Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis
Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Genom...
Saved in:
Published in | PLoS medicine Vol. 13; no. 11; p. e1002179 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
29.11.2016
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1549-1676 1549-1277 1549-1676 |
DOI | 10.1371/journal.pmed.1002179 |
Cover
Abstract | Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.
Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes.
Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. |
---|---|
AbstractList | Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.
Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes.
Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 x 10.sup.-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 x 10.sup.-25 ), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 x 10.sup.-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 x 10.sup.-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 x 10.sup.-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. Background Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Methods and Findings Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 x 10.sup.-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 x 10.sup.-25 ), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 x 10.sup.-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 x 10.sup.-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 x 10.sup.-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Conclusions Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. Claudia Langenberg and colleagues show that high circulating branched chain amino acids associate with future risk of type 2 diabetes. BackgroundHigher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.Methods and findingsGenome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes.ConclusionsEvidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. Background Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Methods and Findings Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Conclusions Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.BACKGROUNDHigher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes.METHODS AND FINDINGSGenome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes.Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.CONCLUSIONSEvidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. Background Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Methods and Findings Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p < 5 × 10-8). The strongest signal was 21 kb upstream of the PPM1K gene (beta in standard deviations [SDs] of leucine per allele = 0.08, p = 3.9 × 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Conclusions Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes. |
Audience | Academic |
Author | Luan, Jian’an Schmidt, Amand F. Imamura, Fumiaki Burgess, Stephen Forouhi, Nita G. Griffin, Julian L. Scott, Robert A. Koulman, Albert Barroso, Inês Marney, Luke Sjögren, Rasmus J. O. Lotta, Luca A. Langenberg, Claudia Tillin, Therese Zierath, Juleen R. Perry, John R. B. Khaw, Kay-Tee Chaturvedi, Nishi O’Rahilly, Stephen Stewart, Isobel D. Wareham, Nicholas J. Krook, Anna Savage, David B. McCarthy, Mark I. Karoly, Edward D. Näslund, Erik Hingorani, Aroon D. Sharp, Stephen J. |
AuthorAffiliation | 2 Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom 7 Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden 4 MRC Human Nutrition Research, Cambridge, United Kingdom 9 Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom 1 MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom 6 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden 11 Wellcome Trust Sanger Institute, Cambridge, United Kingdom 3 Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom 8 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden 10 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom Imperial College London, UNITED KINGDOM 12 Oxford Centre for Diabetes, Endocrinology and Metabolism, and W |
AuthorAffiliation_xml | – name: 5 Metabolon, Morrisville, North Carolina, United States of America – name: 1 MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom – name: 7 Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden – name: 12 Oxford Centre for Diabetes, Endocrinology and Metabolism, and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom – name: 8 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden – name: 9 Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom – name: 10 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom – name: 2 Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom – name: 3 Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, United Kingdom – name: 4 MRC Human Nutrition Research, Cambridge, United Kingdom – name: 11 Wellcome Trust Sanger Institute, Cambridge, United Kingdom – name: Imperial College London, UNITED KINGDOM – name: 6 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden |
Author_xml | – sequence: 1 givenname: Luca A. surname: Lotta fullname: Lotta, Luca A. – sequence: 2 givenname: Robert A. surname: Scott fullname: Scott, Robert A. – sequence: 3 givenname: Stephen J. orcidid: 0000-0003-2375-1440 surname: Sharp fullname: Sharp, Stephen J. – sequence: 4 givenname: Stephen orcidid: 0000-0001-5365-8760 surname: Burgess fullname: Burgess, Stephen – sequence: 5 givenname: Jian’an surname: Luan fullname: Luan, Jian’an – sequence: 6 givenname: Therese surname: Tillin fullname: Tillin, Therese – sequence: 7 givenname: Amand F. orcidid: 0000-0003-1327-0424 surname: Schmidt fullname: Schmidt, Amand F. – sequence: 8 givenname: Fumiaki orcidid: 0000-0002-6841-8396 surname: Imamura fullname: Imamura, Fumiaki – sequence: 9 givenname: Isobel D. surname: Stewart fullname: Stewart, Isobel D. – sequence: 10 givenname: John R. B. surname: Perry fullname: Perry, John R. B. – sequence: 11 givenname: Luke orcidid: 0000-0001-8117-8246 surname: Marney fullname: Marney, Luke – sequence: 12 givenname: Albert orcidid: 0000-0001-9998-051X surname: Koulman fullname: Koulman, Albert – sequence: 13 givenname: Edward D. surname: Karoly fullname: Karoly, Edward D. – sequence: 14 givenname: Nita G. surname: Forouhi fullname: Forouhi, Nita G. – sequence: 15 givenname: Rasmus J. O. orcidid: 0000-0002-0640-8504 surname: Sjögren fullname: Sjögren, Rasmus J. O. – sequence: 16 givenname: Erik orcidid: 0000-0002-0166-6344 surname: Näslund fullname: Näslund, Erik – sequence: 17 givenname: Juleen R. surname: Zierath fullname: Zierath, Juleen R. – sequence: 18 givenname: Anna orcidid: 0000-0002-0891-0258 surname: Krook fullname: Krook, Anna – sequence: 19 givenname: David B. surname: Savage fullname: Savage, David B. – sequence: 20 givenname: Julian L. surname: Griffin fullname: Griffin, Julian L. – sequence: 21 givenname: Nishi orcidid: 0000-0002-6211-2775 surname: Chaturvedi fullname: Chaturvedi, Nishi – sequence: 22 givenname: Aroon D. surname: Hingorani fullname: Hingorani, Aroon D. – sequence: 23 givenname: Kay-Tee surname: Khaw fullname: Khaw, Kay-Tee – sequence: 24 givenname: Inês orcidid: 0000-0001-5800-4520 surname: Barroso fullname: Barroso, Inês – sequence: 25 givenname: Mark I. orcidid: 0000-0002-4393-0510 surname: McCarthy fullname: McCarthy, Mark I. – sequence: 26 givenname: Stephen surname: O’Rahilly fullname: O’Rahilly, Stephen – sequence: 27 givenname: Nicholas J. orcidid: 0000-0003-1422-2993 surname: Wareham fullname: Wareham, Nicholas J. – sequence: 28 givenname: Claudia surname: Langenberg fullname: Langenberg, Claudia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27898682$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:134963592$$DView record from Swedish Publication Index |
BookMark | eNqVk9tu1DAQhiNURA_wBggsVUJwsYvtOAf3AmkpUFYqFJXCreUkk123iR3iBOhr8MTM7qalqSoEykWs8ff_9sx4doMt6ywEwWNGpyxM2Mtz17dWV9OmhmLKKOUskfeCHRYJOWFxEm_dWG8Hu96fIyOppA-CbZ6kMo1TvhP8OgILncnJpxYK4xvnTWecJZ0j2pJ53WiDG-QDdDpzlfE1cSXplkBet9rmSygmh0ttLJnVxjoyy03hUViQU-MvVujZZQOEkzdGZ9CBPyAz9LIFVAbtT5F0tfF6feQMs7n0xj8M7pe68vBo-O8FX969PTt8Pzk-OZofzo4neUp5NynjJIlYFtGcUYCwFCAo5yzSZVqA0KkoIRRS8IxGMS0lDdM0y3URpkyGMkxkuBc83fg2lfNqKKdXLBUyjlLGBRLzDVE4fa6a1tS6vVROG7UOuHahdIvFq0CloRQCWCSjgoqYJpJlIDOps1CHSVyU6DXZePkf0PTZyG0IXeAKVERpImLkXw236zPscA62a3U1ko13rFmqhfuuIsaxLiEaPB8MWvetB98prHQOVaUtuH6dZ8QjJniE6P4t9O5qDNRCY8LGlg7PzVemaiaSlCc8YeJPniNqga8ML4kvuDQYHvHTO3j8CqhNfqfgxUiATAc_u4XuvVfzz6f_wX78d_bk65h9doNdgq66pXdVv3rHfgw-udnF6_ZdDSACYgPkrfO-hfIaYVSt5vyqFWo152qYc5Qd3JLlpluPEVbPVH8X_wZUhVaD |
CitedBy_id | crossref_primary_10_1007_s11010_024_05188_6 crossref_primary_10_1093_aje_kwy017 crossref_primary_10_3390_nu11040923 crossref_primary_10_1073_pnas_2206083119 crossref_primary_10_1186_s12263_021_00695_3 crossref_primary_10_1016_j_phymed_2024_156348 crossref_primary_10_1158_1055_9965_EPI_18_0079 crossref_primary_10_1042_BCJ20200686 crossref_primary_10_1080_17446651_2017_1323631 crossref_primary_10_1371_journal_pgen_1007040 crossref_primary_10_2337_db20_1281 crossref_primary_10_1002_gch2_202000088 crossref_primary_10_3390_metabo11100691 crossref_primary_10_1152_physrev_00015_2017 crossref_primary_10_1161_CIRCRESAHA_120_315898 crossref_primary_10_3389_fendo_2025_1529703 crossref_primary_10_1016_j_numecd_2020_06_015 crossref_primary_10_1136_openhrt_2017_000676 crossref_primary_10_1016_j_metabol_2020_154391 crossref_primary_10_1186_s12916_021_01939_0 crossref_primary_10_1007_s00125_020_05190_9 crossref_primary_10_1007_s00125_020_05198_1 crossref_primary_10_1038_s41598_017_12931_1 crossref_primary_10_1016_S0140_6736_18_31132_2 crossref_primary_10_1007_s00592_018_1165_4 crossref_primary_10_1155_2016_8610501 crossref_primary_10_1016_j_coph_2017_03_007 crossref_primary_10_2337_db17_0199 crossref_primary_10_1186_s12263_021_00684_6 crossref_primary_10_1007_s11892_018_1021_5 crossref_primary_10_1016_j_atherosclerosis_2023_117246 crossref_primary_10_3390_ijms23084325 crossref_primary_10_1210_jc_2018_00546 crossref_primary_10_1038_s41574_025_01100_4 crossref_primary_10_1016_j_bbadis_2020_165967 crossref_primary_10_1038_s41575_018_0007_8 crossref_primary_10_1016_j_ejca_2017_07_034 crossref_primary_10_1152_physrev_00063_2017 crossref_primary_10_3389_fmed_2021_688438 crossref_primary_10_1016_j_numecd_2020_07_030 crossref_primary_10_3390_ijms22031059 crossref_primary_10_1007_s00125_020_05246_w crossref_primary_10_1210_endocr_bqab062 crossref_primary_10_3390_nu14163345 crossref_primary_10_3390_nu15010068 crossref_primary_10_2337_dc21_1705 crossref_primary_10_3390_ph16020197 crossref_primary_10_1007_s00125_024_06282_6 crossref_primary_10_1016_j_ajcnut_2024_05_010 crossref_primary_10_1161_CIR_0000000000001185 crossref_primary_10_1038_s41574_018_0045_x crossref_primary_10_1093_ajcn_nqy100 crossref_primary_10_15252_embr_202356958 crossref_primary_10_1016_j_molmet_2023_101750 crossref_primary_10_1021_acs_jafc_1c02430 crossref_primary_10_18632_aging_202777 crossref_primary_10_1186_s12916_023_03115_y crossref_primary_10_3390_nu15092161 crossref_primary_10_1210_endrev_bnaa026 crossref_primary_10_1161_CIRCRESAHA_123_322000 crossref_primary_10_2139_ssrn_4022706 crossref_primary_10_3233_JAD_180879 crossref_primary_10_1038_s41598_021_92163_6 crossref_primary_10_1016_j_atherosclerosis_2022_04_026 crossref_primary_10_1007_s00125_021_05481_9 crossref_primary_10_1161_CIRCULATIONAHA_119_043581 crossref_primary_10_1210_clinem_dgab722 crossref_primary_10_1161_CIRCGEN_121_003330 crossref_primary_10_1002_oby_23951 crossref_primary_10_1093_ajcn_nqab392 crossref_primary_10_1038_s43856_023_00382_x crossref_primary_10_1038_s41467_021_21073_y crossref_primary_10_1111_obr_13856 crossref_primary_10_1210_clinem_dgaa751 crossref_primary_10_1038_s41598_018_26320_9 crossref_primary_10_1093_advances_nmy110 crossref_primary_10_4103_NRR_NRR_D_23_02020 crossref_primary_10_1038_s41598_021_85684_7 crossref_primary_10_1152_ajpendo_00260_2018 crossref_primary_10_3389_fendo_2023_1237934 crossref_primary_10_1007_s11064_017_2261_5 crossref_primary_10_1021_acsomega_3c01370 crossref_primary_10_1016_j_fshw_2022_04_004 crossref_primary_10_1089_met_2016_0145 crossref_primary_10_1097_HCO_0000000000000552 crossref_primary_10_1016_j_molmet_2023_101694 crossref_primary_10_2337_dc19_2348 crossref_primary_10_1007_s11892_017_0939_3 crossref_primary_10_1038_s41580_018_0044_8 crossref_primary_10_1038_s41598_020_67010_9 crossref_primary_10_3390_metabo13030403 crossref_primary_10_1016_j_ebiom_2021_103550 crossref_primary_10_1111_1753_0407_12645 crossref_primary_10_7717_peerj_10491 crossref_primary_10_1016_j_aca_2020_10_038 crossref_primary_10_1016_j_ebiom_2017_12_008 crossref_primary_10_1194_jlr_P085944 crossref_primary_10_1016_j_ebiom_2021_103799 crossref_primary_10_1142_S0192415X21500865 crossref_primary_10_1210_endocr_bqaa060 crossref_primary_10_1007_s00125_020_05253_x crossref_primary_10_1007_s11892_022_01449_0 crossref_primary_10_14814_phy2_14299 crossref_primary_10_1007_s12010_019_02956_9 crossref_primary_10_1039_D3FO03899H crossref_primary_10_1007_s11306_022_01905_8 crossref_primary_10_1136_bmjdrc_2020_001315 crossref_primary_10_3389_fendo_2021_636175 crossref_primary_10_3389_fendo_2025_1501305 crossref_primary_10_1016_j_nut_2024_112410 crossref_primary_10_1159_000513545 crossref_primary_10_1038_s41598_018_19388_w crossref_primary_10_1093_nargab_lqae046 crossref_primary_10_1007_s00125_017_4436_7 crossref_primary_10_3389_fmed_2021_765873 crossref_primary_10_1186_s43556_022_00091_2 crossref_primary_10_1038_s42255_023_00961_1 crossref_primary_10_1111_dom_15542 crossref_primary_10_1172_jci_insight_121326 crossref_primary_10_1016_j_exger_2025_112677 crossref_primary_10_1210_clinem_dgac463 crossref_primary_10_3389_fnins_2023_1143718 crossref_primary_10_7554_eLife_98709_3 crossref_primary_10_1002_ehf2_14872 crossref_primary_10_1161_JAHA_122_028410 crossref_primary_10_2337_dc17_1642 crossref_primary_10_1152_physrev_00030_2020 crossref_primary_10_3389_fnut_2022_936220 crossref_primary_10_3233_JAD_221147 crossref_primary_10_1007_s00109_023_02362_z crossref_primary_10_1016_j_celrep_2020_108239 crossref_primary_10_1016_j_mito_2024_101991 crossref_primary_10_1161_JAHA_123_032084 crossref_primary_10_1210_jc_2019_00238 crossref_primary_10_7717_peerj_5410 crossref_primary_10_1210_clinem_dgac212 crossref_primary_10_1007_s00125_023_05879_7 crossref_primary_10_3390_metabo12020194 crossref_primary_10_1172_jci_insight_159204 crossref_primary_10_1155_2019_8247019 crossref_primary_10_1093_aje_kwy096 crossref_primary_10_1007_s11306_018_1342_z crossref_primary_10_1161_CIRCGEN_118_002157 crossref_primary_10_1373_clinchem_2017_285841 crossref_primary_10_1038_s41387_022_00213_3 crossref_primary_10_3390_ijms23094534 crossref_primary_10_1007_s11892_018_1048_7 crossref_primary_10_15252_emmm_202317450 crossref_primary_10_1016_j_schres_2024_06_040 crossref_primary_10_2337_db21_1056 crossref_primary_10_1161_CIRCULATIONAHA_122_061846 crossref_primary_10_1007_s00125_018_4611_5 crossref_primary_10_3390_nu15030529 crossref_primary_10_1002_edm2_388 crossref_primary_10_1007_s00125_019_05001_w crossref_primary_10_1186_s12916_022_02354_9 crossref_primary_10_1089_met_2024_0038 crossref_primary_10_1007_s12088_022_01019_8 crossref_primary_10_1371_journal_pone_0214122 crossref_primary_10_1038_s41574_021_00471_8 crossref_primary_10_1111_nyas_13588 crossref_primary_10_1007_s00467_022_05531_3 crossref_primary_10_3390_ijms23074022 crossref_primary_10_1093_aje_kwae167 crossref_primary_10_2337_dc21_2402 crossref_primary_10_1210_clinem_dgae812 crossref_primary_10_3389_fcvm_2022_965899 crossref_primary_10_5551_jat_64616 crossref_primary_10_1038_s42255_019_0112_1 crossref_primary_10_3390_jcm9092781 crossref_primary_10_1038_s41392_022_01178_6 crossref_primary_10_1186_s12864_019_5772_4 crossref_primary_10_1210_clinem_dgaa693 crossref_primary_10_1210_jc_2019_01104 crossref_primary_10_3945_ajcn_117_156281 crossref_primary_10_1093_jn_nxz263 crossref_primary_10_1002_edm2_250 crossref_primary_10_1016_j_ebiom_2023_104441 crossref_primary_10_3390_nu16121972 crossref_primary_10_1016_j_biocel_2017_10_011 crossref_primary_10_1038_s41590_018_0129_8 crossref_primary_10_1017_jns_2024_66 crossref_primary_10_1097_MOL_0000000000000721 crossref_primary_10_3390_ijms21041249 crossref_primary_10_1042_BSR20204201 crossref_primary_10_1093_hmg_ddaa162 crossref_primary_10_1007_s00125_017_4521_y crossref_primary_10_1002_dmrr_3763 crossref_primary_10_1007_s11306_021_01806_2 crossref_primary_10_1186_s12916_024_03789_y crossref_primary_10_1210_jc_2019_00822 crossref_primary_10_1007_s11892_018_1009_1 crossref_primary_10_1007_s11886_020_01422_x crossref_primary_10_1373_clinchem_2017_273516 crossref_primary_10_1016_j_jnutbio_2023_109437 crossref_primary_10_1146_annurev_med_042418_010924 crossref_primary_10_3390_nu12082285 crossref_primary_10_1016_j_ajcnut_2024_03_009 crossref_primary_10_1042_BCJ20190182 crossref_primary_10_3390_jcm8060874 crossref_primary_10_1016_j_celrep_2023_112641 crossref_primary_10_1016_j_jlr_2024_100625 crossref_primary_10_1017_erm_2021_12 crossref_primary_10_1016_j_cmet_2021_03_025 crossref_primary_10_1038_s41574_023_00898_1 crossref_primary_10_7554_eLife_98709 crossref_primary_10_3390_nu14050975 crossref_primary_10_2337_dc21_1415 crossref_primary_10_1002_gepi_22107 crossref_primary_10_1038_s41467_023_38148_7 crossref_primary_10_2337_db18_1076 crossref_primary_10_1007_s40200_023_01247_9 crossref_primary_10_1016_j_metop_2024_100287 crossref_primary_10_1007_s00125_018_4781_1 crossref_primary_10_1038_s41467_023_40536_y crossref_primary_10_1016_j_molmet_2021_101261 crossref_primary_10_3389_fendo_2021_651763 crossref_primary_10_1038_s42255_023_00794_y crossref_primary_10_1146_annurev_physiol_020518_114455 crossref_primary_10_1038_s41576_021_00387_z crossref_primary_10_1038_s41598_019_46478_0 crossref_primary_10_1210_jc_2017_02114 crossref_primary_10_1016_j_ajcnut_2023_01_001 crossref_primary_10_1242_dmm_038539 crossref_primary_10_1371_journal_pgen_1011346 crossref_primary_10_1007_s00726_018_2658_8 crossref_primary_10_1038_s41467_020_20750_8 crossref_primary_10_1152_ajpendo_00287_2022 crossref_primary_10_1080_15622975_2018_1487077 crossref_primary_10_1152_ajpendo_00061_2020 crossref_primary_10_1007_s00018_018_2901_1 crossref_primary_10_1016_j_molmet_2022_101611 crossref_primary_10_1111_jcmm_70451 crossref_primary_10_3390_nu9040376 crossref_primary_10_3390_nu12123890 crossref_primary_10_1007_s00394_023_03234_5 crossref_primary_10_1186_s12916_022_02688_4 crossref_primary_10_1210_clinem_dgab631 crossref_primary_10_1038_s41581_024_00872_8 crossref_primary_10_1007_s11892_017_0958_0 crossref_primary_10_1210_jc_2018_01165 crossref_primary_10_1016_j_celrep_2022_111136 crossref_primary_10_3390_genes14071464 crossref_primary_10_1136_bmjdrc_2023_003865 crossref_primary_10_1002_lrh2_10214 crossref_primary_10_1096_fj_202000195R crossref_primary_10_1007_s00018_020_03674_w crossref_primary_10_1177_0271678X231170037 crossref_primary_10_3390_nu16152562 crossref_primary_10_1016_j_critrevonc_2022_103796 crossref_primary_10_1186_s12889_023_17210_5 crossref_primary_10_3389_fmolb_2020_609806 crossref_primary_10_3390_nu16152567 crossref_primary_10_12938_bmfh_2021_085 crossref_primary_10_1007_s00125_018_4619_x crossref_primary_10_1016_j_clnu_2021_01_041 crossref_primary_10_1080_07853890_2021_1965204 crossref_primary_10_1093_ije_dyad093 crossref_primary_10_1016_j_jpeds_2018_07_056 crossref_primary_10_3390_nu13072229 crossref_primary_10_1002_dmrr_3253 crossref_primary_10_1093_jncics_pkab059 crossref_primary_10_3390_nu13103322 crossref_primary_10_1038_s41467_019_08936_1 crossref_primary_10_3390_genes13030397 crossref_primary_10_1038_s41598_020_58430_8 crossref_primary_10_1016_j_jalz_2018_01_003 crossref_primary_10_1096_fj_201802842RR crossref_primary_10_1210_jendso_bvaa026 crossref_primary_10_1007_s11306_020_01724_9 crossref_primary_10_1016_j_cmet_2018_04_015 crossref_primary_10_1371_journal_pgen_1009080 crossref_primary_10_1016_j_metabol_2019_04_001 crossref_primary_10_1002_oby_23240 crossref_primary_10_1038_s42255_025_01253_6 crossref_primary_10_1210_clinem_dgab538 crossref_primary_10_1371_journal_pone_0217644 crossref_primary_10_1017_S0007114518000326 crossref_primary_10_1186_s12916_017_0974_6 crossref_primary_10_3389_fnut_2023_1239838 crossref_primary_10_1016_j_jacc_2021_02_070 crossref_primary_10_1038_s41514_020_00054_3 crossref_primary_10_1016_j_jadohealth_2019_01_030 crossref_primary_10_1177_1753425920971702 crossref_primary_10_3390_nu15071580 crossref_primary_10_1172_jci_insight_166956 crossref_primary_10_1016_j_prmcm_2024_100471 crossref_primary_10_1080_10408398_2023_2198605 crossref_primary_10_1155_2023_5236509 crossref_primary_10_1016_j_cmet_2018_10_013 crossref_primary_10_1038_s41598_022_19159_8 crossref_primary_10_1093_jnci_djy081 crossref_primary_10_1101_cshperspect_a040501 crossref_primary_10_1161_CIRCULATIONAHA_120_051367 crossref_primary_10_3389_fnut_2023_1189982 crossref_primary_10_1016_j_diabres_2018_09_014 crossref_primary_10_1016_j_tem_2021_11_004 crossref_primary_10_2147_DMSO_S294894 crossref_primary_10_1038_s41387_022_00200_8 crossref_primary_10_1111_acel_13626 crossref_primary_10_1126_science_aav0558 crossref_primary_10_1016_j_gde_2023_102112 crossref_primary_10_1210_clinem_dgad148 crossref_primary_10_3390_nu12092603 crossref_primary_10_1093_jn_nxac056 crossref_primary_10_1073_pnas_2104650118 crossref_primary_10_1038_nrcardio_2017_78 |
Cites_doi | 10.2337/db14-0312 10.1093/ije/dyg070 10.1038/nrg2796 10.1038/ng.3406 10.1056/NEJMoa054013 10.1038/nrendo.2014.171 10.1093/bioinformatics/btn564 10.1038/ng.2383 10.1126/science.1241214 10.1126/scitranslmed.aad3744 10.1158/0008-5472.CAN-04-0496 10.1002/sim.6835 10.1161/CIRCULATIONAHA.112.000586 10.1038/ng.1073 10.1172/JCI44442 10.1038/ng.2385 10.1002/humu.22242 10.1016/j.cmet.2012.01.024 10.1172/JCI38151 10.1016/j.cmet.2014.09.003 10.1161/CIRCGENETICS.114.000216 10.2337/db07-0279 10.1016/S0140-6736(12)60404-8 10.1016/j.cmet.2009.02.002 10.1038/ng.2982 10.2337/db13-0570 10.1007/s00125-015-3705-6 10.1038/nm.2307 10.1016/S0021-9258(17)32349-9 10.1093/hmg/ddq507 10.1073/pnas.1303220110 10.1007/s12072-012-9395-y 10.1016/S0021-9258(18)84048-0 10.1038/nature14177 10.1038/nature18646 10.1016/j.cmet.2013.06.013 10.1038/ng.2274 10.2337/db12-0495 10.1056/NEJMoa1405386 10.1093/bioinformatics/btq340 10.1007/s00125-011-2182-9 10.1016/j.str.2004.09.013 10.1371/journal.pmed.1001765 10.1038/msb.2008.50 10.1001/jama.2016.14568 10.1002/gepi.21758 10.2337/db14-0319 10.2337/db12-0754 10.1093/hmg/ddp357 10.1056/NEJM196910092811503 10.1371/journal.pmed.1001841 10.1038/ng.2797 10.1038/nature14132 10.1210/jc.2014-2357 10.1016/j.cmet.2012.06.006 10.1016/j.ymgme.2014.06.005 10.1038/254529a0 10.1007/s00125-015-3517-8 10.1038/msb.2012.43 10.1074/jbc.M114.569251 10.2337/dc14-0195 10.1016/S0140-6736(12)60312-2 10.1016/j.jacc.2015.02.020 10.1038/ng.3431 10.2337/db10-1433 10.2337/diab.13.5.451 10.2337/db09-0129 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 Public Library of Science 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. (2016) Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 13(11): e1002179. doi:10.1371/journal.pmed.1002179 2016 Lotta et al 2016 Lotta et al 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. (2016) Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 13(11): e1002179. doi:10.1371/journal.pmed.1002179 |
Copyright_xml | – notice: COPYRIGHT 2016 Public Library of Science – notice: 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. (2016) Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 13(11): e1002179. doi:10.1371/journal.pmed.1002179 – notice: 2016 Lotta et al 2016 Lotta et al – notice: 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Lotta LA, Scott RA, Sharp SJ, Burgess S, Luan J, Tillin T, et al. (2016) Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Med 13(11): e1002179. doi:10.1371/journal.pmed.1002179 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7TK 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTPV AOWAS D8T ZZAVC DOA CZK |
DOI | 10.1371/journal.pmed.1002179 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals PLoS Medicine |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Branched Chain Amino Acids and Risk of Type 2 Diabetes |
EISSN | 1549-1676 |
ExternalDocumentID | 1849658124 oai_doaj_org_article_83944e1595d0460791be9b9ab3a376df oai_swepub_ki_se_500746 PMC5127513 4280510371 A478272714 27898682 10_1371_journal_pmed_1002179 |
Genre | Meta-Analysis Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0401527 – fundername: Medical Research Council grantid: MR/N003284/1 – fundername: Wellcome Trust grantid: 107064 – fundername: Medical Research Council grantid: MC_UU_12015/1 – fundername: Medical Research Council grantid: MR/K006584/1 – fundername: Medical Research Council grantid: G0800270 – fundername: Medical Research Council grantid: MC_EX_MR/L100002/1 – fundername: Wellcome Trust grantid: 090532 – fundername: Wellcome Trust grantid: 098381 – fundername: Medical Research Council grantid: MC_UP_A090_1006 – fundername: ; grantid: WT098051 – fundername: ; grantid: MC_UP_A090_1006 - MRC Human Nutrition Research – fundername: ; grantid: SP/07/001/23603 - SABRE Study – fundername: ; grantid: 13/0004774 - SABRE Study – fundername: ; grantid: SABRE Study – fundername: ; grantid: n° 115372 – fundername: ; grantid: 107064 – fundername: ; grantid: MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1 - MRC Epidemiology Unit – fundername: ; grantid: Biomedical Research Centre—MRC Epidemiology Unit – fundername: ; grantid: Rasmus J O Sjögren, Erik Näslund, Juleen R. Zierath and Anna Krook |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAUCC AAWOE AAWTL AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR IOF IOV IPO ISN ISR ITC KQ8 M1P M48 MK0 O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M ADXHL CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY RIG WOQ PMFND 3V. 7TK 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADTPV AOWAS D8T ZZAVC AAPBV ABPTK BCGST CZK ICW M~E |
ID | FETCH-LOGICAL-c802t-f67751b50c10ee3f4e402215af8de4a84fe34942b0560f90388bcad3819393793 |
IEDL.DBID | M48 |
ISSN | 1549-1676 1549-1277 |
IngestDate | Sun Aug 06 00:45:55 EDT 2023 Wed Aug 27 01:18:28 EDT 2025 Wed Sep 24 03:38:54 EDT 2025 Thu Aug 21 18:12:39 EDT 2025 Fri Sep 05 04:42:16 EDT 2025 Fri Jul 25 03:03:23 EDT 2025 Tue Jun 17 21:37:04 EDT 2025 Thu Jun 12 23:45:21 EDT 2025 Tue Jun 10 20:27:36 EDT 2025 Fri Jun 27 04:57:56 EDT 2025 Fri Jun 27 05:10:51 EDT 2025 Fri Jun 27 03:46:00 EDT 2025 Thu May 22 21:15:38 EDT 2025 Mon Jul 21 06:01:42 EDT 2025 Tue Jul 01 03:40:47 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c802t-f67751b50c10ee3f4e402215af8de4a84fe34942b0560f90388bcad3819393793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 CL receives a stipend as a specialty consulting editor for PLOS Medicine and serves on the journal's editorial board. MIM is a member of the Editorial Board of PLOS Medicine. MIM is a member of advisory boards for NovoNordisk and Pfizer. MIM received honoraria for speaking engagements: NovoNordisk, Pfizer, Eli Lilly. MIM receives research funding from: NovoNordisk, Pfizer, Eli Lilly, Takeda, Servier, Sanofi-Aventis, Boehringer Ingelheim, Janssen, Merck, Roche, Astra-Zeneca. EDK is an employee of Metabolon Inc., a fee-for-service metabolomics provider and received salary and stock options as compensation. IB and her spouse own stock in GlaxoSmithKline and Incyte Corporation. SB acts as an occasional paid statistical referee for PLOS Medicine, however had no reviewer role in this paper. The other authors report no conflict of interest relative to this study. Conceptualization: LAL RAS NJW CL. Formal analysis: LAL RAS SJS SB JAL TT AFS IDS JRBP. Funding acquisition: RAS NJW CL. Investigation: LAL RAS SJS SB JL TT AFS FI IDS JRBP LM AK EDK NGF RJOS EN JRZ AK DBS JLG NC ADH KK IB MIM SOR NJW CL. Methodology: LAL RAS SJS SB JL TT AFS FI IDS JRBP LM AK EDK NGF RJOS EN JRZ AK DBS JLG NC ADH KK IB MIM SOR NJW CL. Project administration: LAL CL. Resources: LAL RAS SJS SB JL TT AFS FI IDS JRBP LM AK EDK NGF RJOS EN JRZ AK DBS JLG NC ADH KK IB MIM SOR NJW CL. Supervision: NJW CL. Visualization: LAL RAS CL. Writing – original draft: LAL CL. Writing – review & editing: LAL RAS SJS SB JL TT AFS FI IDS JRBP LM AK EDK NGF RJOS EN JRZ AK DBS JLG NC ADH KK IB MIM SOR NJW CL. |
ORCID | 0000-0002-0891-0258 0000-0001-9998-051X 0000-0003-1422-2993 0000-0001-5365-8760 0000-0002-6211-2775 0000-0002-0640-8504 0000-0002-0166-6344 0000-0003-2375-1440 0000-0001-5800-4520 0000-0002-6841-8396 0000-0003-1327-0424 0000-0002-4393-0510 0000-0001-8117-8246 |
OpenAccessLink | https://www.proquest.com/docview/1849658124?pq-origsite=%requestingapplication% |
PMID | 27898682 |
PQID | 1849658124 |
PQPubID | 1436338 |
ParticipantIDs | plos_journals_1849658124 doaj_primary_oai_doaj_org_article_83944e1595d0460791be9b9ab3a376df swepub_primary_oai_swepub_ki_se_500746 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5127513 proquest_miscellaneous_1845251425 proquest_journals_1849658124 gale_infotracmisc_A478272714 gale_infotracgeneralonefile_A478272714 gale_infotracacademiconefile_A478272714 gale_incontextgauss_ISR_A478272714 gale_incontextgauss_ISN_A478272714 gale_incontextgauss_IOV_A478272714 gale_healthsolutions_A478272714 pubmed_primary_27898682 crossref_primary_10_1371_journal_pmed_1002179 crossref_citationtrail_10_1371_journal_pmed_1002179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161129 |
PublicationDateYYYYMMDD | 2016-11-29 |
PublicationDate_xml | – month: 11 year: 2016 text: 20161129 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS medicine |
PublicationTitleAlternate | PLoS Med |
PublicationYear | 2016 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | CJ Willer (ref43) 2013; 45 CB Newgard (ref8) 2012; 15 S Burgess (ref13) 2016; 35 CL Andersen (ref47) 2004; 64 AD Johnson (ref38) 2008; 24 P Wurtz (ref11) 2014; 11 JM Luck (ref64) 1928; 77 C Tang (ref71) 2007; 56 ref55 S Burgess (ref14) 2013; 37 AP Morris (ref25) 2012; 44 HK Pedersen (ref70) 2016; 535 MA Lips (ref65) 2014; 37 NL Beer (ref74) 2009; 18 P Soininen (ref32) 2015; 8 D Shungin (ref40) 2015; 518 FD Lukens (ref63) 1964; 13 RA Scott (ref20) 2016; 8 ND Palmer (ref6) 2015; 100 SD Ostergaard (ref45) 2015; 12 CB Newgard (ref2) 2009; 9 J Marchini (ref33) 2010; 11 A Floegel (ref4) 2013; 62 R Collins (ref27) 2012; 379 EL Glynn (ref67) 2015; 58 VK Ridaura (ref68) 2013; 341 CJ Willer (ref34) 2010; 26 RM Wynn (ref51) 2004; 12 SC Tso (ref58) 2014; 289 PR Loh (ref35) 2015; 47 AK Manning (ref42) 2012; 44 AE Locke (ref39) 2015; 518 JC Cohen (ref16) 2006; 354 NO Stitziel (ref17) 2014; 371 DJ Danner (ref62) 1975; 254 B Bulik-Sullivan (ref36) 2015; 47 E Kakazu (ref66) 2013; 7 AM Evans (ref30) 2014; 4 P Felig (ref1) 1969; 281 EP Rhee (ref75) 2013; 18 JE Ho (ref53) 2013; 62 M Xu (ref69) 2013; 127 RA Scott (ref41) 2012; 44 LA Lotta (ref19) 2016; 316 N Brunetti-Pierri (ref59) 2011; 20 A Oyarzabal (ref56) 2013; 34 CJ Lynch (ref7) 2014; 10 C Menni (ref21) 2013; 62 K Lian (ref54) 2015; 64 AC Shin (ref10) 2014; 20 T Mogos (ref73) 1994; 32 KT Nead (ref46) 2015; 107 R Wang-Sattler (ref5) 2012; 8 O Shaham (ref52) 2008; 4 SC Tso (ref57) 2013; 110 ref23 RA Scott (ref44) 2014; 63 TJ Wang (ref3) 2011; 17 BA Ference (ref18) 2015; 65 J Zheng (ref37) 2016 C Langenberg (ref26) 2011; 54 ref22 ref29 G Lu (ref49) 2009; 119 LC Burrage (ref60) 2014; 113 GD Smith (ref12) 2003; 32 C Xiao (ref61) 2011; 60 Y Zhao (ref50) 1994; 269 BF Voight (ref15) 2012; 380 H Lu (ref72) 2010; 59 SY Shin (ref24) 2014; 46 N Day (ref28) 1999; 80 T Tillin (ref31) 2015; 58 EP Rhee (ref76) 2011; 121 J Taneera (ref9) 2012; 16 J Kettunen (ref48) 2012; 44 |
References_xml | – volume: 64 start-page: 49 year: 2015 ident: ref54 article-title: Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice publication-title: Diabetes doi: 10.2337/db14-0312 – volume: 32 start-page: 1 year: 2003 ident: ref12 article-title: ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? publication-title: Int J Epidemiol doi: 10.1093/ije/dyg070 – year: 2016 ident: ref37 article-title: LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis publication-title: Bioinformatics. Epub ahead of print – volume: 11 start-page: 499 year: 2010 ident: ref33 article-title: Genotype imputation for genome-wide association studies publication-title: Nat Rev Genet doi: 10.1038/nrg2796 – volume: 47 start-page: 1236 year: 2015 ident: ref36 article-title: An atlas of genetic correlations across human diseases and traits publication-title: Nat Genet doi: 10.1038/ng.3406 – volume: 354 start-page: 1264 year: 2006 ident: ref16 article-title: Sequence variations in PCSK9, low LDL, and protection against coronary heart disease publication-title: N Engl J Med doi: 10.1056/NEJMoa054013 – volume: 10 start-page: 723 year: 2014 ident: ref7 article-title: Branched-chain amino acids in metabolic signalling and insulin resistance publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2014.171 – volume: 24 start-page: 2938 year: 2008 ident: ref38 article-title: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn564 – volume: 44 start-page: 981 year: 2012 ident: ref25 article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes publication-title: Nat Genet doi: 10.1038/ng.2383 – volume: 341 start-page: 1241214 year: 2013 ident: ref68 article-title: Gut microbiota from twins discordant for obesity modulate metabolism in mice publication-title: Science doi: 10.1126/science.1241214 – volume: 8 start-page: 341ra376 year: 2016 ident: ref20 article-title: A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aad3744 – volume: 64 start-page: 5245 year: 2004 ident: ref47 article-title: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-0496 – volume: 35 start-page: 1880 year: 2016 ident: ref13 article-title: Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods publication-title: Stat Med doi: 10.1002/sim.6835 – volume: 127 start-page: 1283 year: 2013 ident: ref69 article-title: Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.000586 – volume: 44 start-page: 269 year: 2012 ident: ref48 article-title: Genome-wide association study identifies multiple loci influencing human serum metabolite levels publication-title: Nat Genet doi: 10.1038/ng.1073 – volume: 121 start-page: 1402 year: 2011 ident: ref76 article-title: Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans publication-title: J Clin Invest doi: 10.1172/JCI44442 – volume: 44 start-page: 991 year: 2012 ident: ref41 article-title: Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways publication-title: Nat Genet doi: 10.1038/ng.2385 – volume: 34 start-page: 355 year: 2013 ident: ref56 article-title: A novel regulatory defect in the branched-chain alpha-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease publication-title: Hum Mutat doi: 10.1002/humu.22242 – volume: 15 start-page: 606 year: 2012 ident: ref8 article-title: Interplay between lipids and branched-chain amino acids in development of insulin resistance publication-title: Cell Metab doi: 10.1016/j.cmet.2012.01.024 – volume: 107 start-page: djv178 year: 2015 ident: ref46 article-title: Evidence of a causal association between insulinemia and endometrial cancer: a Mendelian randomization analysis publication-title: J Natl Cancer Inst – volume: 119 start-page: 1678 year: 2009 ident: ref49 article-title: Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells publication-title: J Clin Invest doi: 10.1172/JCI38151 – volume: 20 start-page: 898 year: 2014 ident: ref10 article-title: Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism publication-title: Cell Metab doi: 10.1016/j.cmet.2014.09.003 – volume: 8 start-page: 192 year: 2015 ident: ref32 article-title: Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.114.000216 – volume: 56 start-page: 2722 year: 2007 ident: ref71 article-title: Evidence for a role of superoxide generation in glucose-induced beta-cell dysfunction in vivo publication-title: Diabetes doi: 10.2337/db07-0279 – volume: 32 start-page: 57 year: 1994 ident: ref73 article-title: Clinical consequences of disorders in the intermediate metabolism of branched chain amino acids (valine, leucine and isoleucine) publication-title: Rom J Intern Med – ident: ref23 – volume: 379 start-page: 1173 year: 2012 ident: ref27 article-title: What makes UK Biobank special? publication-title: Lancet doi: 10.1016/S0140-6736(12)60404-8 – volume: 9 start-page: 311 year: 2009 ident: ref2 article-title: A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance publication-title: Cell Metab doi: 10.1016/j.cmet.2009.02.002 – volume: 46 start-page: 543 year: 2014 ident: ref24 article-title: An atlas of genetic influences on human blood metabolites publication-title: Nat Genet doi: 10.1038/ng.2982 – volume: 62 start-page: 4270 year: 2013 ident: ref21 article-title: Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach publication-title: Diabetes doi: 10.2337/db13-0570 – volume: 58 start-page: 2324 year: 2015 ident: ref67 article-title: Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans publication-title: Diabetologia doi: 10.1007/s00125-015-3705-6 – volume: 17 start-page: 448 year: 2011 ident: ref3 article-title: Metabolite profiles and the risk of developing diabetes publication-title: Nat Med doi: 10.1038/nm.2307 – volume: 269 start-page: 18583 year: 1994 ident: ref50 article-title: Site-directed mutagenesis of phosphorylation sites of the branched chain alpha-ketoacid dehydrogenase complex publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)32349-9 – volume: 20 start-page: 631 year: 2011 ident: ref59 article-title: Phenylbutyrate therapy for maple syrup urine disease publication-title: Hum Mol Genet doi: 10.1093/hmg/ddq507 – volume: 110 start-page: 9728 year: 2013 ident: ref57 article-title: Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain alpha-ketoacid dehydrogenase kinase publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1303220110 – volume: 7 start-page: 577 year: 2013 ident: ref66 article-title: The influence of pioglitazone on the plasma amino acid profile in patients with nonalcoholic steatohepatitis (NASH) publication-title: Hepatol Int doi: 10.1007/s12072-012-9395-y – volume: 77 start-page: 151 year: 1928 ident: ref64 article-title: The effect of insulin on the amino acid content of blood publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)84048-0 – volume: 518 start-page: 197 year: 2015 ident: ref39 article-title: Genetic studies of body mass index yield new insights for obesity biology publication-title: Nature doi: 10.1038/nature14177 – volume: 535 start-page: 376 year: 2016 ident: ref70 article-title: Human gut microbes impact host serum metabolome and insulin sensitivity publication-title: Nature doi: 10.1038/nature18646 – volume: 18 start-page: 130 year: 2013 ident: ref75 article-title: A genome-wide association study of the human metabolome in a community-based cohort publication-title: Cell Metab doi: 10.1016/j.cmet.2013.06.013 – ident: ref29 – volume: 44 start-page: 659 year: 2012 ident: ref42 article-title: A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance publication-title: Nat Genet doi: 10.1038/ng.2274 – volume: 62 start-page: 639 year: 2013 ident: ref4 article-title: Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach publication-title: Diabetes doi: 10.2337/db12-0495 – ident: ref22 – volume: 371 start-page: 2072 year: 2014 ident: ref17 article-title: Inactivating mutations in NPC1L1 and protection from coronary heart disease publication-title: N Engl J Med doi: 10.1056/NEJMoa1405386 – volume: 26 start-page: 2190 year: 2010 ident: ref34 article-title: METAL: fast and efficient meta-analysis of genomewide association scans publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq340 – volume: 54 start-page: 2272 year: 2011 ident: ref26 article-title: Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study publication-title: Diabetologia doi: 10.1007/s00125-011-2182-9 – volume: 12 start-page: 2185 year: 2004 ident: ref51 article-title: Molecular mechanism for regulation of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase complex by phosphorylation publication-title: Structure doi: 10.1016/j.str.2004.09.013 – volume: 11 start-page: e1001765 year: 2014 ident: ref11 article-title: Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change publication-title: PLoS Med doi: 10.1371/journal.pmed.1001765 – volume: 4 start-page: 214 year: 2008 ident: ref52 article-title: Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity publication-title: Mol Syst Biol doi: 10.1038/msb.2008.50 – volume: 316 start-page: 1383 year: 2016 ident: ref19 article-title: Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis publication-title: JAMA doi: 10.1001/jama.2016.14568 – volume: 37 start-page: 658 year: 2013 ident: ref14 article-title: Mendelian randomization analysis with multiple genetic variants using summarized data publication-title: Genet Epidemiol doi: 10.1002/gepi.21758 – volume: 63 start-page: 4378 year: 2014 ident: ref44 article-title: Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity publication-title: Diabetes doi: 10.2337/db14-0319 – ident: ref55 – volume: 62 start-page: 2689 year: 2013 ident: ref53 article-title: Metabolite profiles during oral glucose challenge publication-title: Diabetes doi: 10.2337/db12-0754 – volume: 18 start-page: 4081 year: 2009 ident: ref74 article-title: The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp357 – volume: 281 start-page: 811 year: 1969 ident: ref1 article-title: Plasma amino acid levels and insulin secretion in obesity publication-title: N Engl J Med doi: 10.1056/NEJM196910092811503 – volume: 12 start-page: e1001841 year: 2015 ident: ref45 article-title: Associations between potentially modifiable risk factors and Alzheimer disease: a Mendelian randomization study publication-title: PLoS Med doi: 10.1371/journal.pmed.1001841 – volume: 45 start-page: 1274 year: 2013 ident: ref43 article-title: Discovery and refinement of loci associated with lipid levels publication-title: Nat Genet doi: 10.1038/ng.2797 – volume: 518 start-page: 187 year: 2015 ident: ref40 article-title: New genetic loci link adipose and insulin biology to body fat distribution publication-title: Nature doi: 10.1038/nature14132 – volume: 4 start-page: 132 year: 2014 ident: ref30 article-title: High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics publication-title: Metabolomics (Los Angel) – volume: 80 start-page: 95 issue: Suppl 1 year: 1999 ident: ref28 article-title: EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer publication-title: Br J Cancer – volume: 100 start-page: E463 year: 2015 ident: ref6 article-title: Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2014-2357 – volume: 16 start-page: 122 year: 2012 ident: ref9 article-title: A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets publication-title: Cell Metab doi: 10.1016/j.cmet.2012.06.006 – volume: 113 start-page: 131 year: 2014 ident: ref60 article-title: Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders publication-title: Mol Genet Metab doi: 10.1016/j.ymgme.2014.06.005 – volume: 254 start-page: 529 year: 1975 ident: ref62 article-title: Thiamine increases the specific activity of human liver branched chain alpha-ketoacid dehydrogenase publication-title: Nature doi: 10.1038/254529a0 – volume: 58 start-page: 968 year: 2015 ident: ref31 article-title: Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study publication-title: Diabetologia doi: 10.1007/s00125-015-3517-8 – volume: 8 start-page: 615 year: 2012 ident: ref5 article-title: Novel biomarkers for pre-diabetes identified by metabolomics publication-title: Mol Syst Biol doi: 10.1038/msb.2012.43 – volume: 289 start-page: 20583 year: 2014 ident: ref58 article-title: Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain alpha-ketoacid dehydrogenase kinase publication-title: J Biol Chem doi: 10.1074/jbc.M114.569251 – volume: 37 start-page: 3150 year: 2014 ident: ref65 article-title: Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc14-0195 – volume: 380 start-page: 572 year: 2012 ident: ref15 article-title: Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study publication-title: Lancet doi: 10.1016/S0140-6736(12)60312-2 – volume: 65 start-page: 1552 year: 2015 ident: ref18 article-title: Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2 x 2 factorial Mendelian randomization study publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2015.02.020 – volume: 47 start-page: 1385 year: 2015 ident: ref35 article-title: Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis publication-title: Nat Genet doi: 10.1038/ng.3431 – volume: 60 start-page: 918 year: 2011 ident: ref61 article-title: Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans publication-title: Diabetes doi: 10.2337/db10-1433 – volume: 13 start-page: 451 year: 1964 ident: ref63 article-title: Insulin and protein metabolism publication-title: Diabetes doi: 10.2337/diab.13.5.451 – volume: 59 start-page: 448 year: 2010 ident: ref72 article-title: Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes publication-title: Diabetes doi: 10.2337/db09-0129 |
SSID | ssj0029090 |
Score | 2.634838 |
SecondaryResourceType | review_article |
Snippet | Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes... Background Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type... Claudia Langenberg and colleagues show that high circulating branched chain amino acids associate with future risk of type 2 diabetes. BackgroundHigher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2... Background Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher... |
SourceID | plos doaj swepub pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1002179 |
SubjectTerms | Adult Aged Amino Acids, Branched-Chain - metabolism Analysis Biology and Life Sciences Branched chain amino acids Diabetes Mellitus, Type 2 - genetics Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - physiopathology Genes Genetic aspects Genetic Predisposition to Disease Genome-Wide Association Study Humans Insulin resistance Laboratories Male Medicine and Health Sciences Mendelian Randomization Analysis Metabolism Metabolites Middle Aged Physical Sciences Physiological aspects Prospective Studies Research and Analysis Methods Risk Factors Science Studies Sweden Type 2 diabetes Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQHhAXxLuBAgYhOIU6ifMwt21F1SJtQQtFvUWxY3ej7iarZveP8IuZcZyoESu1B25R_DlSPA-Pk5lvCPnADM-kMsoHQ-M-N9z4QmjQ5RjODkpHTHGsHZ6dJSfn_NtFfHGj1RfmhHX0wN3CHWRYualh041L_IeXikBqIUUhowJsozTofZlg_WHKHbUEs19XkH_MD8I0dUVzURocOBl9XsNuYwlIA0zjurEpWe7-wUNP1sum3RV-_ptFOeIatfvT8SPy0AWWdNq90GNyT9dPyP2Z-3X-lPxBgmkYoz-usRS3T9aim4YWNT0FrwDOr6QzvQG1WFbtijaGQnRID7H1xkKX_tGiqGo6XVV1Q6eqKluYWNJ51V4hFA-0NKQuw6b9QqfwrLrU-BmFzgHZrFzmEO2JUJ6R8-Ovv45OfNeQwVcZCze-SdI0DmTMVMC0jgzXcPqEmKEwWal5kXGjke0mlBBVMSOQaEaqosRDIfLuieg5mdRNrfcIZapQAjCBKWOuWCQlT6JCyDQCFyxZ4pGol0iuHFs5Ns1Y5vYXXAqnlm5dc5Rj7uToEX-Yte7YOm7BH6KwByxybdsboIG508D8Ng30yFtUlbwrXB08Rj7lEH1BeBhwj7y3COTbqDGh57LYtm1--v33HUA_z-4Cmo9AnxzINLBmsNJdpQWsPJJ9jZAfR8jLjup8F3B_BASNUaPhPTSTfo3bPMiwDwEGjzCzN53dw--GYXwopvzVutlaTAzBN-wpHnnRWdogJyzfzpIs9Eg6ssGRIMcjdbWw5OkxdjQIInjzzlpHU9ytK7jSeWx78bz8HyryijyAQDvBGtZQ7JPJ5nqrX0Mwu5FvrN_6C5jwmjs priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegSIgXxPcCAwxC8BSWD-fDvKBuYtqQOlBhqG9R7NhttDUpTfuP8Bdz5zgZERXsrYp_jhrbd76z735HyBtPs1RILV0QNOYyzbTLuYK1HIHvIFXoSYa5w5Oz-OScfZ5FM3vg1tiwyk4nGkVd1BLPyA_AE0GeEtiOPq5-ulg1Cm9XbQmNm-SWD5YIlm5IZlcOF_fMGQuykLl-kCQ2dS5M_AM7U-9XsOcYGlIfg7n-2JoMg3-vp0ery7rZZYT-HUs5YBw1u9TxPXLXmpd03K6H--SGqh6Q2xN7gf6Q_EKaaWijX9eYkNuFbNFNTfOKnoJuABVY0InawOK4LJslrTUFG5EeYgGOhSrco0VeVnS8LKuajmVZNNCxoNOyuUAourU0oDbOpvlAx_CuqlB4mEKngKyXNn6IdnQoj8j58afvRyeuLcvgytQLNq6OkyTyReRJ31Mq1EyBDwqWQ67TQrE8ZVoh500gwLbyNEe6GSHzAl1DZN_j4WMyqupK7RHqyVxywPi6iJj0QiFYHOZcJCEoYuHFDgm7Gcmk5SzH0hmXmbmIS8B3acc1w3nM7Dw6xO17rVrOjv_gD3GyeywybpsH9XqeWQHOUswgVmD8RQXeJSfcF4oLnoswBx1daIe8xKWStemrvd7IxgxsMDASfeaQ1waBrBsVhvXM823TZKdfflwD9O3sOqDpAPTOgnQNYwYj3eZbwMgj5dcA-XaAnLeE57uA-wMgrBg5aN5DMenGuMmuZBZ6dqKzu_lV34wvxcC_StVbg4nABIedxSFPWknr5wmTuNM4DRySDGRwMJHDlqpcGAr1COsa-CF8eSutgy720QX8UllkKvI8_ff_f0bugCEdY45qwPfJaLPequdgrG7EC6ORfgMqfpJN priority: 102 providerName: ProQuest |
Title | Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27898682 https://www.proquest.com/docview/1849658124 https://www.proquest.com/docview/1845251425 https://pubmed.ncbi.nlm.nih.gov/PMC5127513 http://kipublications.ki.se/Default.aspx?queryparsed=id:134963592 https://doaj.org/article/83944e1595d0460791be9b9ab3a376df http://dx.doi.org/10.1371/journal.pmed.1002179 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELa2TkJ8QbwvMIpBCD5lyovzhoRQO23aQC2jMNRvUeLYbbQ2KU0rwd_gF3PnOJEiCuxLVcWPI8X2ne_su-cIeWVJFqZcchMEjZlMMmlGkYC17IHvwIVrcYa5w6Oxf37FPky96R5parbqAax2unZYT-pqvTj-8f3nexD4d6pqQ2A3nY5XsH8oSlFYZPvkQN0YYTAfa-8VnMhSpy7IS2baThDoZLq_vaWzWSlO_1Zz91aLstpllv4ZXdnhIFX71tldckcbnHRQr5B7ZE8U98mtkb5Sf0B-IfE0tNHLNaboNkFcdFPSpKAXoC1AKWZ0JDawXBZ5taSlpGA10iGW5JiLzDyZJ3lBB8u8KOmA51kFHTM6yatrhKKjSx2qI2-qt3QA7yoygccrdALIcqkjimhDkPKQXJ2dfj05N3WhBpOHlrMxpR8Enp16FrctIVzJBHilYEskMswES0ImBbLgOClYW5aMkIAm5UmGziLy8UXuI9IrykIcEmrxhEeAsWXmMW65acp8N4nSwAXVnFq-QdxmRmKuWcyxmMYiVldzAXgz9bjGOI-xnkeDmG2vVc3i8R_8ECe7xSIHt3pQrmexFuk4xJxiAeagl-HtchDZqYjSKEndBLR2Jg3yHJdKXCe0tpokHjCwysBstJlBXioE8nAUGOgzS7ZVFV98-nYD0JfxTUCTDuiNBskSxgxGus7AgJFHErAO8nUHOasp0HcBjzpAWDG803yIYtKMcRXbIdYnQKMSejais7v5RduML8VQwEKUW4XxwCiHvcYgj2tJa-cJ07pDP3QMEnRksDOR3ZYinytSdQ8rHdgufHktrZ0u-tE1_BOxp2r0PPn3lz8lt8G09jFr1YmOSG-z3opnYL5u0j7ZD6ZBnxwMT8eXk746BILfj5_DvtJVvwF0gpwr |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VQQJeEHcNhS6I48nUx_pCQigtVAltAgotypux17uJ1cQOcSLE3-CH8BuZWR_FIoK-9C3yfhslO7tzeGe-IeSZIZkfc8l1OGhMZ5JJPQgE7GUHYgcubIMzrB0eDN3eKfswdsZb5FddC4NplbVOVIo6yTm-I9-DSAR5SsAcvV1807FrFN6u1i00ym1xJH58h5CteNN_B_J9blmH708OenrVVUDnvmGtdOl6nmPGjsFNQwhbMgEhFBi-SPqJYJHPpEDKFisG18CQAbKlxDxKMLJB8jgkXwKVf4XhFSOcH298HuAFhnqng6xnuml5XlWqZ3vmXrUzXi3AxinaUxOTx_4whapjQGMXOotZXmxyev_O3WwxnCqreHiT3KjcWdot998tsiWy2-TqoLqwv0N-Iq01jNFPSywArlPE6CqnUUb7oItA5SZ0IFawGWdpMae5pOCT0n1s-DEViX4wjdKMdudpltMuT5MCJiZ0lBZnCMUwmlq0yuspXtMufFeWCHx5Q0eAzOdVvhKt6VfuktNLEdg90snyTGwTavCIB4AxZeIwbthxzFw7CmLPBsUfG65G7FoiIa840rFVxyxUF38exErluoYox7CSo0b0Ztai5Aj5D34fhd1gkeFbPciXk7BSGKGPFcsCnE0nwbtrLzBjEcRBFNsR2IREamQXt0pYlss2eirsMvD5wCk1mUaeKgSyfGSYRjSJ1kUR9j9-uQDo8_AioFEL9LICyRzWDFa6rO-AlUeKsRbyRQs5KQnWNwF3WkDYMbw1vI3HpF7jIjzXETCzPjqbh580w_ilmGiYiXytMA64_GDJNHK_PGmNnLBo3Hd9SyNe6wy2BNkeydKpomx3sI-CacM_L09ra0r16Aw-idBRHYAe_Pv375JrvZPBcXjcHx49JNfBiXexPtYKdkhntVyLR-Aor-LHSjtR8vWy1eFvia7Ngg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTZp4QdwXGMwgLk-huThNgjShdlu1MlqqwtDeQuLYbbQ2KU0rxN_gZ_GrOCdxAhEV7GVvVfy5an3sc4nP-Q4hzw3JvIhLrsNBYzqTTOq-L2AvOxA7cGEbnGHt8GDYPj1n7y6ciy3ys6qFwbTKSicWijrOOL4jb0EkgjwlYI5aUqVFjI57bxdfdewghTetVTuNULVZiA8LujFV5HEmvn-DcC4_7B-D7F9YVu_k09GprjoO6NwzrJUu267rmJFjcNMQwpZMQHgFRjGUXixY6DEpkM7FisBtMKSPTCoRD2OMepBYDomZwBzsuGD1IRDc6Z4MR-M6_PON4o0PcqLppuW6qpDPds2W2jevF2ABC1JUE1PL_jCURT-B2mpsL2ZZvskl_juzs8F_WtjM3i1yUzm7tFPuzttkS6R3yO5AXeffJT-Q9BrG6GiJ5cFVAhldZTRMaR80FSjkmA7ECrbqLMnnNJMUPFbaxXYgUxHrR9MwSWlnnqQZ7fAkzmFiTMdJfolQDLKpRVXWT_6GduC70ljgqx06BmQ2V9lMtCJnuUfOr0Vk98l2mqVij1CDh9wHjCljh3HDjiLWtkM_cm0wC5HR1ohdSSTgikEdG3nMguJa0IVIqlzXAOUYKDlqRK9nLUoGkf_guyjsGov838WDbDkJlDoJPKxnFuCKOjHebLu-GQk_8sPIDsFixFIjB7hVgrKYttZiQYeBRwguq8k08qxAIAdIiqdpEq7zPOh_-HwF0MfhVUDjBuiVAskM1gxWuqz-gJVHArIG8mUDOSnp1zcB9xtA2DG8MbyHx6Ra4zz4rUFgZnV0Ng8_rYfxSzENMRXZusA4EBCAndPIg_Kk1XLCknKv7VkacRtnsCHI5kiaTAtCdwe7LJg2_PPytDamqEeX8EkETtEf6OG_f_8B2QXVGLzvD88ekRvg4bexeNby98n2arkWj8GLXkVPlHqi5Mt1a8Rf6uvYXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Predisposition+to+an+Impaired+Metabolism+of+the+Branched-Chain+Amino+Acids+and+Risk+of+Type+2+Diabetes%3A+A+Mendelian+Randomisation+Analysis&rft.jtitle=PLoS+medicine&rft.au=Lotta%2C+Luca+A&rft.au=Scott%2C+Robert+A&rft.au=Sharp%2C+Stephen+J&rft.au=Burgess%2C+Stephen&rft.date=2016-11-29&rft.pub=Public+Library+of+Science&rft.issn=1549-1277&rft.volume=13&rft.issue=11&rft_id=info:doi/10.1371%2Fjournal.pmed.1002179&rft.externalDocID=A478272714 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-1676&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-1676&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-1676&client=summon |