Association and Linkage Analysis of Aluminum Tolerance Genes in Maize

Background: Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Afr...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 4; p. e9958
Main Authors Krill, Allison M, Kirst, Matias, Kochian, Leon V, Buckler, Edward S, Hoekenga, Owen A
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.04.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0009958

Cover

Abstract Background: Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. Methodology: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Conclusions: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays Alt(SB) like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
AbstractList Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Background Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. Methodology An association panel of 282 diverse maize inbred lines and three F.sub.2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Conclusions Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays Alt.sub.SB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. An association panel of 282 diverse maize inbred lines and three F.sub.2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays Alt.sub.SB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Background: Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. Methodology: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Conclusions: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays Alt(SB) like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
BackgroundAluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics.MethodologyAn association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.ConclusionsSix candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Background Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. Methodology An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Conclusions Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Background Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. Methodology An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Conclusions Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics.BACKGROUNDAluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics.An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.METHODOLOGYAn association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.CONCLUSIONSSix candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH), and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. An association panel of 282 diverse maize inbred lines and three F 2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays Alt SB like (ZmASL), Zea mays aluminum-activated malate transporter2 (ALMT2), S-adenosyl-L-homocysteinase (SAHH) , and Malic Enzyme (ME). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.
Audience Academic
Author Kirst, Matias
Krill, Allison M
Buckler, Edward S
Kochian, Leon V
Hoekenga, Owen A
AuthorAffiliation East Carolina University, United States of America
5 Cornell University, Department of Plant Biology, Ithaca, New York, United States of America
3 Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
4 University of Florida, School of Forest Resources and Conservation, Gainesville, Florida, United States of America
1 United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
2 Cornell University, Department of Plant Breeding and Genetics, Ithaca, New York, United States of America
AuthorAffiliation_xml – name: 3 Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
– name: 2 Cornell University, Department of Plant Breeding and Genetics, Ithaca, New York, United States of America
– name: 4 University of Florida, School of Forest Resources and Conservation, Gainesville, Florida, United States of America
– name: 1 United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
– name: 5 Cornell University, Department of Plant Biology, Ithaca, New York, United States of America
– name: East Carolina University, United States of America
Author_xml – sequence: 1
  fullname: Krill, Allison M
– sequence: 2
  fullname: Kirst, Matias
– sequence: 3
  fullname: Kochian, Leon V
– sequence: 4
  fullname: Buckler, Edward S
– sequence: 5
  fullname: Hoekenga, Owen A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20376361$$D View this record in MEDLINE/PubMed
BookMark eNqNk91u1DAQhSNURH_gDRBEQgJxsYsndmyHC6RVVcpKiyrRllvLSZysi2Nv4wRRnh6nm1abqlJRLhKPvznjjM8cRnvWWRVFrwHNATP4dOX61koz34TwHCGUZSl_Fh1AhpMZTRDe2_nejw69v0IoxZzSF9F-CDGKKRxEJwvvXaFlp52NpS3jlba_ZK3iRdC-8drHrooXpm-07Zv4whnVSluo-FRZ5WNt4-9S_1Uvo-eVNF69Gt9H0eXXk4vjb7PV2enyeLGaFRxwNwMJCtKqBIy5KilFvGIES8AphxSAsJyV6bCTlyXlSa5AsZKlNKwqyTDHR9Hbre7GOC_GDngBCc8IIQlPArHcEqWTV2LT6ka2N8JJLW4Drq2FbDtdGCVIqIRxBTLLEeEoFCWASZ4WGQVUkEHry1itzxtVFsp2rTQT0emO1WtRu98i4YRTRILAh1Ggdde98p1otC-UMdIq13vBWJIwSNP0aTJ0jBJKIZDvHpCPt2Gkahn-VNvKhQMWg6ZYEIYzFI43VJ0_QoWnVI0ugq8qHeKThI-ThMB06k9Xy957sTz_8f_s2c8p-36HXStpurV3ph9c6afgm90rub-LO0MHgGyBonXet6q6RwCJYW7u2iWGuRHj3IS0zw_SCt3dDkXoiDZPJY-urKQTsm61F5fnCQKMYLABS_A_ZJkkOA
CitedBy_id crossref_primary_10_1007_s00122_017_2867_7
crossref_primary_10_1007_s10528_016_9738_9
crossref_primary_10_1590_1984_70332019v19n1a12
crossref_primary_10_1007_s00122_014_2277_z
crossref_primary_10_1371_journal_pgen_1002221
crossref_primary_10_1038_srep15562
crossref_primary_10_1371_journal_pgen_1003790
crossref_primary_10_1371_journal_pone_0065688
crossref_primary_10_1021_jf305511d
crossref_primary_10_1016_j_jia_2022_07_032
crossref_primary_10_1093_mp_sst160
crossref_primary_10_1371_journal_pone_0204952
crossref_primary_10_3389_fpls_2022_912637
crossref_primary_10_1186_s12864_015_1226_9
crossref_primary_10_1186_s12284_017_0161_6
crossref_primary_10_1007_s12064_012_0174_z
crossref_primary_10_3724_SP_J_1259_2011_00108
crossref_primary_10_1007_s00122_013_2082_0
crossref_primary_10_1155_2012_914843
crossref_primary_10_1016_j_envexpbot_2014_06_006
crossref_primary_10_9787_KJBS_2018_50_3_224
crossref_primary_10_1007_s11033_011_0954_4
crossref_primary_10_1371_journal_pone_0198589
crossref_primary_10_1016_j_cj_2013_08_002
crossref_primary_10_1089_omi_2014_0125
crossref_primary_10_1007_s00122_019_03356_7
crossref_primary_10_1007_s11103_015_0314_1
crossref_primary_10_3390_genes12111760
crossref_primary_10_1371_journal_pone_0145742
crossref_primary_10_1007_s11032_013_9924_y
crossref_primary_10_1111_j_1365_3040_2011_02479_x
crossref_primary_10_1016_j_scienta_2012_01_032
crossref_primary_10_1093_dnares_dsu046
crossref_primary_10_1104_pp_111_185033
crossref_primary_10_1371_journal_pone_0117737
crossref_primary_10_1186_1471_2164_15_153
crossref_primary_10_1104_pp_112_207142
crossref_primary_10_1002_csc2_20009
crossref_primary_10_1007_s00122_016_2698_y
crossref_primary_10_1094_PHYTO_02_11_0041
crossref_primary_10_1371_journal_pone_0140617
crossref_primary_10_3389_fpls_2017_01822
crossref_primary_10_3389_fpls_2018_01485
crossref_primary_10_1371_journal_pgen_1010664
crossref_primary_10_1007_s10681_014_1114_4
crossref_primary_10_3389_fpls_2018_02005
crossref_primary_10_1111_tpj_12266
crossref_primary_10_9787_PBB_2018_6_4_354
crossref_primary_10_1007_s11032_016_0457_z
crossref_primary_10_1590_1678_4499_2017396
crossref_primary_10_2135_cropsci2010_04_0233
crossref_primary_10_3390_agronomy8020020
crossref_primary_10_1016_j_plantsci_2017_07_011
crossref_primary_10_3389_fpls_2017_01952
crossref_primary_10_1007_s11104_014_2073_1
crossref_primary_10_1016_j_cpb_2019_04_001
crossref_primary_10_1016_j_biotechadv_2012_11_008
crossref_primary_10_1093_bfgp_elu002
crossref_primary_10_3390_agronomy8060084
crossref_primary_10_1002_tpg2_20278
crossref_primary_10_21273_JASHS_136_3_219
crossref_primary_10_3389_fpls_2016_01058
crossref_primary_10_1111_tpj_14571
crossref_primary_10_1371_journal_pone_0164340
crossref_primary_10_1186_1471_2229_12_93
Cites_doi 10.1534/genetics.103.023580
10.1007/s00122-006-0427-7
10.1111/j.1365-313X.2008.03696.x
10.1111/j.1469-8137.2008.02440.x
10.1002/9780470168028.ch3
10.1038/90135
10.1016/S1360-1385(01)01961-6
10.2135/cropsci1993.0011183X003300050012x
10.1146/annurev.pp.46.060195.001321
10.1146/annurev.arplant.55.031903.141655
10.1111/j.1365-3040.2005.01375.x
10.1104/pp.002295
10.2135/cropsci2004.0606
10.1016/S1369-5266(02)00238-8
10.1093/bioinformatics/btm308
10.1111/j.1365-3040.2006.01509.x
10.1139/g98-146
10.1023/A:1022867416513
10.2307/1311905
10.1007/s11103-008-9375-8
10.1104/pp.104.047357
10.1104/pp.122.3.945
10.1016/j.pbi.2007.01.003
10.1007/s00122-007-0562-9
10.1073/pnas.95.13.7805
10.1104/pp.108.119636
10.2134/agronj1996.00021962008800050020x
10.1007/s00425-008-0724-2
10.2135/cropsci1994.0011183X003400060018x
10.1111/j.1365-313X.2003.01991.x
10.1007/BF00191575
10.1073/pnas.0602868103
10.1111/j.1365-313X.2007.03344.x
10.1105/tpc.105.037242
10.1126/science.1150255
10.1146/annurev.arplant.52.1.527
10.1016/j.febslet.2007.03.057
10.1016/j.scitotenv.2008.06.003
10.1104/pp.106.085233
10.1038/ng1702
10.1104/pp.125.1.199
10.1111/j.1365-313X.2007.03367.x
10.1104/pp.99.3.1193
10.1111/j.1365-313X.2005.02591.x
10.1038/ng2074
10.1104/pp.107.111989
10.1073/pnas.0503394102
10.1104/pp.125.2.856
10.1073/pnas.81.24.8014
10.2135/cropsci1994.0011183X003400010009x
10.1104/pp.107.2.315
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
2010. This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: 2010. This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.1371/journal.pone.0009958
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE







Agricultural Science Database

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 5
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Agriculture
DocumentTitleAlternate Al Tolerance Genes in Maize
EISSN 1932-6203
ExternalDocumentID 1289444282
oai_doaj_org_article_48ed33f1a9b04806bd4134b5c9610c42
PMC2848604
2897093641
A473906045
20376361
10_1371_journal_pone_0009958
US201301860472
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations New York
United States--US
South America
Africa
GeographicLocations_xml – name: New York
– name: United States--US
– name: Africa
– name: South America
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
ABDBF
ABIVO
ABJCF
ABPTK
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FBQ
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
P2P
P62
PATMY
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RIG
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
AAUCC
AAWOE
AAYXX
ACUHS
AEUYN
ALIPV
CITATION
IGS
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
7S9
L.6
5PM
-
02
AAPBV
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c813t-1a1e15fd1338ed6608f743a1358151147b7d58ed6bdd682be1e7d756dd6fa7383
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:17:30 EST 2021
Wed Aug 27 01:31:53 EDT 2025
Thu Aug 21 18:27:19 EDT 2025
Mon Sep 08 13:06:00 EDT 2025
Fri Sep 05 11:22:07 EDT 2025
Fri Jul 25 10:39:31 EDT 2025
Tue Jun 17 21:12:10 EDT 2025
Tue Jun 10 20:12:52 EDT 2025
Fri Jun 27 04:15:20 EDT 2025
Fri Jun 27 05:09:21 EDT 2025
Thu May 22 20:54:42 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Thu Apr 24 23:04:26 EDT 2025
Tue Jul 01 00:07:34 EDT 2025
Wed Dec 27 19:17:18 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
2010. This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c813t-1a1e15fd1338ed6608f743a1358151147b7d58ed6bdd682be1e7d756dd6fa7383
Notes http://hdl.handle.net/10113/44678
http://dx.doi.org/10.1371/journal.pone.0009958
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceived and designed the experiments: AMK MK LVK EB OH. Performed the experiments: AMK MK. Analyzed the data: AMK MK EB OH. Wrote the paper: AMK LVK EB OH.
OpenAccessLink https://www.proquest.com/docview/1289444282?pq-origsite=%requestingapplication%
PMID 20376361
PQID 1289444282
PQPubID 1436336
PageCount e9958
ParticipantIDs plos_journals_1289444282
doaj_primary_oai_doaj_org_article_48ed33f1a9b04806bd4134b5c9610c42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2848604
proquest_miscellaneous_772271555
proquest_miscellaneous_733864661
proquest_journals_1289444282
gale_infotracmisc_A473906045
gale_infotracacademiconefile_A473906045
gale_incontextgauss_ISR_A473906045
gale_incontextgauss_IOV_A473906045
gale_healthsolutions_A473906045
pubmed_primary_20376361
crossref_primary_10_1371_journal_pone_0009958
crossref_citationtrail_10_1371_journal_pone_0009958
fao_agris_US201301860472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References SR Whitt (ref33) 2003; 236
G Granados (ref6) 1993; 33
PR Ryan (ref10) 1992; 99
ST Sibov (ref26) 1999; 42
MA Piñeros (ref37) 2002; 129
SA Flint-Garcia (ref34) 2005; 44
R Magnavaca (ref36) 1987
CE Harjes (ref52) 2008; 319
P Kovermann (ref56) 2007; 52
E Delhaize (ref19) 2007; 581
JB Holland (ref29) 2007; 10
J Liu (ref42) 2009; 57
JF Ma (ref16) 2001; 6
ref46
PR Ryan (ref17) 2001; 52
Y Fu (ref45) 2005; 102
T Hall (ref58)
E Delhaize (ref9) 1995; 107
JM Thornsberry (ref32) 2001; 28
ref44
MA Piñeros (ref55) 2008; 147
DL Jones (ref12) 2006; 29
Y Yamamoto (ref14) 2001; 125
JL Yang (ref51) 2008; 146
MA Piñeros (ref54) 2008; 53
LV Kochian (ref13) 2004; 55
S Pandey (ref24) 2007; 28
MA Saghai-Maroof (ref57) 1984; 81
M Yamasaki (ref60) 2005; 17
JV Magalhaes (ref40) 2004; 167
M Kollmeier (ref11) 2000; 122
D Garvin (ref25) 2003
C Poschenrieder (ref8) 2008; 400
MA Piñeros (ref21) 2005; 137
S Ravanel (ref47) 1998; 95
A Ligaba (ref53) 2006; 142
J Wang (ref43) 2007; 115
PJ Bradbury (ref59) 2007; 23
OA Hoekenga (ref18) 2006; 103
JV Magalhaes (ref20) 2007; 39
S Pandey (ref2) 1994; 34
G Edmeades (ref23) 1995
CH Li (ref49) 2008; 228
DL Jones (ref15) 1995; 197
PA Mason (ref28) 2005
J Vargas-Duque (ref5) 1994; 34
IM Rao (ref4) 1993; 43
G Fontecha (ref41) 2007; 114
ES Buckler (ref30) 2002; 5
HR Uexküll (ref1) 1995
EA Weretilnyk (ref50) 2001; 125
R Urrea-Gomez (ref35) 1996; 88
C Welcker (ref3) 2005; 45
E Detarsio (ref48) 2008; 68
D Eticha (ref22) 2005; 28
J Yu (ref31) 2006; 38
T Sasaki (ref39) 2004; 37
F Ninamango-Cárdenas (ref27) 2003; 130
LG Maron (ref38) 2008; 179
LV Kochian (ref7) 1995; 46
18826429 - Plant J. 2009 Feb;57(3):389-99
16227451 - Plant Cell. 2005 Nov;17(11):2859-72
17080952 - Plant Cell Environ. 2006 Jul;29(7):1309-18
11154329 - Plant Physiol. 2001 Jan;125(1):199-208
14871306 - Plant J. 2004 Mar;37(5):645-53
17063338 - Theor Appl Genet. 2007 Jan;114(2):249-60
18005230 - Plant J. 2007 Dec;52(6):1169-80
10712559 - Plant Physiol. 2000 Mar;122(3):945-56
16668988 - Plant Physiol. 1992 Jul;99(3):1193-200
18202289 - Science. 2008 Jan 18;319(5861):330-3
17418140 - FEBS Lett. 2007 May 25;581(12):2255-62
18069943 - Plant J. 2008 Jan;53(2):352-67
16380716 - Nat Genet. 2006 Feb;38(2):203-8
18622731 - Plant Mol Biol. 2008 Nov;68(4-5):355-67
17291822 - Curr Opin Plant Biol. 2007 Apr;10(2):156-61
11337408 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:527-560
15591441 - Plant Physiol. 2005 Jan;137(1):231-41
11161043 - Plant Physiol. 2001 Feb;125(2):856-65
18083797 - Plant Physiol. 2008 Feb;146(2):602-11
9636232 - Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7805-12
16103354 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12282-7
17551710 - Theor Appl Genet. 2007 Jul;115(2):265-76
16359397 - Plant J. 2005 Dec;44(6):1054-64
18350315 - Planta. 2008 Jun;228(1):125-36
15342528 - Genetics. 2004 Aug;167(4):1905-14
18550686 - Plant Physiol. 2008 Aug;147(4):2131-46
18657304 - Sci Total Environ. 2008 Aug 1;400(1-3):356-68
6096873 - Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014-8
17586829 - Bioinformatics. 2007 Oct 1;23(19):2633-5
15377228 - Annu Rev Plant Biol. 2004;55:459-93
17028155 - Plant Physiol. 2006 Nov;142(3):1294-303
12228360 - Plant Physiol. 1995 Feb;107(2):315-321
11431702 - Nat Genet. 2001 Jul;28(3):286-9
17721535 - Nat Genet. 2007 Sep;39(9):1156-61
11856604 - Curr Opin Plant Biol. 2002 Apr;5(2):107-11
14501062 - Methods Mol Biol. 2003;236:123-40
12114573 - Plant Physiol. 2002 Jul;129(3):1194-206
18399934 - New Phytol. 2008;179(1):116-28
16740662 - Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9738-43
11378470 - Trends Plant Sci. 2001 Jun;6(6):273-8
References_xml – volume: 167
  start-page: 1905
  year: 2004
  ident: ref40
  article-title: Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae.
  publication-title: Genetics
  doi: 10.1534/genetics.103.023580
– volume: 114
  start-page: 249
  year: 2007
  ident: ref41
  article-title: Candidate gene identification of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.).
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-006-0427-7
– volume: 57
  start-page: 389
  year: 2009
  ident: ref42
  article-title: Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03696.x
– volume: 179
  start-page: 116
  year: 2008
  ident: ref38
  article-title: Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots.
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02440.x
– volume: 28
  start-page: 59
  year: 2007
  ident: ref24
  article-title: Breeding Maize for Tolerance to Soil Acidity.
  publication-title: Plant Breeding Reviews
  doi: 10.1002/9780470168028.ch3
– volume: 28
  start-page: 286
  year: 2001
  ident: ref32
  article-title: Dwarf8 polymorphisms associate with variation in flowering time.
  publication-title: Nature Genetics
  doi: 10.1038/90135
– volume: 6
  start-page: 273
  year: 2001
  ident: ref16
  article-title: Aluminum tolerance in plants and the complexing role of organic acids.
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(01)01961-6
– volume: 33
  start-page: 936
  year: 1993
  ident: ref6
  article-title: Response to Selection for Tolerance to Acid Soils in a Tropical Maize Population.
  publication-title: Crop Science
  doi: 10.2135/cropsci1993.0011183X003300050012x
– volume: 46
  start-page: 237
  year: 1995
  ident: ref7
  article-title: Cellular Mechanisms of Aluminum Toxicity and Resistance in Plants.
  publication-title: Annual Reviews of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.pp.46.060195.001321
– volume: 55
  start-page: 459
  year: 2004
  ident: ref13
  article-title: How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency.
  publication-title: Annual Reviews of Plant Biology
  doi: 10.1146/annurev.arplant.55.031903.141655
– volume: 28
  start-page: 1410
  year: 2005
  ident: ref22
  article-title: Cell-wall pectin and its degree of methylation in the maize root-apex: significance for genotypic differences in aluminium resistance Plant.
  publication-title: Cell & Environment
  doi: 10.1111/j.1365-3040.2005.01375.x
– volume: 129
  start-page: 1194
  year: 2002
  ident: ref37
  article-title: The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize.
  publication-title: Plant Physiology
  doi: 10.1104/pp.002295
– volume: 45
  start-page: 2405
  year: 2005
  ident: ref3
  article-title: Heterosis and Combining Ability for Maize Adaptation to Tropical Acid Soils: Implications for Future Breeding Strategies.
  publication-title: Crop Science
  doi: 10.2135/cropsci2004.0606
– volume: 5
  start-page: 107
  year: 2002
  ident: ref30
  article-title: Plant molecular diversity and applications to genomics.
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/S1369-5266(02)00238-8
– ident: ref44
– volume: 23
  start-page: 2633
  year: 2007
  ident: ref59
  article-title: TASSEL: software for association mapping of complex traits in diverse samples.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm308
– volume: 29
  start-page: 1309
  year: 2006
  ident: ref12
  article-title: Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots.
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.2006.01509.x
– volume: 42
  start-page: 475
  year: 1999
  ident: ref26
  article-title: Two genes controlling aluminum tolerance in maize: genetic and molecular mapping analyses.
  publication-title: Genome
  doi: 10.1139/g98-146
– year: 2005
  ident: ref28
  article-title: Molecular and genetic investigations of aluminum tolerance in wheat and maize
– volume: 130
  start-page: 223
  year: 2003
  ident: ref27
  article-title: Mapping QTLs for aluminum tolerance in maize.
  publication-title: Euphytica
  doi: 10.1023/A:1022867416513
– volume: 43
  start-page: 454
  year: 1993
  ident: ref4
  article-title: Selection and Breeding for Acid-Soil Tolerance in Crops.
  publication-title: BioScience
  doi: 10.2307/1311905
– year: 1995
  ident: ref23
– volume: 68
  start-page: 355
  year: 2008
  ident: ref48
  article-title: Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): a phylogenetically distant isoform specifically expressed in embryo and emerging roots.
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-008-9375-8
– volume: 137
  start-page: 231
  year: 2005
  ident: ref21
  article-title: Aluminum Resistance in Maize Cannot Be Solely Explained by Root Organic Acid Exudation. A Comparative Physiological Study.
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.047357
– volume: 122
  start-page: 945
  year: 2000
  ident: ref11
  article-title: Genotypical Differences in Aluminum Resistance of Maize Are Expressed in the Distal Part of the Transition Zone. Is Reduced Basipetal Auxin Flow Involved in Inhibition of Root Elongation by Aluminum?
  publication-title: Plant Physiology
  doi: 10.1104/pp.122.3.945
– volume: 10
  start-page: 156
  year: 2007
  ident: ref29
  article-title: Genetic architecture of complex traits in plants.
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2007.01.003
– volume: 115
  start-page: 265
  year: 2007
  ident: ref43
  article-title: High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminum tolerance in barley (Hordeum vulgare L.).
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-007-0562-9
– volume: 95
  start-page: 7805
  year: 1998
  ident: ref47
  article-title: The specific features of methionine biosynthesis and metabolism in plants.
  publication-title: Proc Acad Natl Sci USA
  doi: 10.1073/pnas.95.13.7805
– volume: 147
  start-page: 2131
  year: 2008
  ident: ref55
  article-title: Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications.
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.119636
– volume: 88
  start-page: 806
  year: 1996
  ident: ref35
  article-title: A Greenhouse Screening Technique for Acid Soil Tolerance in Maize.
  publication-title: The Agronomy Journal
  doi: 10.2134/agronj1996.00021962008800050020x
– volume: 228
  start-page: 125
  year: 2008
  ident: ref49
  article-title: Down-regulation of S-adenosyl-L-homocysteine hydrolase reveals a role of cytokinin in promoting transmethylation reactions.
  publication-title: Planta
  doi: 10.1007/s00425-008-0724-2
– volume: 34
  start-page: 1511
  year: 1994
  ident: ref2
  article-title: Genetics of Tolerance to Soil Acidity in Tropical Maize.
  publication-title: Crop Science
  doi: 10.2135/cropsci1994.0011183X003400060018x
– volume: 37
  start-page: 645
  year: 2004
  ident: ref39
  article-title: A wheat gene encoding an aluminum-activated malate transporter.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2003.01991.x
– volume: 236
  start-page: 123
  year: 2003
  ident: ref33
  article-title: Using natural allelic diversity to evaluate gene function.
  publication-title: Methods in Molecular Biology
– start-page: 387
  year: 2003
  ident: ref25
  article-title: Role of the genotype in tolerance to acidity and aluminum toxicity.
– volume: 197
  start-page: 672
  year: 1995
  ident: ref15
  article-title: Role of calcium and other ions in directing root hair tip growth in Limnobium stoloniferum.
  publication-title: Planta
  doi: 10.1007/BF00191575
– ident: ref58
  article-title: Biolign 4.0.7 (computer program).
– volume: 103
  start-page: 9738
  year: 2006
  ident: ref18
  article-title: AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis.
  publication-title: Proc Acad Natl Sci USA
  doi: 10.1073/pnas.0602868103
– volume: 53
  start-page: 352
  year: 2008
  ident: ref54
  article-title: Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 - an anion-selective transporter.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2007.03344.x
– volume: 17
  start-page: 2859
  year: 2005
  ident: ref60
  article-title: A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.037242
– volume: 319
  start-page: 330
  year: 2008
  ident: ref52
  article-title: Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification.
  publication-title: Science
  doi: 10.1126/science.1150255
– volume: 52
  start-page: 527
  year: 2001
  ident: ref17
  article-title: Function and mechanism of organic anion exudation from plant roots.
  publication-title: Annual Reviews of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.arplant.52.1.527
– volume: 581
  start-page: 2255
  year: 2007
  ident: ref19
  article-title: The roles of organic anion permeases in aluminium resistance and mineral nutrition.
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2007.03.057
– volume: 400
  start-page: 356
  year: 2008
  ident: ref8
  article-title: A glance into aluminum toxicity and resistance in plants.
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2008.06.003
– volume: 142
  start-page: 1294
  year: 2006
  ident: ref53
  article-title: The BnALMT1 and BnALMT2 Genes from Rape Encode Aluminum-Activated Malate Transporters That Enhance the Aluminum Resistance of Plant Cells.
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.085233
– volume: 38
  start-page: 203
  year: 2006
  ident: ref31
  article-title: A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.
  publication-title: Nature Genetics
  doi: 10.1038/ng1702
– ident: ref46
  article-title: Prediction of protein secondary structure using Markov chains.
– volume: 125
  start-page: 199
  year: 2001
  ident: ref14
  article-title: Lipid Peroxidation Is an Early Symptom Triggered by Aluminum, But Not the Primary Cause of Elongation Inhibition in Pea Roots.
  publication-title: Plant Physiology
  doi: 10.1104/pp.125.1.199
– volume: 52
  start-page: 1169
  year: 2007
  ident: ref56
  article-title: The Arabidopsis vacuolar malate channel is a member of the ALMT family.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2007.03367.x
– start-page: 5
  year: 1995
  ident: ref1
  article-title: Global extent, development and economic impact of acid soils.
– start-page: 255
  year: 1987
  ident: ref36
  article-title: Evaluation of inbred maize lines for aluminum tolerance in nutrient solution.
– volume: 99
  start-page: 1193
  year: 1992
  ident: ref10
  article-title: Aluminum Toxicity in Roots: Correlation among Ionic Currents, Ion Fluxes, and Root Elongation in Aluminum-Sensitive and Aluminum-Tolerant Wheat Cultivars.
  publication-title: Plant Physiology
  doi: 10.1104/pp.99.3.1193
– volume: 44
  start-page: 1054
  year: 2005
  ident: ref34
  article-title: Maize association population: a high-resolution platform for quantitative trait locus dissection.
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2005.02591.x
– volume: 39
  start-page: 1156
  year: 2007
  ident: ref20
  article-title: A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum.
  publication-title: Nature Genetics
  doi: 10.1038/ng2074
– volume: 146
  start-page: 602
  year: 2008
  ident: ref51
  article-title: Cell Wall Polysaccharides Are Specifically Involved in the Exclusion of Aluminum from the Rice Root Apex.
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.111989
– volume: 102
  start-page: 12282
  year: 2005
  ident: ref45
  article-title: Quality assessment of maize assembled genomic islands (MAGIs) and experimental verification of predicted novel genes.
  publication-title: Proc Acad Natl Sci USA
  doi: 10.1073/pnas.0503394102
– volume: 125
  start-page: 856
  year: 2001
  ident: ref50
  article-title: Maintaining Methylation Activities during Salt Stress: The Involvement of Adenosine Kinase.
  publication-title: Plant Physiology
  doi: 10.1104/pp.125.2.856
– volume: 81
  start-page: 8014
  year: 1984
  ident: ref57
  article-title: Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.81.24.8014
– volume: 34
  start-page: 50
  year: 1994
  ident: ref5
  article-title: Inheritance of Tolerance to Soil Acidity in Tropical Maize.
  publication-title: Crop Science
  doi: 10.2135/cropsci1994.0011183X003400010009x
– volume: 107
  start-page: 315
  year: 1995
  ident: ref9
  article-title: Aluminum Toxicity and Tolerance in Plants.
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.2.315
– reference: 18069943 - Plant J. 2008 Jan;53(2):352-67
– reference: 6096873 - Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014-8
– reference: 11161043 - Plant Physiol. 2001 Feb;125(2):856-65
– reference: 17080952 - Plant Cell Environ. 2006 Jul;29(7):1309-18
– reference: 11154329 - Plant Physiol. 2001 Jan;125(1):199-208
– reference: 16740662 - Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9738-43
– reference: 18083797 - Plant Physiol. 2008 Feb;146(2):602-11
– reference: 12228360 - Plant Physiol. 1995 Feb;107(2):315-321
– reference: 16227451 - Plant Cell. 2005 Nov;17(11):2859-72
– reference: 16668988 - Plant Physiol. 1992 Jul;99(3):1193-200
– reference: 15377228 - Annu Rev Plant Biol. 2004;55:459-93
– reference: 11431702 - Nat Genet. 2001 Jul;28(3):286-9
– reference: 9636232 - Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7805-12
– reference: 10712559 - Plant Physiol. 2000 Mar;122(3):945-56
– reference: 11856604 - Curr Opin Plant Biol. 2002 Apr;5(2):107-11
– reference: 18399934 - New Phytol. 2008;179(1):116-28
– reference: 14871306 - Plant J. 2004 Mar;37(5):645-53
– reference: 16103354 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12282-7
– reference: 17721535 - Nat Genet. 2007 Sep;39(9):1156-61
– reference: 11378470 - Trends Plant Sci. 2001 Jun;6(6):273-8
– reference: 17418140 - FEBS Lett. 2007 May 25;581(12):2255-62
– reference: 18550686 - Plant Physiol. 2008 Aug;147(4):2131-46
– reference: 18826429 - Plant J. 2009 Feb;57(3):389-99
– reference: 14501062 - Methods Mol Biol. 2003;236:123-40
– reference: 17291822 - Curr Opin Plant Biol. 2007 Apr;10(2):156-61
– reference: 15591441 - Plant Physiol. 2005 Jan;137(1):231-41
– reference: 17551710 - Theor Appl Genet. 2007 Jul;115(2):265-76
– reference: 17586829 - Bioinformatics. 2007 Oct 1;23(19):2633-5
– reference: 18350315 - Planta. 2008 Jun;228(1):125-36
– reference: 12114573 - Plant Physiol. 2002 Jul;129(3):1194-206
– reference: 18005230 - Plant J. 2007 Dec;52(6):1169-80
– reference: 17028155 - Plant Physiol. 2006 Nov;142(3):1294-303
– reference: 16380716 - Nat Genet. 2006 Feb;38(2):203-8
– reference: 18622731 - Plant Mol Biol. 2008 Nov;68(4-5):355-67
– reference: 15342528 - Genetics. 2004 Aug;167(4):1905-14
– reference: 18657304 - Sci Total Environ. 2008 Aug 1;400(1-3):356-68
– reference: 17063338 - Theor Appl Genet. 2007 Jan;114(2):249-60
– reference: 18202289 - Science. 2008 Jan 18;319(5861):330-3
– reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64
– reference: 11337408 - Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:527-560
SSID ssj0053866
Score 2.2939215
Snippet Background: Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth...
Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely...
Background Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth...
BackgroundAluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and...
Background Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
fao
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e9958
SubjectTerms acid soils
Acidic soils
Acids
Africa
Agriculture
alleles
Aluminum
Aluminum - pharmacology
Analysis
Arabidopsis
Association analysis
Barley
Bioinformatics
Breeding
Breeding - methods
Cell division
chromosome mapping
commodity foods
Corn
Crop production
Crop yield
Crops
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
Domestication
Drug Tolerance - genetics
Enzymes
Genes
Genes, Plant - physiology
Genetic aspects
Genetic Association Studies
Genetic diversity
Genetic Linkage
genetic markers
Genetic research
genetic variation
Genetics
Genetics and Genomics/Complex Traits
Genomics
Haplotypes
inbred lines
Inbreeding
Linkage analysis
linkage groups
Malate
malates
Malic enzyme
Marker-assisted selection
metal tolerance
nutrient solutions
pH effects
Physiological aspects
Physiology
Plant Biology/Agricultural Biotechnology
Plant Biology/Plant Genetics and Gene Expression
Plant Biology/Plant Genomes and Evolution
Plant Biology/Plant-Environment Interactions
Plant breeding
Plant growth
Plant Roots - drug effects
Plant Roots - growth & development
Pollution tolerance
Ribosomal DNA
root growth
S-adenosyl-L-homocysteinase
South America
Toxicity
transporters
Xenopus
Zea mays
Zea mays - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQn3hBjF8NFLAQEvCQLU4cO3kcaNNAAiRG0d4sO3a6Sl1SkfZlf_3uYjdq0MR44K2tL6183935XJ-_I-StTsvcYA_Aui6rmDvm4tJqBn6VpCY1iXQlXhT--k2czfmXi_xir9UX1oR5emCvuCNeOJtlNdOlwevPwlgIu9zkVQkLf8X76AvL2G4z5WMweLEQ4aJcJtlRwOVw3TbusM-KsMX73kLU8_XD8lLrdojNk_Wq7W5LPP-sn9xbkE4fkgchk6THfgYH5J5rHpGD4KsdfR8IpT88Jid7GFDdWIqnthBH4LVnJKFtTTVEqWWzvaKbduWw24ajC4yDdNnQK728dk_I_PTk56ezOLRPiKuCZZuYaeZYXlvchTorRFLUkC5ohoxnkGZxaaTNccRYK4rUAE7SylzAu1pL2Lk-JZMGFDYltC5FAamQNNo6XmKZVVFZ_AeqygwrTBKRbKdLVQVucWxxsVL9gZmEPYZXikIEVEAgIvHw1Npza9wh_xFhGmSRGbv_AOxFBXtRd9lLRKYAstILiKFqfp7iyS0rBJJmRuQ1Iq_8DdTB9dUxl1mJJEN5RN70Ekic0WBlzkJvu059_v7rH4TOf4yE3gWhugVNVTrchoDpIiHXSHI2kgT3r0bDU7TTncI6BQlHyTnsKmE-s53t3j5Mh2H8Uqy2a1y77ZQEixEcMre_iMg0lZCLwu8_884wwJImuGjhw3LkJiPcxiPN8rJnNodcCaF4_j-AfkHu-0oPrLKakcnm99a9hARyY171seIGzeJqWA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLegXOCA2Pho2QALIQGHbLXjxMkJFbQykAYSW9Fulh07pVJJuqa98NfzXuKEBk2DY-uXtPb78M_28-8R8krzNDJYAzDP0ywQjrkgtZqBX4254WYsXYoXhc--xKcz8fkyuvQbbpVPq2xjYh2obZnhHvkxxNFUCADL_N3qKsCqUXi66kto3CZ3GAdLwpvi049tJAZfjmN_XS6U7Nhr52hVFu6oxkZY6H1nOqpZ-2GSyXXZRejBallW18HPv7Mod6al6QNy3-NJOmkMYI_ccsU-uTeZrz2nhtsne95_K_rGk0y_fUhOdvRCdWEpLkohttCWpYSWOZ1A5FoU25_0olw6rMDhKL6hoouCnunFL_eIzKYnFx9OA19SIcgSFm4CppljUW5xZepsHI-THCCEZsiCBtBLSCNthC3G2jjhBnQnrYxi-JRrCavZx2RQwPANCc3TOAF4JI22TqSYepVkFnelstCwxIxHJGxHVmWebxzLXixVfYgmYd3RDJFCfSivjxEJuqdWDd_GP-Tfo9I6WWTLrr8o13PlnU8J6FEY5kynBq_QQ-dg6hYmylIAj5ngIzIElSsNuqnU7JzjaS5LYiTSHJEXaAequZXahQM1ETJMkXgoGpGXtQSSaRSYrTPX26pSn75-_w-h8289oddeKC9hpDLtb0hAd5Gkqyd52JOEkJD1modote2AVeqP88CTrSVf30y7ZnwpZuAVrtxWSoLFxALQ3A0iknMJ-BR-_0njGp1a-BgnMnxY9pymp7d-S7H4UbOdA35CVTy9-Y8fkLtNXgfmVB2SwWa9dc8ALm7M8zom_AYEtmaA
  priority: 102
  providerName: ProQuest
Title Association and Linkage Analysis of Aluminum Tolerance Genes in Maize
URI https://www.ncbi.nlm.nih.gov/pubmed/20376361
https://www.proquest.com/docview/1289444282
https://www.proquest.com/docview/733864661
https://www.proquest.com/docview/772271555
https://pubmed.ncbi.nlm.nih.gov/PMC2848604
https://doaj.org/article/48ed33f1a9b04806bd4134b5c9610c42
http://dx.doi.org/10.1371/journal.pone.0009958
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe27oUXxPhaoRQLIQEPqerEiZMHhLqpZSB1oG1FfbPsxCmVSlKaVgL-eu4SJ1pQgb1Ean125Dvf-Xfx-Y6Ql8qNfI01ANM0ih1umHGiRDHQq6GrXT0UJsKLwtOL4HzGP879-QGpa7ZaBhZ7XTusJzXbrAY_vv98Bwr_tqzaIFjdabDOMzMoMY8fHpIj2JtcXOdT3pwrgHaXp5eIWpzAHXr2Mt3fRmltVmVOf9iCUpU39ruzXuXFPnD6Z4zljU1rco_ctWiTjqrlcUwOTHafHFt9Luhrm3T6zQMyviEnqrKEopMKtobWWUtontIRWLJltvtGr_OVwYochuIIBV1mdKqWv8xDMpuMr8_OHVtiwYlD5m0dpphhfpqgp2qSIBiGKUAKxTArGkAxLrRIfGzRSRKErgZZikT4AfxKlQDv9hHpZMCwE0LTKAgBLgmtEsMjDMUK4wS_UsWeZqEedolX81LGNv84lsFYyfJQTYAfUjFFogSklUCXOE2vdZV_4z_0pyimhhazZ5d_5JuFtMooOczI81KmIo1X6mFysJVz7ccRgMmYu11yAkKWagF2Vs6uXDzdZWGAiTW75DlKXla3VBvzIEdceBEmIvK75EVJgck1MozeWahdUcgPn77cgujqskX0yhKlOXAqVvbGBEwXk3a1KHstSjARcav5BNdpzbBCAiiJOAfPE-bTq9fu_mbaNOOgGJGXmXxXSAErJuCA7v5BIlxXAF6F9z-ulKERC6gebGzYWbTUpCW3dku2_FpmPwc8haJ4cmvmPCV3qpAPDLfqkc52szPPAEludZ8cirmAZ3jG8Dl53ydHp-OLz5f98ttMvzQevwE9ZXLU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGeQAeEBt_WhjMQiDgIVuTOHHygFCBTS1bh8TaqW_GTpxSqSSlaYXgQ_EZuUuc0KBp8LLHxmc3vjuf7-Lz7wh5Jp3QU1gDMEnCyGLa1lYYSxvWVddRjupyHeJF4eGp3x-zDxNvskV-VXdhMK2ysomFoY6zCL-RH4AdDRkDZ9l5s_hmYdUoPF2tSmiUanGsf3yHkC1_PXgP8n3uOEeHo3d9y1QVsKLAdleWLW1te0mMwZmOfb8bJLCLShuBwMD7YFzx2MMWFcd-4Ch4fR5zz4dfieQQ0MG418h15nYZYvXzSR3gge3wfXM9z-X2gdGG_UWW6v3CF8PC8hvbX1ElADa1RGb1jtBazLP8Inf376zNjW3w6A65bfxX2isVbpts6XSH3OpNlwbDQ--QbWMvcvrSgFq_uksON_SAyjSmGASDLaMVKgrNEtoDSzlL11_pKJtrrPihKY6Q01lKh3L2U98j4yth9n3SSoF9bUKT0A_AHeNKxpqFmOoVRDF-BYtcZQeq2yFuxVkRGXxzLLMxF8WhHYc4p2SRQHkII48OsepeixLf4x_0b1FoNS2icxcPsuVUmMUuGMzIdRNbhgqv7MPkwFVgyotCcFYj5nRIG0QuJMgmF-MzB0-P7cBH4M4O2UM9EOUt2Nr8iB7jbohAR16HPC0oELwjxeygqVznuRh8PP8PorNPDaIXhijJgFORNDcyYLoICtag3G1QggmKGs1t1NqKYbn4s1ihZ6XJFzfTuhkHxYy_VGfrXHDQGJ-B93gJCXccDv4w_P-DcmnUYnG6uHFiZ95YNA25NVvS2ZcCXR38NRTFw8tffI_c6I-GJ-JkcHr8iNwsc0own2uXtFbLtX4MrupKPSnsAyWfr9og_Qaq6aLe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BpFQnBAbHy0MJiFQMAha-M4cXJAqLBNG2MDsRX1ZuzEKZVKUppWCH4av473EicsaBpcdmz9nNbv-8Xvg5AnikW-xhmAaRrFDjeucaJEuSBXA6aZHggTYaHw0XGwP-Jvx_54jfyqa2EwrbLWiaWiTvIY35H3QY9GnIOzzPqpTYv4sLP3av7NwQlSeNNaj9OoWOTQ_PgO4Vvx8mAHaP2Usb3d0zf7jp0w4MSh6y0dV7nG9dMEAzWTBMEgTMGiKhebgoEnwoUWiY8rOkmCkGk4ikiEH8CnVAkI7uC5V8hV4XEP08nEuAn2QI8EgS3V84Tbt5yxPc8zs136ZThk_owpLCcGgIFLVd5Yh858lhfnub5_Z3CeMYl7t8hN68vSYcV862TNZBvkxnCysP08zAZZt7qjoM9tg-sXt8nuGZ6gKksoBsSg12jdIYXmKR2C1pxmq6_0NJ8ZnP5hKD6hoNOMHqnpT3OHjC4F2XdJJwP0dQlNoyAE10xolRgeYdpXGCf4Riz2tBvqQY94NWZlbHud48iNmSwv8ATEPBWKJNJDWnr0iNPsmle9Pv4B_xqJ1sBip-7yi3wxkVbwJYcTeV7qqkhj-T4cDtwGrv04Asc15qxHukByqYA2hRydMLxJdsMAm3j2yBbygawqYhtVJIdceBE2PfJ75HEJgY08MhSJiVoVhTx4_-k_gE4-toCeWaA0B0zFylZnwHGxQVgLcrMFCeoobi13kWtrhBXyj-DCzpqTz1-mzTI-FLP_MpOvCimAYwIOnuQFIIIxAb4x_P69SjQasrABGlHcLFpC06JbeyWbfik7rYPvhqS4f_Ef3yLXQBXJdwfHhw_I9Sq9BFO7NklnuViZh-C1LvWjUj1Q8vmy9dFvr1GnGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+and+Linkage+Analysis+of+Aluminum+Tolerance+Genes+in+Maize&rft.jtitle=PloS+one&rft.au=Krill%2C+Allison+M&rft.au=Kirst%2C+Matias&rft.au=Kochian%2C+Leon+V&rft.au=Buckler%2C+Edward+S&rft.date=2010-04-01&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=5&rft.issue=4&rft.spage=e9958&rft_id=info:doi/10.1371%2Fjournal.pone.0009958&rft.externalDocID=A473906045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon