Clustering Kinematic Patterns of Runners: A Comparative Study of Hierarchical, K-Means, and Deep Temporal Clustering Algorithms
Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous movement patterns in runners. This study aims to compare the performance of principal component analysis (PCA)-based hierarchical clustering and K-m...
Saved in:
| Published in | Faṣlnāmah-i ʻilmī-pizhūhishī-i Vol. 14; no. 5; pp. 698 - 709 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.11.2025
|
| Online Access | Get full text |
| ISSN | 2251-8401 2252-0414 2252-0414 |
| DOI | 10.32598/SJRM.14.5.3363 |
Cover
| Abstract | Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous movement patterns in runners. This study aims to compare the performance of principal component analysis (PCA)-based hierarchical clustering and K-means algorithms with an end-to-end deep temporal clustering (DTC) approach in analyzing ankle joint kinematics of runners with homogeneous movement patterns. Methods Three-dimensional ankle joint angles were obtained from 108 recreational runners (55 males and 53 females; age: 22.45±2.42 years, height: 1.69±0.11 m, body mass: 64.64±9.54 kg) during barefoot running at a speed of 3.0±3 meters per second. DTC, hierarchical, and K-means algorithms were trained using ankle joint angles during running. After clustering, the performance and accuracy of each algorithm in identifying clusters with homogeneous movement patterns were evaluated by calculating the Silhouette score, the Calinski-Harabasz index (CHI), and the Davies-Bouldin index (DBI). Results In cluster separation, the DTC algorithm demonstrated superior performance and accuracy compared to the other two algorithms (silhouette score=0.74, DBI=0.35). This algorithm identified three distinct clusters with a clustering inconsistency rate of 6%. The hierarchical clustering method achieved a silhouette score of 0.68 and a DBI value of 0.52 in 10 seconds with a 15% inconsistency rate. The K-means method showed a silhouette score of 0.63 and a DBI of 0.78 in 3 seconds with an 18% inconsistency rate. Conclusion The DTC algorithm outperforms hierarchical clustering and K-means clustering in identifying homogeneous movement patterns among runners. Its higher accuracy and lower learning error make it a suitable choice for analyzing kinematic data in biomechanical research. The findings can enhance the understanding and analysis of movement patterns and contribute to the development of effective strategies for prescribing targeted interventions. |
|---|---|
| AbstractList | Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous movement patterns in runners. This study aims to compare the performance of principal component analysis (PCA)-based hierarchical clustering and K-means algorithms with an end-to-end deep temporal clustering (DTC) approach in analyzing ankle joint kinematics of runners with homogeneous movement patterns. Methods Three-dimensional ankle joint angles were obtained from 108 recreational runners (55 males and 53 females; age: 22.45±2.42 years, height: 1.69±0.11 m, body mass: 64.64±9.54 kg) during barefoot running at a speed of 3.0±3 meters per second. DTC, hierarchical, and K-means algorithms were trained using ankle joint angles during running. After clustering, the performance and accuracy of each algorithm in identifying clusters with homogeneous movement patterns were evaluated by calculating the Silhouette score, the Calinski-Harabasz index (CHI), and the Davies-Bouldin index (DBI). Results In cluster separation, the DTC algorithm demonstrated superior performance and accuracy compared to the other two algorithms (silhouette score=0.74, DBI=0.35). This algorithm identified three distinct clusters with a clustering inconsistency rate of 6%. The hierarchical clustering method achieved a silhouette score of 0.68 and a DBI value of 0.52 in 10 seconds with a 15% inconsistency rate. The K-means method showed a silhouette score of 0.63 and a DBI of 0.78 in 3 seconds with an 18% inconsistency rate. Conclusion The DTC algorithm outperforms hierarchical clustering and K-means clustering in identifying homogeneous movement patterns among runners. Its higher accuracy and lower learning error make it a suitable choice for analyzing kinematic data in biomechanical research. The findings can enhance the understanding and analysis of movement patterns and contribute to the development of effective strategies for prescribing targeted interventions. |
| Author | Yousefpour, Rohollah Eslami, Mansour Mohamadi, Zaniar |
| Author_xml | – sequence: 1 givenname: Zaniar surname: Mohamadi fullname: Mohamadi, Zaniar – sequence: 2 givenname: Mansour surname: Eslami fullname: Eslami, Mansour – sequence: 3 givenname: Rohollah surname: Yousefpour fullname: Yousefpour, Rohollah |
| BookMark | eNplkMluwjAQhq2KSqWUc69-AAJes_SG0oUWUCvgHjmODa4SJ7KTVpz66mXpAamnGc0_34z03YKera0C4B6jMSU8iSfrt9VyjNmYjykN6RXoE8JJgBhmvVOPg5ghfAOG3psckThiiHDaBz9p2flWOWO3cG6sqkRrJPwQ7WFmPaw1XHXWKucf4BSmddUId9j4UnDddsX-mM-McsLJnZGiHMF5sFTC-hEUtoCPSjVwo6qmdqKEF5-m5bZ2pt1V_g5ca1F6NfyrA7B5ftqks2Dx_vKaTheBjDENEslogUKdFBHVLMcsR4gjLnUktSp4ThCNQ8F0LJDgWjGKOZGFTEISCcWjmA4AOp_tbCP236Iss8aZSrh9hlF2Upj5T1dlmGU8Oyo8IJMzIl3tvVP6P3GUfkH8Av70d1g |
| ContentType | Journal Article |
| CorporateAuthor | Department of Sports Biomechanics, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Iran Department of Computer Sciences, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran |
| CorporateAuthor_xml | – name: Department of Sports Biomechanics, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Iran – name: Department of Computer Sciences, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.32598/SJRM.14.5.3363 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 2252-0414 |
| EndPage | 709 |
| ExternalDocumentID | 10.32598/sjrm.14.5.3363 10_32598_SJRM_14_5_3363 |
| GroupedDBID | AAYXX AFWDF ALMA_UNASSIGNED_HOLDINGS CITATION DXH GROUPED_DOAJ KQ8 RNS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c813-9c43d06f9d73f4b14b00505cf7cfed5b20386a4f8a0a5fe43152cdc9627ae5783 |
| IEDL.DBID | UNPAY |
| ISSN | 2251-8401 2252-0414 |
| IngestDate | Fri Oct 10 05:41:50 EDT 2025 Thu Oct 09 00:24:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c813-9c43d06f9d73f4b14b00505cf7cfed5b20386a4f8a0a5fe43152cdc9627ae5783 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://medrehab.sbmu.ac.ir/article_1101824_b2be7ab9f54ac86895fe2f4aa03a108c.pdf |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_32598_sjrm_14_5_3363 crossref_primary_10_32598_SJRM_14_5_3363 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Faṣlnāmah-i ʻilmī-pizhūhishī-i |
| PublicationYear | 2025 |
| SSID | ssib028740253 ssib038075900 ssj0001339230 ssib050739357 |
| Score | 2.3105075 |
| Snippet | Background and Aims Current biomechanical studies lack a comprehensive investigation of deep learning clustering algorithms for identifying homogeneous... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 698 |
| Title | Clustering Kinematic Patterns of Runners: A Comparative Study of Hierarchical, K-Means, and Deep Temporal Clustering Algorithms |
| URI | https://medrehab.sbmu.ac.ir/article_1101824_b2be7ab9f54ac86895fe2f4aa03a108c.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2252-0414 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001339230 issn: 2252-0414 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2252-0414 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib028740253 issn: 2251-8401 databaseCode: DIK dateStart: 20130101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2252-0414 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050739357 issn: 2251-8401 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMet0R048RsxBJMPgECasyS2E5tbVZjKqk5V6aRximzHHoU0LUkjNC786zwnLevghMQtUhwlsZ_8_T7J7_MQeuFYnjopDaQlLCYstQnRjFkC0qCVVdxE0tc7j8-S4Tk7veAXe2iyrYUBCag8ojqo9aJl5s-r480cglkNwQ2zTMfapkpLx5kyIhGSOxs7plRIVRQKE6xydwvtJxzceQ_tn59N-p98jzmQcgL5TNRdxyRkEetoPxSSAHFcf6kWsHMEPKA0oTeE6nZTrtTVd1UUO-pzchd92353d-jka9CsdWB-_IF0_J8_dg_d2VhV3O8ev4_2bPkAvdzFEuNZxyTAr_D0BvH7Ifo5KBrPYABlxCNwsi0ZFk9ammdZ46XD08Z3_arf4j4eXCPIsT_YeOXvD-e-Nrpt1VIc4REZW1DVI6zKHL-zdoVnHVSrwDtv6heXy2q-_ryoH6HZyfvZYEg2zR6IEREl0jCah4mTeUod0xHTbY8941LjbM51HFKRKOaEChXMCtgeHpvc-NZBysKuQx-jXrks7ROEwXHJPPRTaAVTVChpQxv5UhgdSxvRA_R6u7DZqkN6ZJAKtTGQfTydjiEdynjmY-AAvfm98H-P9fFyPfbpP4x9hnrrqrHPwc-s9SE4-Q-jw02g_gJm2_bN |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pb9MwFMet0R04wcYPMQTIB0AgLZkT24nNrSpM1aZOVemkcYpsxx6FNC1Jo2lc-Nf3nLSsgxMSt0hxlMR-8vf7JL_PQ-i1Y3nqpDSQlrA4YKlNAs2YDUAatLKKm0j6eufRWTI8ZycX_GIHjTe1MCABlUdUh7Wet8z8WXW0nkMwqwTcMMt0rG2qtHScKSMSIbmzsWNKEaoiIky4zN09tJtwcOc9tHt-Nu5_8T3mQMoDyGei7joOCItYR_uhkASIo_pbNYedI-QhpQm9I1T3m3Kprq9UUWypz_FD9GPz3d2hk-9hs9Kh-fkH0vF__tgeerC2qrjfPb6Pdmz5CL3ZxhLjacckwG_x5A7x-zH6NSgaz2AAZcSn4GRbMiwetzTPssYLhyeN7_pVf8B9PLhFkGN_sPHa3x_OfG1026qlOMSnwciCqh5iVeb4o7VLPO2gWgXeelO_uFxUs9XXef0ETY8_TQfDYN3sITAiooE0jOYkcTJPqWM6YrrtsWdcapzNuY4JFYliTiiiYFbA9vDY5Ma3DlIWdh36FPXKRWmfIQyOS-bET6EVTFGhpCU28qUwOpY2ogfo3WZhs2WH9MggFWpjIPt8MhlBOpTxzMfAAXr_e-H_Huvj5Xbs838Y-wL1VlVjX4KfWelX6xC9AaN49dQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+Kinematic+Patterns+of+Runners%3A+A+Comparative+Study+of+Hierarchical%2C+K-Means%2C+and+Deep+Temporal+Clustering+Algorithms&rft.jtitle=Fa%E1%B9%A3ln%C4%81mah-i+%CA%BBilm%C4%AB-pizh%C5%ABhish%C4%AB-i&rft.au=Mohamadi%2C+Zaniar&rft.au=Eslami%2C+Mansour&rft.au=Yousefpour%2C+Rohollah&rft.date=2025-11-01&rft.issn=2251-8401&rft.eissn=2252-0414&rft.volume=14&rft.issue=5&rft.spage=698&rft.epage=709&rft_id=info:doi/10.32598%2FSJRM.14.5.3363&rft.externalDBID=n%2Fa&rft.externalDocID=10_32598_SJRM_14_5_3363 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2251-8401&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2251-8401&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2251-8401&client=summon |