Clustering Kinematic Patterns of Runners: A Comparative Study of Hierarchical, K-Means, and Deep Temporal Clustering Algorithms

Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous movement patterns in runners. This study aims to compare the performance of principal component analysis (PCA)-based hierarchical clustering and K-m...

Full description

Saved in:
Bibliographic Details
Published inFaṣlnāmah-i ʻilmī-pizhūhishī-i Vol. 14; no. 5; pp. 698 - 709
Main Authors Mohamadi, Zaniar, Eslami, Mansour, Yousefpour, Rohollah
Format Journal Article
LanguageEnglish
Published 01.11.2025
Online AccessGet full text
ISSN2251-8401
2252-0414
2252-0414
DOI10.32598/SJRM.14.5.3363

Cover

Abstract Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous movement patterns in runners. This study aims to compare the performance of principal component analysis (PCA)-based hierarchical clustering and K-means algorithms with an end-to-end deep temporal clustering (DTC) approach in analyzing ankle joint kinematics of runners with homogeneous movement patterns. Methods Three-dimensional ankle joint angles were obtained from 108 recreational runners (55 males and 53 females; age: 22.45±2.42 years, height: 1.69±0.11 m, body mass: 64.64±9.54 kg) during barefoot running at a speed of 3.0±3 meters per second. DTC, hierarchical, and K-means algorithms were trained using ankle joint angles during running. After clustering, the performance and accuracy of each algorithm in identifying clusters with homogeneous movement patterns were evaluated by calculating the Silhouette score, the Calinski-Harabasz index (CHI), and the Davies-Bouldin index (DBI). Results In cluster separation, the DTC algorithm demonstrated superior performance and accuracy compared to the other two algorithms (silhouette score=0.74, DBI=0.35). This algorithm identified three distinct clusters with a clustering inconsistency rate of 6%. The hierarchical clustering method achieved a silhouette score of 0.68 and a DBI value of 0.52 in 10 seconds with a 15% inconsistency rate. The K-means method showed a silhouette score of 0.63 and a DBI of 0.78 in 3 seconds with an 18% inconsistency rate. Conclusion The DTC algorithm outperforms hierarchical clustering and K-means clustering in identifying homogeneous movement patterns among runners. Its higher accuracy and lower learning error make it a suitable choice for analyzing kinematic data in biomechanical research. The findings can enhance the understanding and analysis of movement patterns and contribute to the development of effective strategies for prescribing targeted interventions.
AbstractList Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous movement patterns in runners. This study aims to compare the performance of principal component analysis (PCA)-based hierarchical clustering and K-means algorithms with an end-to-end deep temporal clustering (DTC) approach in analyzing ankle joint kinematics of runners with homogeneous movement patterns. Methods Three-dimensional ankle joint angles were obtained from 108 recreational runners (55 males and 53 females; age: 22.45±2.42 years, height: 1.69±0.11 m, body mass: 64.64±9.54 kg) during barefoot running at a speed of 3.0±3 meters per second. DTC, hierarchical, and K-means algorithms were trained using ankle joint angles during running. After clustering, the performance and accuracy of each algorithm in identifying clusters with homogeneous movement patterns were evaluated by calculating the Silhouette score, the Calinski-Harabasz index (CHI), and the Davies-Bouldin index (DBI). Results In cluster separation, the DTC algorithm demonstrated superior performance and accuracy compared to the other two algorithms (silhouette score=0.74, DBI=0.35). This algorithm identified three distinct clusters with a clustering inconsistency rate of 6%. The hierarchical clustering method achieved a silhouette score of 0.68 and a DBI value of 0.52 in 10 seconds with a 15% inconsistency rate. The K-means method showed a silhouette score of 0.63 and a DBI of 0.78 in 3 seconds with an 18% inconsistency rate. Conclusion The DTC algorithm outperforms hierarchical clustering and K-means clustering in identifying homogeneous movement patterns among runners. Its higher accuracy and lower learning error make it a suitable choice for analyzing kinematic data in biomechanical research. The findings can enhance the understanding and analysis of movement patterns and contribute to the development of effective strategies for prescribing targeted interventions.
Author Yousefpour, Rohollah
Eslami, Mansour
Mohamadi, Zaniar
Author_xml – sequence: 1
  givenname: Zaniar
  surname: Mohamadi
  fullname: Mohamadi, Zaniar
– sequence: 2
  givenname: Mansour
  surname: Eslami
  fullname: Eslami, Mansour
– sequence: 3
  givenname: Rohollah
  surname: Yousefpour
  fullname: Yousefpour, Rohollah
BookMark eNplkMluwjAQhq2KSqWUc69-AAJes_SG0oUWUCvgHjmODa4SJ7KTVpz66mXpAamnGc0_34z03YKera0C4B6jMSU8iSfrt9VyjNmYjykN6RXoE8JJgBhmvVOPg5ghfAOG3psckThiiHDaBz9p2flWOWO3cG6sqkRrJPwQ7WFmPaw1XHXWKucf4BSmddUId9j4UnDddsX-mM-McsLJnZGiHMF5sFTC-hEUtoCPSjVwo6qmdqKEF5-m5bZ2pt1V_g5ca1F6NfyrA7B5ftqks2Dx_vKaTheBjDENEslogUKdFBHVLMcsR4gjLnUktSp4ThCNQ8F0LJDgWjGKOZGFTEISCcWjmA4AOp_tbCP236Iss8aZSrh9hlF2Upj5T1dlmGU8Oyo8IJMzIl3tvVP6P3GUfkH8Av70d1g
ContentType Journal Article
CorporateAuthor Department of Sports Biomechanics, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Iran
Department of Computer Sciences, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
CorporateAuthor_xml – name: Department of Sports Biomechanics, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Iran
– name: Department of Computer Sciences, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.32598/SJRM.14.5.3363
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 2252-0414
EndPage 709
ExternalDocumentID 10.32598/sjrm.14.5.3363
10_32598_SJRM_14_5_3363
GroupedDBID AAYXX
AFWDF
ALMA_UNASSIGNED_HOLDINGS
CITATION
DXH
GROUPED_DOAJ
KQ8
RNS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c813-9c43d06f9d73f4b14b00505cf7cfed5b20386a4f8a0a5fe43152cdc9627ae5783
IEDL.DBID UNPAY
ISSN 2251-8401
2252-0414
IngestDate Fri Oct 10 05:41:50 EDT 2025
Thu Oct 09 00:24:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c813-9c43d06f9d73f4b14b00505cf7cfed5b20386a4f8a0a5fe43152cdc9627ae5783
OpenAccessLink https://proxy.k.utb.cz/login?url=https://medrehab.sbmu.ac.ir/article_1101824_b2be7ab9f54ac86895fe2f4aa03a108c.pdf
PageCount 12
ParticipantIDs unpaywall_primary_10_32598_sjrm_14_5_3363
crossref_primary_10_32598_SJRM_14_5_3363
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Faṣlnāmah-i ʻilmī-pizhūhishī-i
PublicationYear 2025
SSID ssib028740253
ssib038075900
ssj0001339230
ssib050739357
Score 2.3105075
Snippet Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 698
Title Clustering Kinematic Patterns of Runners: A Comparative Study of Hierarchical, K-Means, and Deep Temporal Clustering Algorithms
URI https://medrehab.sbmu.ac.ir/article_1101824_b2be7ab9f54ac86895fe2f4aa03a108c.pdf
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2252-0414
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001339230
  issn: 2252-0414
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2252-0414
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib028740253
  issn: 2251-8401
  databaseCode: DIK
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2252-0414
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050739357
  issn: 2251-8401
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMet0R048RsxBJMPgECasyS2E5tbVZjKqk5V6aRximzHHoU0LUkjNC786zwnLevghMQtUhwlsZ_8_T7J7_MQeuFYnjopDaQlLCYstQnRjFkC0qCVVdxE0tc7j8-S4Tk7veAXe2iyrYUBCag8ojqo9aJl5s-r480cglkNwQ2zTMfapkpLx5kyIhGSOxs7plRIVRQKE6xydwvtJxzceQ_tn59N-p98jzmQcgL5TNRdxyRkEetoPxSSAHFcf6kWsHMEPKA0oTeE6nZTrtTVd1UUO-pzchd92353d-jka9CsdWB-_IF0_J8_dg_d2VhV3O8ev4_2bPkAvdzFEuNZxyTAr_D0BvH7Ifo5KBrPYABlxCNwsi0ZFk9ammdZ46XD08Z3_arf4j4eXCPIsT_YeOXvD-e-Nrpt1VIc4REZW1DVI6zKHL-zdoVnHVSrwDtv6heXy2q-_ryoH6HZyfvZYEg2zR6IEREl0jCah4mTeUod0xHTbY8941LjbM51HFKRKOaEChXMCtgeHpvc-NZBysKuQx-jXrks7ROEwXHJPPRTaAVTVChpQxv5UhgdSxvRA_R6u7DZqkN6ZJAKtTGQfTydjiEdynjmY-AAvfm98H-P9fFyPfbpP4x9hnrrqrHPwc-s9SE4-Q-jw02g_gJm2_bN
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMet0R04wcYPMQTIB0AgLZkT24nNrSpM1aZOVemkcYpsxx6FNC1Jo2lc-Nf3nLSsgxMSt0hxlMR-8vf7JL_PQ-i1Y3nqpDSQlrA4YKlNAs2YDUAatLKKm0j6eufRWTI8ZycX_GIHjTe1MCABlUdUh7Wet8z8WXW0nkMwqwTcMMt0rG2qtHScKSMSIbmzsWNKEaoiIky4zN09tJtwcOc9tHt-Nu5_8T3mQMoDyGei7joOCItYR_uhkASIo_pbNYedI-QhpQm9I1T3m3Kprq9UUWypz_FD9GPz3d2hk-9hs9Kh-fkH0vF__tgeerC2qrjfPb6Pdmz5CL3ZxhLjacckwG_x5A7x-zH6NSgaz2AAZcSn4GRbMiwetzTPssYLhyeN7_pVf8B9PLhFkGN_sPHa3x_OfG1026qlOMSnwciCqh5iVeb4o7VLPO2gWgXeelO_uFxUs9XXef0ETY8_TQfDYN3sITAiooE0jOYkcTJPqWM6YrrtsWdcapzNuY4JFYliTiiiYFbA9vDY5Ma3DlIWdh36FPXKRWmfIQyOS-bET6EVTFGhpCU28qUwOpY2ogfo3WZhs2WH9MggFWpjIPt8MhlBOpTxzMfAAXr_e-H_Huvj5Xbs838Y-wL1VlVjX4KfWelX6xC9AaN49dQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Kinematic+Patterns+of+Runners%3A+A+Comparative+Study+of+Hierarchical%2C+K-Means%2C+and+Deep+Temporal+Clustering+Algorithms&rft.jtitle=Fa%E1%B9%A3ln%C4%81mah-i+%CA%BBilm%C4%AB-pizh%C5%ABhish%C4%AB-i&rft.au=Mohamadi%2C+Zaniar&rft.au=Eslami%2C+Mansour&rft.au=Yousefpour%2C+Rohollah&rft.date=2025-11-01&rft.issn=2251-8401&rft.eissn=2252-0414&rft.volume=14&rft.issue=5&rft.spage=698&rft.epage=709&rft_id=info:doi/10.32598%2FSJRM.14.5.3363&rft.externalDBID=n%2Fa&rft.externalDocID=10_32598_SJRM_14_5_3363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2251-8401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2251-8401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2251-8401&client=summon