Модель та метод навчання детектора об’єктів на аерозображенні з оптимізацією робастності та кількості обчислень
The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data processing directly at the source, which limits the available computational resources. However, the vulnerability of neural networks to nois...
Saved in:
| Published in | Avìacìjno-kosmìčna tehnìka ì tehnologìâ no. 5 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
25.10.2024
|
| Online Access | Get full text |
| ISSN | 1727-7337 2663-2217 2663-2217 |
| DOI | 10.32620/aktt.2024.5.11 |
Cover
| Abstract | The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data processing directly at the source, which limits the available computational resources. However, the vulnerability of neural networks to noise, adversarial attacks, and weight error injections significantly diminishes their robustness and overall effectiveness. The relevant task is to develop models that provide both computational efficiency and robustness against perturbations. This paper investigates a model and method for enhancing the robustness of neural network detectors under limited resources. The objective is to design a model that allocates resources optimally while maintaining stability. To achieve this, the study employs techniques such as dynamic neural networks, robustness optimization, and resilience strategies. The following results were obtained. A detector with a feature extractor based on ViT-S/16, modified with gate modules for dynamic examination was developed. The model was trained on the RSOD dataset and meta-learned on the adaptation results to various perturbations. The model's resistance to random bit inversions in weights (10 % of weights) and to adversarial attacks with perturbation amplitudes up to 3/255 (L∞ norm) was tested. Conclusion. The proposed detector model incorporating dynamic examination and optimized robustness, reduced floating-point operations by over 20 % without loss of accuracy. A novel method for training the detector was developed, combining the RetinaNet loss function with the loss function of gate blocks and applying meta-learning on the adaptation results for various types of synthetic perturbations. Testing demonstrated an increase in accuracy by 11.9 % under the influence of error injection and by 13.2 % under the influence of adversarial attacks. |
|---|---|
| AbstractList | The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data processing directly at the source, which limits the available computational resources. However, the vulnerability of neural networks to noise, adversarial attacks, and weight error injections significantly diminishes their robustness and overall effectiveness. The relevant task is to develop models that provide both computational efficiency and robustness against perturbations. This paper investigates a model and method for enhancing the robustness of neural network detectors under limited resources. The objective is to design a model that allocates resources optimally while maintaining stability. To achieve this, the study employs techniques such as dynamic neural networks, robustness optimization, and resilience strategies. The following results were obtained. A detector with a feature extractor based on ViT-S/16, modified with gate modules for dynamic examination was developed. The model was trained on the RSOD dataset and meta-learned on the adaptation results to various perturbations. The model's resistance to random bit inversions in weights (10 % of weights) and to adversarial attacks with perturbation amplitudes up to 3/255 (L∞ norm) was tested. Conclusion. The proposed detector model incorporating dynamic examination and optimized robustness, reduced floating-point operations by over 20 % without loss of accuracy. A novel method for training the detector was developed, combining the RetinaNet loss function with the loss function of gate blocks and applying meta-learning on the adaptation results for various types of synthetic perturbations. Testing demonstrated an increase in accuracy by 11.9 % under the influence of error injection and by 13.2 % under the influence of adversarial attacks. |
| Author | Zaretskyi, Mykola Babych, Vladyslav Moskalenko, Alona Vynohradov, Maksym |
| Author_xml | – sequence: 1 givenname: Alona orcidid: 0000-0003-3443-3990 surname: Moskalenko fullname: Moskalenko, Alona – sequence: 2 givenname: Mykola orcidid: 0000-0001-9117-5604 surname: Zaretskyi fullname: Zaretskyi, Mykola – sequence: 3 givenname: Maksym orcidid: 0009-0009-1234-922X surname: Vynohradov fullname: Vynohradov, Maksym – sequence: 4 givenname: Vladyslav orcidid: 0009-0009-2521-0841 surname: Babych fullname: Babych, Vladyslav |
| BookMark | eNqFkctOAjEUhhujiYis3c4LDLSdS2FpiLeExA37SWemk6gIhMEYduBCNkQ3hMTEhwDiCOHmK5z6CD6J7UDcummb__zff056jtB-vVEXCJ0QnLeoS3GB37XbeYqpnXfyhOyhDHVdy6SUsH2UIYwyk1kWO0S5OL7FGNMic0olK4O-4R028AEJLOXAkE8wNmAFiXoo1YA1jGEq--pcw1q-GtqpagkstEN2tX0Dk5_umxxqTY5gmlKGQhJV38BMG7QTPhWnY0YGzDT2pTLmsFLMDMbyWY7kUL4YKTRRQk-V16pJT8fuRlsosxoUFn96mt6HuezBUufLwTE6iHgtFrndnUXV87Nq-dKsXF9clU8rZlAkxHQ4tTB2BCtxIoQd-JT51I04Jgxzl4Xqg3AQ2j52Q8xtp0iEHdqiFDHXp8IKIyuL8Db2od7knUdeq3nN1s09b3U8gr10K57eiqe34jkeIQopbJGg1Yjjloj-JX4BaNXbiw |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.32620/aktt.2024.5.11 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2663-2217 |
| ExternalDocumentID | 10.32620/aktt.2024.5.11 10_32620_aktt_2024_5_11 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c811-5a23005e79a1ee4cb27b26fa0170a67d8750cd4b06d0a4581e4d4e9f76b2e3df3 |
| IEDL.DBID | UNPAY |
| ISSN | 1727-7337 2663-2217 |
| IngestDate | Mon Sep 15 10:19:24 EDT 2025 Tue Jul 01 04:12:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c811-5a23005e79a1ee4cb27b26fa0170a67d8750cd4b06d0a4581e4d4e9f76b2e3df3 |
| ORCID | 0009-0009-2521-0841 0000-0003-3443-3990 0000-0001-9117-5604 0009-0009-1234-922X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.32620/aktt.2024.5.11 |
| ParticipantIDs | unpaywall_primary_10_32620_aktt_2024_5_11 crossref_primary_10_32620_aktt_2024_5_11 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-25 |
| PublicationDateYYYYMMDD | 2024-10-25 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Avìacìjno-kosmìčna tehnìka ì tehnologìâ |
| PublicationYear | 2024 |
| SSID | ssj0002875993 |
| Score | 2.2746396 |
| Snippet | The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| Title | Модель та метод навчання детектора об’єктів на аерозображенні з оптимізацією робастності та кількості обчислень |
| URI | https://doi.org/10.32620/aktt.2024.5.11 |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2663-2217 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002875993 issn: 2663-2217 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NahRBEG5kcxAPxl9M0DAHD3qYdaZ7en6OQQyLYPCQQDwNPT09l4Q1yC6ip6wHcwl6CQuCD7EJrhs22fUVqn0En8Sq3klYRVAvw1D1VXVBNXQV0_UNY_crLYXKSu2npdJ-JHjlp0UqfSO45Bmv4sDNVzxbj1ub0dMtuVWTJNEszNz3e0Fc6Y_UdoeuPPKoKZs0w7sQSyy6G2xhc_356gs37sgTPxGOHRNPG-FzrLJnJD5_8vDL-XO5295Vb16rnZ25Q2VtkbXOw5ndJdludjtFU7_9janxH-K9xq7WhaW3OtsJ19kl077BrszRDd5k3-EzTOELDOHUHnj2HQw8OIMhvqDUgwkM4Nju43MCE_vRIyTqhjAmhN0j-BSOfux9socks304dlYemgxRP4URAQgJX9GO3PQ9GJHZN_RxAmdoM4KBfW_79tB-8JzREQp6qJ7gIj1yW4c2RjAGCuMLufO-Dye2B6fk3x7cYhtrTzYet_z6nw6-TsPQl4oTP75JMhUaE-mCJwWPK0UsPipOSuyeAl1GRRCXgYpkGpqojExWJXHBjSgrcZs12i_b5g7z4iKpkix13ExYhYhMZSZRXKtQm7SKgiX24DzR-e6MuSPHjsdlKacs5ZSlXGIPtMQeXmyEv2GX_wN7lzU6r7rmHpYtnWLFtfsr9cb9CSBcMtM |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NahRBEG5kcxAPxl-MqPTBgx56nenumZ45BjEsgsFDAvE09PT0XBLWILsEPWU9JJegl7Ag-BCb4Lphk11fodpH8Emsnp2EVQT1MgzVX1UXVENVMV3fEPKwNJHQaWFYUmjDpOAlS_IkYlbwiKe8jINqvuLFatxal883oo2aJMnPwsx9vxeeK_2J3uz4K49cNqOmn-FdiCMsuhtkYX315fKratyRK6ZExY6J2UYwjlX2jMTnTxZ-yT-Xu-1t_XZHb23NJZWVRdI6d2d2l2Sz2e3kTfPuN6bGf_D3GrlaF5Z0eXYSrpNLtn2DXJmjG7xJvsNnmMIXGMKpO6DuPQwonMEQX1BKYQIDOHb7-JzAxH2kHolrQxh7hNv18Ckc_dj95A69zPXhuNKiqDLE9SmMPMAj4SvqeTN9CiOv9g1tnMAZ6oxg4PZc3x26D7RSOkJBD5cnuEnPm61dGyMYHYXxhbyyvg8nrgen3r47uEXWVp6tPW2x-p8OzCRhyCLNPT--VakOrZUm5yrncak9i4-OVYHdU2AKmQdxEWgZJaGVhbRpqeKcW1GU4jZptF-37R1C41yVKk0qbiasQkSqU6s0Nzo0NillsEQenQc6254xd2TY8VRRynyUMh-lLMIeaIk8vjgIf8Pe_Q_sPdLovOna-1i2dPIH9ZH9CfUXMd4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C+%D1%82%D0%B0+%D0%BC%D0%B5%D1%82%D0%BE%D0%B4+%D0%BD%D0%B0%D0%B2%D1%87%D0%B0%D0%BD%D0%BD%D1%8F+%D0%B4%D0%B5%D1%82%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B0+%D0%BE%D0%B1%E2%80%99%D1%94%D0%BA%D1%82%D1%96%D0%B2+%D0%BD%D0%B0+%D0%B0%D0%B5%D1%80%D0%BE%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%BD%D1%96+%D0%B7+%D0%BE%D0%BF%D1%82%D0%B8%D0%BC%D1%96%D0%B7%D0%B0%D1%86%D1%96%D1%94%D1%8E+%D1%80%D0%BE%D0%B1%D0%B0%D1%81%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%96+%D1%82%D0%B0+%D0%BA%D1%96%D0%BB%D1%8C%D0%BA%D0%BE%D1%81%D1%82%D1%96+%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D1%8C&rft.jtitle=Av%C3%ACac%C3%ACjno-kosm%C3%AC%C4%8Dna+tehn%C3%ACka+%C3%AC+tehnolog%C3%AC%C3%A2&rft.au=Moskalenko%2C+Alona&rft.au=Zaretskyi%2C+Mykola&rft.au=Vynohradov%2C+Maksym&rft.au=Babych%2C+Vladyslav&rft.date=2024-10-25&rft.issn=1727-7337&rft.eissn=2663-2217&rft.issue=5&rft_id=info:doi/10.32620%2Faktt.2024.5.11&rft.externalDBID=n%2Fa&rft.externalDocID=10_32620_aktt_2024_5_11 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1727-7337&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1727-7337&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1727-7337&client=summon |