1097_COH_0000000000000063 crossref_primary_10_1016_j_jval_2019_11_002 crossref_primary_10_1287_mnsc_2023_01225 crossref_primary_10_1093_jssam_smab049 crossref_primary_10_1007_s12564_023_09906_5 crossref_primary_10_1086_704386 crossref_primary_10_2139_ssrn_3786224 crossref_primary_10_1007_s40471_020_00239_0 crossref_primary_10_1111_cts_12764 crossref_primary_10_1515_jci_2021_0042 crossref_primary_10_1177_0193841X16665199 crossref_primary_10_1080_01621459_2025_2453249 crossref_primary_10_1177_09622802231210944 crossref_primary_10_1002_sim_7238 crossref_primary_10_1002_sim_9413 crossref_primary_10_1016_j_socscimed_2018_05_012 crossref_primary_10_1111_add_13327 crossref_primary_10_1016_j_spl_2018_02_044 crossref_primary_10_1542_peds_2019_3138 crossref_primary_10_1016_j_csda_2023_107742 crossref_primary_10_1002_jrsm_1278 crossref_primary_10_1111_rssa_12357 crossref_primary_10_1002_sim_7808 crossref_primary_10_1111_biom_13919 crossref_primary_10_1080_00031305_2023_2267598 crossref_primary_10_1177_17407745211012438 crossref_primary_10_2139_ssrn_2516462 crossref_primary_10_1016_j_jbi_2021_103822 crossref_primary_10_2217_fon_2022_0099 crossref_primary_10_1002_hec_3529 crossref_primary_10_1093_ije_dyaa211 crossref_primary_10_1177_2167696815621645 crossref_primary_10_1016_j_healthplace_2018_11_002 crossref_primary_10_1111_biom_12388 crossref_primary_10_1016_j_jclinepi_2020_05_001 crossref_primary_10_3390_antibiotics12010085 crossref_primary_10_1002_pon_5749 crossref_primary_10_1007_s40471_016_0089_1 crossref_primary_10_1002_pam_21750 crossref_primary_10_1177_0081175019862593 crossref_primary_10_2139_ssrn_4034206 crossref_primary_10_3310_hta20180 crossref_primary_10_1177_0193841X16664456 crossref_primary_10_1111_rssb_12445 crossref_primary_10_1080_10543406_2024_2330216 crossref_primary_10_1080_10437797_2018_1434446 crossref_primary_10_1093_aje_kwaa243 crossref_primary_10_1177_23328584241299346 crossref_primary_10_1002_jrsm_1160 crossref_primary_10_1002_sim_6965 crossref_primary_10_2139_ssrn_4193276 crossref_primary_10_1214_23_STS889 crossref_primary_10_1002_cpp_2163 crossref_primary_10_1080_19345747_2016_1271069 crossref_primary_10_3102_0162373713493129 crossref_primary_10_1016_j_surg_2018_01_018 crossref_primary_10_1186_s12874_023_01958_w crossref_primary_10_1111_add_13789 crossref_primary_10_1016_j_jhepr_2023_100950 crossref_primary_10_1080_10618600_2022_2141752 crossref_primary_10_1002_pam_22154 crossref_primary_10_1016_j_drugalcdep_2017_02_024 crossref_primary_10_1515_jci_2022_0081 crossref_primary_10_1111_rssb_12213 crossref_primary_10_1136_bmjopen_2017_017715 crossref_primary_10_1097_EDE_0000000000000623 crossref_primary_10_3102_10769986241254286 crossref_primary_10_2967_jnumed_114_142331 crossref_primary_10_1080_19345747_2015_1105895 crossref_primary_10_1214_12_AOAS593 crossref_primary_10_1080_01621459_2016_1243480 crossref_primary_10_1080_01621459_2024_2435656 crossref_primary_10_1093_cid_cix313 crossref_primary_10_1080_19345747_2023_2290546 crossref_primary_10_1093_aje_kwu197 crossref_primary_10_1111_rssc_12550 crossref_primary_10_1080_19345747_2023_2209082 crossref_primary_10_1111_biom_13583 crossref_primary_10_1080_03610926_2021_2020291 crossref_primary_10_1177_0193841X17746740 crossref_primary_10_1016_j_socscimed_2018_04_030 crossref_primary_10_1158_1055_9965_EPI_21_0585 crossref_primary_10_1515_jci_2021_0018 crossref_primary_10_2147_CLEP_S451619 crossref_primary_10_1093_jrsssb_qkad017 crossref_primary_10_1515_em_2023_0015 crossref_primary_10_1080_19345747_2017_1375583 crossref_primary_10_1080_19466315_2021_1942975 crossref_primary_10_1186_s12874_023_02104_2 crossref_primary_10_2139_ssrn_4198189 crossref_primary_10_3899_jrheum_201204 crossref_primary_10_1080_01621459_2015_1023805 crossref_primary_10_3102_0013189X18781522 crossref_primary_10_1214_22_AOAS1712 crossref_primary_10_1007_s11121_021_01234_7 crossref_primary_10_1111_rssa_12564 crossref_primary_10_1146_annurev_soc_030420_015345 crossref_primary_10_1186_s12874_023_02127_9 crossref_primary_10_1007_s11414_012_9290_2 crossref_primary_10_1097_CCM_0000000000000227 crossref_primary_10_1016_j_ypmed_2022_107284 crossref_primary_10_1161_CIRCULATIONAHA_121_056878 crossref_primary_10_1080_01621459_2021_1984926 crossref_primary_10_1080_2372966X_2020_1823797 crossref_primary_10_1007_s40471_019_00222_4 crossref_primary_10_1017_pan_2024_8 crossref_primary_10_1080_19466315_2016_1225596 crossref_primary_10_3102_10769986221104800 crossref_primary_10_1177_0193841X16660663 crossref_primary_10_1002_jrsm_1511 crossref_primary_10_1007_s10654_019_00533_2 crossref_primary_10_1080_19345747_2015_1060282 crossref_primary_10_1186_s12931_016_0461_1 crossref_primary_10_1111_jar_12551 crossref_primary_10_1080_00220973_2024_2435287 crossref_primary_10_1017_pan_2020_32 crossref_primary_10_1177_0163278718772882 crossref_primary_10_1016_j_psychres_2023_115367 crossref_primary_10_57264_cer_2024_0064 crossref_primary_10_1093_jssam_smaa028 crossref_primary_10_1097_BOT_0000000000002704 crossref_primary_10_1177_0193841X16655665 crossref_primary_10_1080_00220973_2022_2088671 crossref_primary_10_1080_00220973_2019_1697191 crossref_primary_10_1080_01621459_2020_1866581 crossref_primary_10_1162_edfp_a_00379 crossref_primary_10_1111_rssb_12483 crossref_primary_10_1177_1470320316656480 crossref_primary_10_1002_pam_22005 crossref_primary_10_1007_s42081_020_00093_w crossref_primary_10_1287_mnsc_2019_3537 crossref_primary_10_1515_scid_2024_0001 crossref_primary_10_1177_0272989X17725740 crossref_primary_10_1097_EDE_0000000000000774 crossref_primary_10_2139_ssrn_4025639 crossref_primary_10_1002_mpr_1609 crossref_primary_10_1017_rsm_2025_2 crossref_primary_10_1093_aje_kwac067 crossref_primary_10_1016_j_annepidem_2025_03_001 crossref_primary_10_1016_j_econlet_2019_02_020 crossref_primary_10_1093_ehjqcco_qcv005 crossref_primary_10_1177_0193841X16655656 crossref_primary_10_1177_0193841X231169557 crossref_primary_10_1080_02796015_2011_12087528 crossref_primary_10_1177_0272989X16639900 crossref_primary_10_1093_biomtc_ujae095 crossref_primary_10_1111_biom_13274 crossref_primary_10_1586_14737167_2016_1165609 crossref_primary_10_1007_s40801_020_00203_w crossref_primary_10_1016_j_socscimed_2017_12_005 crossref_primary_10_3102_0013189X20960686 crossref_primary_10_1080_07350015_2020_1800479 crossref_primary_10_1002_pst_2435 crossref_primary_10_1007_s10742_016_0158_4 crossref_primary_10_1016_j_jclinepi_2023_10_009 crossref_primary_10_1097_EDE_0000000000000665 crossref_primary_10_1097_EDE_0000000000001633 crossref_primary_10_1007_s10654_019_00571_w crossref_primary_10_1097_EDE_0000000000000664 crossref_primary_10_5662_wjm_v14_i1_90590 crossref_primary_10_1111_rssa_12136 crossref_primary_10_1093_ehjcvp_pvac016 crossref_primary_10_1146_annurev_statistics_030718_104951 crossref_primary_10_1080_19345747_2017_1364563 crossref_primary_10_1146_annurev_publhealth_031816_044215 crossref_primary_10_1093_aje_kwy233 crossref_primary_10_1002_sim_7980 crossref_primary_10_1186_1472_6963_14_334 crossref_primary_10_1002_wics_1581 crossref_primary_10_3390_ph14040290 crossref_primary_10_1177_1740774520972687 crossref_primary_10_1093_jamiaopen_ooab077 crossref_primary_10_12973_eu_jer_11_4_2069 crossref_primary_10_1002_cpt_1210 crossref_primary_10_1080_01621459_2015_1123157 crossref_primary_10_1177_0272989X18798833 crossref_primary_10_1093_aje_kwad014 crossref_primary_10_1177_0272989X15585131 crossref_primary_10_1016_j_jclinepi_2018_12_011 crossref_primary_10_1007_s11135_015_0235_8 crossref_primary_10_1002_sim_9817 crossref_primary_10_1111_ajad_12714 crossref_primary_10_1093_pubmed_fdaf002 crossref_primary_10_1111_rssb_12354 crossref_primary_10_1146_annurev_statistics_042522_103837 crossref_primary_10_1136_bmj_2022_072254 crossref_primary_10_1214_16_AOAS1001 |
Cites_doi | 10.1007/s11121-005-5553-y 10.1016/j.amepre.2005.08.037 10.1093/aje/kwj149 10.1093/aje/kwq084 10.1214/08-AOAS187 10.1177/1098300709334798 10.1016/j.drugalcdep.2007.11.013 10.1002/sim.1903 10.1080/02796015.2006.12087989 10.1056/NEJMsr077003 10.1023/A:1021786811186 10.1016/S0140-6736(04)17670-8 10.1002/1097-0258(20001230)19:24<3359::AID-SIM710>3.0.CO;2-N 10.1056/NEJMsb022365 10.1016/S0140-6736(05)17709-5 10.2307/2529685 10.3102/10769986002001001 10.1023/A:1020363010465 10.1016/0091-7435(86)90024-1 10.1214/09-STS313 10.1097/EDE.0b013e3181875e61 10.1198/016214506000000447 10.1007/978-1-4757-3692-2 10.1198/016214504000000647 10.1093/biomet/asn004 10.1177/0748175609333560 10.1111/j.2517-6161.1983.tb01242.x 10.1093/biomet/70.1.41 10.1177/1740774509103868 10.1177/1098300709332067 10.1093/biomet/63.3.581 10.1080/01621459.1952.10483446 10.1093/biomet/79.4.797 10.1037/h0040950 10.1093/poq/nfn066 10.1176/appi.ajp.163.1.5 10.1002/sim.2934 10.1002/sim.3218 10.1007/s10985-008-9102-4 10.1016/0895-4356(94)00150-O 10.1177/1098300707312541 10.1080/01621459.2000.10474233 10.1111/j.2517-6161.1991.tb01848.x 10.1037/0012-1649.44.2.395 10.1177/1740774509102563 10.1159/000197389 10.1007/s11121-008-0114-9 10.1093/pan/mpl013 10.1111/j.1467-985X.2007.00527.x 10.1136/bmj.330.7497.960 |
ContentType | Journal Article |
Copyright | Copyright © 2011 The Royal Statistical Society and Blackwell Publishing Ltd. 2010 Royal Statistical Society 2015 INIST-CNRS Copyright Blackwell Publishing Ltd. Apr 2011 |
Copyright_xml | – notice: Copyright © 2011 The Royal Statistical Society and Blackwell Publishing Ltd. – notice: 2010 Royal Statistical Society – notice: 2015 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Apr 2011 |
DBID | BSCLL AAYXX CITATION IQODW NPM DKI X2L 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7X8 5PM |
DOI | 10.1111/j.1467-985X.2010.00673.x |
DatabaseName | Istex CrossRef Pascal-Francis PubMed RePEc IDEAS RePEc Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) MEDLINE - Academic PubMed International Bibliography of the Social Sciences (IBSS) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-985X |
EndPage | 386 |
ExternalDocumentID | PMC4051511 2333794861 blajorssa_v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369_386_htm 24926156 23929204 10_1111_j_1467_985X_2010_00673_x RSSA673 23014404 ark_67375_WNG_L0PGPCC7_P |
Genre | article Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH067948 – fundername: CDC HHS grantid: R49/CCR318627 – fundername: NIMH NIH HHS grantid: K25 MH083846 |
GroupedDBID | -~X .3N .GA .Y3 05W 07C 10A 1OC 1OL 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 66C 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AANHP AAONW AARHZ AASGY AAUAY AAWIL AAXRX AAZKR ABAWQ ABBHK ABCQN ABCUV ABDFA ABEML ABFAN ABIVO ABPFR ABPQH ABPTD ABWST ABXSQ ABYWD ACAHQ ACBWZ ACCZN ACFRR ACGFS ACHJO ACIWK ACMTB ACNCT ACPOU ACRPL ACSCC ACTMH ACUBG ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADQBN ADRDM ADULT ADVEK ADZMN AEGXH AEIMD AEMOZ AEUPB AFBPY AFEBI AFGKR AFVYC AFXHP AFZJQ AGLNM AGQPQ AHQJS AIHAF AIURR AJAOE AJNCP AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMVHM AMYDB ANFBD ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EJD EMK EOH F00 F5P FEDTE FVMVE G-S G.N GODZA H.T H.X H13 HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 NF~ NU- O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 UB1 VUG W8V W99 WBKPD WIH WIK WOHZO WQJ WYISQ XBAML XG1 YF5 YQT ZGI ZL0 ZZTAW ~IA ~WT 1OB AAHHS ABYAD ACCFJ ACTWD AEEZP AELPN AEQDE AEUQT AFPWT AIWBW AJBDE JSODD AAYXX CITATION IQODW NPM 08R 0R 31 3N 8RP AAGJQ ABHUG ACXME ADAWD ADDAD AFVGU AFXKK AGJLS AIHXQ AS DKI EFSUC FSPIC GA HZ IA IPNFZ MEWTI NF P4A PQEST RIG SAMSI WRC WT X X2L Y3 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7X8 5PM |
ID | FETCH-LOGICAL-c8213-6228651e7509a12354905c1e0e3b7ec05561afb5e2778237d171983a2bc5863f3 |
IEDL.DBID | DR2 |
ISSN | 0964-1998 |
IngestDate | Thu Aug 21 18:31:49 EDT 2025 Sat Sep 27 18:47:21 EDT 2025 Tue Sep 09 07:02:32 EDT 2025 Sun Sep 28 10:25:26 EDT 2025 Sat Sep 06 22:24:30 EDT 2025 Wed Aug 18 03:11:52 EDT 2021 Wed Feb 19 02:34:42 EST 2025 Mon Jul 21 09:09:57 EDT 2025 Tue Jul 01 05:25:48 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Wed Jan 22 16:27:56 EST 2025 Thu Jul 03 21:08:00 EDT 2025 Tue Sep 09 05:27:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Statistical method Prevention Causal inference Positive behavioral interventions and supports Randomized design Experimental design Research synthesis External validity Statistical estimation Covariate Implementation Positive Behavioral Interventions and Supports |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c8213-6228651e7509a12354905c1e0e3b7ec05561afb5e2778237d171983a2bc5863f3 |
Notes | ark:/67375/WNG-L0PGPCC7-P istex:695E91B24E76AB2A08E218CEAC9D9B9226FC93CD ArticleID:RSSA673 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://academic.oup.com/jrsssa/article-pdf/174/2/369/49526358/jrsssa_174_2_369.pdf |
PMID | 24926156 |
PQID | 864097834 |
PQPubID | 105636 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4051511 proquest_miscellaneous_918754011 proquest_miscellaneous_869800508 proquest_miscellaneous_1835605045 proquest_journals_864097834 repec_primary_blajorssa_v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369_386_htm pubmed_primary_24926156 pascalfrancis_primary_23929204 crossref_primary_10_1111_j_1467_985X_2010_00673_x crossref_citationtrail_10_1111_j_1467_985X_2010_00673_x wiley_primary_10_1111_j_1467_985X_2010_00673_x_RSSA673 jstor_primary_23014404 istex_primary_ark_67375_WNG_L0PGPCC7_P |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2011 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: April 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationSeriesTitle | Journal of the Royal Statistical Society Series A |
PublicationTitle | Journal of the Royal Statistical Society. Series A, Statistics in society |
PublicationTitleAlternate | J R Stat Soc Ser A Stat Soc |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing Blackwell Royal Statistical Society Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell – name: Royal Statistical Society – name: Oxford University Press |
References | US Department of Health and Human Services (2010) Head start impact study final report. Technical Report. Administration for Children and Families, Washington DC. Flay, B. R., Biglan, A., Boruch, R. F., Castro, F. G., Gottfredson, D., Kellam, S., Moscicki, E. K., Schinke, S. and Valentine, J. (2005) Standards of evidence: criteria for efficacy, effectiveness and dissemination. Prevn Sci., 6, 151-175. Insel, T. R. (2006) Beyond efficacy: the STAR*D trial. Am. J. Psychiatr., 163, 5-7. Sutton, A. J. and Higgins, J. P. (2008) Recent developments in meta-analysis. Statist. Med., 27, 625-650. Hernán, M., Alonso, A., Logan, R., Grodstein, F., Michels, K., Willett, W., Manson, J. and Robins, J. (2008) Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion). Epidemiology, 19, 766-779. Grodstein, F., Clarkson, T. and Manson, J. (2003) Understanding the divergent data on post-menopausal hormone therapy. New Engl. J. Med., 348, 645-650. Rubin, D. B. (2001) Using propensity scores to help design observational studies: application to the tobacco litigation. Hlth Serv. Outcms Res. Methodol., 2, 169-188. Pan, Q. and Schaubel, D. E. (2009) Evaluating bias correction in weighted proportional hazards regression. Liftime Data Anal., 15, 120-146. Bradshaw, C., Mitchell, M. and Leaf, P. (2010) Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools. J. Pos. Behav. Intervens, 12, 133-148. Cochran, W. G. and Rubin, D. B. (1973) Controlling bias in observational studies: a review. Sankhya A, 35, 417-446. Rosenbaum, P. R. (1991) A characterization of optimal designs for observational studies. J. R. Statist. Soc. B, 53, 597-610. Institute of Medicine (2006) Improving the Quality of Health Care for Mental and Substance-use Conditions. Washington, DC: National Academies Press. Sugai, G. and Horner, R. (2006) A promising approach for expanding and sustaining school-wide positive behavior support. School Psychol. Rev., 35, 245-259. Rosenbaum, P. R. and Rubin, D. B. (1983a) The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55. Hansen, B. B. (2008) The prognostic analogue of the propensity score. Biometrika, 95, 481-488. Rosenbaum, P. R. (2002) Observational Studies, 2nd edn. New York: Springer. Rothwell, P. M. (2005a) External validity of randomised controlled trials: ''To whom do the results of this trial apply?''. Lancet, 365, 82-93. Rothwell, P. M. (2005b) Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet, 365, 176-186. Rubin, D. B. (1976) Inference and missing data (with discussion). Biometrika, 63, 581-592. Bradshaw, C. P., Koth, C. W., Thornton, L. A. and Leaf, P. J. (2009) Altering school climate through school-wise Positive Behavioral Interventions and Supports: findings from a group-randomized effectiveness trial. Prevn Sci., 10, 100-115. Rubin, D. B. (1977) Assignment to treatment group on the basis of a covariate. J. Educ. Statist., 2, 1-26. Greenhouse, J. B., Kaizar, E. E., Kelleher, K., Seltman, H. and Gardner, W. (2008) Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users. Statist. Med., 27,1801-1813. Lunceford, J. K. and Davidian, M. (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statist. Med., 23, 2937-2960. Flay, B. R. (1986) Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs. Prevn Med., 15, 451-474. Mamdani, M. M., Sykora, K., Li, P., Normand, S.-L. T., Streiner, D. L., Austin, P. C., Rochon, P. A. and Anderson, G. M. (2005) Reader's guide to critical appraisal of cohort studies: 2, assessing potential for confounding. Br. Med. J., 330, 960-962. Stuart, E. A. (2010) Matching methods for causal inference: a review and a look forward. Statist. Sci., 25, 1-21. Rosenbaum, P. R. and Rubin, D. B. (1983b) Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Statist. Soc. B, 45, 212-218. Hansen, B. B. (2004) Full matching in an observational study of coaching for the SAT. J. Am. Statist. Ass., 99, 609-618. Barrett, S., Bradshaw, C. and Lewis-Palmer, T. (2008) Maryland state-wide PBIS initiative: systems, evaluation, and next steps. J. Pos. Behav. Intervens, 10, 105-114. Stuart, E. A. and Green, K. M. (2008) Using full matching to estimate causal effects in non-experimental studies: examining the relationship between adolescent marijuana use and adult outcomes. Devlpmntl Psychol., 44, 395-406. Horvitz, D. and Thompson, D. (1952) A generalization of sampling without replacement from a finite universe. J. Am. Statist. Ass., 47, 663-685. Wang, R., Lagakos, S. W., Ware, J. H., Hunter, D. J. and Drazen, J. M. (2007) Statistics in medicine-reporting of subgroup analyses in clinical trials. New Engl. J. Med., 357, 2189-2194. Rubin, D. B. and Thomas, N. (2000) Combining propensity score matching with additional adjustments for prognostic covariates. J. Am. Statist. Ass., 95, 573-585. Glasgow, R. E., Nelson, C. C., Strycker, L. A. and King, D. E. (2006) Using RE-AIM metrics to evaulate diabetes self-management support interventions. Am. J. Prev. Med., 30, 67-73. Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. Burlington: Academic Press. Kam, C., Greenberg, M. and Walls, C. (2003) Examining the role of implementation quality in school-based prevention using the PATHS curriculum. Prevn Sci., 1, 55-63. Hong, G. and Raudenbush, S. W. (2006) Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data. J. Am. Statist. Ass., 101, 901-910. Weisberg, H., Hayden, V. and Pontes, V. (2009) Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant-induced suicidality? Clin. Trials, 6, 109-118. Rubin, D. B. (1973) The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics, 29, 185-203. Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J. and Sturmer, T. (2006) Variable selection for propensity score models. Am. J. Epidem., 163, 1149-1156. Campbell, D. T. (1957) Factors relevant to the validity of experiments in social settings. Psychol. Bull., 54, 297-312. Kang, J. D. and Schafer, J. L. (2007) Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statist. Sci., 22, 523-539. Koth, C., Bradshaw, C. and Leaf, P. (2009) Teacher Observation of Classroom Adaptation-Checklist (TOCA-C): development and factor structure. Measmnt Evaln Counsel. Devlpmnt, 42, 15-30. Couper, M. P. and Miller, P. V. (2008) Web survey methods: introduction. Publ. Opin. Q., 72, 831-835. Prevost, T. C., Abrams, K. R. and Jones, D. R. (2000) Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening. Statist. Med., 19, 3359-3376. Ho, D. E., Imai, K., King, G. and Stuart, E. A. (2007) Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal., 15, 199-236. Eddy, D., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method: the Statistical Synthesis of Evidence. New York: Academic Press. Imai, K., King, G. and Stuart, E. A. (2008) Misunderstandings between experimentalists and observationalists about causal inference. J. R. Statist. Soc. A, 171, 481-502. Frangakis, C. E. (2009) The calibration of treatment effects from clinical trials to target populations. Clin. Trials, 6, 136-140. Rubin, D. B. and Thomas, N. (1992) Characterizing the effect of matching using linear propensity score methods with normal distributions. Biometrika, 79, 797-809. Brown, C. H., Wang, W., Kellam, S. G., Muthen, B., Petras, H., Toyinbo, P., Poduska, J., Ialongo, N., Wyman, P. A., Chamberlain, P., Sloboda, Z., MacKinnon, D. P., Windham, A. and the Prevention Science Methodology Group (2008) Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and timeDrug Alc. Depend., 95, S74-S104. Cole, S. R. and Stuart, E. A. (2010) Generalizing evidence from randomized clinical trials to target populations: the ACTG-320 trial. Am. J. Epidem., 172, 107-115. Rubin, D. B. (2008) For objective causal inference, design trumps analysis. Ann. Appl. Statist., 2, 808-840. Horner, R., Sugai, G., Smolkowski, K., Eber, L., Nakasato, J., Todd, A. and Esperanza, J. (2009) A randomized, wait-list controlled effectiveness trial assessing school-wide Positive Behavior Support in elementary schools. J. Pos. Behav. Intervens, 11, 133-144. Shadish, W. R., Cook, T. D. and Campbell, D. T. (2002) Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin. Kalton, G. and Flores-Cervantes, I. (2003) Weighting methods. J. Off. Statist., 19, 81-97. Peto, R., Collins, R. and Gray, R. (1995) Large-scale randomized evidence: large, simple trials and overviews of trials. J. Clin. Epidem., 48, 23-40. Haneuse, S., Schildcrout, J., Crane, P., Sonnen, J., Breitner, J. and Larson, E. (2009) Adjustment for selection bias in observational studies with application to the analysis of autopsy data. Neuroepidemiology, 32, 229-239. 2010; 12 1957; 54 1976; 63 2006; 30 1983b; 45 2009; 42 2005; 330 2006; 35 1991; 53 2004; 23 2000; 95 2003; 19 2008; 72 2008; 2 2009; 11 2000; 19 2009; 10 2010; 25 2008; 27 2006; 163 1985 2003; 1 2005b; 365 2007; 22 2009; 15 1973; 35 2010 2008; 19 1986; 15 2009 2007 2006 2008; 10 1992; 79 1992 2002 2008; 95 2007; 15 1999 2004; 99 2007; 357 1952; 47 2003; 348 2009; 32 1995; 48 2005a; 365 1983a; 70 1973; 29 2005; 6 1977; 2 2010; 172 2009; 6 2001; 2 2008; 44 2006; 101 2008; 171 Mamdani (2023031600060119600_) 2005; 330 Stuart (2023031600060119600_) 2008; 44 Pan (2023031600060119600_) 2009; 15 Rubin (2023031600060119600_) 1973; 29 Rosenbaum (2023031600060119600_) 1983; 45 Stuart (2023031600060119600_) 2010; 25 Rubin (2023031600060119600_) 2008; 2 Hansen (2023031600060119600_) 2004; 99 Prevost (2023031600060119600_) 2000; 19 US Department of Education (2023031600060119600_) 2009 Rubin (2023031600060119600_) 1992; 79 Eddy (2023031600060119600_) 1992 Peto (2023031600060119600_) 1995; 48 Rubin (2023031600060119600_) 2000; 95 Rosenbaum (2023031600060119600_) 1983; 70 US Department of Health and Human Services (2023031600060119600_) 2010 Campbell (2023031600060119600_) 1957; 54 Brookhart (2023031600060119600_) 2006; 163 Rubin (2023031600060119600_) 1977; 2 Kalton (2023031600060119600_) 2003; 19 Bradshaw (2023031600060119600_) 2009; 10 Cook (2023031600060119600_) 2007 Rosenbaum (2023031600060119600_) 1991; 53 Sugai (2023031600060119600_) 2006; 35 Rubin (2023031600060119600_) 2001; 2 Hernán (2023031600060119600_) 2008; 19 Insel (2023031600060119600_) 2006; 163 Lunceford (2023031600060119600_) 2004; 23 Brown (2023031600060119600_) 2008; 95 Sutton (2023031600060119600_) 2008; 27 Glasgow (2023031600060119600_) 2006; 30 Frangakis (2023031600060119600_) 2009; 6 Rubin (2023031600060119600_) 1976; 63 Flay (2023031600060119600_) 2005; 6 Greenhouse (2023031600060119600_) 2008; 27 Kang (2023031600060119600_) 2007; 22 Ho (2023031600060119600_) 2007; 15 National Institute of Mental Health (2023031600060119600_) 1999 Grodstein (2023031600060119600_) 2003; 348 Hong (2023031600060119600_) 2006; 101 Weisberg (2023031600060119600_) 2009; 6 Wang (2023031600060119600_) 2007; 357 Haneuse (2023031600060119600_) 2009; 32 Hansen (2023031600060119600_) 2008; 95 Rosenbaum (2023031600060119600_) 2002 Cochran (2023031600060119600_) 1973; 35 Institute of Medicine (2023031600060119600_) 2006 Cole (2023031600060119600_) 2010; 172 Couper (2023031600060119600_) 2008; 72 Hedges (2023031600060119600_) 1985 Shadish (2023031600060119600_) 2002 Kam (2023031600060119600_) 2003; 1 Flay (2023031600060119600_) 1986; 15 Koth (2023031600060119600_) 2009; 42 Horner (2023031600060119600_) 2009; 11 Horvitz (2023031600060119600_) 1952; 47 Bradshaw (2023031600060119600_) 2010; 12 Imai (2023031600060119600_) 2008; 171 Rothwell (2023031600060119600_) 2005; 365 Barrett (2023031600060119600_) 2008; 10 |
References_xml | – reference: Imai, K., King, G. and Stuart, E. A. (2008) Misunderstandings between experimentalists and observationalists about causal inference. J. R. Statist. Soc. A, 171, 481-502. – reference: Kang, J. D. and Schafer, J. L. (2007) Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statist. Sci., 22, 523-539. – reference: Institute of Medicine (2006) Improving the Quality of Health Care for Mental and Substance-use Conditions. Washington, DC: National Academies Press. – reference: Sugai, G. and Horner, R. (2006) A promising approach for expanding and sustaining school-wide positive behavior support. School Psychol. Rev., 35, 245-259. – reference: Haneuse, S., Schildcrout, J., Crane, P., Sonnen, J., Breitner, J. and Larson, E. (2009) Adjustment for selection bias in observational studies with application to the analysis of autopsy data. Neuroepidemiology, 32, 229-239. – reference: Rubin, D. B. and Thomas, N. (2000) Combining propensity score matching with additional adjustments for prognostic covariates. J. Am. Statist. Ass., 95, 573-585. – reference: Stuart, E. A. (2010) Matching methods for causal inference: a review and a look forward. Statist. Sci., 25, 1-21. – reference: Prevost, T. C., Abrams, K. R. and Jones, D. R. (2000) Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening. Statist. Med., 19, 3359-3376. – reference: Ho, D. E., Imai, K., King, G. and Stuart, E. A. (2007) Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal., 15, 199-236. – reference: Horner, R., Sugai, G., Smolkowski, K., Eber, L., Nakasato, J., Todd, A. and Esperanza, J. (2009) A randomized, wait-list controlled effectiveness trial assessing school-wide Positive Behavior Support in elementary schools. J. Pos. Behav. Intervens, 11, 133-144. – reference: Kam, C., Greenberg, M. and Walls, C. (2003) Examining the role of implementation quality in school-based prevention using the PATHS curriculum. Prevn Sci., 1, 55-63. – reference: Greenhouse, J. B., Kaizar, E. E., Kelleher, K., Seltman, H. and Gardner, W. (2008) Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users. Statist. Med., 27,1801-1813. – reference: Hansen, B. B. (2008) The prognostic analogue of the propensity score. Biometrika, 95, 481-488. – reference: Bradshaw, C., Mitchell, M. and Leaf, P. (2010) Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools. J. Pos. Behav. Intervens, 12, 133-148. – reference: Rubin, D. B. (1976) Inference and missing data (with discussion). Biometrika, 63, 581-592. – reference: Lunceford, J. K. and Davidian, M. (2004) Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Statist. Med., 23, 2937-2960. – reference: Hernán, M., Alonso, A., Logan, R., Grodstein, F., Michels, K., Willett, W., Manson, J. and Robins, J. (2008) Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion). Epidemiology, 19, 766-779. – reference: Rubin, D. B. (1977) Assignment to treatment group on the basis of a covariate. J. Educ. Statist., 2, 1-26. – reference: Brown, C. H., Wang, W., Kellam, S. G., Muthen, B., Petras, H., Toyinbo, P., Poduska, J., Ialongo, N., Wyman, P. A., Chamberlain, P., Sloboda, Z., MacKinnon, D. P., Windham, A. and the Prevention Science Methodology Group (2008) Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and timeDrug Alc. Depend., 95, S74-S104. – reference: Rubin, D. B. (1973) The use of matched sampling and regression adjustment to remove bias in observational studies. Biometrics, 29, 185-203. – reference: Frangakis, C. E. (2009) The calibration of treatment effects from clinical trials to target populations. Clin. Trials, 6, 136-140. – reference: Mamdani, M. M., Sykora, K., Li, P., Normand, S.-L. T., Streiner, D. L., Austin, P. C., Rochon, P. A. and Anderson, G. M. (2005) Reader's guide to critical appraisal of cohort studies: 2, assessing potential for confounding. Br. Med. J., 330, 960-962. – reference: Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J. and Sturmer, T. (2006) Variable selection for propensity score models. Am. J. Epidem., 163, 1149-1156. – reference: Wang, R., Lagakos, S. W., Ware, J. H., Hunter, D. J. and Drazen, J. M. (2007) Statistics in medicine-reporting of subgroup analyses in clinical trials. New Engl. J. Med., 357, 2189-2194. – reference: Cochran, W. G. and Rubin, D. B. (1973) Controlling bias in observational studies: a review. Sankhya A, 35, 417-446. – reference: Barrett, S., Bradshaw, C. and Lewis-Palmer, T. (2008) Maryland state-wide PBIS initiative: systems, evaluation, and next steps. J. Pos. Behav. Intervens, 10, 105-114. – reference: Horvitz, D. and Thompson, D. (1952) A generalization of sampling without replacement from a finite universe. J. Am. Statist. Ass., 47, 663-685. – reference: Rubin, D. B. (2001) Using propensity scores to help design observational studies: application to the tobacco litigation. Hlth Serv. Outcms Res. Methodol., 2, 169-188. – reference: Eddy, D., Hasselblad, V. and Shachter, R. (1992) Meta-analysis by the Confidence Profile Method: the Statistical Synthesis of Evidence. New York: Academic Press. – reference: Campbell, D. T. (1957) Factors relevant to the validity of experiments in social settings. Psychol. Bull., 54, 297-312. – reference: Grodstein, F., Clarkson, T. and Manson, J. (2003) Understanding the divergent data on post-menopausal hormone therapy. New Engl. J. Med., 348, 645-650. – reference: Hansen, B. B. (2004) Full matching in an observational study of coaching for the SAT. J. Am. Statist. Ass., 99, 609-618. – reference: Peto, R., Collins, R. and Gray, R. (1995) Large-scale randomized evidence: large, simple trials and overviews of trials. J. Clin. Epidem., 48, 23-40. – reference: Rothwell, P. M. (2005b) Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet, 365, 176-186. – reference: Couper, M. P. and Miller, P. V. (2008) Web survey methods: introduction. Publ. Opin. Q., 72, 831-835. – reference: Rosenbaum, P. R. and Rubin, D. B. (1983a) The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55. – reference: Hedges, L. V. and Olkin, I. (1985) Statistical Methods for Meta-analysis. Burlington: Academic Press. – reference: Rosenbaum, P. R. and Rubin, D. B. (1983b) Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Statist. Soc. B, 45, 212-218. – reference: Sutton, A. J. and Higgins, J. P. (2008) Recent developments in meta-analysis. Statist. Med., 27, 625-650. – reference: Cole, S. R. and Stuart, E. A. (2010) Generalizing evidence from randomized clinical trials to target populations: the ACTG-320 trial. Am. J. Epidem., 172, 107-115. – reference: Bradshaw, C. P., Koth, C. W., Thornton, L. A. and Leaf, P. J. (2009) Altering school climate through school-wise Positive Behavioral Interventions and Supports: findings from a group-randomized effectiveness trial. Prevn Sci., 10, 100-115. – reference: Rothwell, P. M. (2005a) External validity of randomised controlled trials: ''To whom do the results of this trial apply?''. Lancet, 365, 82-93. – reference: Rubin, D. B. and Thomas, N. (1992) Characterizing the effect of matching using linear propensity score methods with normal distributions. Biometrika, 79, 797-809. – reference: Shadish, W. R., Cook, T. D. and Campbell, D. T. (2002) Experimental and Quasi-experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin. – reference: Stuart, E. A. and Green, K. M. (2008) Using full matching to estimate causal effects in non-experimental studies: examining the relationship between adolescent marijuana use and adult outcomes. Devlpmntl Psychol., 44, 395-406. – reference: Pan, Q. and Schaubel, D. E. (2009) Evaluating bias correction in weighted proportional hazards regression. Liftime Data Anal., 15, 120-146. – reference: US Department of Health and Human Services (2010) Head start impact study final report. Technical Report. Administration for Children and Families, Washington DC. – reference: Glasgow, R. E., Nelson, C. C., Strycker, L. A. and King, D. E. (2006) Using RE-AIM metrics to evaulate diabetes self-management support interventions. Am. J. Prev. Med., 30, 67-73. – reference: Rosenbaum, P. R. (2002) Observational Studies, 2nd edn. New York: Springer. – reference: Flay, B. R., Biglan, A., Boruch, R. F., Castro, F. G., Gottfredson, D., Kellam, S., Moscicki, E. K., Schinke, S. and Valentine, J. (2005) Standards of evidence: criteria for efficacy, effectiveness and dissemination. Prevn Sci., 6, 151-175. – reference: Rosenbaum, P. R. (1991) A characterization of optimal designs for observational studies. J. R. Statist. Soc. B, 53, 597-610. – reference: Rubin, D. B. (2008) For objective causal inference, design trumps analysis. Ann. Appl. Statist., 2, 808-840. – reference: Kalton, G. and Flores-Cervantes, I. (2003) Weighting methods. J. Off. Statist., 19, 81-97. – reference: Weisberg, H., Hayden, V. and Pontes, V. (2009) Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant-induced suicidality? Clin. Trials, 6, 109-118. – reference: Hong, G. and Raudenbush, S. W. (2006) Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data. J. Am. Statist. Ass., 101, 901-910. – reference: Koth, C., Bradshaw, C. and Leaf, P. (2009) Teacher Observation of Classroom Adaptation-Checklist (TOCA-C): development and factor structure. Measmnt Evaln Counsel. Devlpmnt, 42, 15-30. – reference: Flay, B. R. (1986) Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs. Prevn Med., 15, 451-474. – reference: Insel, T. R. (2006) Beyond efficacy: the STAR*D trial. Am. J. Psychiatr., 163, 5-7. – year: 1985 – year: 2009 – volume: 2 start-page: 808 year: 2008 end-page: 840 article-title: For objective causal inference, design trumps analysis publication-title: Ann. Appl. Statist. – volume: 6 start-page: 136 year: 2009 end-page: 140 article-title: The calibration of treatment effects from clinical trials to target populations publication-title: Clin. Trials – volume: 2 start-page: 1 year: 1977 end-page: 26 article-title: Assignment to treatment group on the basis of a covariate publication-title: J. Educ. Statist. – volume: 101 start-page: 901 year: 2006 end-page: 910 article-title: Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data publication-title: J. Am. Statist. Ass. – volume: 45 start-page: 212 year: 1983b end-page: 218 article-title: Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome publication-title: J. R. Statist. Soc. B – volume: 330 start-page: 960 year: 2005 end-page: 962 article-title: Reader's guide to critical appraisal of cohort studies: 2, assessing potential for confounding publication-title: Br. Med. J. – volume: 72 start-page: 831 year: 2008 end-page: 835 article-title: Web survey methods: introduction publication-title: Publ. Opin. Q. – volume: 48 start-page: 23 year: 1995 end-page: 40 article-title: Large‐scale randomized evidence: large, simple trials and overviews of trials publication-title: J. Clin. Epidem. – volume: 54 start-page: 297 year: 1957 end-page: 312 article-title: Factors relevant to the validity of experiments in social settings publication-title: Psychol. Bull. – volume: 19 start-page: 3359 year: 2000 end-page: 3376 article-title: Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening publication-title: Statist. Med. – volume: 53 start-page: 597 year: 1991 end-page: 610 article-title: A characterization of optimal designs for observational studies publication-title: J. R. Statist. Soc. B – volume: 47 start-page: 663 year: 1952 end-page: 685 article-title: A generalization of sampling without replacement from a finite universe publication-title: J. Am. Statist. Ass. – volume: 10 start-page: 105 year: 2008 end-page: 114 article-title: Maryland state‐wide PBIS initiative: systems, evaluation, and next steps publication-title: J. Pos. Behav. Intervens – volume: 163 start-page: 1149 year: 2006 end-page: 1156 article-title: Variable selection for propensity score models publication-title: Am. J. Epidem. – volume: 163 start-page: 5 year: 2006 end-page: 7 article-title: Beyond efficacy: the STAR*D trial publication-title: Am. J. Psychiatr. – volume: 95 start-page: 481 year: 2008 end-page: 488 article-title: The prognostic analogue of the propensity score publication-title: Biometrika – volume: 2 start-page: 169 year: 2001 end-page: 188 article-title: Using propensity scores to help design observational studies: application to the tobacco litigation publication-title: Hlth Serv. Outcms Res. Methodol. – volume: 6 start-page: 109 year: 2009 end-page: 118 article-title: Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant‐induced suicidality? publication-title: Clin. Trials – volume: 79 start-page: 797 year: 1992 end-page: 809 article-title: Characterizing the effect of matching using linear propensity score methods with normal distributions publication-title: Biometrika – volume: 29 start-page: 185 year: 1973 end-page: 203 article-title: The use of matched sampling and regression adjustment to remove bias in observational studies publication-title: Biometrics – volume: 32 start-page: 229 year: 2009 end-page: 239 article-title: Adjustment for selection bias in observational studies with application to the analysis of autopsy data publication-title: Neuroepidemiology – volume: 11 start-page: 133 year: 2009 end-page: 144 article-title: A randomized, wait‐list controlled effectiveness trial assessing school‐wide Positive Behavior Support in elementary schools publication-title: J. Pos. Behav. Intervens – volume: 44 start-page: 395 year: 2008 end-page: 406 article-title: Using full matching to estimate causal effects in non‐experimental studies: examining the relationship between adolescent marijuana use and adult outcomes publication-title: Devlpmntl Psychol. – volume: 42 start-page: 15 year: 2009 end-page: 30 article-title: Teacher Observation of Classroom Adaptation‐Checklist (TOCA‐C): development and factor structure publication-title: Measmnt Evaln Counsel. Devlpmnt – volume: 348 start-page: 645 year: 2003 end-page: 650 article-title: Understanding the divergent data on post‐menopausal hormone therapy publication-title: New Engl. J. Med. – volume: 27 start-page: 625 year: 2008 end-page: 650 article-title: Recent developments in meta‐analysis publication-title: Statist. Med. – volume: 99 start-page: 609 year: 2004 end-page: 618 article-title: Full matching in an observational study of coaching for the SAT publication-title: J. Am. Statist. Ass. – volume: 95 start-page: S74 year: 2008 end-page: S104 article-title: Methods for testing theory and evaluating impact in randomized field trials: intent‐to‐treat analyses for integrating the perspectives of person, place, and time publication-title: Drug Alc. Depend. – volume: 19 start-page: 81 year: 2003 end-page: 97 article-title: Weighting methods publication-title: J. Off. Statist. – volume: 10 start-page: 100 year: 2009 end-page: 115 article-title: Altering school climate through school‐wise Positive Behavioral Interventions and Supports: findings from a group‐randomized effectiveness trial publication-title: Prevn Sci. – volume: 15 start-page: 451 year: 1986 end-page: 474 article-title: Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs publication-title: Prevn Med. – year: 2007 – volume: 171 start-page: 481 year: 2008 end-page: 502 article-title: Misunderstandings between experimentalists and observationalists about causal inference publication-title: J. R. Statist. Soc. A – year: 2010 article-title: Head start impact study final report publication-title: Technical Report – volume: 19 start-page: 766 year: 2008 end-page: 779 article-title: Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion) publication-title: Epidemiology – volume: 23 start-page: 2937 year: 2004 end-page: 2960 article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study publication-title: Statist. Med. – volume: 365 start-page: 176 year: 2005b end-page: 186 article-title: Subgroup analysis in randomised controlled trials: importance, indications, and interpretation publication-title: Lancet – volume: 30 start-page: 67 year: 2006 end-page: 73 article-title: Using RE‐AIM metrics to evaulate diabetes self‐management support interventions publication-title: Am. J. Prev. Med. – volume: 15 start-page: 120 year: 2009 end-page: 146 article-title: Evaluating bias correction in weighted proportional hazards regression publication-title: Liftime Data Anal. – year: 1992 – volume: 12 start-page: 133 year: 2010 end-page: 148 article-title: Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools publication-title: J. Pos. Behav. Intervens – volume: 172 start-page: 107 year: 2010 end-page: 115 article-title: Generalizing evidence from randomized clinical trials to target populations: the ACTG‐320 trial publication-title: Am. J. Epidem. – volume: 35 start-page: 245 year: 2006 end-page: 259 article-title: A promising approach for expanding and sustaining school‐wide positive behavior support publication-title: School Psychol. Rev. – volume: 1 start-page: 55 year: 2003 end-page: 63 article-title: Examining the role of implementation quality in school‐based prevention using the PATHS curriculum publication-title: Prevn Sci. – volume: 63 start-page: 581 year: 1976 end-page: 592 article-title: Inference and missing data (with discussion) publication-title: Biometrika – volume: 6 start-page: 151 year: 2005 end-page: 175 article-title: Standards of evidence: criteria for efficacy, effectiveness and dissemination publication-title: Prevn Sci. – volume: 27 start-page: 1801 year: 2008 end-page: 1813 article-title: Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users publication-title: Statist. Med. – volume: 357 start-page: 2189 year: 2007 end-page: 2194 article-title: Statistics in medicine—reporting of subgroup analyses in clinical trials publication-title: New Engl. J. Med. – volume: 95 start-page: 573 year: 2000 end-page: 585 article-title: Combining propensity score matching with additional adjustments for prognostic covariates publication-title: J. Am. Statist. Ass. – volume: 70 start-page: 41 year: 1983a end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – year: 2002 – year: 2006 – volume: 25 start-page: 1 year: 2010 end-page: 21 article-title: Matching methods for causal inference: a review and a look forward publication-title: Statist. Sci. – volume: 365 start-page: 82 year: 2005a end-page: 93 article-title: External validity of randomised controlled trials: ‘‘To whom do the results of this trial apply?’’ publication-title: Lancet – volume: 15 start-page: 199 year: 2007 end-page: 236 article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference publication-title: Polit. Anal. – volume: 22 start-page: 523 year: 2007 end-page: 539 article-title: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data publication-title: Statist. Sci. – volume: 35 start-page: 417 year: 1973 end-page: 446 article-title: Controlling bias in observational studies: a review publication-title: Sankhya A – year: 1999 – volume: 6 start-page: 151 year: 2005 ident: 2023031600060119600_ article-title: Standards of evidence: criteria for efficacy, effectiveness and dissemination publication-title: Prevn Sci. doi: 10.1007/s11121-005-5553-y – volume: 30 start-page: 67 year: 2006 ident: 2023031600060119600_ article-title: Using RE-AIM metrics to evaulate diabetes self-management support interventions publication-title: Am. J. Prev. Med. doi: 10.1016/j.amepre.2005.08.037 – volume: 163 start-page: 1149 year: 2006 ident: 2023031600060119600_ article-title: Variable selection for propensity score models publication-title: Am. J. Epidem. doi: 10.1093/aje/kwj149 – volume: 172 start-page: 107 year: 2010 ident: 2023031600060119600_ article-title: Generalizing evidence from randomized clinical trials to target populations: the ACTG-320 trial publication-title: Am. J. Epidem. doi: 10.1093/aje/kwq084 – volume: 19 start-page: 81 year: 2003 ident: 2023031600060119600_ article-title: Weighting methods publication-title: J. Off. Statist. – volume: 2 start-page: 808 year: 2008 ident: 2023031600060119600_ article-title: For objective causal inference, design trumps analysis publication-title: Ann. Appl. Statist. doi: 10.1214/08-AOAS187 – volume: 12 start-page: 133 year: 2010 ident: 2023031600060119600_ article-title: Examining the effects of Schoolwide Positive Behavioral Interventions and Supports on student outcomes: results from a randomized controlled effectiveness trial in elementary schools publication-title: J. Pos. Behav. Intervens doi: 10.1177/1098300709334798 – volume: 95 start-page: S74 year: 2008 ident: 2023031600060119600_ article-title: Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and time publication-title: Drug Alc. Depend. doi: 10.1016/j.drugalcdep.2007.11.013 – volume: 23 start-page: 2937 year: 2004 ident: 2023031600060119600_ article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study publication-title: Statist. Med. doi: 10.1002/sim.1903 – volume: 35 start-page: 245 year: 2006 ident: 2023031600060119600_ article-title: A promising approach for expanding and sustaining school-wide positive behavior support publication-title: School Psychol. Rev. doi: 10.1080/02796015.2006.12087989 – volume: 357 start-page: 2189 year: 2007 ident: 2023031600060119600_ article-title: Statistics in medicine—reporting of subgroup analyses in clinical trials publication-title: New Engl. J. Med. doi: 10.1056/NEJMsr077003 – volume: 1 start-page: 55 year: 2003 ident: 2023031600060119600_ article-title: Examining the role of implementation quality in school-based prevention using the PATHS curriculum publication-title: Prevn Sci. doi: 10.1023/A:1021786811186 – volume-title: Technical Report year: 2009 ident: 2023031600060119600_ – volume: 365 start-page: 82 year: 2005 ident: 2023031600060119600_ article-title: External validity of randomised controlled trials: ‘‘To whom do the results of this trial apply?’’ publication-title: Lancet doi: 10.1016/S0140-6736(04)17670-8 – volume: 22 start-page: 523 year: 2007 ident: 2023031600060119600_ article-title: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data publication-title: Statist. Sci. – volume: 19 start-page: 3359 year: 2000 ident: 2023031600060119600_ article-title: Hierarchical models in generalized synthesis of evidence: an example based on studies of breast cancer screening publication-title: Statist. Med. doi: 10.1002/1097-0258(20001230)19:24<3359::AID-SIM710>3.0.CO;2-N – volume: 348 start-page: 645 year: 2003 ident: 2023031600060119600_ article-title: Understanding the divergent data on post-menopausal hormone therapy publication-title: New Engl. J. Med. doi: 10.1056/NEJMsb022365 – volume: 365 start-page: 176 year: 2005 ident: 2023031600060119600_ article-title: Subgroup analysis in randomised controlled trials: importance, indications, and interpretation publication-title: Lancet doi: 10.1016/S0140-6736(05)17709-5 – volume: 29 start-page: 185 year: 1973 ident: 2023031600060119600_ article-title: The use of matched sampling and regression adjustment to remove bias in observational studies publication-title: Biometrics doi: 10.2307/2529685 – volume: 2 start-page: 1 year: 1977 ident: 2023031600060119600_ article-title: Assignment to treatment group on the basis of a covariate publication-title: J. Educ. Statist. doi: 10.3102/10769986002001001 – volume: 2 start-page: 169 year: 2001 ident: 2023031600060119600_ article-title: Using propensity scores to help design observational studies: application to the tobacco litigation publication-title: Hlth Serv. Outcms Res. Methodol. doi: 10.1023/A:1020363010465 – volume: 15 start-page: 451 year: 1986 ident: 2023031600060119600_ article-title: Efficacy and effectiveness trials (and other phases of research) in the development of health promotion programs publication-title: Prevn Med. doi: 10.1016/0091-7435(86)90024-1 – volume: 25 start-page: 1 year: 2010 ident: 2023031600060119600_ article-title: Matching methods for causal inference: a review and a look forward publication-title: Statist. Sci. doi: 10.1214/09-STS313 – volume: 19 start-page: 766 year: 2008 ident: 2023031600060119600_ article-title: Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease (with discussion) publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181875e61 – volume: 101 start-page: 901 year: 2006 ident: 2023031600060119600_ article-title: Evaluating kindergarten retention policy: a case study of causal inference for multilevel observational data publication-title: J. Am. Statist. Ass. doi: 10.1198/016214506000000447 – volume-title: Observational Studies year: 2002 ident: 2023031600060119600_ doi: 10.1007/978-1-4757-3692-2 – volume: 99 start-page: 609 year: 2004 ident: 2023031600060119600_ article-title: Full matching in an observational study of coaching for the SAT publication-title: J. Am. Statist. Ass. doi: 10.1198/016214504000000647 – volume: 95 start-page: 481 year: 2008 ident: 2023031600060119600_ article-title: The prognostic analogue of the propensity score publication-title: Biometrika doi: 10.1093/biomet/asn004 – volume-title: Improving the Quality of Health Care for Mental and Substance-use Conditions year: 2006 ident: 2023031600060119600_ – volume: 42 start-page: 15 year: 2009 ident: 2023031600060119600_ article-title: Teacher Observation of Classroom Adaptation-Checklist (TOCA-C): development and factor structure publication-title: Measmnt Evaln Counsel. Devlpmnt doi: 10.1177/0748175609333560 – volume: 45 start-page: 212 year: 1983 ident: 2023031600060119600_ article-title: Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1983.tb01242.x – volume: 70 start-page: 41 year: 1983 ident: 2023031600060119600_ article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika doi: 10.1093/biomet/70.1.41 – volume: 6 start-page: 136 year: 2009 ident: 2023031600060119600_ article-title: The calibration of treatment effects from clinical trials to target populations publication-title: Clin. Trials doi: 10.1177/1740774509103868 – volume: 11 start-page: 133 year: 2009 ident: 2023031600060119600_ article-title: A randomized, wait-list controlled effectiveness trial assessing school-wide Positive Behavior Support in elementary schools publication-title: J. Pos. Behav. Intervens doi: 10.1177/1098300709332067 – volume: 63 start-page: 581 year: 1976 ident: 2023031600060119600_ article-title: Inference and missing data (with discussion) publication-title: Biometrika doi: 10.1093/biomet/63.3.581 – volume: 47 start-page: 663 year: 1952 ident: 2023031600060119600_ article-title: A generalization of sampling without replacement from a finite universe publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1952.10483446 – volume: 79 start-page: 797 year: 1992 ident: 2023031600060119600_ article-title: Characterizing the effect of matching using linear propensity score methods with normal distributions publication-title: Biometrika doi: 10.1093/biomet/79.4.797 – volume-title: Experimental and Quasi-experimental Designs for Generalized Causal Inference year: 2002 ident: 2023031600060119600_ – volume-title: Proc. 20th A. Res. Conf. System of Care for Children’s Mental Health: Expanding the Research Base year: 2007 ident: 2023031600060119600_ – volume-title: Technical Report year: 1999 ident: 2023031600060119600_ – volume: 54 start-page: 297 year: 1957 ident: 2023031600060119600_ article-title: Factors relevant to the validity of experiments in social settings publication-title: Psychol. Bull. doi: 10.1037/h0040950 – volume: 72 start-page: 831 year: 2008 ident: 2023031600060119600_ article-title: Web survey methods: introduction publication-title: Publ. Opin. Q. doi: 10.1093/poq/nfn066 – volume: 163 start-page: 5 year: 2006 ident: 2023031600060119600_ article-title: Beyond efficacy: the STAR*D trial publication-title: Am. J. Psychiatr. doi: 10.1176/appi.ajp.163.1.5 – volume: 27 start-page: 625 year: 2008 ident: 2023031600060119600_ article-title: Recent developments in meta-analysis publication-title: Statist. Med. doi: 10.1002/sim.2934 – volume: 27 start-page: 1801 year: 2008 ident: 2023031600060119600_ article-title: Generalizing from clinical trial data: a case study of the risk of suicidality among pediatric antidepressant users publication-title: Statist. Med. doi: 10.1002/sim.3218 – volume: 15 start-page: 120 year: 2009 ident: 2023031600060119600_ article-title: Evaluating bias correction in weighted proportional hazards regression publication-title: Liftime Data Anal. doi: 10.1007/s10985-008-9102-4 – volume: 48 start-page: 23 year: 1995 ident: 2023031600060119600_ article-title: Large-scale randomized evidence: large, simple trials and overviews of trials publication-title: J. Clin. Epidem. doi: 10.1016/0895-4356(94)00150-O – volume: 10 start-page: 105 year: 2008 ident: 2023031600060119600_ article-title: Maryland state-wide PBIS initiative: systems, evaluation, and next steps publication-title: J. Pos. Behav. Intervens doi: 10.1177/1098300707312541 – year: 2010 ident: 2023031600060119600_ article-title: Head start impact study final report publication-title: Technical Report – volume: 35 start-page: 417 year: 1973 ident: 2023031600060119600_ article-title: Controlling bias in observational studies: a review publication-title: Sankhya A – volume: 95 start-page: 573 year: 2000 ident: 2023031600060119600_ article-title: Combining propensity score matching with additional adjustments for prognostic covariates publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.2000.10474233 – volume: 53 start-page: 597 year: 1991 ident: 2023031600060119600_ article-title: A characterization of optimal designs for observational studies publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1991.tb01848.x – volume-title: Meta-analysis by the Confidence Profile Method: the Statistical Synthesis of Evidence year: 1992 ident: 2023031600060119600_ – volume: 44 start-page: 395 year: 2008 ident: 2023031600060119600_ article-title: Using full matching to estimate causal effects in non-experimental studies: examining the relationship between adolescent marijuana use and adult outcomes publication-title: Devlpmntl Psychol. doi: 10.1037/0012-1649.44.2.395 – volume-title: Statistical Methods for Meta-analysis year: 1985 ident: 2023031600060119600_ – volume: 6 start-page: 109 year: 2009 ident: 2023031600060119600_ article-title: Selection criteria and generalizability within the counterfactual framework: explaining the paradox of antidepressant-induced suicidality? publication-title: Clin. Trials doi: 10.1177/1740774509102563 – volume: 32 start-page: 229 year: 2009 ident: 2023031600060119600_ article-title: Adjustment for selection bias in observational studies with application to the analysis of autopsy data publication-title: Neuroepidemiology doi: 10.1159/000197389 – volume: 10 start-page: 100 year: 2009 ident: 2023031600060119600_ article-title: Altering school climate through school-wise Positive Behavioral Interventions and Supports: findings from a group-randomized effectiveness trial publication-title: Prevn Sci. doi: 10.1007/s11121-008-0114-9 – volume: 15 start-page: 199 year: 2007 ident: 2023031600060119600_ article-title: Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference publication-title: Polit. Anal. doi: 10.1093/pan/mpl013 – volume: 171 start-page: 481 year: 2008 ident: 2023031600060119600_ article-title: Misunderstandings between experimentalists and observationalists about causal inference publication-title: J. R. Statist. Soc. A doi: 10.1111/j.1467-985X.2007.00527.x – volume: 330 start-page: 960 year: 2005 ident: 2023031600060119600_ article-title: Reader’s guide to critical appraisal of cohort studies: 2, assessing potential for confounding publication-title: Br. Med. J. doi: 10.1136/bmj.330.7497.960 |
SSID | ssj0000077 |
Score | 2.4838052 |
Snippet | Randomized trials remain the most accepted design for estimating the effects of interventions, but they do not necessarily answer a question of primary... |
SourceID | pubmedcentral proquest repec pubmed pascalfrancis crossref wiley jstor istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 369 |
SubjectTerms | Applications Causal inference Combinatorics Combinatorics. Ordered structures Control groups Designs and configurations Effects Elementary schools Empirical research Estimating techniques Estimation Exact sciences and technology Experimental design Experimentation Experiments External validity General topics Generalizability Generalization Inference Intervention Mathematics Methodology Observational studies Outcomes of education Population estimates Population mean Positive behavioral interventions and supports Prevention programs Probability and statistics Propensity Random sampling Research synthesis Sampling methods Sciences and techniques of general use State schools Statistical analysis Statistical methods Statistics Valuation |
Title | The use of propensity scores to assess the generalizability of results from randomized trials |
URI | https://api.istex.fr/ark:/67375/WNG-L0PGPCC7-P/fulltext.pdf https://www.jstor.org/stable/23014404 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-985X.2010.00673.x https://www.ncbi.nlm.nih.gov/pubmed/24926156 http://econpapers.repec.org/article/blajorssa/v_3a174_3ay_3a2011_3ai_3a2_3ap_3a369-386.htm https://www.proquest.com/docview/864097834 https://www.proquest.com/docview/1835605045 https://www.proquest.com/docview/869800508 https://www.proquest.com/docview/918754011 https://pubmed.ncbi.nlm.nih.gov/PMC4051511 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmeGEP-2Bjy9gqT5r2lipfdpxHVAbsA1TB0PoyWY7rjK6lqep0Av763TltRgZIaNpD2ki5i6qLz_ld_fPvCHnHE5UWXDOfFSzxARErH1A48wOtIqa0FsK18zk84genyacBGyz5T7gXptaHaP5ww8xw8zUmuMrtzSTPBBs0DK007iKeDGOOMvq7x9eUpALXhBEAe4LcCtEm9dx6o9abah2DfrEiLSKDUlkIYlF3v7gNnt5kWa7PzczoNgp2r7G9x2S8CkDNXhl3F1Xe1Vd_aUP-nwg9IY-WaJfu1MPzKXlgppvk4WEjFWs3yQbC3Vot-hn5DqOWLqyhZUFnuEwwRcoItai1aWlVUuXWqCn40x-1YDay0pDfe4k-YLWYVJbiphkKQRuW56MrM6SuN4l9Tk73PnztHfjLBhC-FlEY-zzCfbOhQVSjcFNvkgVMhyYwcZ4a7Vp7qiJnJkpTFN0ZhmmYiVhFuWaCx0W8Rdam5dS8JBTLRiy1UIAvycJhxlPOgyHcK08iXRQeSVcPW-qlOjo26ZjIVpWUSoymxGhKF0154ZGw8ZzVCiH38HnvxlPjoOZjZNilTH472pdfgv5-v9dLZd8jW27ANYaRK4GDxCOd1gi8ZpBhAzIw2F4NSbmclqwUPHH7duDq2-YqzCe4SKSmplxYCVM8gGAGSN8j9A4bwTOBwkHibpMshEIYavfQIy_qNPjzC1GjEp4GhLyVII0BKp63r0xHZ075PMGORHjPXZdKjUc-UT_LubVK_pKxgiIbPi_hQHQLXyM8hWMGR8wzGQsuz6pzj3CXPvd-bPL45GQHzl79q-M22ajXJJD59ZqsVfOFeQOgtso7MF19_thxk9ZvMuSReg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQ-sB44GOwEQbDSIi3VPmy4zxOha3AWlX7EH1BluM6rKxrqiZF2_567pw2LGyTJsRD2ki-s6Kzz_ldfP4dIe95pOKMa-ayjEUuIGLlAgpnrqdVwJTWQthyPr0-755EX4ZsuCwHhGdhKn6I-oMbeoZdr9HB8YP0TS9PBBvWKVpx2AZA2bLbdYiQDq9xSXm2DCNA9gizK0QzrefWnhrvqhaa_WKVtog5lKoAM2ZV_YvbAOrNPMvW3MyMbuJg-yLbe0ImKxNU-Stn7UWZtvXVX-yQ_8lGT8njJeClu9UMfUYemOkGedSr2WKLDbKOiLcijH5OvsPEpYvC0DyjM9wpmGLWCC2QbrOgZU6V3aamoE9_VJzZmJiGKb6XqANSi0lZUDw3Q8Fqo_x8fGVG1JYnKV6Qk71Px52uu6wB4WoR-KHLAzw66xsENgrP9UaJx7RvPBOmsdG2uqfKUmaCOEbenZEf-4kIVZBqJniYhZtkbZpPzUtCMXLEaAs5-KLEHyU85twbQV9pFOgsc0i8Gm2plwTpWKdjIhuBUizRmhKtKa015YVD_FpzVpGE3EPng51QtYKan2GSXczkt_6-PPAG-4NOJ5YDh2zaGVcLBjYK9iKH7DSm4DWBBGuQgcD2ak7K5cpUSMEje3QHWt_VrbCk4D6Rmpp8UUhY5QEHMwD7DqF3yAieCOQOEneLJD7EwhC--w7ZqvzgzxMiTSWMBpi84SG1AJKeN1um41NLfh5hUSLs86P1pVojnaif-bwolPwlQwVxNvxewoUAF_7GeAvXDK6QJzIUXJ6W5w7h1n_uPWzy8OhoF-5e_aviW_Kwe9w7kAef-1-3yXq1RYGJYK_JWjlfmDeAcct0x65dvwG0mJSf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQKqHxwI_BRhgMIyHeUuWXneRx6ugGbFW1MdEXZDmOw0q7pGpStO2v585pw8I2aUI8pI2Uu6i6-Jzv6s_fEfKeBzLMuGI2y1hgAyKWNqBwZjtKekwqFUWmnc_RgB-cBp9HbLTkP-FemFofovnDDTPDzNeY4LM0u5nkccRGDUMr9LuAJzsBh7cmAqTja1JSjunCCIg9QHJF1Gb13Hqn1quqg1G_WLEWkUIpS4hiVre_uA2f3qRZduZ6plUbBpv3WP8JmawiUNNXJt1FlXTV1V_ikP8nRE_J4yXcpbv1-HxGHuh8gzw6arRiyw2yjni3lot-Tr7DsKWLUtMiozNcJ8iRM0JLFNssaVVQaRapKfjTH7ViNtLSkOB7iT5gtZhWJcVdMxSClhbn4yudUtOcpHxBTvsfv_YO7GUHCFtFnuvb3MONs65GWCNxV28QO0y52tF-EmplenvKLGHaC0NU3Und0I0jX3qJYhH3M3-TrOVFrl8SinUj1lqowBfEbhrzkHMnhXslgaeyzCLh6mELtZRHxy4dU9Eqk0KB0RQYTWGiKS4s4jaes1oi5B4-H8x4ahzkfIIUu5CJb4N9cegM94e9XiiGFtk0A64x9EwN7AQW2WmNwGsGMXYgA4Pt1ZAUy3mpFBEPzMYduPquuQoTCq4SyVwXi1LAHA8omAHUtwi9wybicYTKQdHdJrELlTAU765Ftuo0-PMLUaQSngaEvJUgjQFKnrev5OMzI30eYEsivOeeSaXGI5nKn8W8LKX4JXwJVTZ8XsKB8Ba-xngKxwwOn8fCj7g4q84twk363PuxieOTk104e_Wvjm_Jw-FeXxx-GnzZJuv1-gSywF6TtWq-0G8A4FbJjpm5fgNonpNO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+use+of+propensity+scores+to+assess+the+generalizability+of+results+from+randomized+trials&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Stuart%2C+Elizabeth+A&rft.au=Cole%2C+Stephen+R&rft.au=Bradshaw%2C+Catherine+P&rft.au=Leaf%2C+Philip+J&rft.date=2011-04-01&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=174&rft.issue=2&rft.spage=369&rft.epage=386&rft_id=info:doi/10.1111%2Fj.1467-985X.2010.00673.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon |