Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challeng...
        Saved in:
      
    
          | Published in | PloS one Vol. 5; no. 9; p. e12776 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        28.09.2010
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0012776 | 
Cover
| Abstract | One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions. | 
    
|---|---|
| AbstractList | One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions. One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.  | 
    
| Audience | Academic | 
    
| Author | Geurts, Pierre Huynh-Thu, Vân Anh Wehenkel, Louis Irrthum, Alexandre  | 
    
| AuthorAffiliation | 1 Department of Electrical Engineering and Computer Science, Systems and Modeling, University of Liège, Liège, Belgium Center for Genomic Regulation, Spain 2 GIGA-Research, Bioinformatics and Modeling, University of Liège, Liège, Belgium  | 
    
| AuthorAffiliation_xml | – name: Center for Genomic Regulation, Spain – name: 2 GIGA-Research, Bioinformatics and Modeling, University of Liège, Liège, Belgium – name: 1 Department of Electrical Engineering and Computer Science, Systems and Modeling, University of Liège, Liège, Belgium  | 
    
| Author_xml | – sequence: 1 givenname: Vân Anh surname: Huynh-Thu fullname: Huynh-Thu, Vân Anh – sequence: 2 givenname: Alexandre surname: Irrthum fullname: Irrthum, Alexandre – sequence: 3 givenname: Louis surname: Wehenkel fullname: Wehenkel, Louis – sequence: 4 givenname: Pierre surname: Geurts fullname: Geurts, Pierre  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20927193$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNk11v0zAUhiM0xD7gHyCIhATiosXxR5xwgTTGgIrBpLFxaznOSerNjYvtbOu_x1m7qZ0mNOUilv2c97w-b7KbbHW2gyR5maFxRnj24dz2rpNmPI_bY4QyzHn-JNnJSoJHOUZka229nex6f44QI0WeP0u2MSoxj6c7yY9J14BzumvTE2h7I4N1i_QXhCvrLnzaODtLD6_nDrzXtku_yCDTMz_gpw5g9Fl6qNOfEKa29s-Tp400Hl6s3nvJ2dfD04Pvo6Pjb5OD_aORKhAKo4oxXJUlVRLjoqYlLWqlkOKsqDED3tQSAwGKKlpWNGNcMU5YWcmsbFCTE0X2ktdL3bmxXqzm4EWGS0zznNEiEpMlUVt5LuZOz6RbCCu1uNmwrhXSBa0MiIwAJiSvJVKMqmiHS6bygqJcYllKiFpsqdV3c7m4ksbcCWZIDFHcWhBDFGIVRaz7tHLZVzOoFXTBSbNhZvOk01PR2kuBS5qXGYoCeClgNLQQTVdaXOKbwpt1b-ItlKhAYJwXghPMhq7vVl2d_duDD2KmvQJjZAe294IznvG84CySb-6RD09yRbUyDkt3jY1e1aAp9iknBeMFGrTGD1DxqWGmVZxKo-P-RsH7jYLIBLgOrey9F5PfJ49nj_9ssm_X2ClIE6bemj7Ej9dvgq_W07mL5fbPiABdAspZ7x00j039470ypYMc2seJaPP_4n9I1DTQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_isci_2024_109301 crossref_primary_10_1038_s12276_022_00896_9 crossref_primary_10_1016_j_ajpath_2019_03_009 crossref_primary_10_1093_bib_bbac586 crossref_primary_10_1126_scitranslmed_ade1283 crossref_primary_10_1111_tpj_15315 crossref_primary_10_1016_j_cels_2024_04_005 crossref_primary_10_3390_biomedicines9010034 crossref_primary_10_1186_1752_0509_8_5 crossref_primary_10_1186_1471_2105_12_233 crossref_primary_10_1093_bib_bbab009 crossref_primary_10_1038_s41596_020_0336_2 crossref_primary_10_1142_S0219720019500185 crossref_primary_10_7554_eLife_97424_3 crossref_primary_10_3389_fgene_2019_00294 crossref_primary_10_3390_cells14010001 crossref_primary_10_1093_bfgp_elx029 crossref_primary_10_1016_j_xcrm_2025_101992 crossref_primary_10_1016_j_engappai_2024_108938 crossref_primary_10_1093_bioinformatics_btx501 crossref_primary_10_1109_TCBB_2017_2758786 crossref_primary_10_3389_fgene_2019_01120 crossref_primary_10_1111_jpi_12927 crossref_primary_10_1111_nph_18788 crossref_primary_10_7554_eLife_97424 crossref_primary_10_1016_j_molmet_2024_101943 crossref_primary_10_3389_fpls_2017_02029 crossref_primary_10_1038_s41598_024_52928_1 crossref_primary_10_1080_21541264_2023_2295044 crossref_primary_10_15252_msb_20156236 crossref_primary_10_3389_fgene_2021_810816 crossref_primary_10_1186_s12918_018_0635_1 crossref_primary_10_1186_s13059_024_03418_0 crossref_primary_10_1038_s42003_024_07443_4 crossref_primary_10_1186_s12885_019_6235_7 crossref_primary_10_1093_bib_bbad414 crossref_primary_10_1093_bib_bbad413 crossref_primary_10_1093_bioinformatics_btx748 crossref_primary_10_1093_nar_gkac960 crossref_primary_10_1016_j_ccell_2024_04_010 crossref_primary_10_1038_s41598_022_07744_w crossref_primary_10_1016_j_cbd_2024_101324 crossref_primary_10_1186_s12859_022_05055_5 crossref_primary_10_1093_bib_bbae542 crossref_primary_10_1186_s12864_019_6298_5 crossref_primary_10_1126_sciadv_abl7393 crossref_primary_10_1093_bioinformatics_btaa651 crossref_primary_10_1109_TMBMC_2019_2933391 crossref_primary_10_1142_S021972001950015X crossref_primary_10_1016_j_coisb_2017_04_001 crossref_primary_10_1093_bfgp_elx046 crossref_primary_10_1109_JBHI_2024_3476490 crossref_primary_10_1109_TCBB_2017_2688355 crossref_primary_10_1016_j_compbiolchem_2018_10_014 crossref_primary_10_1186_s12976_019_0103_7 crossref_primary_10_3390_genes10070502 crossref_primary_10_3390_genes13071112 crossref_primary_10_1021_acssynbio_8b00037 crossref_primary_10_1186_s12864_020_07079_8 crossref_primary_10_1186_s13059_021_02366_3 crossref_primary_10_1016_j_celrep_2025_115437 crossref_primary_10_1016_j_celrep_2022_111236 crossref_primary_10_1186_s13073_023_01162_x crossref_primary_10_3389_fpls_2024_1502569 crossref_primary_10_1093_bioinformatics_btt167 crossref_primary_10_1093_nar_gkac930 crossref_primary_10_1093_nar_gkaa995 crossref_primary_10_1093_bib_bbac591 crossref_primary_10_1186_s12918_019_0695_x crossref_primary_10_1093_bib_bbae526 crossref_primary_10_1016_j_plaphy_2024_108945 crossref_primary_10_1038_s43587_024_00588_1 crossref_primary_10_1002_cpt_3007 crossref_primary_10_1016_j_xcrm_2024_101661 crossref_primary_10_1016_j_neucom_2016_02_087 crossref_primary_10_1038_s41598_020_59731_8 crossref_primary_10_1021_acsnano_9b04220 crossref_primary_10_1093_bioinformatics_btad708 crossref_primary_10_1093_bioinformatics_btv379 crossref_primary_10_1371_journal_pone_0092709 crossref_primary_10_3390_jox13020021 crossref_primary_10_3390_en16176360 crossref_primary_10_3390_plants13233297 crossref_primary_10_1016_j_stress_2025_100756 crossref_primary_10_1016_j_neuroimage_2017_02_058 crossref_primary_10_1053_j_gastro_2024_12_011 crossref_primary_10_1523_JNEUROSCI_2074_20_2021 crossref_primary_10_1093_nar_gkad841 crossref_primary_10_1111_nph_12818 crossref_primary_10_1186_s13015_017_0100_5 crossref_primary_10_3390_cells11193125 crossref_primary_10_3390_e24050693 crossref_primary_10_1016_j_isci_2024_109352 crossref_primary_10_1093_nsr_nwac147 crossref_primary_10_1111_jcmm_15607 crossref_primary_10_3390_cells10082143 crossref_primary_10_1016_j_powtec_2021_09_063 crossref_primary_10_1016_j_omtn_2023_03_014 crossref_primary_10_1016_j_knosys_2025_113324 crossref_primary_10_1016_j_ccell_2024_03_013 crossref_primary_10_3389_fgene_2021_652189 crossref_primary_10_1371_journal_pcbi_1011254 crossref_primary_10_1186_1756_0500_5_518 crossref_primary_10_1007_s11103_024_01547_5 crossref_primary_10_1186_s12920_019_0515_6 crossref_primary_10_1093_jxb_eraa108 crossref_primary_10_1186_s12859_020_03639_7 crossref_primary_10_1039_C9ME00029A crossref_primary_10_1016_j_celrep_2022_110333 crossref_primary_10_1038_s41581_024_00849_7 crossref_primary_10_1093_nar_gkab878 crossref_primary_10_1093_bioinformatics_btx575 crossref_primary_10_1158_2326_6066_CIR_22_0462 crossref_primary_10_1134_S0006297923020074 crossref_primary_10_1103_PhysRevX_15_011005 crossref_primary_10_1016_j_ccell_2021_07_004 crossref_primary_10_1002_advs_202405395 crossref_primary_10_1002_advs_202409990 crossref_primary_10_1182_blood_2013_02_484188 crossref_primary_10_1515_sagmb_2022_0054 crossref_primary_10_1002_bit_25262 crossref_primary_10_1186_s13073_022_01049_3 crossref_primary_10_1038_s42003_023_05594_4 crossref_primary_10_1158_2159_8290_CD_22_1200 crossref_primary_10_1186_s12859_018_2558_7 crossref_primary_10_1016_j_compbiomed_2022_105999 crossref_primary_10_1016_j_xpro_2022_101184 crossref_primary_10_1038_s42256_022_00469_5 crossref_primary_10_1093_bioinformatics_btx563 crossref_primary_10_1142_S0219720019500355 crossref_primary_10_1111_ppl_13700 crossref_primary_10_1038_nbt_2635 crossref_primary_10_1016_j_compbiolchem_2015_04_012 crossref_primary_10_1266_ggs_88_301 crossref_primary_10_1038_s41525_020_00151_y crossref_primary_10_1126_sciadv_adf6251 crossref_primary_10_1038_s41598_023_27779_x crossref_primary_10_3389_fgene_2020_591461 crossref_primary_10_1016_j_celrep_2014_11_038 crossref_primary_10_1128_jvi_01246_22 crossref_primary_10_1089_cmb_2014_0297 crossref_primary_10_1093_nargab_lqad018 crossref_primary_10_1038_s41421_022_00394_2 crossref_primary_10_1186_s12859_022_04778_9 crossref_primary_10_1002_gepi_22017 crossref_primary_10_1007_s00606_021_01769_w crossref_primary_10_1016_j_cels_2021_04_005 crossref_primary_10_1093_nar_gkad885 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_1080_19768354_2024_2449518 crossref_primary_10_7554_eLife_76586 crossref_primary_10_1016_j_isci_2023_106164 crossref_primary_10_1109_TCBB_2022_3144418 crossref_primary_10_3390_genes12091351 crossref_primary_10_3390_plants12203618 crossref_primary_10_1177_11779322241287120 crossref_primary_10_1111_acel_13450 crossref_primary_10_1186_s13059_023_02890_4 crossref_primary_10_1016_j_knosys_2022_109254 crossref_primary_10_1186_s12859_021_03987_y crossref_primary_10_7717_peerj_18578 crossref_primary_10_1016_j_omtn_2020_12_018 crossref_primary_10_1038_msb_2012_56 crossref_primary_10_1016_j_csbj_2021_08_028 crossref_primary_10_1111_mpp_70044 crossref_primary_10_1111_tpj_14875 crossref_primary_10_3390_computation9040048 crossref_primary_10_1038_s41467_021_26277_w crossref_primary_10_1038_s41467_019_13132_2 crossref_primary_10_3390_plants11010059 crossref_primary_10_1016_j_ccell_2022_10_009 crossref_primary_10_1002_pld3_70025 crossref_primary_10_1093_nar_gkab433 crossref_primary_10_1016_j_ygeno_2022_110480 crossref_primary_10_1002_ctm2_1310 crossref_primary_10_1111_pce_12744 crossref_primary_10_1038_s41540_025_00504_2 crossref_primary_10_1093_nargab_lqae130 crossref_primary_10_1016_j_copbio_2016_04_007 crossref_primary_10_1186_s12918_015_0165_z crossref_primary_10_1093_bib_bbx066 crossref_primary_10_1038_s41590_019_0465_3 crossref_primary_10_1038_s41419_021_03552_8 crossref_primary_10_1007_s00404_014_3264_y crossref_primary_10_1038_s42003_024_06723_3 crossref_primary_10_1186_1471_2105_14_273 crossref_primary_10_1016_j_mbs_2013_10_003 crossref_primary_10_3390_ijms241713339 crossref_primary_10_1016_j_celrep_2023_112879 crossref_primary_10_1038_s41698_022_00278_4 crossref_primary_10_1007_s12312_024_01337_6 crossref_primary_10_1093_bioinformatics_btv186 crossref_primary_10_1162_posc_a_00638 crossref_primary_10_1016_j_patter_2021_100328 crossref_primary_10_1093_bioinformatics_btaa267 crossref_primary_10_1093_bioinformatics_btz781 crossref_primary_10_1016_j_ebiom_2020_102904 crossref_primary_10_1109_TNB_2014_2316920 crossref_primary_10_1111_acel_13428 crossref_primary_10_1158_1541_7786_MCR_12_0690 crossref_primary_10_3390_cancers14235785 crossref_primary_10_1002_imt2_20 crossref_primary_10_3233_JAD_170011 crossref_primary_10_1038_s41598_020_67546_w crossref_primary_10_1186_s12870_022_03767_7 crossref_primary_10_1007_s00292_024_01308_7 crossref_primary_10_1093_bioinformatics_btaa032 crossref_primary_10_1016_j_patter_2023_100911 crossref_primary_10_1093_bioinformatics_btab367 crossref_primary_10_15252_embj_2019104159 crossref_primary_10_1038_s41540_021_00208_3 crossref_primary_10_1016_j_csbj_2024_04_033 crossref_primary_10_1016_j_jclepro_2022_133421 crossref_primary_10_1016_j_pbi_2023_102474 crossref_primary_10_1021_acs_jpcb_2c05412 crossref_primary_10_1093_g3journal_jkac144 crossref_primary_10_1093_nar_gkv1468 crossref_primary_10_1074_jbc_M112_392332 crossref_primary_10_4103_0973_1482_204842 crossref_primary_10_1093_bioinformatics_btz563 crossref_primary_10_1186_s13293_024_00659_3 crossref_primary_10_3390_make6030089 crossref_primary_10_15252_msb_202311627 crossref_primary_10_3389_fbioe_2022_954610 crossref_primary_10_1016_j_celrep_2020_107688 crossref_primary_10_15252_msb_202211176 crossref_primary_10_3389_fgene_2024_1481787 crossref_primary_10_1038_s41587_024_02182_7 crossref_primary_10_1109_TCBB_2023_3282212 crossref_primary_10_1038_srep41174 crossref_primary_10_3389_fpls_2023_1236787 crossref_primary_10_3389_fmicb_2020_00120 crossref_primary_10_3390_pr9101758 crossref_primary_10_3390_biom13071153 crossref_primary_10_1093_toxsci_kfz151 crossref_primary_10_1038_s41540_023_00312_6 crossref_primary_10_1038_s41588_024_01806_7 crossref_primary_10_1093_bioinformatics_btae415 crossref_primary_10_1002_cppb_20106 crossref_primary_10_1186_1471_2164_16_S12_S4 crossref_primary_10_1016_j_atherosclerosis_2020_08_013 crossref_primary_10_1371_journal_pcbi_1011443 crossref_primary_10_3892_etm_2017_4931 crossref_primary_10_1096_fj_202301287RR crossref_primary_10_1016_j_jmb_2022_167606 crossref_primary_10_1016_j_automatica_2014_08_003 crossref_primary_10_18699_vjgb_24_104 crossref_primary_10_3389_fgene_2014_00299 crossref_primary_10_1146_annurev_arplant_081320_090914 crossref_primary_10_1371_journal_pcbi_1011207 crossref_primary_10_1016_j_gene_2016_03_045 crossref_primary_10_1093_bioinformatics_btz105 crossref_primary_10_1093_nar_gkad666 crossref_primary_10_3389_fpls_2021_661361 crossref_primary_10_3390_f13081300 crossref_primary_10_1017_cts_2022_18 crossref_primary_10_1016_j_cels_2023_08_004 crossref_primary_10_3390_ijms23179936 crossref_primary_10_1186_s12885_015_1884_7 crossref_primary_10_1038_s41467_021_25893_w crossref_primary_10_1093_g3journal_jkad004 crossref_primary_10_1097_PRS_0000000000010083 crossref_primary_10_3389_fgene_2023_1143382 crossref_primary_10_1016_j_firesaf_2023_103744 crossref_primary_10_1016_j_stemcr_2023_06_002 crossref_primary_10_1038_s44320_025_00088_3 crossref_primary_10_1126_sciimmunol_abm1920 crossref_primary_10_1186_s12859_016_1398_6 crossref_primary_10_3390_nu15214691 crossref_primary_10_1109_TCBB_2015_2424411 crossref_primary_10_1038_s41467_024_50229_9 crossref_primary_10_1038_s41592_023_01971_3 crossref_primary_10_3389_fimmu_2020_02149 crossref_primary_10_1186_s12859_016_0913_0 crossref_primary_10_1038_s42003_024_06342_y crossref_primary_10_1002_ctm2_689 crossref_primary_10_1371_journal_pcbi_1008223 crossref_primary_10_1038_s44161_021_00009_1 crossref_primary_10_1016_j_biosystems_2018_10_008 crossref_primary_10_3390_ijms20153730 crossref_primary_10_3389_fpls_2022_1006044 crossref_primary_10_3389_fimmu_2024_1412731 crossref_primary_10_1186_s12859_023_05253_9 crossref_primary_10_1007_s12539_024_00667_2 crossref_primary_10_1016_j_cels_2020_08_003 crossref_primary_10_1038_s41422_018_0053_3 crossref_primary_10_1093_bioinformatics_btab295 crossref_primary_10_1242_dev_184143 crossref_primary_10_3390_plants11152031 crossref_primary_10_1093_nargab_lqae178 crossref_primary_10_1142_S0218213023600059 crossref_primary_10_1093_bioinformatics_bts619 crossref_primary_10_1002_wcms_1658 crossref_primary_10_3390_biomedicines9111525 crossref_primary_10_1155_2015_370194 crossref_primary_10_1016_j_cellimm_2021_104459 crossref_primary_10_1007_s40496_019_0214_6 crossref_primary_10_1111_pbi_14097 crossref_primary_10_3389_fepid_2022_899655 crossref_primary_10_1002_advs_202203040 crossref_primary_10_3390_ijms241713502 crossref_primary_10_1088_1361_6633_acec88 crossref_primary_10_1007_s10142_021_00821_9 crossref_primary_10_1016_j_cell_2020_01_009 crossref_primary_10_1094_PBIOMES_01_22_0006_FI crossref_primary_10_3389_fnetp_2023_1225736 crossref_primary_10_1093_nar_gkw963 crossref_primary_10_1038_s41698_021_00185_0 crossref_primary_10_1109_TCBB_2019_2946826 crossref_primary_10_1007_s40484_018_0139_4 crossref_primary_10_1109_TCBB_2020_3037090 crossref_primary_10_1111_jipb_13791 crossref_primary_10_1093_femsyr_fov087 crossref_primary_10_1093_nar_gkac377 crossref_primary_10_1016_j_celrep_2023_112487 crossref_primary_10_1093_bfgp_elac028 crossref_primary_10_1016_j_csbj_2024_01_013 crossref_primary_10_1042_BST20190840 crossref_primary_10_1109_TCBB_2020_3039038 crossref_primary_10_1038_s41467_024_48516_6 crossref_primary_10_1093_bioinformatics_btad256 crossref_primary_10_1016_j_stem_2024_09_014 crossref_primary_10_1101_gr_259655_119 crossref_primary_10_1007_s12021_020_09505_4 crossref_primary_10_1016_j_compbiomed_2022_106249 crossref_primary_10_1016_j_isci_2022_104079 crossref_primary_10_1515_sagmb_2020_0054 crossref_primary_10_7717_peerj_5692 crossref_primary_10_1038_s41540_020_00148_4 crossref_primary_10_1039_C5MB00560D crossref_primary_10_1002_cai2_138 crossref_primary_10_1016_j_ccell_2021_10_008 crossref_primary_10_1155_2017_8514071 crossref_primary_10_3390_v13112284 crossref_primary_10_7554_eLife_80479 crossref_primary_10_3390_e22060627 crossref_primary_10_1186_1752_0509_7_73 crossref_primary_10_1016_j_canlet_2024_216723 crossref_primary_10_3389_fimmu_2021_627036 crossref_primary_10_1093_bioinformatics_btac178 crossref_primary_10_1016_j_csbj_2020_10_022 crossref_primary_10_1093_bioinformatics_btad269 crossref_primary_10_1093_gbe_evad109 crossref_primary_10_1186_s12864_020_07003_0 crossref_primary_10_1016_j_cmpb_2021_106496 crossref_primary_10_1186_gm340 crossref_primary_10_1186_s12920_016_0202_9 crossref_primary_10_3390_ijms252312741 crossref_primary_10_3390_biom14070766 crossref_primary_10_1093_insilicoplants_diae013 crossref_primary_10_1111_jcmm_18559 crossref_primary_10_3389_fimmu_2023_1107397 crossref_primary_10_1016_j_mcpro_2023_100607 crossref_primary_10_15252_msb_20209438 crossref_primary_10_1016_j_jpha_2023_04_004 crossref_primary_10_1038_s41586_020_2632_y crossref_primary_10_3389_fcell_2022_878346 crossref_primary_10_1016_j_procs_2014_05_183 crossref_primary_10_1038_icb_2015_102 crossref_primary_10_1016_j_jpha_2023_04_006 crossref_primary_10_1038_s44161_024_00533_w crossref_primary_10_1016_j_jspi_2014_07_006 crossref_primary_10_1093_bioinformatics_btab099 crossref_primary_10_1093_bioinformatics_btad038 crossref_primary_10_1371_journal_pcbi_1010962 crossref_primary_10_1016_j_celrep_2023_113380 crossref_primary_10_52905_hbph2024_1_81 crossref_primary_10_1016_j_plgene_2022_100366 crossref_primary_10_3390_genes14020269 crossref_primary_10_1038_s41598_017_17143_1 crossref_primary_10_1016_j_cell_2018_05_057 crossref_primary_10_1093_nar_gkad053 crossref_primary_10_1016_j_jtbi_2014_02_041 crossref_primary_10_1039_C5IB00065C crossref_primary_10_1016_j_asoc_2021_107849 crossref_primary_10_1093_bioinformatics_btu863 crossref_primary_10_1186_s12918_017_0419_z crossref_primary_10_1038_s41467_021_24152_2 crossref_primary_10_3389_fimmu_2024_1446453 crossref_primary_10_1016_j_compbiolchem_2019_107120 crossref_primary_10_1007_s12094_023_03083_y crossref_primary_10_1038_s41598_023_31509_8 crossref_primary_10_1089_cmb_2024_0607 crossref_primary_10_1371_journal_pone_0170340 crossref_primary_10_1002_pld3_279 crossref_primary_10_1109_ACCESS_2021_3095252 crossref_primary_10_1093_bioinformatics_btae143 crossref_primary_10_3389_fgene_2021_652974 crossref_primary_10_3389_fcell_2014_00038 crossref_primary_10_1093_plphys_kiac522 crossref_primary_10_3390_ijms22158187 crossref_primary_10_1016_j_crbiot_2024_100230 crossref_primary_10_3390_e18090328 crossref_primary_10_1016_j_compbiomed_2025_109880 crossref_primary_10_1186_s12859_023_05231_1 crossref_primary_10_1038_s41540_023_00267_8 crossref_primary_10_1093_bioinformatics_bts434 crossref_primary_10_1093_nargab_lqad068 crossref_primary_10_1002_pmic_202200462 crossref_primary_10_1038_s41598_023_48081_w crossref_primary_10_1186_s12920_023_01588_7 crossref_primary_10_1371_journal_pone_0110094 crossref_primary_10_1186_1752_0509_7_87 crossref_primary_10_1186_s12967_024_05077_y crossref_primary_10_1089_cmb_2021_0437 crossref_primary_10_1371_journal_pone_0029165 crossref_primary_10_3390_genes14020282 crossref_primary_10_1016_j_gpb_2020_11_006 crossref_primary_10_1161_CIRCGEN_121_003365 crossref_primary_10_1371_journal_pone_0166084 crossref_primary_10_3390_plants10020364 crossref_primary_10_1016_j_ydbio_2023_07_004 crossref_primary_10_3389_fbioe_2018_00165 crossref_primary_10_1038_s41598_022_06658_x crossref_primary_10_1007_s13258_019_00789_8 crossref_primary_10_1016_j_csbj_2020_09_022 crossref_primary_10_1038_s41477_021_00894_1 crossref_primary_10_1016_j_xplc_2024_100984 crossref_primary_10_1111_tpj_16483 crossref_primary_10_1093_bioinformatics_btr373 crossref_primary_10_18632_aging_202718 crossref_primary_10_1038_s41590_023_01614_x crossref_primary_10_1186_s13059_022_02835_3 crossref_primary_10_2174_1574893614666190104142228 crossref_primary_10_1038_s41592_021_01194_4 crossref_primary_10_1093_bioinformatics_btad072 crossref_primary_10_1016_j_asoc_2018_05_009 crossref_primary_10_1186_s12859_024_05855_x crossref_primary_10_3389_fgene_2021_687813 crossref_primary_10_3390_cancers14102542 crossref_primary_10_1038_s41598_020_63043_2 crossref_primary_10_1186_s12859_018_2217_z crossref_primary_10_4137_CIN_S13630 crossref_primary_10_1093_bib_bbs071 crossref_primary_10_1038_s41467_022_31388_z crossref_primary_10_1016_j_celrep_2024_114339 crossref_primary_10_22399_ijcesen_906 crossref_primary_10_1093_gigascience_gix078 crossref_primary_10_1016_j_mcpro_2024_100780 crossref_primary_10_1038_s41467_023_42967_z crossref_primary_10_1007_s12293_022_00383_8 crossref_primary_10_1007_s10928_021_09792_7 crossref_primary_10_1016_j_xgen_2024_100702 crossref_primary_10_1038_srep20533 crossref_primary_10_1016_j_cell_2020_02_008 crossref_primary_10_1111_tpj_16222 crossref_primary_10_1016_j_tplants_2015_06_013 crossref_primary_10_1093_bfgp_elae036 crossref_primary_10_1016_j_stemcr_2022_10_004 crossref_primary_10_1158_2767_9764_CRC_24_0310 crossref_primary_10_1016_j_jaut_2024_103206 crossref_primary_10_1186_s12967_023_04435_6 crossref_primary_10_1073_pnas_1719674115 crossref_primary_10_1111_1751_7915_14425 crossref_primary_10_1073_pnas_2117323119 crossref_primary_10_1098_rstb_2016_0377 crossref_primary_10_1128_msystems_00729_19 crossref_primary_10_1016_j_heliyon_2024_e35478 crossref_primary_10_1021_acs_jproteome_8b00781 crossref_primary_10_1007_s00425_021_03790_2 crossref_primary_10_1016_j_neuroimage_2018_06_028 crossref_primary_10_1016_j_omtn_2021_10_011 crossref_primary_10_1016_j_compbiomed_2024_108850 crossref_primary_10_1016_j_cell_2024_06_011 crossref_primary_10_1016_j_ccell_2024_09_002 crossref_primary_10_1002_sam_11705 crossref_primary_10_1038_srep20518 crossref_primary_10_1186_s13059_024_03454_w crossref_primary_10_1111_pce_15232 crossref_primary_10_1016_j_celrep_2020_107908 crossref_primary_10_26508_lsa_202301988 crossref_primary_10_1016_j_xgen_2024_100720 crossref_primary_10_1186_s13073_022_01081_3 crossref_primary_10_1038_s41467_024_50291_3 crossref_primary_10_1016_j_sigpro_2011_11_028 crossref_primary_10_7717_peerj_5854 crossref_primary_10_1371_journal_pone_0133583 crossref_primary_10_1186_s12859_020_03707_y crossref_primary_10_1515_sagmb_2021_0025 crossref_primary_10_1007_s12038_022_00253_y crossref_primary_10_1038_s41598_018_32904_2 crossref_primary_10_1016_j_tifs_2020_10_017 crossref_primary_10_1109_TAI_2023_3347177 crossref_primary_10_3389_fgene_2024_1371607 crossref_primary_10_1038_s41392_024_01792_6 crossref_primary_10_1109_TCBB_2015_2450740 crossref_primary_10_1186_s12859_020_03651_x crossref_primary_10_26508_lsa_202302415 crossref_primary_10_1017_qpb_2021_1 crossref_primary_10_1186_1471_2229_11_13 crossref_primary_10_1093_bib_bbab168 crossref_primary_10_1016_j_neuron_2025_02_015 crossref_primary_10_1093_bib_bbab166 crossref_primary_10_3390_genes16030244 crossref_primary_10_1093_bioinformatics_btaa840 crossref_primary_10_1371_journal_pcbi_1003361 crossref_primary_10_1158_2159_8290_CD_20_1677 crossref_primary_10_1186_s12859_015_0754_2 crossref_primary_10_1273_cbij_17_53 crossref_primary_10_18632_oncotarget_27808 crossref_primary_10_1186_s13024_022_00517_z crossref_primary_10_1007_s10844_018_0506_7 crossref_primary_10_1016_j_knosys_2024_112374 crossref_primary_10_1093_bib_bbad370 crossref_primary_10_15252_msb_20145108 crossref_primary_10_1038_s42003_022_03319_7 crossref_primary_10_1016_j_csbj_2022_12_010 crossref_primary_10_1093_jxb_erac394 crossref_primary_10_1038_s41586_021_04390_6 crossref_primary_10_1208_s12249_021_02083_x crossref_primary_10_1093_bioinformatics_btaf074 crossref_primary_10_1093_humrep_deae199 crossref_primary_10_1016_j_isci_2022_105359 crossref_primary_10_1186_s12864_022_09020_7 crossref_primary_10_1093_bib_bbad129 crossref_primary_10_1007_s11222_017_9769_z crossref_primary_10_1093_bib_bbad369 crossref_primary_10_1038_s41559_023_02090_0 crossref_primary_10_1016_j_jretconser_2022_103153 crossref_primary_10_3389_fcvm_2017_00008 crossref_primary_10_1016_j_commatsci_2021_111172 crossref_primary_10_3390_cancers16132354 crossref_primary_10_1016_j_compbiolchem_2022_107769 crossref_primary_10_1093_bib_bbae457 crossref_primary_10_1007_s12033_023_00929_2 crossref_primary_10_1186_s12864_025_11360_z crossref_primary_10_1016_j_csbj_2022_12_022 crossref_primary_10_1016_j_ifacol_2016_12_117 crossref_primary_10_1038_s41598_024_62850_1 crossref_primary_10_1109_TCBB_2020_3029846 crossref_primary_10_1371_journal_pone_0204100 crossref_primary_10_1038_srep37140 crossref_primary_10_1039_D3FO03506A crossref_primary_10_1093_bioadv_vbad032 crossref_primary_10_1002_rnc_6044 crossref_primary_10_18632_oncotarget_23148 crossref_primary_10_1016_j_compbiolchem_2021_107512 crossref_primary_10_1073_pnas_1911536116 crossref_primary_10_1038_ncomms7683 crossref_primary_10_1016_j_devcel_2024_07_020 crossref_primary_10_3390_biomedinformatics4040117 crossref_primary_10_3389_fonc_2022_899825 crossref_primary_10_1109_MAES_2019_2915456 crossref_primary_10_1093_bib_bbad309 crossref_primary_10_1016_j_neucom_2025_129635 crossref_primary_10_1515_sagmb_2017_0052 crossref_primary_10_1038_srep11432 crossref_primary_10_1126_science_aar6089 crossref_primary_10_1371_journal_pone_0166115 crossref_primary_10_1093_molbev_msad141 crossref_primary_10_1093_bib_bbae639 crossref_primary_10_1038_s42003_025_07506_0 crossref_primary_10_1111_nph_19993 crossref_primary_10_1093_bioinformatics_btz802 crossref_primary_10_3389_ftox_2022_950503 crossref_primary_10_1111_tpj_15682 crossref_primary_10_1186_s13059_024_03419_z crossref_primary_10_1016_j_csbj_2022_08_003 crossref_primary_10_1007_s10994_023_06427_5 crossref_primary_10_1186_s12870_022_04012_x crossref_primary_10_1093_nar_gky015 crossref_primary_10_1016_j_compbiolchem_2024_108223 crossref_primary_10_1016_j_gpb_2023_06_003 crossref_primary_10_1016_j_neuron_2024_05_026 crossref_primary_10_1186_1752_0509_6_145 crossref_primary_10_7717_peerj_cs_363 crossref_primary_10_1016_j_csbj_2022_09_042 crossref_primary_10_1038_s41591_020_1003_4 crossref_primary_10_1371_journal_pgen_1011081 crossref_primary_10_3389_fimmu_2021_739605 crossref_primary_10_1038_s43588_021_00103_1 crossref_primary_10_1093_nar_gkab950 crossref_primary_10_1093_bioinformatics_btac717 crossref_primary_10_3389_fpls_2022_884726 crossref_primary_10_1038_s41467_020_18832_8 crossref_primary_10_3390_ncrna8040045 crossref_primary_10_1186_s12915_022_01451_8 crossref_primary_10_1089_cmb_2018_0225 crossref_primary_10_1038_s41467_022_28067_4 crossref_primary_10_1093_bib_bbad326 crossref_primary_10_1089_cmb_2011_0258 crossref_primary_10_1038_s41540_017_0024_1 crossref_primary_10_1016_j_compbiomed_2024_108690 crossref_primary_10_1186_s12859_019_2749_x crossref_primary_10_1016_j_cels_2017_04_010 crossref_primary_10_3389_fcell_2022_803466 crossref_primary_10_1371_journal_pone_0111661 crossref_primary_10_3390_land11112098 crossref_primary_10_1080_17435390_2020_1851418 crossref_primary_10_1093_bioinformatics_btv461 crossref_primary_10_1093_jimb_kuac028 crossref_primary_10_1093_bib_bbab142 crossref_primary_10_1186_s12859_019_3042_8 crossref_primary_10_1073_pnas_1710936115 crossref_primary_10_3389_fpls_2017_01044 crossref_primary_10_1016_j_pbi_2018_10_005 crossref_primary_10_1038_s41598_019_49498_y crossref_primary_10_1111_nph_18404 crossref_primary_10_1016_j_devcel_2022_04_016 crossref_primary_10_1186_s12920_018_0413_3 crossref_primary_10_1007_s10142_025_01549_6 crossref_primary_10_1093_bioinformatics_btv257 crossref_primary_10_1093_nar_gkab778 crossref_primary_10_1093_bioinformatics_bty764 crossref_primary_10_1111_acel_13360 crossref_primary_10_1186_s12918_018_0547_0 crossref_primary_10_2337_db21_0551 crossref_primary_10_1186_s12859_018_2402_0 crossref_primary_10_1007_s10142_018_0639_3 crossref_primary_10_1093_bib_bby095 crossref_primary_10_1093_bib_bbac417 crossref_primary_10_1186_s12915_024_01852_x crossref_primary_10_1038_s41467_021_25089_2 crossref_primary_10_1111_pce_14873 crossref_primary_10_1016_j_ecoenv_2024_117081 crossref_primary_10_1093_bib_bbab568 crossref_primary_10_1016_j_csbj_2022_07_004 crossref_primary_10_1016_j_envexpbot_2024_105760 crossref_primary_10_1038_s41467_020_15997_0 crossref_primary_10_1039_C6MB00280C crossref_primary_10_1111_nph_19315 crossref_primary_10_1038_s41467_018_05016_8 crossref_primary_10_1371_journal_pone_0033624 crossref_primary_10_3389_fgene_2020_595912 crossref_primary_10_1016_j_biopsych_2023_08_006 crossref_primary_10_1016_j_xops_2022_100166 crossref_primary_10_1186_s12915_025_02177_z crossref_primary_10_3390_ijms21217886 crossref_primary_10_1172_jci_insight_141024 crossref_primary_10_1109_TCYB_2020_3022430 crossref_primary_10_1111_tpj_14558 crossref_primary_10_1016_j_semcdb_2016_01_012 crossref_primary_10_1186_1752_0509_6_101 crossref_primary_10_3389_fninf_2023_1092967 crossref_primary_10_1080_00036846_2022_2095340 crossref_primary_10_1162_neco_a_01096 crossref_primary_10_1038_s42003_024_05933_z crossref_primary_10_1111_nph_19541 crossref_primary_10_1016_j_bbagrm_2019_194430 crossref_primary_10_1371_journal_pone_0028646 crossref_primary_10_1093_bib_bbac442 crossref_primary_10_1146_annurev_pathmechdis_051222_113147 crossref_primary_10_1186_s12864_016_3317_7 crossref_primary_10_1093_bioinformatics_btaa576 crossref_primary_10_1093_bib_bbad529 crossref_primary_10_1038_s42003_023_04457_2 crossref_primary_10_1371_journal_pcbi_1012016 crossref_primary_10_1093_bib_bbab104 crossref_primary_10_1038_s41540_020_0140_1 crossref_primary_10_1186_s13040_016_0106_4 crossref_primary_10_1089_wound_2012_0386 crossref_primary_10_1049_iet_syb_2017_0013 crossref_primary_10_1186_s13073_022_01124_9 crossref_primary_10_3389_fgene_2019_01280 crossref_primary_10_1093_bioinformatics_btae703 crossref_primary_10_1016_j_bbagrm_2019_194444 crossref_primary_10_1093_bioinformatics_btad619 crossref_primary_10_1093_bioinformatics_btad610 crossref_primary_10_1093_hr_uhae183 crossref_primary_10_1111_biom_13645 crossref_primary_10_1002_cso2_1021 crossref_primary_10_1038_s41467_019_13386_w crossref_primary_10_1007_s00500_023_08048_5 crossref_primary_10_3390_ijms24097884 crossref_primary_10_1016_j_exphem_2018_10_009 crossref_primary_10_1186_s12859_019_2695_7 crossref_primary_10_1049_syb2_12043 crossref_primary_10_1093_narcan_zcad056 crossref_primary_10_1038_s41598_021_97207_5 crossref_primary_10_1093_bib_bbab531 crossref_primary_10_1039_C4MB00413B crossref_primary_10_3390_ijms242115593 crossref_primary_10_1007_s10994_020_05908_1 crossref_primary_10_1371_journal_pone_0067434 crossref_primary_10_1016_j_molcel_2021_12_011 crossref_primary_10_1016_j_celrep_2018_03_048 crossref_primary_10_1080_00207721_2024_2329737 crossref_primary_10_1038_srep13456 crossref_primary_10_1038_s41556_020_00609_2 crossref_primary_10_1038_s12276_020_00528_0 crossref_primary_10_1038_s41540_020_00154_6 crossref_primary_10_1016_j_indcrop_2024_118504 crossref_primary_10_1051_mmnp_20138402 crossref_primary_10_1111_ppl_13672 crossref_primary_10_1186_s13104_020_05371_0 crossref_primary_10_3390_genes15060685 crossref_primary_10_1126_scitranslmed_ade2886 crossref_primary_10_4161_cc_20624 crossref_primary_10_1038_s41586_024_07630_7 crossref_primary_10_1109_TCBB_2024_3423383 crossref_primary_10_1016_j_cels_2020_02_003 crossref_primary_10_1016_j_crbiot_2022_04_001 crossref_primary_10_1039_C7RA01557G crossref_primary_10_1042_ETLS20180176 crossref_primary_10_3389_fpls_2018_01770 crossref_primary_10_1016_j_jtbi_2022_111055 crossref_primary_10_1111_ppl_14537 crossref_primary_10_1016_j_molp_2022_12_019 crossref_primary_10_1038_s41534_023_00740_6 crossref_primary_10_15252_embj_2020106785 crossref_primary_10_1038_s41467_023_40365_z crossref_primary_10_3389_fgene_2020_00457 crossref_primary_10_1371_journal_pone_0195997 crossref_primary_10_1089_omi_2015_0185 crossref_primary_10_1094_PHYTO_06_23_0184_R crossref_primary_10_1016_j_tig_2020_08_004 crossref_primary_10_1002_qub2_25 crossref_primary_10_1016_j_isci_2023_106250 crossref_primary_10_1016_j_coisb_2020_09_005 crossref_primary_10_1093_bioinformatics_btac559 crossref_primary_10_1093_bioinformatics_btx256 crossref_primary_10_1073_pnas_2322751121 crossref_primary_10_1016_j_patter_2020_100139 crossref_primary_10_1038_s41598_022_14903_6 crossref_primary_10_1093_bioinformatics_bty584 crossref_primary_10_1093_nargab_lqac068 crossref_primary_10_1534_g3_120_401477 crossref_primary_10_1002_qub2_26 crossref_primary_10_1021_acssynbio_4c00473 crossref_primary_10_1049_iet_syb_2016_0005 crossref_primary_10_1093_bioinformatics_btad644 crossref_primary_10_1093_bioinformatics_btv075 crossref_primary_10_1016_j_ygeno_2022_110358 crossref_primary_10_1093_bib_bbab547 crossref_primary_10_1038_s41598_022_20232_5 crossref_primary_10_1093_bib_bbac633 crossref_primary_10_1002_cam4_70238 crossref_primary_10_1186_s12859_016_1319_8 crossref_primary_10_1109_TCBB_2021_3057241 crossref_primary_10_1093_bioinformatics_btac569 crossref_primary_10_1101_gr_150904_112 crossref_primary_10_1105_tpc_20_00080 crossref_primary_10_3390_plants10122707 crossref_primary_10_3389_fgene_2021_649764 crossref_primary_10_1093_nargab_lqac056 crossref_primary_10_1109_TAC_2020_3016964 crossref_primary_10_1109_ACCESS_2019_2945084 crossref_primary_10_1093_database_baz046 crossref_primary_10_3389_fgene_2019_00535 crossref_primary_10_1038_s41598_018_21715_0 crossref_primary_10_1038_s41467_021_26165_3 crossref_primary_10_3390_genes10100798 crossref_primary_10_1111_tpj_14976 crossref_primary_10_1073_pnas_1815336116 crossref_primary_10_1038_s41592_019_0632_3 crossref_primary_10_18632_oncotarget_14286 crossref_primary_10_1371_journal_pcbi_1011118 crossref_primary_10_1016_j_csbj_2022_09_019 crossref_primary_10_1109_TFUZZ_2020_2975482 crossref_primary_10_1186_1471_2105_14_S13_S5 crossref_primary_10_1038_s41586_022_05688_9 crossref_primary_10_1093_nargab_lqac002 crossref_primary_10_1093_bib_bbaf098 crossref_primary_10_1186_s12936_021_03848_2 crossref_primary_10_1038_s41598_025_86332_0 crossref_primary_10_1111_tpj_14940 crossref_primary_10_1016_j_heliyon_2023_e16811 crossref_primary_10_3389_fpls_2019_00698 crossref_primary_10_1109_TCBB_2019_2892450 crossref_primary_10_1186_s12915_019_0679_8 crossref_primary_10_1186_s12920_017_0312_z crossref_primary_10_1021_acs_jproteome_5b00925 crossref_primary_10_1093_bib_bbaf089 crossref_primary_10_1101_gr_271080_120 crossref_primary_10_3389_fcell_2022_1060298 crossref_primary_10_1186_s13024_018_0296_y crossref_primary_10_1093_bib_bbaf081 crossref_primary_10_3389_fpls_2022_896945 crossref_primary_10_1038_s41598_022_19005_x crossref_primary_10_1093_bioinformatics_btac103 crossref_primary_10_3389_fpls_2021_708286 crossref_primary_10_1073_pnas_1200790109 crossref_primary_10_1371_journal_pcbi_1008379 crossref_primary_10_1016_j_compbiomed_2022_106305 crossref_primary_10_1016_j_ygeno_2022_110367 crossref_primary_10_1534_g3_120_401436 crossref_primary_10_3390_computation9120146 crossref_primary_10_1214_20_STS792 crossref_primary_10_1016_j_ygeno_2021_07_024 crossref_primary_10_1093_hmg_ddae087 crossref_primary_10_1186_s13073_021_00908_9 crossref_primary_10_1016_j_celrep_2023_113421 crossref_primary_10_1038_nmeth_4463 crossref_primary_10_3390_biom13030526 crossref_primary_10_1093_bib_bbx151 crossref_primary_10_1093_bib_bbx152 crossref_primary_10_1109_TEVC_2020_3020423 crossref_primary_10_3389_fgene_2022_855770 crossref_primary_10_1109_ACCESS_2019_2913084 crossref_primary_10_1002_qub2_64 crossref_primary_10_1093_nar_gkab598 crossref_primary_10_1111_bph_17395 crossref_primary_10_3389_fimmu_2024_1383358 crossref_primary_10_1038_s41590_024_01826_9 crossref_primary_10_1273_cbij_22_88 crossref_primary_10_1016_j_patter_2021_100414 crossref_primary_10_1016_j_isci_2021_103218 crossref_primary_10_1093_bioinformatics_btab269 crossref_primary_10_1007_s12038_021_00171_5 crossref_primary_10_1038_nmeth_2016 crossref_primary_10_1016_j_xgen_2023_100298 crossref_primary_10_1049_iet_syb_2019_0060 crossref_primary_10_1186_s12859_015_0728_4 crossref_primary_10_1109_TCBB_2020_3034861 crossref_primary_10_1186_s13073_022_01022_0 crossref_primary_10_1038_s41581_023_00705_0 crossref_primary_10_1155_2017_4827171 crossref_primary_10_1371_journal_pcbi_1002606 crossref_primary_10_1093_nar_gkac1212 crossref_primary_10_1016_j_gde_2017_01_003 crossref_primary_10_7554_eLife_58993 crossref_primary_10_1615_JMachLearnModelComput_2023047230 crossref_primary_10_1093_bioinformatics_btab035 crossref_primary_10_26508_lsa_202201458 crossref_primary_10_1038_nature14099 crossref_primary_10_1016_j_omton_2024_200914 crossref_primary_10_1186_s12918_017_0440_2 crossref_primary_10_3390_genes13050764 crossref_primary_10_1016_j_jbi_2014_08_010 crossref_primary_10_3389_fimmu_2019_01283 crossref_primary_10_1038_s41540_024_00361_5 crossref_primary_10_1093_bioinformatics_btae433 crossref_primary_10_1093_bioinformatics_btx194 crossref_primary_10_1242_dev_182097 crossref_primary_10_1093_bioinformatics_btae435 crossref_primary_10_1109_TCBB_2016_2576440 crossref_primary_10_1016_j_crmeth_2024_100963 crossref_primary_10_1007_s12539_024_00633_y crossref_primary_10_1038_s41380_022_01439_4 crossref_primary_10_1038_s41467_022_32567_8 crossref_primary_10_1182_blood_2013_02_486944 crossref_primary_10_1186_1471_2105_15_336 crossref_primary_10_1038_s41467_023_38183_4 crossref_primary_10_1038_s41588_022_01069_0 crossref_primary_10_1038_s43587_025_00819_z crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1016_j_crmeth_2022_100392 crossref_primary_10_3390_sym13091559 crossref_primary_10_1016_j_smim_2013_02_002 crossref_primary_10_1038_s41540_024_00372_2 crossref_primary_10_1016_j_coisb_2017_07_008 crossref_primary_10_1016_j_coisb_2017_07_006 crossref_primary_10_1093_procel_pwad060 crossref_primary_10_3390_biology11030365 crossref_primary_10_1016_j_exger_2023_112202 crossref_primary_10_1038_s41477_021_00929_7 crossref_primary_10_1016_j_coisb_2018_02_003 crossref_primary_10_1016_j_heliyon_2024_e38259 crossref_primary_10_15252_msb_20209506 crossref_primary_10_1155_2022_4030046 crossref_primary_10_1093_bib_bbw139 crossref_primary_10_1038_s41598_017_05472_0 crossref_primary_10_1371_journal_pone_0307248 crossref_primary_10_26508_lsa_202201788 crossref_primary_10_1038_s41591_022_01724_3 crossref_primary_10_7554_eLife_67436 crossref_primary_10_1007_s10994_019_05829_8 crossref_primary_10_1016_j_compbiomed_2023_106653 crossref_primary_10_1093_bioinformatics_btad373 crossref_primary_10_1016_j_molp_2022_10_016 crossref_primary_10_1038_s41593_024_01794_1 crossref_primary_10_1063_1_5092170 crossref_primary_10_1186_s12859_017_1489_z crossref_primary_10_1242_dev_174441 crossref_primary_10_1186_s12870_024_05086_5 crossref_primary_10_1002_bies_202300210 crossref_primary_10_1093_bioinformatics_btae466 crossref_primary_10_1093_bioinformatics_btac288 crossref_primary_10_1016_j_compbiomed_2022_105279 crossref_primary_10_1186_s12864_021_07659_2 crossref_primary_10_3934_mbe_2020183 crossref_primary_10_1016_j_devcel_2020_11_002 crossref_primary_10_1016_j_xpro_2024_103006 crossref_primary_10_1126_sciadv_adr1509 crossref_primary_10_1038_s42003_025_07764_y crossref_primary_10_1016_j_csbj_2021_11_012 crossref_primary_10_1186_s13059_024_03226_6 crossref_primary_10_1093_icb_icu037 crossref_primary_10_1515_cppm_2019_0046 crossref_primary_10_3390_v14040837 crossref_primary_10_1016_j_biosystems_2022_104736 crossref_primary_10_1186_s13059_024_03368_7 crossref_primary_10_1101_gr_278439_123 crossref_primary_10_1038_s41598_020_63347_3 crossref_primary_10_1002_advs_202409170 crossref_primary_10_1126_sciadv_adk0837 crossref_primary_10_1038_s41598_023_46295_6 crossref_primary_10_1038_srep17617 crossref_primary_10_1371_journal_pone_0185475 crossref_primary_10_1038_s41598_021_01790_6 crossref_primary_10_1109_TCBB_2024_3456302 crossref_primary_10_1016_j_cels_2024_07_006 crossref_primary_10_1186_s12859_016_1235_y crossref_primary_10_3233_IDA_173681 crossref_primary_10_1093_bib_bbaf004 crossref_primary_10_1177_17448069221097760 crossref_primary_10_1007_s11883_023_01170_7 crossref_primary_10_1007_s10709_017_9980_z crossref_primary_10_1038_s41598_018_24937_4 crossref_primary_10_1007_s10489_020_01705_4 crossref_primary_10_1186_s12864_016_2405_z crossref_primary_10_31857_S032097252302001X crossref_primary_10_1042_BST20210128 crossref_primary_10_1093_bib_bbw102 crossref_primary_10_3389_fgene_2021_652623 crossref_primary_10_1038_s41467_025_56884_w crossref_primary_10_1038_s41592_019_0690_6 crossref_primary_10_1016_j_biosystems_2022_104757 crossref_primary_10_1016_j_celrep_2019_10_013 crossref_primary_10_1038_s41598_021_94919_6 crossref_primary_10_1101_gr_265595_120 crossref_primary_10_1093_bioinformatics_btad165 crossref_primary_10_3390_agronomy14071541 crossref_primary_10_1016_j_stemcr_2021_12_018 crossref_primary_10_1038_s41559_023_02238_y crossref_primary_10_3390_cells12060948 crossref_primary_10_1038_s41467_024_53954_3 crossref_primary_10_1038_s43588_021_00099_8 crossref_primary_10_1042_BST20210135 crossref_primary_10_1021_acs_jproteome_3c00418 crossref_primary_10_1016_j_celrep_2023_113014 crossref_primary_10_1142_S0219720021500025 crossref_primary_10_7554_eLife_55646 crossref_primary_10_1016_j_crmeth_2023_100476 crossref_primary_10_24072_pcjournal_327 crossref_primary_10_1038_s41467_024_48261_w crossref_primary_10_1093_bioinformatics_bts312 crossref_primary_10_1038_s41598_022_05402_9 crossref_primary_10_1371_journal_pone_0231658 crossref_primary_10_1016_j_bbagrm_2016_09_003 crossref_primary_10_3389_fcimb_2018_00326 crossref_primary_10_1186_s12870_018_1329_y crossref_primary_10_3389_fpls_2021_761059 crossref_primary_10_1093_bib_bbaf021 crossref_primary_10_1093_bfgp_elt030 crossref_primary_10_1016_j_jgg_2023_01_006 crossref_primary_10_1093_bfgp_elad040 crossref_primary_10_3389_fmicb_2015_00409 crossref_primary_10_1186_s12864_021_07940_4 crossref_primary_10_1042_BST20210145 crossref_primary_10_1016_j_tig_2016_08_009 crossref_primary_10_1186_s12859_022_04696_w crossref_primary_10_1002_minf_201900075 crossref_primary_10_1016_j_ccell_2024_02_002 crossref_primary_10_1016_j_physrep_2016_06_004 crossref_primary_10_1002_int_22390 crossref_primary_10_1002_ctm2_165 crossref_primary_10_1109_TCBB_2018_2861698 crossref_primary_10_1093_bib_bbae361 crossref_primary_10_3390_genes13020371 crossref_primary_10_1186_s12859_023_05198_z crossref_primary_10_1371_journal_pone_0122133 crossref_primary_10_1080_03610918_2024_2331083 crossref_primary_10_1093_bioadv_vbae011 crossref_primary_10_1111_tpj_16375 crossref_primary_10_1186_s12918_014_0111_5 crossref_primary_10_1093_bib_bbt034 crossref_primary_10_3389_fgene_2024_1460351 crossref_primary_10_1128_spectrum_02536_23 crossref_primary_10_1007_s10142_023_01056_6 crossref_primary_10_1093_bioinformatics_btae291 crossref_primary_10_1242_dev_147942 crossref_primary_10_1186_s13059_020_02213_x crossref_primary_10_3389_fgene_2021_655536 crossref_primary_10_3390_ijms24076543 crossref_primary_10_1093_bib_bbae143 crossref_primary_10_1093_bioinformatics_btt692 crossref_primary_10_1186_s12870_024_05366_0 crossref_primary_10_1093_nar_gkaa1014 crossref_primary_10_1038_s41467_023_36517_w crossref_primary_10_3389_fgene_2023_1168142 crossref_primary_10_1093_bioinformatics_btaa935 crossref_primary_10_1186_s13040_016_0093_5 crossref_primary_10_15252_msb_20199005 crossref_primary_10_3389_fgene_2021_617282 crossref_primary_10_1002_advs_202413819 crossref_primary_10_1038_s41576_023_00618_5 crossref_primary_10_1093_bib_bbae382 crossref_primary_10_1126_science_aag1125 crossref_primary_10_1371_journal_pcbi_1007435 crossref_primary_10_1111_pce_14012 crossref_primary_10_1371_journal_pcbi_1005013 crossref_primary_10_1093_bioadv_vbae034 crossref_primary_10_1186_1752_0509_7_106 crossref_primary_10_1016_j_celrep_2024_114664 crossref_primary_10_1093_bioinformatics_bty908 crossref_primary_10_1371_journal_pcbi_1010832 crossref_primary_10_1016_j_devcel_2024_05_002 crossref_primary_10_1016_j_omtn_2023_102044 crossref_primary_10_1093_bib_bbad281 crossref_primary_10_1242_dev_174284 crossref_primary_10_1093_bioinformatics_btu777 crossref_primary_10_1038_s41467_021_27162_2 crossref_primary_10_1016_j_bspc_2024_105992 crossref_primary_10_1007_s13258_023_01473_8 crossref_primary_10_1093_nar_gkaf138 crossref_primary_10_1186_s13059_023_03134_1 crossref_primary_10_1111_nph_16627 crossref_primary_10_1186_1752_0509_7_118 crossref_primary_10_1038_s42003_021_02991_5 crossref_primary_10_1109_TCBB_2024_3442536 crossref_primary_10_1093_bioinformatics_bts143 crossref_primary_10_1016_j_coisb_2021_04_007 crossref_primary_10_1093_bioinformatics_btv414 crossref_primary_10_1093_bib_bbac389 crossref_primary_10_1016_j_mbs_2024_109284 crossref_primary_10_1093_gbe_evab208 crossref_primary_10_1016_j_compbiomed_2020_104017 crossref_primary_10_1016_j_isci_2023_107728 crossref_primary_10_1038_s41593_024_01806_0 crossref_primary_10_1002_JLB_6MA0622_738RR crossref_primary_10_1007_s12572_018_0239_4 crossref_primary_10_1038_s41467_018_06382_z crossref_primary_10_1371_journal_pcbi_1003252 crossref_primary_10_48130_mpb_0024_0006 crossref_primary_10_2174_0118744710282465240315053136 crossref_primary_10_1089_brain_2020_0745 crossref_primary_10_1093_biolre_ioab065 crossref_primary_10_15252_msb_20167435 crossref_primary_10_3389_fgene_2022_815692 crossref_primary_10_1111_tpj_16570 crossref_primary_10_1007_s11009_017_9554_7 crossref_primary_10_1093_bib_bbaa190 crossref_primary_10_1371_journal_pone_0311978 crossref_primary_10_3389_fpls_2022_831204 crossref_primary_10_1089_cmb_2019_0459 crossref_primary_10_1038_s42003_022_04226_7 crossref_primary_10_3390_ijms25179384 crossref_primary_10_1007_s12539_024_00604_3 crossref_primary_10_1007_s10142_024_01491_z crossref_primary_10_3390_math13030420 crossref_primary_10_1007_s42994_024_00176_2 crossref_primary_10_1371_journal_pone_0103812 crossref_primary_10_1109_TSP_2019_2929471 crossref_primary_10_1016_j_copbio_2019_12_002 crossref_primary_10_1186_s12859_016_1324_y crossref_primary_10_1093_bioinformatics_btx827 crossref_primary_10_1093_bioinformatics_bty916 crossref_primary_10_1093_plphys_kiab169 crossref_primary_10_1017_qpb_2022_17 crossref_primary_10_1016_j_celrep_2022_110973 crossref_primary_10_3389_fpls_2024_1421503 crossref_primary_10_1093_jxb_erae454 crossref_primary_10_2174_1574893617666220823114108 crossref_primary_10_1093_bioinformatics_bty945 crossref_primary_10_1371_journal_pone_0192613 crossref_primary_10_2217_epi_2023_0403 crossref_primary_10_1111_tpj_15458 crossref_primary_10_1093_bib_bbad011 crossref_primary_10_1016_j_tplants_2022_09_008 crossref_primary_10_3390_e25081214 crossref_primary_10_1016_j_celrep_2024_114460 crossref_primary_10_1016_j_bbrep_2023_101491 crossref_primary_10_1093_bioinformatics_btab829 crossref_primary_10_1109_TCYB_2021_3090769 crossref_primary_10_1093_nar_gkae076 crossref_primary_10_1098_rspb_2024_2296 crossref_primary_10_1371_journal_pone_0110134 crossref_primary_10_1016_j_isci_2024_111279 crossref_primary_10_1016_j_csbj_2022_06_037 crossref_primary_10_1093_bib_bbae334 crossref_primary_10_1096_fj_202201949RR crossref_primary_10_1038_s41467_021_24607_6 crossref_primary_10_1186_s12859_021_04074_y crossref_primary_10_1093_pnasnexus_pgad113 crossref_primary_10_1242_dev_159707 crossref_primary_10_1186_gb_2013_14_6_123 crossref_primary_10_1186_s12918_018_0637_z crossref_primary_10_1038_srep39684 crossref_primary_10_1101_gr_277488_122 crossref_primary_10_1371_journal_pcbi_1004590 crossref_primary_10_3390_biom13020399 crossref_primary_10_1016_j_compbiomed_2023_107151 crossref_primary_10_3389_fphys_2016_00057  | 
    
| Cites_doi | 10.1155/2007/79879 10.1038/nprot.2006.106 10.1089/cmb.2008.09TT 10.1126/science.1081900 10.1142/p567 10.1016/j.plrev.2005.01.001 10.1186/gb-2006-7-5-r36 10.1039/b907946g 10.1126/science.1094068 10.1089/106652700750050961 10.1093/bioinformatics/bti792 10.1186/1471-2105-8-S6-S5 10.1093/bioinformatics/bth337 10.1093/bioinformatics/bth448 10.1093/bioinformatics/btg480 10.1038/msb4100120 10.1093/bioinformatics/btg1071 10.1073/pnas.95.25.14863 10.1186/1752-0509-1-37 10.1371/journal.pone.0009202 10.1093/oso/9780195079517.001.0001 10.1093/bioinformatics/btm344 10.1093/bioinformatics/btl391 10.1186/1471-2105-9-461 10.1214/08-EJS314 10.1186/1471-2105-9-91 10.1186/1471-2105-8-25 10.2202/1544-6115.1175 10.1111/j.1749-6632.2009.04497.x 10.1371/journal.pbio.0050008 10.1007/s10994-006-6226-1 10.1073/pnas.0913357107 10.1089/cmb.2008.08TT 10.1214/009053606000000281 10.1371/journal.pcbi.1000414 10.1023/A:1010933404324 10.1196/annals.1407.021 10.1007/BF00058655  | 
    
| ContentType | Journal Article | 
    
| Contributor | Systems and modeling (Dept. of EE and CS) and Bioinformatics and modeling (GIGA-R) | 
    
| Contributor_xml | – sequence: 1 fullname: Systems and modeling (Dept. of EE and CS) and Bioinformatics and modeling (GIGA-R)  | 
    
| Copyright | COPYRIGHT 2010 Public Library of Science 2010 Huynh-Thu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Huynh-Thu et al. 2010  | 
    
| Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: 2010 Huynh-Thu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Huynh-Thu et al. 2010  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 JLOSS Q33 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0012776 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest MSED ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (Proquest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of open access journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Agricultural Science Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Computer Science  | 
    
| DocumentTitleAlternate | Inferring GRNs with Trees | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 1292466548 oai_doaj_org_article_13e2336da0c54cd497a5c68406a2a9ae 10.1371/journal.pone.0012776 PMC2946910 oai_orbi_ulg_ac_be_2268_73256 2898422151 A473857805 20927193 10_1371_journal_pone_0012776  | 
    
| Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article  | 
    
| GeographicLocations | Belgium | 
    
| GeographicLocations_xml | – name: Belgium | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ALIPV BBORY CGR CUY CVF ECM EIF NPM 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 JLOSS Q33 5PM ADTOC PV9 RZL UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM  | 
    
| ID | FETCH-LOGICAL-c800t-b552b994ca228d4948dcc0c758d25e7fda2e3e40b49b4157c57359ba19f0f63c3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Fri Nov 26 17:12:39 EST 2021 Tue Oct 14 19:06:47 EDT 2025 Sun Oct 26 04:08:54 EDT 2025 Tue Sep 30 16:53:11 EDT 2025 Sat Oct 18 19:05:28 EDT 2025 Thu Oct 02 07:40:32 EDT 2025 Tue Oct 07 06:28:29 EDT 2025 Mon Oct 20 22:10:53 EDT 2025 Mon Oct 20 16:49:50 EDT 2025 Thu Oct 16 15:12:28 EDT 2025 Thu Oct 16 15:33:14 EDT 2025 Thu May 22 21:20:40 EDT 2025 Wed Feb 19 02:31:04 EST 2025 Wed Oct 01 02:28:16 EDT 2025 Thu Apr 24 22:56:34 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c800t-b552b994ca228d4948dcc0c758d25e7fda2e3e40b49b4157c57359ba19f0f63c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 scopus-id:2-s2.0-77958570788 Conceived and designed the experiments: VAHT PG. Performed the experiments: VAHT. Analyzed the data: VAHT AI LW PG. Wrote the paper: VAHT AI LW PG.  | 
    
| ORCID | 0000-0001-6649-2405 0000-0001-8527-5000 0000-0001-5492-2498  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0012776 | 
    
| PMID | 20927193 | 
    
| PQID | 1292466548 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e12776 | 
    
| ParticipantIDs | plos_journals_1292466548 doaj_primary_oai_doaj_org_article_13e2336da0c54cd497a5c68406a2a9ae unpaywall_primary_10_1371_journal_pone_0012776 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2946910 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_73256 proquest_miscellaneous_757176875 proquest_journals_1292466548 gale_infotracmisc_A473857805 gale_infotracacademiconefile_A473857805 gale_incontextgauss_ISR_A473857805 gale_incontextgauss_IOV_A473857805 gale_healthsolutions_A473857805 pubmed_primary_20927193 crossref_primary_10_1371_journal_pone_0012776 crossref_citationtrail_10_1371_journal_pone_0012776  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-09-28 | 
    
| PublicationDateYYYYMMDD | 2010-09-28 | 
    
| PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-28 day: 28  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2010 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | R Opgen-Rhein (ref24) 2007; 1 N Friedman (ref16) 2000; 7 S Gama-Castro (ref40) 2008; 36 (Database issue) Y Saeys (ref28) 2007; 23 G Stolovitzky (ref36) 2009; 1158 VA Huynh-Thu (ref46) 2008; 4 H Bolouri (ref1) 2008 N Meinshausen (ref21) 2006; 34 JJ Faith (ref43) AV Werhli (ref26) 2006; 22 MB Eisen (ref9) 1998; 95 I Pournara (ref27) 2004; 20 RJ Prill (ref35) 2010; 5 D Marbach (ref38) 2009; 16 J Schafer (ref20) 2005; 4 P Geurts (ref29) 2009; 5 TS Gardner (ref2) 2005; 2 G Stolovitzky (ref37) 2007; 1115 J Schäfer (ref45) 2006; 5 M Bansal (ref3) 2007; 3 AA Margolin (ref12) 2006; 1 AJ Butte (ref10) 2000 R Castelo (ref22) 2009; 16 L Breiman (ref41) 1996; 24 ref34 TS Gardner (ref7) 2003; 301 TM Cover (ref13) 2006 C Ambroise (ref23) 2009; 3 J Ruan (ref48) 2006; 22 E Segal (ref50) 2005; 6 Y Xiao (ref49) 2009; 5 F Markowetz (ref4) 2007; 8 C Strobl (ref33) 2007; 8 JJ Faith (ref39) 2008; 36 (Database issue) JJ Faith (ref11) 2007; 5 TM Phuong (ref47) 2004; 20 ref25 N Friedman (ref15) 2004; 303 L Breiman (ref31) 2001; 45 WP Lee (ref5) 2009; 10 SA Kauffman (ref6) 1993 PE Meyer (ref44) 2008; 9 R Bonneau (ref8) 2006; 7 B Perrin (ref19) 2003; 19 L Breiman (ref30) 1984 P Geurts (ref32) 2006; 36 PE Meyer (ref14) 2007; 2007 J Yu (ref17) 2004; 20 C Auliac (ref18) 2008; 9 D Marbach (ref42) 2010; 107  | 
    
| References_xml | – volume: 2007 start-page: 79879 year: 2007 ident: ref14 article-title: Information-theoretic inference of large transcriptional regulatory networks. publication-title: EURASIP J Bioinform Syst Biol doi: 10.1155/2007/79879 – volume: 1 start-page: 663 year: 2006 ident: ref12 article-title: Reverse engineering cellular networks. publication-title: Nature Protocols doi: 10.1038/nprot.2006.106 – volume: 16 start-page: 229 year: 2009 ident: ref38 article-title: Generating realistic in silico gene networks for performance assessment of reverse engineering methods. publication-title: Journal of Computational Biology doi: 10.1089/cmb.2008.09TT – volume: 301 start-page: 102 year: 2003 ident: ref7 article-title: Inferring genetic networks and identifying compound mode of action via expression profiling. publication-title: Science doi: 10.1126/science.1081900 – volume: 36 (Database issue) start-page: D120 year: 2008 ident: ref40 article-title: RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. publication-title: Nucleic Acids Research – year: 2008 ident: ref1 article-title: Computational Modeling of Gene Regulatory Networks - a Primer doi: 10.1142/p567 – volume: 2 start-page: 65 year: 2005 ident: ref2 article-title: Reverse-engineering transcription control networks. publication-title: Physics of Life Reviews doi: 10.1016/j.plrev.2005.01.001 – volume: 7 start-page: R36 year: 2006 ident: ref8 article-title: The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. publication-title: Genome Biol doi: 10.1186/gb-2006-7-5-r36 – volume: 5 start-page: 50 year: 2006 ident: ref45 article-title: Reverse engineering genetic networks using the GeneNet package. publication-title: R News 6/ – ident: ref43 article-title: Supplemental website for: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. – volume: 5 start-page: 1593 year: 2009 ident: ref29 article-title: Supervised learning with decision tree-based methods in computational and systems biology. publication-title: Mol Biosyst doi: 10.1039/b907946g – volume: 303 start-page: 799 year: 2004 ident: ref15 article-title: Inferring cellular networks using probabilistic graphical models. publication-title: Science doi: 10.1126/science.1094068 – volume: 7 start-page: 601 year: 2000 ident: ref16 article-title: Using bayesian networks to analyze expression data. publication-title: Journal of computational biology doi: 10.1089/106652700750050961 – year: 2006 ident: ref13 article-title: Elements of Information Theory 2nd Edition – volume: 22 start-page: 332 year: 2006 ident: ref48 article-title: A bi-dimensional regression tree approach to the modeling of gene expression regulation. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti792 – volume: 8 start-page: S5 year: 2007 ident: ref4 article-title: Inferring cellular networks–a review. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-S6-S5 – volume: 20 start-page: 2934 year: 2004 ident: ref27 article-title: Reconstruction of gene networks using bayesian learning and manipulation experiments. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth337 – year: 1984 ident: ref30 article-title: Classification and Regression Trees – volume: 10 start-page: 408 year: 2009 ident: ref5 article-title: Computational methods for discovering gene networks from expression data. publication-title: Brief Bioinform – start-page: 418 year: 2000 ident: ref10 article-title: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. publication-title: Pac Symp Biocomput – volume: 20 start-page: 3594 year: 2004 ident: ref17 article-title: Advances to bayesian network inference for generating causal networks from observational biological data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth448 – volume: 36 (Database issue) start-page: D866 year: 2008 ident: ref39 article-title: Many microbe microarrays database: uniformly normalized affymetrix compendia with structured experimental metadata. publication-title: Nucleic Acids Research – volume: 20 start-page: 750 year: 2004 ident: ref47 article-title: Regression trees for regulatory element identification. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg480 – volume: 4 start-page: 60 year: 2008 ident: ref46 article-title: Exploiting tree-based variable importances to selectively identify relevant variables. publication-title: JMLR: Workshop and Conference proceedings – volume: 6 start-page: 557 year: 2005 ident: ref50 article-title: Learning module networks. publication-title: Journal of Machine Learning Research – volume: 3 start-page: 78 year: 2007 ident: ref3 article-title: How to infer gene networks from expression profiles. publication-title: Mol Syst Biol doi: 10.1038/msb4100120 – volume: 19 start-page: ii138 year: 2003 ident: ref19 article-title: Gene networks inference using dynamic bayesian networks. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg1071 – volume: 95 start-page: 14863 year: 1998 ident: ref9 article-title: Cluster analysis and display of genome-wide expression patterns. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.25.14863 – volume: 1 start-page: 37 year: 2007 ident: ref24 article-title: From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. publication-title: BMC Systems Biology doi: 10.1186/1752-0509-1-37 – volume: 5 start-page: e9202 year: 2010 ident: ref35 article-title: Towards a rigorous assessment of systems biology models: The DREAM3 challenges. publication-title: PLoS ONE doi: 10.1371/journal.pone.0009202 – year: 1993 ident: ref6 article-title: The Origins of Order: Self-Organization and Selection in Evolution doi: 10.1093/oso/9780195079517.001.0001 – volume: 23 start-page: 2507 year: 2007 ident: ref28 article-title: A review of feature selection techniques in bioinformatics. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 22 start-page: 2523 year: 2006 ident: ref26 article-title: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl391 – ident: ref34 article-title: The DREAM project. – volume: 9 start-page: 461 year: 2008 ident: ref44 article-title: minet: A r/bioconductor package for inferring large transcriptional networks using mutual information. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-461 – volume: 3 start-page: 205 year: 2009 ident: ref23 article-title: Inferring sparse gaussian graphical models with latent structure. publication-title: Electronic Journal of Statistics doi: 10.1214/08-EJS314 – volume: 9 start-page: 91 year: 2008 ident: ref18 article-title: Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-91 – ident: ref25 article-title: The DREAM4 In Silico network challenge. – volume: 8 start-page: 5 year: 2007 ident: ref33 article-title: Bias in random forest variable importance measures: Illustrations, sources and a solution. publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-25 – volume: 4 start-page: 1175 year: 2005 ident: ref20 article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. publication-title: Statistical applications in genetics and molecular biology doi: 10.2202/1544-6115.1175 – volume: 1158 start-page: 159 year: 2009 ident: ref36 article-title: Lessons from the DREAM2 challenges. publication-title: Annals of the New York Academy of Sciences doi: 10.1111/j.1749-6632.2009.04497.x – volume: 5 start-page: e8 year: 2007 ident: ref11 article-title: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. publication-title: PLoS Biology doi: 10.1371/journal.pbio.0050008 – volume: 36 start-page: 3 year: 2006 ident: ref32 article-title: Extremely randomized trees. publication-title: Machine Learning doi: 10.1007/s10994-006-6226-1 – volume: 107 start-page: 6286 year: 2010 ident: ref42 article-title: Revealing strengths and weaknesses of methods for gene network inference. publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0913357107 – volume: 16 start-page: 213 year: 2009 ident: ref22 article-title: Reverse engineering molecular regulatory networks from microarray data with qp-graphs. publication-title: Journal of Computational Biology doi: 10.1089/cmb.2008.08TT – volume: 34 start-page: 1436 year: 2006 ident: ref21 article-title: High-dimensional graphs and variable selection with the lasso. publication-title: Ann Statist doi: 10.1214/009053606000000281 – volume: 5 start-page: e1000414 year: 2009 ident: ref49 article-title: Identification of yeast transcriptional regulation networks using multivariate random forests. publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1000414 – volume: 45 start-page: 5 year: 2001 ident: ref31 article-title: Random forests. publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 1115 start-page: 11 year: 2007 ident: ref37 article-title: Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference. publication-title: Annals of the New York Academy of Sciences doi: 10.1196/annals.1407.021 – volume: 24 start-page: 123 year: 1996 ident: ref41 article-title: Bagging predictors. publication-title: Machine Learning doi: 10.1007/BF00058655  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.58676 | 
    
| Snippet | One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high... | 
    
| SourceID | plos doaj unpaywall pubmedcentral liege proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e12776 | 
    
| SubjectTerms | Acids Algorithms Analysis Artificial intelligence Benchmarks Biochemistry, biophysics & molecular biology Biochimie, biophysique & biologie moléculaire Bioinformatics Combinatorial analysis Computational Biology Computational Biology - methods Computational Biology/Systems Biology Computational Biology/Transcriptional Regulation Computer applications Computer engineering Computer science Computer simulation DNA microarrays E coli Electrical engineering Engineering, computing & technology Escherichia coli Escherichia coli - genetics Gene expression Gene Expression Regulation Gene regulation Gene Regulatory Networks Genes Genetic research Genomics Identification Inference Ingénierie, informatique & technologie Life sciences Machine learning Metadata Methods Oligonucleotide Array Sequence Analysis Ordinary differential equations Predictions Random variables Reverse engineering Sciences du vivant Sciences informatiques systems biology Topology Trees  | 
    
| SummonAdditionalLinks | – databaseName: Directory of open access journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQeIAXxPhaYICFkAChdIntxPHjQEwbCJCAob1ZjuNsk6Kkalpg_z13sRs1YtL2wFtVX9Xcl-8uPv-OkJdWQcw1EnFbXRWLqkjiApupqpw5BSHIFg4Lxc9f8sNj8fEkO9kY9YU9YR4e2AtuL-WOcZ5XJrGZsJVQ0mQWEUpywxBZGnffpFDrYsrvweDFeR4uynGZ7gW9zOZd62bDaStijGwEogGvf9yVbzZ4YI1wp03XX5Z6_ttBeWvVzs3Fb9M0G-Hp4C65E_JKuu_52SY3XHuPbAfP7enrAC_95j75dIR3_PB1Hl34QfTd4oK2vh28p3jfhLo_oT-2pdhCSrE7_pTiAXaMYa-ifvB0_4AcH3z48f4wDiMVYguZ4TIus4yVSglrGCsqhIaprE0sFA0Vy5ysK8McdyIphSohtEubSZ6p0qSqTuqcW_6QbLUgxB1CRa1UnaUmFcYJnhSlFS6puJAsKyFrqSPC1_LVNuCN49iLRg-HaBLqDi8ajVrRQSsRicdfzT3exhX071B1Iy2iZQ9fgA3pYEP6KhuKyHNUvPZXT0ef1_sCsX5w6kNEXgwUiJjRYkvOqVn1vT76-vMaRN-_TYheBaK6A3FYE65BAE-IxDWh3J1Qgt_byfLbwUyB0_Jc_2ID68PnVQOsW106Dbl1oSWHtDYiO2jMaxn2GvI8JnD0dAH_szbwy5fpuIyPgE15retWvZaZTKFalfAoj7w7jGpgiWISaoOIyImjTPQ0XWnPzwZ0c6ZEDjlsRGajS13LEh7_D0t4Qm779hAVs2KXbC0XK_cUss5l-WzYYP4CzA6AHw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gAvwMbHAgMshAQIpUsdJ04eEFqh0wZaQWOb9mY5jjMmVUlpWmD_PXeOExYxwd6i-KLkfB8-x3e_I-SFTmHNVQJxW03u8zwJ_ASTqfKYmRSWIJ0Y3CgeTOK9Y_7xNDpdIZO2FgbTKlufaB11Xmn8R74N6xLj2Co3eTf77mPXKDxdbVtoKNdaIX9rIcZukDWGyFirZG00nnw5bH0zWHccuwK6UAy3nbwGs6o0A3sKi9gjlxYoi-Pfeeu1KR5kIwzqtKqvCkn_zqy8uSxn6uKnmk4vLVu7d8ltF2_SnUZB1smKKTfInbaXA3WmvUHW3VVNXzkk6tf3yKd9LAfEP3_0sOlZX80v6KTJHK8plqbQ8S-XSlvSD2qhqM1BoEdzY_wRrJA5PbA9quv75Hh3fPR-z3fdF3wNQeTCz6KIZWnKtWIsyRFFJtc60LC_yFlkRJErZkLDg4ynGUQBQkcijNJMDdMiKOJQhw_IagnzukkoL9K0iIZqyJXhYZBkmpsgD7lgUQYBTuGRsJ1yqR00OXbImEp73iZgi9LMlkRBSScoj_jdU7MGmuM_9COUZkeLwNr2RjU_k85O4WnDwjDOVaAjroFtoSKNgDixYghk7pFnqAuyqVLt3IPc4QgLhA0iPPLcUiC4RonZO2dqWddy__PJNYi-HvaIXjqiooLp0MpVTABPCNrVo9zqUYKL0L3hN1ZzgdPsXP5glnV7vZwC61pmRkIYnkgRQgTskU3U73YOa_nH9OA9rc5fPUy7YfwEzN8rTbWspYjEEDa2Aj7lYWMhnRhYkDIB2wiPiJ7t9OTUHynPv1kgdJbyGMJdjww6K7uWJjz6NxuPya0mRyT1WbJFVhfzpXkCoecie-r8yW_bRIN0 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG-wAvwPhaYECEEB9CyVLHiZPHDjZtoBU0NjQekOU4zpio0qpJgPHA386d40YEhhgPvEX1OfWd7fM5d_c7Qh6qFM5cyRG3Vecey5PASzCYKo-pTuEIUonGi-LeJN45ZC-PoqMV8mGZC2MlCHfE6awynnx8mJV6w0pyA_GKWu-pPwr5aNnDnwORbzypPH5kEIfwy1iNCUgXyDCOwFQfkOHh5M34fetppl5Mg9Cm0_3pTb3jyqD6d7p7OEW3NoKiwgjPMlB_j7O82JRzefpFTqc_HWLbV8j3Jftt7Monv6kzX337BRnyv8nnKrlszV933L5llazo8hpZtQqmcp9YFOyn18mrXUxFxK-O7r4-xiJjs8WpO2mj1isX02Lcra82jLd0X8hauib-wT1YaO1twumcu3umPnZ1gxxubx083_Fs5QdPgQFbe1kU0SxNmZKUJjki2ORKBQruNjmNNC9ySXWoWZCxNAMLhKuIh1GayVFaBEUcqvAmGZTA7xpxWZGmRTSSIyY1C4MkU0wHecg4jTIwrgqHhMsJFsrComN1jqkwvj4O16NWNAIFKKwAHeJ1veYtLMhf6Ddx7XS0COptfoAZFHbmoLemYRjnMlARU8A2l5FCMJ5YUgRRd8h9XHmizZDtVJMYM4QkwuIUDnlgKBDYo8TIoWPZVJXYff3uHERv93tEjy1RMQNxKGmzNYAnXGA9yvUeJagn1Wt-ZvYJcJqdiM_UsG6emymwrkSmBVwBEsFDsL4dsobreSnDSoA5ShlWyE7gf5Y77Oxmt2vGIWDsYKlnTSV4xEdwqeYwlFvtfuymgQYp5aAKHMJ7O7U3T_2W8uSjAWGnKYvB1HaI3-3pc62E2__a4Q651EaspB5N1smgXjT6LhjCdXbPqrMf3GC2Tw priority: 102 providerName: Unpaywall  | 
    
| Title | Inferring Regulatory Networks from Expression Data Using Tree-Based Methods | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20927193 https://www.proquest.com/docview/1292466548 https://www.proquest.com/docview/757176875 http://orbi.ulg.ac.be/handle/2268/73256 https://pubmed.ncbi.nlm.nih.gov/PMC2946910 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012776&type=printable https://doaj.org/article/13e2336da0c54cd497a5c68406a2a9ae http://dx.doi.org/10.1371/journal.pone.0012776  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gAvwMbHAqNYCPEhlCp1nDh5QGgbGxtoZRorGk-W4zhjUpR2TQvbf8-d40ZEDNhLFMXnNv443118_v0Iea5TsLlKIG6ryX2eJ4GfYDJVHjOTggnSicFA8WAY7434x5PoZIksNtpdB9ZXhnbIJzWalv2L88t3oPBvLWuDGCwq9SfjyvTtXqqIX0zOfaSWwi1Yx7Nxg6yA-UqR3-GAt1sNoPBx7M7U_e3HOjbLQvu3C_hKiXvbiIxajuurvNQ_ky1vzquJuvypyvI3S7Z7l9x2LijdbObMKlky1Rq5s6B3oE7b18iqu6vpKwdO_foe-bSPJwTxYyA9amjsx9NLOmySyWuKp1XozoXLrq3oezVT1KYl0OOpMf4WGM2cHlja6vo-Ge3uHG_v-Y6QwdfgV878LIpYlqZcK8aSHIFlcq0DDSFHziIjilwxExoeZDzNwDEQOhJhlGZqkBZBEYc6fECWK-jXdUJ5kaZFNFADrgwPgyTT3AR5yAWLMvB5Co-Eiy6X2qGVI2lGKe0WnICopektiQMl3UB5xG9rTRq0jv_Ib-FotrKItW0fjKen0qku1DYsDONcBTriGpotVKQRIydWDLHNPfIU54JsDq62K4bc5IgUhJwRHnlmJRBvo8KEnlM1r2u5__nrNYS-HHWEXjqhYgzdoZU7RAFtQhyvjuRGRxJWDd0pfmNnLrQ0O5M_mG26vZ-X0HQtMyPBM0-kCMEp9sg6zu9FH9YSvETGkbg6gf9ZzPmri2lbjK-AKX2VGc9rKSIxgFhXwKs8bDSkHQYWpExAZOER0dGdzjh1S6qz7xYbnaU8Bg_YI_1Wy641Ex79uxmPya0mbST1WbJBlmfTuXkC3ugs65Eb4kTANdke4HX3Q4-sbO0MD4969vtOz6428Gw0PNz89gthxJEa | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9RAEN8gPOCLCv6hirIxGjWm0Ntuu-2DMSAQzgNMEAxv63a7RZJLe17vxPtSfkZn2m2lkSgvvDXd6V1nZ3ZmtjvzG0Je6Bh8rhKI22pSl6eR50aYTJWGzMTggnRkcKN4cBjunfCPp8HpHPnV1MJgWmVjEytDnRYav5FvgF9iHFvlRu9H313sGoWnq00LjVotBmZ2AVu28l1_G-T7krHdneMPe67tKuBqCI4mbhIELIljrhVjUYroKKnWnoa4OWWBEVmqmPEN9xIeJ-DdhA6EH8SJ6sWZl4W-9uF3b5EF7oMtgfUjTtsNHtiOMLTleb7obVhtWB8VuVmvzngR2eSS-6u6BLS-YGGIx-QIsjosyqsC3r_zNhen-UjNLtRweMkp7t4jd2w0Szdr9VsicyZfJnebThHUGo5lsmSvSvra4ly_uU8GfSw2xO-K9MicYRuxYjyjh3Veekmx8IXu_LSJujndVhNFqwwHejw2xt0C_5vSg6oDdvmAnNyIFB6S-RzmdYVQnsVxFvRUjysDUokSzY2X-lywIIHwKXOI30y51Bb4HPtvDGV1midgA1TPlkRBSSsoh7jtU6Ma-OM_9FsozZYWYburG8X4TForAE8b5vthqjwdcA1sCxVohNsJFUOYdIesoS7Iuga2NT5ykyPoELafcMjzigKhO3LMDTpT07KU_U9frkH0-ahD9MoSZQVMh1a2HgN4QkiwDuVqhxIMkO4Mv600FzhNzuUPVrFeXU-HwLqWiZEQ5EdS-BBfO2QF9buZw1L-WdjwP43OXz1M22F8BcwOzE0xLaUIRA-2zQJe5VG9QloxMC9mAjYpDhGdtdORU3ckP_9WwayzmIcQTDtkvV1l19KEx_9mY40s7h0f7Mv9_uHgCbldZ6PELotWyfxkPDVPIcidJM8qy0LJ15s2Zb8B1Ri5lw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9RAEN8gJOqLCv6hirIxGjWm0Ntuu-2DMeBBOBE0CIa3dbvdniSX9rzeiXw1P50z7bbSSJQX3pru9K6zMzsz2535DSHPdAw-VwnEbTWpy9PIcyNMpkpDZmJwQToyuFHc2w93jvj74-B4jvxqamEwrbKxiZWhTguN38jXwS8xjq1yo_XMpkV86m-_HX93sYMUnrQ27TRqFdk1Z6ewfSvfDPog6-eMbW8dvttxbYcBV0OgNHWTIGBJHHOtGItSREpJtfY0xNApC4zIUsWMb7iX8DgBTyd0IPwgTlQvzrws9LUPv3uNLAjfjzGdUBy3mz2wI2FoS_V80Vu3mrE2LnKzVp33IsrJOVdYdQxo_cLCCI_MEXB1VJQXBb9_53DemOVjdXaqRqNzDnL7DrllI1u6UaviIpkz-RK53XSNoNaILJFFe1XSlxbz-tVdsjvAwkP8xkgPzBBbihWTM7pf56iXFItg6NZPm7Sb076aKlplO9DDiTHuJvjilO5V3bDLe-ToSqRwn8znMK_LhPIsjrOgp3pcGe57UaK58VKfCxYkEEplDvGbKZfagqBjL46RrE72BGyG6tmSKChpBeUQt31qXIOA_Id-E6XZ0iKEd3WjmAyltQjwtGG-H6bK0wHXwLZQgUbonVAxhEx3yCrqgqzrYVtDJDc4AhBhKwqHPK0oEMYjxwUxVLOylIOPXy5B9PmgQ_TCEmUFTIdWtjYDeEJ4sA7lSocSjJHuDL-uNBc4TU7kD1axXl3PRsC6lomREPBHUvgQaztkGfW7mcNS_lnk8D-Nzl88TNthfAXMFMxNMSulCEQPttACXuVBvUJaMTAvZgI2LA4RnbXTkVN3JD_5VkGus5iHEFg7ZK1dZZfShIf_ZmOVXAcjJj8M9ncfkZt1YkrssmiFzE8nM_MY4t1p8qQyLJR8vWpL9hvrYb3a | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG-wAvwPhaYECEEB9CyVLHiZPHDjZtoBU0NjQekOU4zpio0qpJgPHA386d40YEhhgPvEX1OfWd7fM5d_c7Qh6qFM5cyRG3Vecey5PASzCYKo-pTuEIUonGi-LeJN45ZC-PoqMV8mGZC2MlCHfE6awynnx8mJV6w0pyA_GKWu-pPwr5aNnDnwORbzypPH5kEIfwy1iNCUgXyDCOwFQfkOHh5M34fetppl5Mg9Cm0_3pTb3jyqD6d7p7OEW3NoKiwgjPMlB_j7O82JRzefpFTqc_HWLbV8j3Jftt7Monv6kzX337BRnyv8nnKrlszV933L5llazo8hpZtQqmcp9YFOyn18mrXUxFxK-O7r4-xiJjs8WpO2mj1isX02Lcra82jLd0X8hauib-wT1YaO1twumcu3umPnZ1gxxubx083_Fs5QdPgQFbe1kU0SxNmZKUJjki2ORKBQruNjmNNC9ySXWoWZCxNAMLhKuIh1GayVFaBEUcqvAmGZTA7xpxWZGmRTSSIyY1C4MkU0wHecg4jTIwrgqHhMsJFsrComN1jqkwvj4O16NWNAIFKKwAHeJ1veYtLMhf6Ddx7XS0COptfoAZFHbmoLemYRjnMlARU8A2l5FCMJ5YUgRRd8h9XHmizZDtVJMYM4QkwuIUDnlgKBDYo8TIoWPZVJXYff3uHERv93tEjy1RMQNxKGmzNYAnXGA9yvUeJagn1Wt-ZvYJcJqdiM_UsG6emymwrkSmBVwBEsFDsL4dsobreSnDSoA5ShlWyE7gf5Y77Oxmt2vGIWDsYKlnTSV4xEdwqeYwlFvtfuymgQYp5aAKHMJ7O7U3T_2W8uSjAWGnKYvB1HaI3-3pc62E2__a4Q651EaspB5N1smgXjT6LhjCdXbPqrMf3GC2Tw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+Regulatory+Networks+from+Expression+Data+Using+Tree-Based+Methods&rft.jtitle=PloS+one&rft.au=Huynh-Thu%2C+V%C3%A2n+Anh&rft.au=Irrthum%2C+Alexandre&rft.au=Wehenkel%2C+Louis&rft.au=Geurts%2C+Pierre&rft.date=2010-09-28&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=5&rft.issue=9&rft.spage=e12776&rft_id=info:doi/10.1371%2Fjournal.pone.0012776&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2898422151 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |