Модель та метод навчання детектора об’єктів на аерозображенні з оптимізацією робастності та кількості обчислень

The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data processing directly at the source, which limits the available computational resources. However, the vulnerability of neural networks to nois...

Full description

Saved in:
Bibliographic Details
Published inAvìacìjno-kosmìčna tehnìka ì tehnologìâ no. 5
Main Authors Moskalenko, Alona, Zaretskyi, Mykola, Vynohradov, Maksym, Babych, Vladyslav
Format Journal Article
LanguageEnglish
Published 25.10.2024
Online AccessGet full text
ISSN1727-7337
2663-2217
2663-2217
DOI10.32620/aktt.2024.5.11

Cover

Abstract The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data processing directly at the source, which limits the available computational resources. However, the vulnerability of neural networks to noise, adversarial attacks, and weight error injections significantly diminishes their robustness and overall effectiveness. The relevant task is to develop models that provide both computational efficiency and robustness against perturbations. This paper investigates a model and method for enhancing the robustness of neural network detectors under limited resources. The objective is to design a model that allocates resources optimally while maintaining stability. To achieve this, the study employs techniques such as dynamic neural networks, robustness optimization, and resilience strategies. The following results were obtained. A detector with a feature extractor based on ViT-S/16, modified with gate modules for dynamic examination was developed. The model was trained on the RSOD dataset and meta-learned on the adaptation results to various perturbations. The model's resistance to random bit inversions in weights (10 % of weights) and to adversarial attacks with perturbation amplitudes up to 3/255 (L∞ norm) was tested. Conclusion. The proposed detector model incorporating dynamic examination and optimized robustness, reduced floating-point operations by over 20 % without loss of accuracy. A novel method for training the detector was developed, combining the RetinaNet loss function with the loss function of gate blocks and applying meta-learning on the adaptation results for various types of synthetic perturbations. Testing demonstrated an increase in accuracy by 11.9 % under the influence of error injection and by 13.2 % under the influence of adversarial attacks.
AbstractList The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data processing directly at the source, which limits the available computational resources. However, the vulnerability of neural networks to noise, adversarial attacks, and weight error injections significantly diminishes their robustness and overall effectiveness. The relevant task is to develop models that provide both computational efficiency and robustness against perturbations. This paper investigates a model and method for enhancing the robustness of neural network detectors under limited resources. The objective is to design a model that allocates resources optimally while maintaining stability. To achieve this, the study employs techniques such as dynamic neural networks, robustness optimization, and resilience strategies. The following results were obtained. A detector with a feature extractor based on ViT-S/16, modified with gate modules for dynamic examination was developed. The model was trained on the RSOD dataset and meta-learned on the adaptation results to various perturbations. The model's resistance to random bit inversions in weights (10 % of weights) and to adversarial attacks with perturbation amplitudes up to 3/255 (L∞ norm) was tested. Conclusion. The proposed detector model incorporating dynamic examination and optimized robustness, reduced floating-point operations by over 20 % without loss of accuracy. A novel method for training the detector was developed, combining the RetinaNet loss function with the loss function of gate blocks and applying meta-learning on the adaptation results for various types of synthetic perturbations. Testing demonstrated an increase in accuracy by 11.9 % under the influence of error injection and by 13.2 % under the influence of adversarial attacks.
Author Zaretskyi, Mykola
Babych, Vladyslav
Moskalenko, Alona
Vynohradov, Maksym
Author_xml – sequence: 1
  givenname: Alona
  orcidid: 0000-0003-3443-3990
  surname: Moskalenko
  fullname: Moskalenko, Alona
– sequence: 2
  givenname: Mykola
  orcidid: 0000-0001-9117-5604
  surname: Zaretskyi
  fullname: Zaretskyi, Mykola
– sequence: 3
  givenname: Maksym
  orcidid: 0009-0009-1234-922X
  surname: Vynohradov
  fullname: Vynohradov, Maksym
– sequence: 4
  givenname: Vladyslav
  orcidid: 0009-0009-2521-0841
  surname: Babych
  fullname: Babych, Vladyslav
BookMark eNqFkctOAjEUhhujiYis3c4LDLSdS2FpiLeExA37SWemk6gIhMEYduBCNkQ3hMTEhwDiCOHmK5z6CD6J7UDcummb__zff056jtB-vVEXCJ0QnLeoS3GB37XbeYqpnXfyhOyhDHVdy6SUsH2UIYwyk1kWO0S5OL7FGNMic0olK4O-4R028AEJLOXAkE8wNmAFiXoo1YA1jGEq--pcw1q-GtqpagkstEN2tX0Dk5_umxxqTY5gmlKGQhJV38BMG7QTPhWnY0YGzDT2pTLmsFLMDMbyWY7kUL4YKTRRQk-V16pJT8fuRlsosxoUFn96mt6HuezBUufLwTE6iHgtFrndnUXV87Nq-dKsXF9clU8rZlAkxHQ4tTB2BCtxIoQd-JT51I04Jgxzl4Xqg3AQ2j52Q8xtp0iEHdqiFDHXp8IKIyuL8Db2od7knUdeq3nN1s09b3U8gr10K57eiqe34jkeIQopbJGg1Yjjloj-JX4BaNXbiw
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.32620/aktt.2024.5.11
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2663-2217
ExternalDocumentID 10.32620/aktt.2024.5.11
10_32620_aktt_2024_5_11
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c811-5a23005e79a1ee4cb27b26fa0170a67d8750cd4b06d0a4581e4d4e9f76b2e3df3
IEDL.DBID UNPAY
ISSN 1727-7337
2663-2217
IngestDate Mon Sep 15 10:19:24 EDT 2025
Tue Jul 01 04:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c811-5a23005e79a1ee4cb27b26fa0170a67d8750cd4b06d0a4581e4d4e9f76b2e3df3
ORCID 0009-0009-2521-0841
0000-0003-3443-3990
0000-0001-9117-5604
0009-0009-1234-922X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32620/aktt.2024.5.11
ParticipantIDs unpaywall_primary_10_32620_aktt_2024_5_11
crossref_primary_10_32620_aktt_2024_5_11
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-25
PublicationDateYYYYMMDD 2024-10-25
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-25
  day: 25
PublicationDecade 2020
PublicationTitle Avìacìjno-kosmìčna tehnìka ì tehnologìâ
PublicationYear 2024
SSID ssj0002875993
Score 2.2746396
Snippet The subject of research is Neural network-based object detectors, which are widely used for video image analysis. An increasing number of tasks now demand data...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Модель та метод навчання детектора об’єктів на аерозображенні з оптимізацією робастності та кількості обчислень
URI https://doi.org/10.32620/aktt.2024.5.11
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2663-2217
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002875993
  issn: 2663-2217
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NahRBEG5kcxAPxl9M0DAHD3qYdaZ7en6OQQyLYPCQQDwNPT09l4Q1yC6ip6wHcwl6CQuCD7EJrhs22fUVqn0En8Sq3klYRVAvw1D1VXVBNXQV0_UNY_crLYXKSu2npdJ-JHjlp0UqfSO45Bmv4sDNVzxbj1ub0dMtuVWTJNEszNz3e0Fc6Y_UdoeuPPKoKZs0w7sQSyy6G2xhc_356gs37sgTPxGOHRNPG-FzrLJnJD5_8vDL-XO5295Vb16rnZ25Q2VtkbXOw5ndJdludjtFU7_9janxH-K9xq7WhaW3OtsJ19kl077BrszRDd5k3-EzTOELDOHUHnj2HQw8OIMhvqDUgwkM4Nju43MCE_vRIyTqhjAmhN0j-BSOfux9socks304dlYemgxRP4URAQgJX9GO3PQ9GJHZN_RxAmdoM4KBfW_79tB-8JzREQp6qJ7gIj1yW4c2RjAGCuMLufO-Dye2B6fk3x7cYhtrTzYet_z6nw6-TsPQl4oTP75JMhUaE-mCJwWPK0UsPipOSuyeAl1GRRCXgYpkGpqojExWJXHBjSgrcZs12i_b5g7z4iKpkix13ExYhYhMZSZRXKtQm7SKgiX24DzR-e6MuSPHjsdlKacs5ZSlXGIPtMQeXmyEv2GX_wN7lzU6r7rmHpYtnWLFtfsr9cb9CSBcMtM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NahRBEG5kcxAPxl-MqPTBgx56nenumZ45BjEsgsFDAvE09PT0XBLWILsEPWU9JJegl7Ag-BCb4Lphk11fodpH8Emsnp2EVQT1MgzVX1UXVENVMV3fEPKwNJHQaWFYUmjDpOAlS_IkYlbwiKe8jINqvuLFatxal883oo2aJMnPwsx9vxeeK_2J3uz4K49cNqOmn-FdiCMsuhtkYX315fKratyRK6ZExY6J2UYwjlX2jMTnTxZ-yT-Xu-1t_XZHb23NJZWVRdI6d2d2l2Sz2e3kTfPuN6bGf_D3GrlaF5Z0eXYSrpNLtn2DXJmjG7xJvsNnmMIXGMKpO6DuPQwonMEQX1BKYQIDOHb7-JzAxH2kHolrQxh7hNv18Ckc_dj95A69zPXhuNKiqDLE9SmMPMAj4SvqeTN9CiOv9g1tnMAZ6oxg4PZc3x26D7RSOkJBD5cnuEnPm61dGyMYHYXxhbyyvg8nrgen3r47uEXWVp6tPW2x-p8OzCRhyCLNPT--VakOrZUm5yrncak9i4-OVYHdU2AKmQdxEWgZJaGVhbRpqeKcW1GU4jZptF-37R1C41yVKk0qbiasQkSqU6s0Nzo0NillsEQenQc6254xd2TY8VRRynyUMh-lLMIeaIk8vjgIf8Pe_Q_sPdLovOna-1i2dPIH9ZH9CfUXMd4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%D0%9C%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C+%D1%82%D0%B0+%D0%BC%D0%B5%D1%82%D0%BE%D0%B4+%D0%BD%D0%B0%D0%B2%D1%87%D0%B0%D0%BD%D0%BD%D1%8F+%D0%B4%D0%B5%D1%82%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B0+%D0%BE%D0%B1%E2%80%99%D1%94%D0%BA%D1%82%D1%96%D0%B2+%D0%BD%D0%B0+%D0%B0%D0%B5%D1%80%D0%BE%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%BD%D1%96+%D0%B7+%D0%BE%D0%BF%D1%82%D0%B8%D0%BC%D1%96%D0%B7%D0%B0%D1%86%D1%96%D1%94%D1%8E+%D1%80%D0%BE%D0%B1%D0%B0%D1%81%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%96+%D1%82%D0%B0+%D0%BA%D1%96%D0%BB%D1%8C%D0%BA%D0%BE%D1%81%D1%82%D1%96+%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D1%8C&rft.jtitle=Av%C3%ACac%C3%ACjno-kosm%C3%AC%C4%8Dna+tehn%C3%ACka+%C3%AC+tehnolog%C3%AC%C3%A2&rft.au=Moskalenko%2C+Alona&rft.au=Zaretskyi%2C+Mykola&rft.au=Vynohradov%2C+Maksym&rft.au=Babych%2C+Vladyslav&rft.date=2024-10-25&rft.issn=1727-7337&rft.eissn=2663-2217&rft.issue=5&rft_id=info:doi/10.32620%2Faktt.2024.5.11&rft.externalDBID=n%2Fa&rft.externalDocID=10_32620_aktt_2024_5_11
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1727-7337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1727-7337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1727-7337&client=summon