Inferring Regulatory Networks from Expression Data Using Tree-Based Methods

One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challeng...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 5; no. 9; p. e12776
Main Authors Huynh-Thu, Vân Anh, Irrthum, Alexandre, Wehenkel, Louis, Geurts, Pierre
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.09.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0012776

Cover

Abstract One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.
AbstractList One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesn't make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.
Audience Academic
Author Geurts, Pierre
Huynh-Thu, Vân Anh
Wehenkel, Louis
Irrthum, Alexandre
AuthorAffiliation 1 Department of Electrical Engineering and Computer Science, Systems and Modeling, University of Liège, Liège, Belgium
Center for Genomic Regulation, Spain
2 GIGA-Research, Bioinformatics and Modeling, University of Liège, Liège, Belgium
AuthorAffiliation_xml – name: Center for Genomic Regulation, Spain
– name: 2 GIGA-Research, Bioinformatics and Modeling, University of Liège, Liège, Belgium
– name: 1 Department of Electrical Engineering and Computer Science, Systems and Modeling, University of Liège, Liège, Belgium
Author_xml – sequence: 1
  givenname: Vân Anh
  surname: Huynh-Thu
  fullname: Huynh-Thu, Vân Anh
– sequence: 2
  givenname: Alexandre
  surname: Irrthum
  fullname: Irrthum, Alexandre
– sequence: 3
  givenname: Louis
  surname: Wehenkel
  fullname: Wehenkel, Louis
– sequence: 4
  givenname: Pierre
  surname: Geurts
  fullname: Geurts, Pierre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20927193$$D View this record in MEDLINE/PubMed
BookMark eNqNk11v0zAUhiM0xD7gHyCIhATiosXxR5xwgTTGgIrBpLFxaznOSerNjYvtbOu_x1m7qZ0mNOUilv2c97w-b7KbbHW2gyR5maFxRnj24dz2rpNmPI_bY4QyzHn-JNnJSoJHOUZka229nex6f44QI0WeP0u2MSoxj6c7yY9J14BzumvTE2h7I4N1i_QXhCvrLnzaODtLD6_nDrzXtku_yCDTMz_gpw5g9Fl6qNOfEKa29s-Tp400Hl6s3nvJ2dfD04Pvo6Pjb5OD_aORKhAKo4oxXJUlVRLjoqYlLWqlkOKsqDED3tQSAwGKKlpWNGNcMU5YWcmsbFCTE0X2ktdL3bmxXqzm4EWGS0zznNEiEpMlUVt5LuZOz6RbCCu1uNmwrhXSBa0MiIwAJiSvJVKMqmiHS6bygqJcYllKiFpsqdV3c7m4ksbcCWZIDFHcWhBDFGIVRaz7tHLZVzOoFXTBSbNhZvOk01PR2kuBS5qXGYoCeClgNLQQTVdaXOKbwpt1b-ItlKhAYJwXghPMhq7vVl2d_duDD2KmvQJjZAe294IznvG84CySb-6RD09yRbUyDkt3jY1e1aAp9iknBeMFGrTGD1DxqWGmVZxKo-P-RsH7jYLIBLgOrey9F5PfJ49nj_9ssm_X2ClIE6bemj7Ej9dvgq_W07mL5fbPiABdAspZ7x00j039470ypYMc2seJaPP_4n9I1DTQ
CitedBy_id crossref_primary_10_1016_j_isci_2024_109301
crossref_primary_10_1038_s12276_022_00896_9
crossref_primary_10_1016_j_ajpath_2019_03_009
crossref_primary_10_1093_bib_bbac586
crossref_primary_10_1126_scitranslmed_ade1283
crossref_primary_10_1111_tpj_15315
crossref_primary_10_1016_j_cels_2024_04_005
crossref_primary_10_3390_biomedicines9010034
crossref_primary_10_1186_1752_0509_8_5
crossref_primary_10_1186_1471_2105_12_233
crossref_primary_10_1093_bib_bbab009
crossref_primary_10_1038_s41596_020_0336_2
crossref_primary_10_1142_S0219720019500185
crossref_primary_10_7554_eLife_97424_3
crossref_primary_10_3389_fgene_2019_00294
crossref_primary_10_3390_cells14010001
crossref_primary_10_1093_bfgp_elx029
crossref_primary_10_1016_j_xcrm_2025_101992
crossref_primary_10_1016_j_engappai_2024_108938
crossref_primary_10_1093_bioinformatics_btx501
crossref_primary_10_1109_TCBB_2017_2758786
crossref_primary_10_3389_fgene_2019_01120
crossref_primary_10_1111_jpi_12927
crossref_primary_10_1111_nph_18788
crossref_primary_10_7554_eLife_97424
crossref_primary_10_1016_j_molmet_2024_101943
crossref_primary_10_3389_fpls_2017_02029
crossref_primary_10_1038_s41598_024_52928_1
crossref_primary_10_1080_21541264_2023_2295044
crossref_primary_10_15252_msb_20156236
crossref_primary_10_3389_fgene_2021_810816
crossref_primary_10_1186_s12918_018_0635_1
crossref_primary_10_1186_s13059_024_03418_0
crossref_primary_10_1038_s42003_024_07443_4
crossref_primary_10_1186_s12885_019_6235_7
crossref_primary_10_1093_bib_bbad414
crossref_primary_10_1093_bib_bbad413
crossref_primary_10_1093_bioinformatics_btx748
crossref_primary_10_1093_nar_gkac960
crossref_primary_10_1016_j_ccell_2024_04_010
crossref_primary_10_1038_s41598_022_07744_w
crossref_primary_10_1016_j_cbd_2024_101324
crossref_primary_10_1186_s12859_022_05055_5
crossref_primary_10_1093_bib_bbae542
crossref_primary_10_1186_s12864_019_6298_5
crossref_primary_10_1126_sciadv_abl7393
crossref_primary_10_1093_bioinformatics_btaa651
crossref_primary_10_1109_TMBMC_2019_2933391
crossref_primary_10_1142_S021972001950015X
crossref_primary_10_1016_j_coisb_2017_04_001
crossref_primary_10_1093_bfgp_elx046
crossref_primary_10_1109_JBHI_2024_3476490
crossref_primary_10_1109_TCBB_2017_2688355
crossref_primary_10_1016_j_compbiolchem_2018_10_014
crossref_primary_10_1186_s12976_019_0103_7
crossref_primary_10_3390_genes10070502
crossref_primary_10_3390_genes13071112
crossref_primary_10_1021_acssynbio_8b00037
crossref_primary_10_1186_s12864_020_07079_8
crossref_primary_10_1186_s13059_021_02366_3
crossref_primary_10_1016_j_celrep_2025_115437
crossref_primary_10_1016_j_celrep_2022_111236
crossref_primary_10_1186_s13073_023_01162_x
crossref_primary_10_3389_fpls_2024_1502569
crossref_primary_10_1093_bioinformatics_btt167
crossref_primary_10_1093_nar_gkac930
crossref_primary_10_1093_nar_gkaa995
crossref_primary_10_1093_bib_bbac591
crossref_primary_10_1186_s12918_019_0695_x
crossref_primary_10_1093_bib_bbae526
crossref_primary_10_1016_j_plaphy_2024_108945
crossref_primary_10_1038_s43587_024_00588_1
crossref_primary_10_1002_cpt_3007
crossref_primary_10_1016_j_xcrm_2024_101661
crossref_primary_10_1016_j_neucom_2016_02_087
crossref_primary_10_1038_s41598_020_59731_8
crossref_primary_10_1021_acsnano_9b04220
crossref_primary_10_1093_bioinformatics_btad708
crossref_primary_10_1093_bioinformatics_btv379
crossref_primary_10_1371_journal_pone_0092709
crossref_primary_10_3390_jox13020021
crossref_primary_10_3390_en16176360
crossref_primary_10_3390_plants13233297
crossref_primary_10_1016_j_stress_2025_100756
crossref_primary_10_1016_j_neuroimage_2017_02_058
crossref_primary_10_1053_j_gastro_2024_12_011
crossref_primary_10_1523_JNEUROSCI_2074_20_2021
crossref_primary_10_1093_nar_gkad841
crossref_primary_10_1111_nph_12818
crossref_primary_10_1186_s13015_017_0100_5
crossref_primary_10_3390_cells11193125
crossref_primary_10_3390_e24050693
crossref_primary_10_1016_j_isci_2024_109352
crossref_primary_10_1093_nsr_nwac147
crossref_primary_10_1111_jcmm_15607
crossref_primary_10_3390_cells10082143
crossref_primary_10_1016_j_powtec_2021_09_063
crossref_primary_10_1016_j_omtn_2023_03_014
crossref_primary_10_1016_j_knosys_2025_113324
crossref_primary_10_1016_j_ccell_2024_03_013
crossref_primary_10_3389_fgene_2021_652189
crossref_primary_10_1371_journal_pcbi_1011254
crossref_primary_10_1186_1756_0500_5_518
crossref_primary_10_1007_s11103_024_01547_5
crossref_primary_10_1186_s12920_019_0515_6
crossref_primary_10_1093_jxb_eraa108
crossref_primary_10_1186_s12859_020_03639_7
crossref_primary_10_1039_C9ME00029A
crossref_primary_10_1016_j_celrep_2022_110333
crossref_primary_10_1038_s41581_024_00849_7
crossref_primary_10_1093_nar_gkab878
crossref_primary_10_1093_bioinformatics_btx575
crossref_primary_10_1158_2326_6066_CIR_22_0462
crossref_primary_10_1134_S0006297923020074
crossref_primary_10_1103_PhysRevX_15_011005
crossref_primary_10_1016_j_ccell_2021_07_004
crossref_primary_10_1002_advs_202405395
crossref_primary_10_1002_advs_202409990
crossref_primary_10_1182_blood_2013_02_484188
crossref_primary_10_1515_sagmb_2022_0054
crossref_primary_10_1002_bit_25262
crossref_primary_10_1186_s13073_022_01049_3
crossref_primary_10_1038_s42003_023_05594_4
crossref_primary_10_1158_2159_8290_CD_22_1200
crossref_primary_10_1186_s12859_018_2558_7
crossref_primary_10_1016_j_compbiomed_2022_105999
crossref_primary_10_1016_j_xpro_2022_101184
crossref_primary_10_1038_s42256_022_00469_5
crossref_primary_10_1093_bioinformatics_btx563
crossref_primary_10_1142_S0219720019500355
crossref_primary_10_1111_ppl_13700
crossref_primary_10_1038_nbt_2635
crossref_primary_10_1016_j_compbiolchem_2015_04_012
crossref_primary_10_1266_ggs_88_301
crossref_primary_10_1038_s41525_020_00151_y
crossref_primary_10_1126_sciadv_adf6251
crossref_primary_10_1038_s41598_023_27779_x
crossref_primary_10_3389_fgene_2020_591461
crossref_primary_10_1016_j_celrep_2014_11_038
crossref_primary_10_1128_jvi_01246_22
crossref_primary_10_1089_cmb_2014_0297
crossref_primary_10_1093_nargab_lqad018
crossref_primary_10_1038_s41421_022_00394_2
crossref_primary_10_1186_s12859_022_04778_9
crossref_primary_10_1002_gepi_22017
crossref_primary_10_1007_s00606_021_01769_w
crossref_primary_10_1016_j_cels_2021_04_005
crossref_primary_10_1093_nar_gkad885
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_1080_19768354_2024_2449518
crossref_primary_10_7554_eLife_76586
crossref_primary_10_1016_j_isci_2023_106164
crossref_primary_10_1109_TCBB_2022_3144418
crossref_primary_10_3390_genes12091351
crossref_primary_10_3390_plants12203618
crossref_primary_10_1177_11779322241287120
crossref_primary_10_1111_acel_13450
crossref_primary_10_1186_s13059_023_02890_4
crossref_primary_10_1016_j_knosys_2022_109254
crossref_primary_10_1186_s12859_021_03987_y
crossref_primary_10_7717_peerj_18578
crossref_primary_10_1016_j_omtn_2020_12_018
crossref_primary_10_1038_msb_2012_56
crossref_primary_10_1016_j_csbj_2021_08_028
crossref_primary_10_1111_mpp_70044
crossref_primary_10_1111_tpj_14875
crossref_primary_10_3390_computation9040048
crossref_primary_10_1038_s41467_021_26277_w
crossref_primary_10_1038_s41467_019_13132_2
crossref_primary_10_3390_plants11010059
crossref_primary_10_1016_j_ccell_2022_10_009
crossref_primary_10_1002_pld3_70025
crossref_primary_10_1093_nar_gkab433
crossref_primary_10_1016_j_ygeno_2022_110480
crossref_primary_10_1002_ctm2_1310
crossref_primary_10_1111_pce_12744
crossref_primary_10_1038_s41540_025_00504_2
crossref_primary_10_1093_nargab_lqae130
crossref_primary_10_1016_j_copbio_2016_04_007
crossref_primary_10_1186_s12918_015_0165_z
crossref_primary_10_1093_bib_bbx066
crossref_primary_10_1038_s41590_019_0465_3
crossref_primary_10_1038_s41419_021_03552_8
crossref_primary_10_1007_s00404_014_3264_y
crossref_primary_10_1038_s42003_024_06723_3
crossref_primary_10_1186_1471_2105_14_273
crossref_primary_10_1016_j_mbs_2013_10_003
crossref_primary_10_3390_ijms241713339
crossref_primary_10_1016_j_celrep_2023_112879
crossref_primary_10_1038_s41698_022_00278_4
crossref_primary_10_1007_s12312_024_01337_6
crossref_primary_10_1093_bioinformatics_btv186
crossref_primary_10_1162_posc_a_00638
crossref_primary_10_1016_j_patter_2021_100328
crossref_primary_10_1093_bioinformatics_btaa267
crossref_primary_10_1093_bioinformatics_btz781
crossref_primary_10_1016_j_ebiom_2020_102904
crossref_primary_10_1109_TNB_2014_2316920
crossref_primary_10_1111_acel_13428
crossref_primary_10_1158_1541_7786_MCR_12_0690
crossref_primary_10_3390_cancers14235785
crossref_primary_10_1002_imt2_20
crossref_primary_10_3233_JAD_170011
crossref_primary_10_1038_s41598_020_67546_w
crossref_primary_10_1186_s12870_022_03767_7
crossref_primary_10_1007_s00292_024_01308_7
crossref_primary_10_1093_bioinformatics_btaa032
crossref_primary_10_1016_j_patter_2023_100911
crossref_primary_10_1093_bioinformatics_btab367
crossref_primary_10_15252_embj_2019104159
crossref_primary_10_1038_s41540_021_00208_3
crossref_primary_10_1016_j_csbj_2024_04_033
crossref_primary_10_1016_j_jclepro_2022_133421
crossref_primary_10_1016_j_pbi_2023_102474
crossref_primary_10_1021_acs_jpcb_2c05412
crossref_primary_10_1093_g3journal_jkac144
crossref_primary_10_1093_nar_gkv1468
crossref_primary_10_1074_jbc_M112_392332
crossref_primary_10_4103_0973_1482_204842
crossref_primary_10_1093_bioinformatics_btz563
crossref_primary_10_1186_s13293_024_00659_3
crossref_primary_10_3390_make6030089
crossref_primary_10_15252_msb_202311627
crossref_primary_10_3389_fbioe_2022_954610
crossref_primary_10_1016_j_celrep_2020_107688
crossref_primary_10_15252_msb_202211176
crossref_primary_10_3389_fgene_2024_1481787
crossref_primary_10_1038_s41587_024_02182_7
crossref_primary_10_1109_TCBB_2023_3282212
crossref_primary_10_1038_srep41174
crossref_primary_10_3389_fpls_2023_1236787
crossref_primary_10_3389_fmicb_2020_00120
crossref_primary_10_3390_pr9101758
crossref_primary_10_3390_biom13071153
crossref_primary_10_1093_toxsci_kfz151
crossref_primary_10_1038_s41540_023_00312_6
crossref_primary_10_1038_s41588_024_01806_7
crossref_primary_10_1093_bioinformatics_btae415
crossref_primary_10_1002_cppb_20106
crossref_primary_10_1186_1471_2164_16_S12_S4
crossref_primary_10_1016_j_atherosclerosis_2020_08_013
crossref_primary_10_1371_journal_pcbi_1011443
crossref_primary_10_3892_etm_2017_4931
crossref_primary_10_1096_fj_202301287RR
crossref_primary_10_1016_j_jmb_2022_167606
crossref_primary_10_1016_j_automatica_2014_08_003
crossref_primary_10_18699_vjgb_24_104
crossref_primary_10_3389_fgene_2014_00299
crossref_primary_10_1146_annurev_arplant_081320_090914
crossref_primary_10_1371_journal_pcbi_1011207
crossref_primary_10_1016_j_gene_2016_03_045
crossref_primary_10_1093_bioinformatics_btz105
crossref_primary_10_1093_nar_gkad666
crossref_primary_10_3389_fpls_2021_661361
crossref_primary_10_3390_f13081300
crossref_primary_10_1017_cts_2022_18
crossref_primary_10_1016_j_cels_2023_08_004
crossref_primary_10_3390_ijms23179936
crossref_primary_10_1186_s12885_015_1884_7
crossref_primary_10_1038_s41467_021_25893_w
crossref_primary_10_1093_g3journal_jkad004
crossref_primary_10_1097_PRS_0000000000010083
crossref_primary_10_3389_fgene_2023_1143382
crossref_primary_10_1016_j_firesaf_2023_103744
crossref_primary_10_1016_j_stemcr_2023_06_002
crossref_primary_10_1038_s44320_025_00088_3
crossref_primary_10_1126_sciimmunol_abm1920
crossref_primary_10_1186_s12859_016_1398_6
crossref_primary_10_3390_nu15214691
crossref_primary_10_1109_TCBB_2015_2424411
crossref_primary_10_1038_s41467_024_50229_9
crossref_primary_10_1038_s41592_023_01971_3
crossref_primary_10_3389_fimmu_2020_02149
crossref_primary_10_1186_s12859_016_0913_0
crossref_primary_10_1038_s42003_024_06342_y
crossref_primary_10_1002_ctm2_689
crossref_primary_10_1371_journal_pcbi_1008223
crossref_primary_10_1038_s44161_021_00009_1
crossref_primary_10_1016_j_biosystems_2018_10_008
crossref_primary_10_3390_ijms20153730
crossref_primary_10_3389_fpls_2022_1006044
crossref_primary_10_3389_fimmu_2024_1412731
crossref_primary_10_1186_s12859_023_05253_9
crossref_primary_10_1007_s12539_024_00667_2
crossref_primary_10_1016_j_cels_2020_08_003
crossref_primary_10_1038_s41422_018_0053_3
crossref_primary_10_1093_bioinformatics_btab295
crossref_primary_10_1242_dev_184143
crossref_primary_10_3390_plants11152031
crossref_primary_10_1093_nargab_lqae178
crossref_primary_10_1142_S0218213023600059
crossref_primary_10_1093_bioinformatics_bts619
crossref_primary_10_1002_wcms_1658
crossref_primary_10_3390_biomedicines9111525
crossref_primary_10_1155_2015_370194
crossref_primary_10_1016_j_cellimm_2021_104459
crossref_primary_10_1007_s40496_019_0214_6
crossref_primary_10_1111_pbi_14097
crossref_primary_10_3389_fepid_2022_899655
crossref_primary_10_1002_advs_202203040
crossref_primary_10_3390_ijms241713502
crossref_primary_10_1088_1361_6633_acec88
crossref_primary_10_1007_s10142_021_00821_9
crossref_primary_10_1016_j_cell_2020_01_009
crossref_primary_10_1094_PBIOMES_01_22_0006_FI
crossref_primary_10_3389_fnetp_2023_1225736
crossref_primary_10_1093_nar_gkw963
crossref_primary_10_1038_s41698_021_00185_0
crossref_primary_10_1109_TCBB_2019_2946826
crossref_primary_10_1007_s40484_018_0139_4
crossref_primary_10_1109_TCBB_2020_3037090
crossref_primary_10_1111_jipb_13791
crossref_primary_10_1093_femsyr_fov087
crossref_primary_10_1093_nar_gkac377
crossref_primary_10_1016_j_celrep_2023_112487
crossref_primary_10_1093_bfgp_elac028
crossref_primary_10_1016_j_csbj_2024_01_013
crossref_primary_10_1042_BST20190840
crossref_primary_10_1109_TCBB_2020_3039038
crossref_primary_10_1038_s41467_024_48516_6
crossref_primary_10_1093_bioinformatics_btad256
crossref_primary_10_1016_j_stem_2024_09_014
crossref_primary_10_1101_gr_259655_119
crossref_primary_10_1007_s12021_020_09505_4
crossref_primary_10_1016_j_compbiomed_2022_106249
crossref_primary_10_1016_j_isci_2022_104079
crossref_primary_10_1515_sagmb_2020_0054
crossref_primary_10_7717_peerj_5692
crossref_primary_10_1038_s41540_020_00148_4
crossref_primary_10_1039_C5MB00560D
crossref_primary_10_1002_cai2_138
crossref_primary_10_1016_j_ccell_2021_10_008
crossref_primary_10_1155_2017_8514071
crossref_primary_10_3390_v13112284
crossref_primary_10_7554_eLife_80479
crossref_primary_10_3390_e22060627
crossref_primary_10_1186_1752_0509_7_73
crossref_primary_10_1016_j_canlet_2024_216723
crossref_primary_10_3389_fimmu_2021_627036
crossref_primary_10_1093_bioinformatics_btac178
crossref_primary_10_1016_j_csbj_2020_10_022
crossref_primary_10_1093_bioinformatics_btad269
crossref_primary_10_1093_gbe_evad109
crossref_primary_10_1186_s12864_020_07003_0
crossref_primary_10_1016_j_cmpb_2021_106496
crossref_primary_10_1186_gm340
crossref_primary_10_1186_s12920_016_0202_9
crossref_primary_10_3390_ijms252312741
crossref_primary_10_3390_biom14070766
crossref_primary_10_1093_insilicoplants_diae013
crossref_primary_10_1111_jcmm_18559
crossref_primary_10_3389_fimmu_2023_1107397
crossref_primary_10_1016_j_mcpro_2023_100607
crossref_primary_10_15252_msb_20209438
crossref_primary_10_1016_j_jpha_2023_04_004
crossref_primary_10_1038_s41586_020_2632_y
crossref_primary_10_3389_fcell_2022_878346
crossref_primary_10_1016_j_procs_2014_05_183
crossref_primary_10_1038_icb_2015_102
crossref_primary_10_1016_j_jpha_2023_04_006
crossref_primary_10_1038_s44161_024_00533_w
crossref_primary_10_1016_j_jspi_2014_07_006
crossref_primary_10_1093_bioinformatics_btab099
crossref_primary_10_1093_bioinformatics_btad038
crossref_primary_10_1371_journal_pcbi_1010962
crossref_primary_10_1016_j_celrep_2023_113380
crossref_primary_10_52905_hbph2024_1_81
crossref_primary_10_1016_j_plgene_2022_100366
crossref_primary_10_3390_genes14020269
crossref_primary_10_1038_s41598_017_17143_1
crossref_primary_10_1016_j_cell_2018_05_057
crossref_primary_10_1093_nar_gkad053
crossref_primary_10_1016_j_jtbi_2014_02_041
crossref_primary_10_1039_C5IB00065C
crossref_primary_10_1016_j_asoc_2021_107849
crossref_primary_10_1093_bioinformatics_btu863
crossref_primary_10_1186_s12918_017_0419_z
crossref_primary_10_1038_s41467_021_24152_2
crossref_primary_10_3389_fimmu_2024_1446453
crossref_primary_10_1016_j_compbiolchem_2019_107120
crossref_primary_10_1007_s12094_023_03083_y
crossref_primary_10_1038_s41598_023_31509_8
crossref_primary_10_1089_cmb_2024_0607
crossref_primary_10_1371_journal_pone_0170340
crossref_primary_10_1002_pld3_279
crossref_primary_10_1109_ACCESS_2021_3095252
crossref_primary_10_1093_bioinformatics_btae143
crossref_primary_10_3389_fgene_2021_652974
crossref_primary_10_3389_fcell_2014_00038
crossref_primary_10_1093_plphys_kiac522
crossref_primary_10_3390_ijms22158187
crossref_primary_10_1016_j_crbiot_2024_100230
crossref_primary_10_3390_e18090328
crossref_primary_10_1016_j_compbiomed_2025_109880
crossref_primary_10_1186_s12859_023_05231_1
crossref_primary_10_1038_s41540_023_00267_8
crossref_primary_10_1093_bioinformatics_bts434
crossref_primary_10_1093_nargab_lqad068
crossref_primary_10_1002_pmic_202200462
crossref_primary_10_1038_s41598_023_48081_w
crossref_primary_10_1186_s12920_023_01588_7
crossref_primary_10_1371_journal_pone_0110094
crossref_primary_10_1186_1752_0509_7_87
crossref_primary_10_1186_s12967_024_05077_y
crossref_primary_10_1089_cmb_2021_0437
crossref_primary_10_1371_journal_pone_0029165
crossref_primary_10_3390_genes14020282
crossref_primary_10_1016_j_gpb_2020_11_006
crossref_primary_10_1161_CIRCGEN_121_003365
crossref_primary_10_1371_journal_pone_0166084
crossref_primary_10_3390_plants10020364
crossref_primary_10_1016_j_ydbio_2023_07_004
crossref_primary_10_3389_fbioe_2018_00165
crossref_primary_10_1038_s41598_022_06658_x
crossref_primary_10_1007_s13258_019_00789_8
crossref_primary_10_1016_j_csbj_2020_09_022
crossref_primary_10_1038_s41477_021_00894_1
crossref_primary_10_1016_j_xplc_2024_100984
crossref_primary_10_1111_tpj_16483
crossref_primary_10_1093_bioinformatics_btr373
crossref_primary_10_18632_aging_202718
crossref_primary_10_1038_s41590_023_01614_x
crossref_primary_10_1186_s13059_022_02835_3
crossref_primary_10_2174_1574893614666190104142228
crossref_primary_10_1038_s41592_021_01194_4
crossref_primary_10_1093_bioinformatics_btad072
crossref_primary_10_1016_j_asoc_2018_05_009
crossref_primary_10_1186_s12859_024_05855_x
crossref_primary_10_3389_fgene_2021_687813
crossref_primary_10_3390_cancers14102542
crossref_primary_10_1038_s41598_020_63043_2
crossref_primary_10_1186_s12859_018_2217_z
crossref_primary_10_4137_CIN_S13630
crossref_primary_10_1093_bib_bbs071
crossref_primary_10_1038_s41467_022_31388_z
crossref_primary_10_1016_j_celrep_2024_114339
crossref_primary_10_22399_ijcesen_906
crossref_primary_10_1093_gigascience_gix078
crossref_primary_10_1016_j_mcpro_2024_100780
crossref_primary_10_1038_s41467_023_42967_z
crossref_primary_10_1007_s12293_022_00383_8
crossref_primary_10_1007_s10928_021_09792_7
crossref_primary_10_1016_j_xgen_2024_100702
crossref_primary_10_1038_srep20533
crossref_primary_10_1016_j_cell_2020_02_008
crossref_primary_10_1111_tpj_16222
crossref_primary_10_1016_j_tplants_2015_06_013
crossref_primary_10_1093_bfgp_elae036
crossref_primary_10_1016_j_stemcr_2022_10_004
crossref_primary_10_1158_2767_9764_CRC_24_0310
crossref_primary_10_1016_j_jaut_2024_103206
crossref_primary_10_1186_s12967_023_04435_6
crossref_primary_10_1073_pnas_1719674115
crossref_primary_10_1111_1751_7915_14425
crossref_primary_10_1073_pnas_2117323119
crossref_primary_10_1098_rstb_2016_0377
crossref_primary_10_1128_msystems_00729_19
crossref_primary_10_1016_j_heliyon_2024_e35478
crossref_primary_10_1021_acs_jproteome_8b00781
crossref_primary_10_1007_s00425_021_03790_2
crossref_primary_10_1016_j_neuroimage_2018_06_028
crossref_primary_10_1016_j_omtn_2021_10_011
crossref_primary_10_1016_j_compbiomed_2024_108850
crossref_primary_10_1016_j_cell_2024_06_011
crossref_primary_10_1016_j_ccell_2024_09_002
crossref_primary_10_1002_sam_11705
crossref_primary_10_1038_srep20518
crossref_primary_10_1186_s13059_024_03454_w
crossref_primary_10_1111_pce_15232
crossref_primary_10_1016_j_celrep_2020_107908
crossref_primary_10_26508_lsa_202301988
crossref_primary_10_1016_j_xgen_2024_100720
crossref_primary_10_1186_s13073_022_01081_3
crossref_primary_10_1038_s41467_024_50291_3
crossref_primary_10_1016_j_sigpro_2011_11_028
crossref_primary_10_7717_peerj_5854
crossref_primary_10_1371_journal_pone_0133583
crossref_primary_10_1186_s12859_020_03707_y
crossref_primary_10_1515_sagmb_2021_0025
crossref_primary_10_1007_s12038_022_00253_y
crossref_primary_10_1038_s41598_018_32904_2
crossref_primary_10_1016_j_tifs_2020_10_017
crossref_primary_10_1109_TAI_2023_3347177
crossref_primary_10_3389_fgene_2024_1371607
crossref_primary_10_1038_s41392_024_01792_6
crossref_primary_10_1109_TCBB_2015_2450740
crossref_primary_10_1186_s12859_020_03651_x
crossref_primary_10_26508_lsa_202302415
crossref_primary_10_1017_qpb_2021_1
crossref_primary_10_1186_1471_2229_11_13
crossref_primary_10_1093_bib_bbab168
crossref_primary_10_1016_j_neuron_2025_02_015
crossref_primary_10_1093_bib_bbab166
crossref_primary_10_3390_genes16030244
crossref_primary_10_1093_bioinformatics_btaa840
crossref_primary_10_1371_journal_pcbi_1003361
crossref_primary_10_1158_2159_8290_CD_20_1677
crossref_primary_10_1186_s12859_015_0754_2
crossref_primary_10_1273_cbij_17_53
crossref_primary_10_18632_oncotarget_27808
crossref_primary_10_1186_s13024_022_00517_z
crossref_primary_10_1007_s10844_018_0506_7
crossref_primary_10_1016_j_knosys_2024_112374
crossref_primary_10_1093_bib_bbad370
crossref_primary_10_15252_msb_20145108
crossref_primary_10_1038_s42003_022_03319_7
crossref_primary_10_1016_j_csbj_2022_12_010
crossref_primary_10_1093_jxb_erac394
crossref_primary_10_1038_s41586_021_04390_6
crossref_primary_10_1208_s12249_021_02083_x
crossref_primary_10_1093_bioinformatics_btaf074
crossref_primary_10_1093_humrep_deae199
crossref_primary_10_1016_j_isci_2022_105359
crossref_primary_10_1186_s12864_022_09020_7
crossref_primary_10_1093_bib_bbad129
crossref_primary_10_1007_s11222_017_9769_z
crossref_primary_10_1093_bib_bbad369
crossref_primary_10_1038_s41559_023_02090_0
crossref_primary_10_1016_j_jretconser_2022_103153
crossref_primary_10_3389_fcvm_2017_00008
crossref_primary_10_1016_j_commatsci_2021_111172
crossref_primary_10_3390_cancers16132354
crossref_primary_10_1016_j_compbiolchem_2022_107769
crossref_primary_10_1093_bib_bbae457
crossref_primary_10_1007_s12033_023_00929_2
crossref_primary_10_1186_s12864_025_11360_z
crossref_primary_10_1016_j_csbj_2022_12_022
crossref_primary_10_1016_j_ifacol_2016_12_117
crossref_primary_10_1038_s41598_024_62850_1
crossref_primary_10_1109_TCBB_2020_3029846
crossref_primary_10_1371_journal_pone_0204100
crossref_primary_10_1038_srep37140
crossref_primary_10_1039_D3FO03506A
crossref_primary_10_1093_bioadv_vbad032
crossref_primary_10_1002_rnc_6044
crossref_primary_10_18632_oncotarget_23148
crossref_primary_10_1016_j_compbiolchem_2021_107512
crossref_primary_10_1073_pnas_1911536116
crossref_primary_10_1038_ncomms7683
crossref_primary_10_1016_j_devcel_2024_07_020
crossref_primary_10_3390_biomedinformatics4040117
crossref_primary_10_3389_fonc_2022_899825
crossref_primary_10_1109_MAES_2019_2915456
crossref_primary_10_1093_bib_bbad309
crossref_primary_10_1016_j_neucom_2025_129635
crossref_primary_10_1515_sagmb_2017_0052
crossref_primary_10_1038_srep11432
crossref_primary_10_1126_science_aar6089
crossref_primary_10_1371_journal_pone_0166115
crossref_primary_10_1093_molbev_msad141
crossref_primary_10_1093_bib_bbae639
crossref_primary_10_1038_s42003_025_07506_0
crossref_primary_10_1111_nph_19993
crossref_primary_10_1093_bioinformatics_btz802
crossref_primary_10_3389_ftox_2022_950503
crossref_primary_10_1111_tpj_15682
crossref_primary_10_1186_s13059_024_03419_z
crossref_primary_10_1016_j_csbj_2022_08_003
crossref_primary_10_1007_s10994_023_06427_5
crossref_primary_10_1186_s12870_022_04012_x
crossref_primary_10_1093_nar_gky015
crossref_primary_10_1016_j_compbiolchem_2024_108223
crossref_primary_10_1016_j_gpb_2023_06_003
crossref_primary_10_1016_j_neuron_2024_05_026
crossref_primary_10_1186_1752_0509_6_145
crossref_primary_10_7717_peerj_cs_363
crossref_primary_10_1016_j_csbj_2022_09_042
crossref_primary_10_1038_s41591_020_1003_4
crossref_primary_10_1371_journal_pgen_1011081
crossref_primary_10_3389_fimmu_2021_739605
crossref_primary_10_1038_s43588_021_00103_1
crossref_primary_10_1093_nar_gkab950
crossref_primary_10_1093_bioinformatics_btac717
crossref_primary_10_3389_fpls_2022_884726
crossref_primary_10_1038_s41467_020_18832_8
crossref_primary_10_3390_ncrna8040045
crossref_primary_10_1186_s12915_022_01451_8
crossref_primary_10_1089_cmb_2018_0225
crossref_primary_10_1038_s41467_022_28067_4
crossref_primary_10_1093_bib_bbad326
crossref_primary_10_1089_cmb_2011_0258
crossref_primary_10_1038_s41540_017_0024_1
crossref_primary_10_1016_j_compbiomed_2024_108690
crossref_primary_10_1186_s12859_019_2749_x
crossref_primary_10_1016_j_cels_2017_04_010
crossref_primary_10_3389_fcell_2022_803466
crossref_primary_10_1371_journal_pone_0111661
crossref_primary_10_3390_land11112098
crossref_primary_10_1080_17435390_2020_1851418
crossref_primary_10_1093_bioinformatics_btv461
crossref_primary_10_1093_jimb_kuac028
crossref_primary_10_1093_bib_bbab142
crossref_primary_10_1186_s12859_019_3042_8
crossref_primary_10_1073_pnas_1710936115
crossref_primary_10_3389_fpls_2017_01044
crossref_primary_10_1016_j_pbi_2018_10_005
crossref_primary_10_1038_s41598_019_49498_y
crossref_primary_10_1111_nph_18404
crossref_primary_10_1016_j_devcel_2022_04_016
crossref_primary_10_1186_s12920_018_0413_3
crossref_primary_10_1007_s10142_025_01549_6
crossref_primary_10_1093_bioinformatics_btv257
crossref_primary_10_1093_nar_gkab778
crossref_primary_10_1093_bioinformatics_bty764
crossref_primary_10_1111_acel_13360
crossref_primary_10_1186_s12918_018_0547_0
crossref_primary_10_2337_db21_0551
crossref_primary_10_1186_s12859_018_2402_0
crossref_primary_10_1007_s10142_018_0639_3
crossref_primary_10_1093_bib_bby095
crossref_primary_10_1093_bib_bbac417
crossref_primary_10_1186_s12915_024_01852_x
crossref_primary_10_1038_s41467_021_25089_2
crossref_primary_10_1111_pce_14873
crossref_primary_10_1016_j_ecoenv_2024_117081
crossref_primary_10_1093_bib_bbab568
crossref_primary_10_1016_j_csbj_2022_07_004
crossref_primary_10_1016_j_envexpbot_2024_105760
crossref_primary_10_1038_s41467_020_15997_0
crossref_primary_10_1039_C6MB00280C
crossref_primary_10_1111_nph_19315
crossref_primary_10_1038_s41467_018_05016_8
crossref_primary_10_1371_journal_pone_0033624
crossref_primary_10_3389_fgene_2020_595912
crossref_primary_10_1016_j_biopsych_2023_08_006
crossref_primary_10_1016_j_xops_2022_100166
crossref_primary_10_1186_s12915_025_02177_z
crossref_primary_10_3390_ijms21217886
crossref_primary_10_1172_jci_insight_141024
crossref_primary_10_1109_TCYB_2020_3022430
crossref_primary_10_1111_tpj_14558
crossref_primary_10_1016_j_semcdb_2016_01_012
crossref_primary_10_1186_1752_0509_6_101
crossref_primary_10_3389_fninf_2023_1092967
crossref_primary_10_1080_00036846_2022_2095340
crossref_primary_10_1162_neco_a_01096
crossref_primary_10_1038_s42003_024_05933_z
crossref_primary_10_1111_nph_19541
crossref_primary_10_1016_j_bbagrm_2019_194430
crossref_primary_10_1371_journal_pone_0028646
crossref_primary_10_1093_bib_bbac442
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_1186_s12864_016_3317_7
crossref_primary_10_1093_bioinformatics_btaa576
crossref_primary_10_1093_bib_bbad529
crossref_primary_10_1038_s42003_023_04457_2
crossref_primary_10_1371_journal_pcbi_1012016
crossref_primary_10_1093_bib_bbab104
crossref_primary_10_1038_s41540_020_0140_1
crossref_primary_10_1186_s13040_016_0106_4
crossref_primary_10_1089_wound_2012_0386
crossref_primary_10_1049_iet_syb_2017_0013
crossref_primary_10_1186_s13073_022_01124_9
crossref_primary_10_3389_fgene_2019_01280
crossref_primary_10_1093_bioinformatics_btae703
crossref_primary_10_1016_j_bbagrm_2019_194444
crossref_primary_10_1093_bioinformatics_btad619
crossref_primary_10_1093_bioinformatics_btad610
crossref_primary_10_1093_hr_uhae183
crossref_primary_10_1111_biom_13645
crossref_primary_10_1002_cso2_1021
crossref_primary_10_1038_s41467_019_13386_w
crossref_primary_10_1007_s00500_023_08048_5
crossref_primary_10_3390_ijms24097884
crossref_primary_10_1016_j_exphem_2018_10_009
crossref_primary_10_1186_s12859_019_2695_7
crossref_primary_10_1049_syb2_12043
crossref_primary_10_1093_narcan_zcad056
crossref_primary_10_1038_s41598_021_97207_5
crossref_primary_10_1093_bib_bbab531
crossref_primary_10_1039_C4MB00413B
crossref_primary_10_3390_ijms242115593
crossref_primary_10_1007_s10994_020_05908_1
crossref_primary_10_1371_journal_pone_0067434
crossref_primary_10_1016_j_molcel_2021_12_011
crossref_primary_10_1016_j_celrep_2018_03_048
crossref_primary_10_1080_00207721_2024_2329737
crossref_primary_10_1038_srep13456
crossref_primary_10_1038_s41556_020_00609_2
crossref_primary_10_1038_s12276_020_00528_0
crossref_primary_10_1038_s41540_020_00154_6
crossref_primary_10_1016_j_indcrop_2024_118504
crossref_primary_10_1051_mmnp_20138402
crossref_primary_10_1111_ppl_13672
crossref_primary_10_1186_s13104_020_05371_0
crossref_primary_10_3390_genes15060685
crossref_primary_10_1126_scitranslmed_ade2886
crossref_primary_10_4161_cc_20624
crossref_primary_10_1038_s41586_024_07630_7
crossref_primary_10_1109_TCBB_2024_3423383
crossref_primary_10_1016_j_cels_2020_02_003
crossref_primary_10_1016_j_crbiot_2022_04_001
crossref_primary_10_1039_C7RA01557G
crossref_primary_10_1042_ETLS20180176
crossref_primary_10_3389_fpls_2018_01770
crossref_primary_10_1016_j_jtbi_2022_111055
crossref_primary_10_1111_ppl_14537
crossref_primary_10_1016_j_molp_2022_12_019
crossref_primary_10_1038_s41534_023_00740_6
crossref_primary_10_15252_embj_2020106785
crossref_primary_10_1038_s41467_023_40365_z
crossref_primary_10_3389_fgene_2020_00457
crossref_primary_10_1371_journal_pone_0195997
crossref_primary_10_1089_omi_2015_0185
crossref_primary_10_1094_PHYTO_06_23_0184_R
crossref_primary_10_1016_j_tig_2020_08_004
crossref_primary_10_1002_qub2_25
crossref_primary_10_1016_j_isci_2023_106250
crossref_primary_10_1016_j_coisb_2020_09_005
crossref_primary_10_1093_bioinformatics_btac559
crossref_primary_10_1093_bioinformatics_btx256
crossref_primary_10_1073_pnas_2322751121
crossref_primary_10_1016_j_patter_2020_100139
crossref_primary_10_1038_s41598_022_14903_6
crossref_primary_10_1093_bioinformatics_bty584
crossref_primary_10_1093_nargab_lqac068
crossref_primary_10_1534_g3_120_401477
crossref_primary_10_1002_qub2_26
crossref_primary_10_1021_acssynbio_4c00473
crossref_primary_10_1049_iet_syb_2016_0005
crossref_primary_10_1093_bioinformatics_btad644
crossref_primary_10_1093_bioinformatics_btv075
crossref_primary_10_1016_j_ygeno_2022_110358
crossref_primary_10_1093_bib_bbab547
crossref_primary_10_1038_s41598_022_20232_5
crossref_primary_10_1093_bib_bbac633
crossref_primary_10_1002_cam4_70238
crossref_primary_10_1186_s12859_016_1319_8
crossref_primary_10_1109_TCBB_2021_3057241
crossref_primary_10_1093_bioinformatics_btac569
crossref_primary_10_1101_gr_150904_112
crossref_primary_10_1105_tpc_20_00080
crossref_primary_10_3390_plants10122707
crossref_primary_10_3389_fgene_2021_649764
crossref_primary_10_1093_nargab_lqac056
crossref_primary_10_1109_TAC_2020_3016964
crossref_primary_10_1109_ACCESS_2019_2945084
crossref_primary_10_1093_database_baz046
crossref_primary_10_3389_fgene_2019_00535
crossref_primary_10_1038_s41598_018_21715_0
crossref_primary_10_1038_s41467_021_26165_3
crossref_primary_10_3390_genes10100798
crossref_primary_10_1111_tpj_14976
crossref_primary_10_1073_pnas_1815336116
crossref_primary_10_1038_s41592_019_0632_3
crossref_primary_10_18632_oncotarget_14286
crossref_primary_10_1371_journal_pcbi_1011118
crossref_primary_10_1016_j_csbj_2022_09_019
crossref_primary_10_1109_TFUZZ_2020_2975482
crossref_primary_10_1186_1471_2105_14_S13_S5
crossref_primary_10_1038_s41586_022_05688_9
crossref_primary_10_1093_nargab_lqac002
crossref_primary_10_1093_bib_bbaf098
crossref_primary_10_1186_s12936_021_03848_2
crossref_primary_10_1038_s41598_025_86332_0
crossref_primary_10_1111_tpj_14940
crossref_primary_10_1016_j_heliyon_2023_e16811
crossref_primary_10_3389_fpls_2019_00698
crossref_primary_10_1109_TCBB_2019_2892450
crossref_primary_10_1186_s12915_019_0679_8
crossref_primary_10_1186_s12920_017_0312_z
crossref_primary_10_1021_acs_jproteome_5b00925
crossref_primary_10_1093_bib_bbaf089
crossref_primary_10_1101_gr_271080_120
crossref_primary_10_3389_fcell_2022_1060298
crossref_primary_10_1186_s13024_018_0296_y
crossref_primary_10_1093_bib_bbaf081
crossref_primary_10_3389_fpls_2022_896945
crossref_primary_10_1038_s41598_022_19005_x
crossref_primary_10_1093_bioinformatics_btac103
crossref_primary_10_3389_fpls_2021_708286
crossref_primary_10_1073_pnas_1200790109
crossref_primary_10_1371_journal_pcbi_1008379
crossref_primary_10_1016_j_compbiomed_2022_106305
crossref_primary_10_1016_j_ygeno_2022_110367
crossref_primary_10_1534_g3_120_401436
crossref_primary_10_3390_computation9120146
crossref_primary_10_1214_20_STS792
crossref_primary_10_1016_j_ygeno_2021_07_024
crossref_primary_10_1093_hmg_ddae087
crossref_primary_10_1186_s13073_021_00908_9
crossref_primary_10_1016_j_celrep_2023_113421
crossref_primary_10_1038_nmeth_4463
crossref_primary_10_3390_biom13030526
crossref_primary_10_1093_bib_bbx151
crossref_primary_10_1093_bib_bbx152
crossref_primary_10_1109_TEVC_2020_3020423
crossref_primary_10_3389_fgene_2022_855770
crossref_primary_10_1109_ACCESS_2019_2913084
crossref_primary_10_1002_qub2_64
crossref_primary_10_1093_nar_gkab598
crossref_primary_10_1111_bph_17395
crossref_primary_10_3389_fimmu_2024_1383358
crossref_primary_10_1038_s41590_024_01826_9
crossref_primary_10_1273_cbij_22_88
crossref_primary_10_1016_j_patter_2021_100414
crossref_primary_10_1016_j_isci_2021_103218
crossref_primary_10_1093_bioinformatics_btab269
crossref_primary_10_1007_s12038_021_00171_5
crossref_primary_10_1038_nmeth_2016
crossref_primary_10_1016_j_xgen_2023_100298
crossref_primary_10_1049_iet_syb_2019_0060
crossref_primary_10_1186_s12859_015_0728_4
crossref_primary_10_1109_TCBB_2020_3034861
crossref_primary_10_1186_s13073_022_01022_0
crossref_primary_10_1038_s41581_023_00705_0
crossref_primary_10_1155_2017_4827171
crossref_primary_10_1371_journal_pcbi_1002606
crossref_primary_10_1093_nar_gkac1212
crossref_primary_10_1016_j_gde_2017_01_003
crossref_primary_10_7554_eLife_58993
crossref_primary_10_1615_JMachLearnModelComput_2023047230
crossref_primary_10_1093_bioinformatics_btab035
crossref_primary_10_26508_lsa_202201458
crossref_primary_10_1038_nature14099
crossref_primary_10_1016_j_omton_2024_200914
crossref_primary_10_1186_s12918_017_0440_2
crossref_primary_10_3390_genes13050764
crossref_primary_10_1016_j_jbi_2014_08_010
crossref_primary_10_3389_fimmu_2019_01283
crossref_primary_10_1038_s41540_024_00361_5
crossref_primary_10_1093_bioinformatics_btae433
crossref_primary_10_1093_bioinformatics_btx194
crossref_primary_10_1242_dev_182097
crossref_primary_10_1093_bioinformatics_btae435
crossref_primary_10_1109_TCBB_2016_2576440
crossref_primary_10_1016_j_crmeth_2024_100963
crossref_primary_10_1007_s12539_024_00633_y
crossref_primary_10_1038_s41380_022_01439_4
crossref_primary_10_1038_s41467_022_32567_8
crossref_primary_10_1182_blood_2013_02_486944
crossref_primary_10_1186_1471_2105_15_336
crossref_primary_10_1038_s41467_023_38183_4
crossref_primary_10_1038_s41588_022_01069_0
crossref_primary_10_1038_s43587_025_00819_z
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1016_j_crmeth_2022_100392
crossref_primary_10_3390_sym13091559
crossref_primary_10_1016_j_smim_2013_02_002
crossref_primary_10_1038_s41540_024_00372_2
crossref_primary_10_1016_j_coisb_2017_07_008
crossref_primary_10_1016_j_coisb_2017_07_006
crossref_primary_10_1093_procel_pwad060
crossref_primary_10_3390_biology11030365
crossref_primary_10_1016_j_exger_2023_112202
crossref_primary_10_1038_s41477_021_00929_7
crossref_primary_10_1016_j_coisb_2018_02_003
crossref_primary_10_1016_j_heliyon_2024_e38259
crossref_primary_10_15252_msb_20209506
crossref_primary_10_1155_2022_4030046
crossref_primary_10_1093_bib_bbw139
crossref_primary_10_1038_s41598_017_05472_0
crossref_primary_10_1371_journal_pone_0307248
crossref_primary_10_26508_lsa_202201788
crossref_primary_10_1038_s41591_022_01724_3
crossref_primary_10_7554_eLife_67436
crossref_primary_10_1007_s10994_019_05829_8
crossref_primary_10_1016_j_compbiomed_2023_106653
crossref_primary_10_1093_bioinformatics_btad373
crossref_primary_10_1016_j_molp_2022_10_016
crossref_primary_10_1038_s41593_024_01794_1
crossref_primary_10_1063_1_5092170
crossref_primary_10_1186_s12859_017_1489_z
crossref_primary_10_1242_dev_174441
crossref_primary_10_1186_s12870_024_05086_5
crossref_primary_10_1002_bies_202300210
crossref_primary_10_1093_bioinformatics_btae466
crossref_primary_10_1093_bioinformatics_btac288
crossref_primary_10_1016_j_compbiomed_2022_105279
crossref_primary_10_1186_s12864_021_07659_2
crossref_primary_10_3934_mbe_2020183
crossref_primary_10_1016_j_devcel_2020_11_002
crossref_primary_10_1016_j_xpro_2024_103006
crossref_primary_10_1126_sciadv_adr1509
crossref_primary_10_1038_s42003_025_07764_y
crossref_primary_10_1016_j_csbj_2021_11_012
crossref_primary_10_1186_s13059_024_03226_6
crossref_primary_10_1093_icb_icu037
crossref_primary_10_1515_cppm_2019_0046
crossref_primary_10_3390_v14040837
crossref_primary_10_1016_j_biosystems_2022_104736
crossref_primary_10_1186_s13059_024_03368_7
crossref_primary_10_1101_gr_278439_123
crossref_primary_10_1038_s41598_020_63347_3
crossref_primary_10_1002_advs_202409170
crossref_primary_10_1126_sciadv_adk0837
crossref_primary_10_1038_s41598_023_46295_6
crossref_primary_10_1038_srep17617
crossref_primary_10_1371_journal_pone_0185475
crossref_primary_10_1038_s41598_021_01790_6
crossref_primary_10_1109_TCBB_2024_3456302
crossref_primary_10_1016_j_cels_2024_07_006
crossref_primary_10_1186_s12859_016_1235_y
crossref_primary_10_3233_IDA_173681
crossref_primary_10_1093_bib_bbaf004
crossref_primary_10_1177_17448069221097760
crossref_primary_10_1007_s11883_023_01170_7
crossref_primary_10_1007_s10709_017_9980_z
crossref_primary_10_1038_s41598_018_24937_4
crossref_primary_10_1007_s10489_020_01705_4
crossref_primary_10_1186_s12864_016_2405_z
crossref_primary_10_31857_S032097252302001X
crossref_primary_10_1042_BST20210128
crossref_primary_10_1093_bib_bbw102
crossref_primary_10_3389_fgene_2021_652623
crossref_primary_10_1038_s41467_025_56884_w
crossref_primary_10_1038_s41592_019_0690_6
crossref_primary_10_1016_j_biosystems_2022_104757
crossref_primary_10_1016_j_celrep_2019_10_013
crossref_primary_10_1038_s41598_021_94919_6
crossref_primary_10_1101_gr_265595_120
crossref_primary_10_1093_bioinformatics_btad165
crossref_primary_10_3390_agronomy14071541
crossref_primary_10_1016_j_stemcr_2021_12_018
crossref_primary_10_1038_s41559_023_02238_y
crossref_primary_10_3390_cells12060948
crossref_primary_10_1038_s41467_024_53954_3
crossref_primary_10_1038_s43588_021_00099_8
crossref_primary_10_1042_BST20210135
crossref_primary_10_1021_acs_jproteome_3c00418
crossref_primary_10_1016_j_celrep_2023_113014
crossref_primary_10_1142_S0219720021500025
crossref_primary_10_7554_eLife_55646
crossref_primary_10_1016_j_crmeth_2023_100476
crossref_primary_10_24072_pcjournal_327
crossref_primary_10_1038_s41467_024_48261_w
crossref_primary_10_1093_bioinformatics_bts312
crossref_primary_10_1038_s41598_022_05402_9
crossref_primary_10_1371_journal_pone_0231658
crossref_primary_10_1016_j_bbagrm_2016_09_003
crossref_primary_10_3389_fcimb_2018_00326
crossref_primary_10_1186_s12870_018_1329_y
crossref_primary_10_3389_fpls_2021_761059
crossref_primary_10_1093_bib_bbaf021
crossref_primary_10_1093_bfgp_elt030
crossref_primary_10_1016_j_jgg_2023_01_006
crossref_primary_10_1093_bfgp_elad040
crossref_primary_10_3389_fmicb_2015_00409
crossref_primary_10_1186_s12864_021_07940_4
crossref_primary_10_1042_BST20210145
crossref_primary_10_1016_j_tig_2016_08_009
crossref_primary_10_1186_s12859_022_04696_w
crossref_primary_10_1002_minf_201900075
crossref_primary_10_1016_j_ccell_2024_02_002
crossref_primary_10_1016_j_physrep_2016_06_004
crossref_primary_10_1002_int_22390
crossref_primary_10_1002_ctm2_165
crossref_primary_10_1109_TCBB_2018_2861698
crossref_primary_10_1093_bib_bbae361
crossref_primary_10_3390_genes13020371
crossref_primary_10_1186_s12859_023_05198_z
crossref_primary_10_1371_journal_pone_0122133
crossref_primary_10_1080_03610918_2024_2331083
crossref_primary_10_1093_bioadv_vbae011
crossref_primary_10_1111_tpj_16375
crossref_primary_10_1186_s12918_014_0111_5
crossref_primary_10_1093_bib_bbt034
crossref_primary_10_3389_fgene_2024_1460351
crossref_primary_10_1128_spectrum_02536_23
crossref_primary_10_1007_s10142_023_01056_6
crossref_primary_10_1093_bioinformatics_btae291
crossref_primary_10_1242_dev_147942
crossref_primary_10_1186_s13059_020_02213_x
crossref_primary_10_3389_fgene_2021_655536
crossref_primary_10_3390_ijms24076543
crossref_primary_10_1093_bib_bbae143
crossref_primary_10_1093_bioinformatics_btt692
crossref_primary_10_1186_s12870_024_05366_0
crossref_primary_10_1093_nar_gkaa1014
crossref_primary_10_1038_s41467_023_36517_w
crossref_primary_10_3389_fgene_2023_1168142
crossref_primary_10_1093_bioinformatics_btaa935
crossref_primary_10_1186_s13040_016_0093_5
crossref_primary_10_15252_msb_20199005
crossref_primary_10_3389_fgene_2021_617282
crossref_primary_10_1002_advs_202413819
crossref_primary_10_1038_s41576_023_00618_5
crossref_primary_10_1093_bib_bbae382
crossref_primary_10_1126_science_aag1125
crossref_primary_10_1371_journal_pcbi_1007435
crossref_primary_10_1111_pce_14012
crossref_primary_10_1371_journal_pcbi_1005013
crossref_primary_10_1093_bioadv_vbae034
crossref_primary_10_1186_1752_0509_7_106
crossref_primary_10_1016_j_celrep_2024_114664
crossref_primary_10_1093_bioinformatics_bty908
crossref_primary_10_1371_journal_pcbi_1010832
crossref_primary_10_1016_j_devcel_2024_05_002
crossref_primary_10_1016_j_omtn_2023_102044
crossref_primary_10_1093_bib_bbad281
crossref_primary_10_1242_dev_174284
crossref_primary_10_1093_bioinformatics_btu777
crossref_primary_10_1038_s41467_021_27162_2
crossref_primary_10_1016_j_bspc_2024_105992
crossref_primary_10_1007_s13258_023_01473_8
crossref_primary_10_1093_nar_gkaf138
crossref_primary_10_1186_s13059_023_03134_1
crossref_primary_10_1111_nph_16627
crossref_primary_10_1186_1752_0509_7_118
crossref_primary_10_1038_s42003_021_02991_5
crossref_primary_10_1109_TCBB_2024_3442536
crossref_primary_10_1093_bioinformatics_bts143
crossref_primary_10_1016_j_coisb_2021_04_007
crossref_primary_10_1093_bioinformatics_btv414
crossref_primary_10_1093_bib_bbac389
crossref_primary_10_1016_j_mbs_2024_109284
crossref_primary_10_1093_gbe_evab208
crossref_primary_10_1016_j_compbiomed_2020_104017
crossref_primary_10_1016_j_isci_2023_107728
crossref_primary_10_1038_s41593_024_01806_0
crossref_primary_10_1002_JLB_6MA0622_738RR
crossref_primary_10_1007_s12572_018_0239_4
crossref_primary_10_1038_s41467_018_06382_z
crossref_primary_10_1371_journal_pcbi_1003252
crossref_primary_10_48130_mpb_0024_0006
crossref_primary_10_2174_0118744710282465240315053136
crossref_primary_10_1089_brain_2020_0745
crossref_primary_10_1093_biolre_ioab065
crossref_primary_10_15252_msb_20167435
crossref_primary_10_3389_fgene_2022_815692
crossref_primary_10_1111_tpj_16570
crossref_primary_10_1007_s11009_017_9554_7
crossref_primary_10_1093_bib_bbaa190
crossref_primary_10_1371_journal_pone_0311978
crossref_primary_10_3389_fpls_2022_831204
crossref_primary_10_1089_cmb_2019_0459
crossref_primary_10_1038_s42003_022_04226_7
crossref_primary_10_3390_ijms25179384
crossref_primary_10_1007_s12539_024_00604_3
crossref_primary_10_1007_s10142_024_01491_z
crossref_primary_10_3390_math13030420
crossref_primary_10_1007_s42994_024_00176_2
crossref_primary_10_1371_journal_pone_0103812
crossref_primary_10_1109_TSP_2019_2929471
crossref_primary_10_1016_j_copbio_2019_12_002
crossref_primary_10_1186_s12859_016_1324_y
crossref_primary_10_1093_bioinformatics_btx827
crossref_primary_10_1093_bioinformatics_bty916
crossref_primary_10_1093_plphys_kiab169
crossref_primary_10_1017_qpb_2022_17
crossref_primary_10_1016_j_celrep_2022_110973
crossref_primary_10_3389_fpls_2024_1421503
crossref_primary_10_1093_jxb_erae454
crossref_primary_10_2174_1574893617666220823114108
crossref_primary_10_1093_bioinformatics_bty945
crossref_primary_10_1371_journal_pone_0192613
crossref_primary_10_2217_epi_2023_0403
crossref_primary_10_1111_tpj_15458
crossref_primary_10_1093_bib_bbad011
crossref_primary_10_1016_j_tplants_2022_09_008
crossref_primary_10_3390_e25081214
crossref_primary_10_1016_j_celrep_2024_114460
crossref_primary_10_1016_j_bbrep_2023_101491
crossref_primary_10_1093_bioinformatics_btab829
crossref_primary_10_1109_TCYB_2021_3090769
crossref_primary_10_1093_nar_gkae076
crossref_primary_10_1098_rspb_2024_2296
crossref_primary_10_1371_journal_pone_0110134
crossref_primary_10_1016_j_isci_2024_111279
crossref_primary_10_1016_j_csbj_2022_06_037
crossref_primary_10_1093_bib_bbae334
crossref_primary_10_1096_fj_202201949RR
crossref_primary_10_1038_s41467_021_24607_6
crossref_primary_10_1186_s12859_021_04074_y
crossref_primary_10_1093_pnasnexus_pgad113
crossref_primary_10_1242_dev_159707
crossref_primary_10_1186_gb_2013_14_6_123
crossref_primary_10_1186_s12918_018_0637_z
crossref_primary_10_1038_srep39684
crossref_primary_10_1101_gr_277488_122
crossref_primary_10_1371_journal_pcbi_1004590
crossref_primary_10_3390_biom13020399
crossref_primary_10_1016_j_compbiomed_2023_107151
crossref_primary_10_3389_fphys_2016_00057
Cites_doi 10.1155/2007/79879
10.1038/nprot.2006.106
10.1089/cmb.2008.09TT
10.1126/science.1081900
10.1142/p567
10.1016/j.plrev.2005.01.001
10.1186/gb-2006-7-5-r36
10.1039/b907946g
10.1126/science.1094068
10.1089/106652700750050961
10.1093/bioinformatics/bti792
10.1186/1471-2105-8-S6-S5
10.1093/bioinformatics/bth337
10.1093/bioinformatics/bth448
10.1093/bioinformatics/btg480
10.1038/msb4100120
10.1093/bioinformatics/btg1071
10.1073/pnas.95.25.14863
10.1186/1752-0509-1-37
10.1371/journal.pone.0009202
10.1093/oso/9780195079517.001.0001
10.1093/bioinformatics/btm344
10.1093/bioinformatics/btl391
10.1186/1471-2105-9-461
10.1214/08-EJS314
10.1186/1471-2105-9-91
10.1186/1471-2105-8-25
10.2202/1544-6115.1175
10.1111/j.1749-6632.2009.04497.x
10.1371/journal.pbio.0050008
10.1007/s10994-006-6226-1
10.1073/pnas.0913357107
10.1089/cmb.2008.08TT
10.1214/009053606000000281
10.1371/journal.pcbi.1000414
10.1023/A:1010933404324
10.1196/annals.1407.021
10.1007/BF00058655
ContentType Journal Article
Contributor Systems and modeling (Dept. of EE and CS) and Bioinformatics and modeling (GIGA-R)
Contributor_xml – sequence: 1
  fullname: Systems and modeling (Dept. of EE and CS) and Bioinformatics and modeling (GIGA-R)
Copyright COPYRIGHT 2010 Public Library of Science
2010 Huynh-Thu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Huynh-Thu et al. 2010
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: 2010 Huynh-Thu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Huynh-Thu et al. 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
JLOSS
Q33
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0012776
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest MSED
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (Proquest)
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of open access journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic

Agricultural Science Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
DocumentTitleAlternate Inferring GRNs with Trees
EISSN 1932-6203
ExternalDocumentID 1292466548
oai_doaj_org_article_13e2336da0c54cd497a5c68406a2a9ae
10.1371/journal.pone.0012776
PMC2946910
oai_orbi_ulg_ac_be_2268_73256
2898422151
A473857805
20927193
10_1371_journal_pone_0012776
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PYCSY
RIG
RNS
RPM
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
JLOSS
Q33
5PM
ADTOC
PV9
RZL
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c800t-b552b994ca228d4948dcc0c758d25e7fda2e3e40b49b4157c57359ba19f0f63c3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:39 EST 2021
Tue Oct 14 19:06:47 EDT 2025
Sun Oct 26 04:08:54 EDT 2025
Tue Sep 30 16:53:11 EDT 2025
Sat Oct 18 19:05:28 EDT 2025
Thu Oct 02 07:40:32 EDT 2025
Tue Oct 07 06:28:29 EDT 2025
Mon Oct 20 22:10:53 EDT 2025
Mon Oct 20 16:49:50 EDT 2025
Thu Oct 16 15:12:28 EDT 2025
Thu Oct 16 15:33:14 EDT 2025
Thu May 22 21:20:40 EDT 2025
Wed Feb 19 02:31:04 EST 2025
Wed Oct 01 02:28:16 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c800t-b552b994ca228d4948dcc0c758d25e7fda2e3e40b49b4157c57359ba19f0f63c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
scopus-id:2-s2.0-77958570788
Conceived and designed the experiments: VAHT PG. Performed the experiments: VAHT. Analyzed the data: VAHT AI LW PG. Wrote the paper: VAHT AI LW PG.
ORCID 0000-0001-6649-2405
0000-0001-8527-5000
0000-0001-5492-2498
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0012776
PMID 20927193
PQID 1292466548
PQPubID 1436336
PageCount e12776
ParticipantIDs plos_journals_1292466548
doaj_primary_oai_doaj_org_article_13e2336da0c54cd497a5c68406a2a9ae
unpaywall_primary_10_1371_journal_pone_0012776
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2946910
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_73256
proquest_miscellaneous_757176875
proquest_journals_1292466548
gale_infotracmisc_A473857805
gale_infotracacademiconefile_A473857805
gale_incontextgauss_ISR_A473857805
gale_incontextgauss_IOV_A473857805
gale_healthsolutions_A473857805
pubmed_primary_20927193
crossref_primary_10_1371_journal_pone_0012776
crossref_citationtrail_10_1371_journal_pone_0012776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-28
PublicationDateYYYYMMDD 2010-09-28
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Opgen-Rhein (ref24) 2007; 1
N Friedman (ref16) 2000; 7
S Gama-Castro (ref40) 2008; 36 (Database issue)
Y Saeys (ref28) 2007; 23
G Stolovitzky (ref36) 2009; 1158
VA Huynh-Thu (ref46) 2008; 4
H Bolouri (ref1) 2008
N Meinshausen (ref21) 2006; 34
JJ Faith (ref43)
AV Werhli (ref26) 2006; 22
MB Eisen (ref9) 1998; 95
I Pournara (ref27) 2004; 20
RJ Prill (ref35) 2010; 5
D Marbach (ref38) 2009; 16
J Schafer (ref20) 2005; 4
P Geurts (ref29) 2009; 5
TS Gardner (ref2) 2005; 2
G Stolovitzky (ref37) 2007; 1115
J Schäfer (ref45) 2006; 5
M Bansal (ref3) 2007; 3
AA Margolin (ref12) 2006; 1
AJ Butte (ref10) 2000
R Castelo (ref22) 2009; 16
L Breiman (ref41) 1996; 24
ref34
TS Gardner (ref7) 2003; 301
TM Cover (ref13) 2006
C Ambroise (ref23) 2009; 3
J Ruan (ref48) 2006; 22
E Segal (ref50) 2005; 6
Y Xiao (ref49) 2009; 5
F Markowetz (ref4) 2007; 8
C Strobl (ref33) 2007; 8
JJ Faith (ref39) 2008; 36 (Database issue)
JJ Faith (ref11) 2007; 5
TM Phuong (ref47) 2004; 20
ref25
N Friedman (ref15) 2004; 303
L Breiman (ref31) 2001; 45
WP Lee (ref5) 2009; 10
SA Kauffman (ref6) 1993
PE Meyer (ref44) 2008; 9
R Bonneau (ref8) 2006; 7
B Perrin (ref19) 2003; 19
L Breiman (ref30) 1984
P Geurts (ref32) 2006; 36
PE Meyer (ref14) 2007; 2007
J Yu (ref17) 2004; 20
C Auliac (ref18) 2008; 9
D Marbach (ref42) 2010; 107
References_xml – volume: 2007
  start-page: 79879
  year: 2007
  ident: ref14
  article-title: Information-theoretic inference of large transcriptional regulatory networks.
  publication-title: EURASIP J Bioinform Syst Biol
  doi: 10.1155/2007/79879
– volume: 1
  start-page: 663
  year: 2006
  ident: ref12
  article-title: Reverse engineering cellular networks.
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2006.106
– volume: 16
  start-page: 229
  year: 2009
  ident: ref38
  article-title: Generating realistic in silico gene networks for performance assessment of reverse engineering methods.
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.2008.09TT
– volume: 301
  start-page: 102
  year: 2003
  ident: ref7
  article-title: Inferring genetic networks and identifying compound mode of action via expression profiling.
  publication-title: Science
  doi: 10.1126/science.1081900
– volume: 36 (Database issue)
  start-page: D120
  year: 2008
  ident: ref40
  article-title: RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation.
  publication-title: Nucleic Acids Research
– year: 2008
  ident: ref1
  article-title: Computational Modeling of Gene Regulatory Networks - a Primer
  doi: 10.1142/p567
– volume: 2
  start-page: 65
  year: 2005
  ident: ref2
  article-title: Reverse-engineering transcription control networks.
  publication-title: Physics of Life Reviews
  doi: 10.1016/j.plrev.2005.01.001
– volume: 7
  start-page: R36
  year: 2006
  ident: ref8
  article-title: The inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo.
  publication-title: Genome Biol
  doi: 10.1186/gb-2006-7-5-r36
– volume: 5
  start-page: 50
  year: 2006
  ident: ref45
  article-title: Reverse engineering genetic networks using the GeneNet package.
  publication-title: R News 6/
– ident: ref43
  article-title: Supplemental website for: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles.
– volume: 5
  start-page: 1593
  year: 2009
  ident: ref29
  article-title: Supervised learning with decision tree-based methods in computational and systems biology.
  publication-title: Mol Biosyst
  doi: 10.1039/b907946g
– volume: 303
  start-page: 799
  year: 2004
  ident: ref15
  article-title: Inferring cellular networks using probabilistic graphical models.
  publication-title: Science
  doi: 10.1126/science.1094068
– volume: 7
  start-page: 601
  year: 2000
  ident: ref16
  article-title: Using bayesian networks to analyze expression data.
  publication-title: Journal of computational biology
  doi: 10.1089/106652700750050961
– year: 2006
  ident: ref13
  article-title: Elements of Information Theory 2nd Edition
– volume: 22
  start-page: 332
  year: 2006
  ident: ref48
  article-title: A bi-dimensional regression tree approach to the modeling of gene expression regulation.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti792
– volume: 8
  start-page: S5
  year: 2007
  ident: ref4
  article-title: Inferring cellular networks–a review.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-S6-S5
– volume: 20
  start-page: 2934
  year: 2004
  ident: ref27
  article-title: Reconstruction of gene networks using bayesian learning and manipulation experiments.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth337
– year: 1984
  ident: ref30
  article-title: Classification and Regression Trees
– volume: 10
  start-page: 408
  year: 2009
  ident: ref5
  article-title: Computational methods for discovering gene networks from expression data.
  publication-title: Brief Bioinform
– start-page: 418
  year: 2000
  ident: ref10
  article-title: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements.
  publication-title: Pac Symp Biocomput
– volume: 20
  start-page: 3594
  year: 2004
  ident: ref17
  article-title: Advances to bayesian network inference for generating causal networks from observational biological data.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth448
– volume: 36 (Database issue)
  start-page: D866
  year: 2008
  ident: ref39
  article-title: Many microbe microarrays database: uniformly normalized affymetrix compendia with structured experimental metadata.
  publication-title: Nucleic Acids Research
– volume: 20
  start-page: 750
  year: 2004
  ident: ref47
  article-title: Regression trees for regulatory element identification.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg480
– volume: 4
  start-page: 60
  year: 2008
  ident: ref46
  article-title: Exploiting tree-based variable importances to selectively identify relevant variables.
  publication-title: JMLR: Workshop and Conference proceedings
– volume: 6
  start-page: 557
  year: 2005
  ident: ref50
  article-title: Learning module networks.
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 78
  year: 2007
  ident: ref3
  article-title: How to infer gene networks from expression profiles.
  publication-title: Mol Syst Biol
  doi: 10.1038/msb4100120
– volume: 19
  start-page: ii138
  year: 2003
  ident: ref19
  article-title: Gene networks inference using dynamic bayesian networks.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg1071
– volume: 95
  start-page: 14863
  year: 1998
  ident: ref9
  article-title: Cluster analysis and display of genome-wide expression patterns.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.25.14863
– volume: 1
  start-page: 37
  year: 2007
  ident: ref24
  article-title: From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data.
  publication-title: BMC Systems Biology
  doi: 10.1186/1752-0509-1-37
– volume: 5
  start-page: e9202
  year: 2010
  ident: ref35
  article-title: Towards a rigorous assessment of systems biology models: The DREAM3 challenges.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009202
– year: 1993
  ident: ref6
  article-title: The Origins of Order: Self-Organization and Selection in Evolution
  doi: 10.1093/oso/9780195079517.001.0001
– volume: 23
  start-page: 2507
  year: 2007
  ident: ref28
  article-title: A review of feature selection techniques in bioinformatics.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 22
  start-page: 2523
  year: 2006
  ident: ref26
  article-title: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl391
– ident: ref34
  article-title: The DREAM project.
– volume: 9
  start-page: 461
  year: 2008
  ident: ref44
  article-title: minet: A r/bioconductor package for inferring large transcriptional networks using mutual information.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-461
– volume: 3
  start-page: 205
  year: 2009
  ident: ref23
  article-title: Inferring sparse gaussian graphical models with latent structure.
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/08-EJS314
– volume: 9
  start-page: 91
  year: 2008
  ident: ref18
  article-title: Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-91
– ident: ref25
  article-title: The DREAM4 In Silico network challenge.
– volume: 8
  start-page: 5
  year: 2007
  ident: ref33
  article-title: Bias in random forest variable importance measures: Illustrations, sources and a solution.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-25
– volume: 4
  start-page: 1175
  year: 2005
  ident: ref20
  article-title: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics.
  publication-title: Statistical applications in genetics and molecular biology
  doi: 10.2202/1544-6115.1175
– volume: 1158
  start-page: 159
  year: 2009
  ident: ref36
  article-title: Lessons from the DREAM2 challenges.
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1111/j.1749-6632.2009.04497.x
– volume: 5
  start-page: e8
  year: 2007
  ident: ref11
  article-title: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles.
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.0050008
– volume: 36
  start-page: 3
  year: 2006
  ident: ref32
  article-title: Extremely randomized trees.
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6226-1
– volume: 107
  start-page: 6286
  year: 2010
  ident: ref42
  article-title: Revealing strengths and weaknesses of methods for gene network inference.
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0913357107
– volume: 16
  start-page: 213
  year: 2009
  ident: ref22
  article-title: Reverse engineering molecular regulatory networks from microarray data with qp-graphs.
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.2008.08TT
– volume: 34
  start-page: 1436
  year: 2006
  ident: ref21
  article-title: High-dimensional graphs and variable selection with the lasso.
  publication-title: Ann Statist
  doi: 10.1214/009053606000000281
– volume: 5
  start-page: e1000414
  year: 2009
  ident: ref49
  article-title: Identification of yeast transcriptional regulation networks using multivariate random forests.
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1000414
– volume: 45
  start-page: 5
  year: 2001
  ident: ref31
  article-title: Random forests.
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 1115
  start-page: 11
  year: 2007
  ident: ref37
  article-title: Dialogue on reverse-engineering assessment and methods: The DREAM of high-throughput pathway inference.
  publication-title: Annals of the New York Academy of Sciences
  doi: 10.1196/annals.1407.021
– volume: 24
  start-page: 123
  year: 1996
  ident: ref41
  article-title: Bagging predictors.
  publication-title: Machine Learning
  doi: 10.1007/BF00058655
SSID ssj0053866
Score 2.58676
Snippet One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high...
SourceID plos
doaj
unpaywall
pubmedcentral
liege
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e12776
SubjectTerms Acids
Algorithms
Analysis
Artificial intelligence
Benchmarks
Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
Bioinformatics
Combinatorial analysis
Computational Biology
Computational Biology - methods
Computational Biology/Systems Biology
Computational Biology/Transcriptional Regulation
Computer applications
Computer engineering
Computer science
Computer simulation
DNA microarrays
E coli
Electrical engineering
Engineering, computing & technology
Escherichia coli
Escherichia coli - genetics
Gene expression
Gene Expression Regulation
Gene regulation
Gene Regulatory Networks
Genes
Genetic research
Genomics
Identification
Inference
Ingénierie, informatique & technologie
Life sciences
Machine learning
Metadata
Methods
Oligonucleotide Array Sequence Analysis
Ordinary differential equations
Predictions
Random variables
Reverse engineering
Sciences du vivant
Sciences informatiques
systems biology
Topology
Trees
SummonAdditionalLinks – databaseName: Directory of open access journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQeIAXxPhaYICFkAChdIntxPHjQEwbCJCAob1ZjuNsk6Kkalpg_z13sRs1YtL2wFtVX9Xcl-8uPv-OkJdWQcw1EnFbXRWLqkjiApupqpw5BSHIFg4Lxc9f8sNj8fEkO9kY9YU9YR4e2AtuL-WOcZ5XJrGZsJVQ0mQWEUpywxBZGnffpFDrYsrvweDFeR4uynGZ7gW9zOZd62bDaStijGwEogGvf9yVbzZ4YI1wp03XX5Z6_ttBeWvVzs3Fb9M0G-Hp4C65E_JKuu_52SY3XHuPbAfP7enrAC_95j75dIR3_PB1Hl34QfTd4oK2vh28p3jfhLo_oT-2pdhCSrE7_pTiAXaMYa-ifvB0_4AcH3z48f4wDiMVYguZ4TIus4yVSglrGCsqhIaprE0sFA0Vy5ysK8McdyIphSohtEubSZ6p0qSqTuqcW_6QbLUgxB1CRa1UnaUmFcYJnhSlFS6puJAsKyFrqSPC1_LVNuCN49iLRg-HaBLqDi8ajVrRQSsRicdfzT3exhX071B1Iy2iZQ9fgA3pYEP6KhuKyHNUvPZXT0ef1_sCsX5w6kNEXgwUiJjRYkvOqVn1vT76-vMaRN-_TYheBaK6A3FYE65BAE-IxDWh3J1Qgt_byfLbwUyB0_Jc_2ID68PnVQOsW106Dbl1oSWHtDYiO2jMaxn2GvI8JnD0dAH_szbwy5fpuIyPgE15retWvZaZTKFalfAoj7w7jGpgiWISaoOIyImjTPQ0XWnPzwZ0c6ZEDjlsRGajS13LEh7_D0t4Qm779hAVs2KXbC0XK_cUss5l-WzYYP4CzA6AHw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gAvwMbHAgMshAQIpUsdJ04eEFqh0wZaQWOb9mY5jjMmVUlpWmD_PXeOExYxwd6i-KLkfB8-x3e_I-SFTmHNVQJxW03u8zwJ_ASTqfKYmRSWIJ0Y3CgeTOK9Y_7xNDpdIZO2FgbTKlufaB11Xmn8R74N6xLj2Co3eTf77mPXKDxdbVtoKNdaIX9rIcZukDWGyFirZG00nnw5bH0zWHccuwK6UAy3nbwGs6o0A3sKi9gjlxYoi-Pfeeu1KR5kIwzqtKqvCkn_zqy8uSxn6uKnmk4vLVu7d8ltF2_SnUZB1smKKTfInbaXA3WmvUHW3VVNXzkk6tf3yKd9LAfEP3_0sOlZX80v6KTJHK8plqbQ8S-XSlvSD2qhqM1BoEdzY_wRrJA5PbA9quv75Hh3fPR-z3fdF3wNQeTCz6KIZWnKtWIsyRFFJtc60LC_yFlkRJErZkLDg4ynGUQBQkcijNJMDdMiKOJQhw_IagnzukkoL9K0iIZqyJXhYZBkmpsgD7lgUQYBTuGRsJ1yqR00OXbImEp73iZgi9LMlkRBSScoj_jdU7MGmuM_9COUZkeLwNr2RjU_k85O4WnDwjDOVaAjroFtoSKNgDixYghk7pFnqAuyqVLt3IPc4QgLhA0iPPLcUiC4RonZO2dqWddy__PJNYi-HvaIXjqiooLp0MpVTABPCNrVo9zqUYKL0L3hN1ZzgdPsXP5glnV7vZwC61pmRkIYnkgRQgTskU3U73YOa_nH9OA9rc5fPUy7YfwEzN8rTbWspYjEEDa2Aj7lYWMhnRhYkDIB2wiPiJ7t9OTUHynPv1kgdJbyGMJdjww6K7uWJjz6NxuPya0mRyT1WbJFVhfzpXkCoecie-r8yW_bRIN0
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG-wAvwPhaYECEEB9CyVLHiZPHDjZtoBU0NjQekOU4zpio0qpJgPHA386d40YEhhgPvEX1OfWd7fM5d_c7Qh6qFM5cyRG3Vecey5PASzCYKo-pTuEIUonGi-LeJN45ZC-PoqMV8mGZC2MlCHfE6awynnx8mJV6w0pyA_GKWu-pPwr5aNnDnwORbzypPH5kEIfwy1iNCUgXyDCOwFQfkOHh5M34fetppl5Mg9Cm0_3pTb3jyqD6d7p7OEW3NoKiwgjPMlB_j7O82JRzefpFTqc_HWLbV8j3Jftt7Monv6kzX337BRnyv8nnKrlszV933L5llazo8hpZtQqmcp9YFOyn18mrXUxFxK-O7r4-xiJjs8WpO2mj1isX02Lcra82jLd0X8hauib-wT1YaO1twumcu3umPnZ1gxxubx083_Fs5QdPgQFbe1kU0SxNmZKUJjki2ORKBQruNjmNNC9ySXWoWZCxNAMLhKuIh1GayVFaBEUcqvAmGZTA7xpxWZGmRTSSIyY1C4MkU0wHecg4jTIwrgqHhMsJFsrComN1jqkwvj4O16NWNAIFKKwAHeJ1veYtLMhf6Ddx7XS0COptfoAZFHbmoLemYRjnMlARU8A2l5FCMJ5YUgRRd8h9XHmizZDtVJMYM4QkwuIUDnlgKBDYo8TIoWPZVJXYff3uHERv93tEjy1RMQNxKGmzNYAnXGA9yvUeJagn1Wt-ZvYJcJqdiM_UsG6emymwrkSmBVwBEsFDsL4dsobreSnDSoA5ShlWyE7gf5Y77Oxmt2vGIWDsYKlnTSV4xEdwqeYwlFvtfuymgQYp5aAKHMJ7O7U3T_2W8uSjAWGnKYvB1HaI3-3pc62E2__a4Q651EaspB5N1smgXjT6LhjCdXbPqrMf3GC2Tw
  priority: 102
  providerName: Unpaywall
Title Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/20927193
https://www.proquest.com/docview/1292466548
https://www.proquest.com/docview/757176875
http://orbi.ulg.ac.be/handle/2268/73256
https://pubmed.ncbi.nlm.nih.gov/PMC2946910
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0012776&type=printable
https://doaj.org/article/13e2336da0c54cd497a5c68406a2a9ae
http://dx.doi.org/10.1371/journal.pone.0012776
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG9gAvwMbHAqNYCPEhlCp1nDh5QGgbGxtoZRorGk-W4zhjUpR2TQvbf8-d40ZEDNhLFMXnNv443118_v0Iea5TsLlKIG6ryX2eJ4GfYDJVHjOTggnSicFA8WAY7434x5PoZIksNtpdB9ZXhnbIJzWalv2L88t3oPBvLWuDGCwq9SfjyvTtXqqIX0zOfaSWwi1Yx7Nxg6yA-UqR3-GAt1sNoPBx7M7U_e3HOjbLQvu3C_hKiXvbiIxajuurvNQ_ky1vzquJuvypyvI3S7Z7l9x2LijdbObMKlky1Rq5s6B3oE7b18iqu6vpKwdO_foe-bSPJwTxYyA9amjsx9NLOmySyWuKp1XozoXLrq3oezVT1KYl0OOpMf4WGM2cHlja6vo-Ge3uHG_v-Y6QwdfgV878LIpYlqZcK8aSHIFlcq0DDSFHziIjilwxExoeZDzNwDEQOhJhlGZqkBZBEYc6fECWK-jXdUJ5kaZFNFADrgwPgyTT3AR5yAWLMvB5Co-Eiy6X2qGVI2lGKe0WnICopektiQMl3UB5xG9rTRq0jv_Ib-FotrKItW0fjKen0qku1DYsDONcBTriGpotVKQRIydWDLHNPfIU54JsDq62K4bc5IgUhJwRHnlmJRBvo8KEnlM1r2u5__nrNYS-HHWEXjqhYgzdoZU7RAFtQhyvjuRGRxJWDd0pfmNnLrQ0O5M_mG26vZ-X0HQtMyPBM0-kCMEp9sg6zu9FH9YSvETGkbg6gf9ZzPmri2lbjK-AKX2VGc9rKSIxgFhXwKs8bDSkHQYWpExAZOER0dGdzjh1S6qz7xYbnaU8Bg_YI_1Wy641Ex79uxmPya0mbST1WbJBlmfTuXkC3ugs65Eb4kTANdke4HX3Q4-sbO0MD4969vtOz6428Gw0PNz89gthxJEa
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9RAEN8gPOCLCv6hirIxGjWm0Ntuu-2DMSAQzgNMEAxv63a7RZJLe17vxPtSfkZn2m2lkSgvvDXd6V1nZ3ZmtjvzG0Je6Bh8rhKI22pSl6eR50aYTJWGzMTggnRkcKN4cBjunfCPp8HpHPnV1MJgWmVjEytDnRYav5FvgF9iHFvlRu9H313sGoWnq00LjVotBmZ2AVu28l1_G-T7krHdneMPe67tKuBqCI4mbhIELIljrhVjUYroKKnWnoa4OWWBEVmqmPEN9xIeJ-DdhA6EH8SJ6sWZl4W-9uF3b5EF7oMtgfUjTtsNHtiOMLTleb7obVhtWB8VuVmvzngR2eSS-6u6BLS-YGGIx-QIsjosyqsC3r_zNhen-UjNLtRweMkp7t4jd2w0Szdr9VsicyZfJnebThHUGo5lsmSvSvra4ly_uU8GfSw2xO-K9MicYRuxYjyjh3Veekmx8IXu_LSJujndVhNFqwwHejw2xt0C_5vSg6oDdvmAnNyIFB6S-RzmdYVQnsVxFvRUjysDUokSzY2X-lywIIHwKXOI30y51Bb4HPtvDGV1midgA1TPlkRBSSsoh7jtU6Ma-OM_9FsozZYWYburG8X4TForAE8b5vthqjwdcA1sCxVohNsJFUOYdIesoS7Iuga2NT5ykyPoELafcMjzigKhO3LMDTpT07KU_U9frkH0-ahD9MoSZQVMh1a2HgN4QkiwDuVqhxIMkO4Mv600FzhNzuUPVrFeXU-HwLqWiZEQ5EdS-BBfO2QF9buZw1L-WdjwP43OXz1M22F8BcwOzE0xLaUIRA-2zQJe5VG9QloxMC9mAjYpDhGdtdORU3ckP_9WwayzmIcQTDtkvV1l19KEx_9mY40s7h0f7Mv9_uHgCbldZ6PELotWyfxkPDVPIcidJM8qy0LJ15s2Zb8B1Ri5lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9RAEN8gJOqLCv6hirIxGjWm0Ntuu-2DMeBBOBE0CIa3dbvdniSX9rzeiXw1P50z7bbSSJQX3pru9K6zMzsz2535DSHPdAw-VwnEbTWpy9PIcyNMpkpDZmJwQToyuFHc2w93jvj74-B4jvxqamEwrbKxiZWhTguN38jXwS8xjq1yo_XMpkV86m-_HX93sYMUnrQ27TRqFdk1Z6ewfSvfDPog6-eMbW8dvttxbYcBV0OgNHWTIGBJHHOtGItSREpJtfY0xNApC4zIUsWMb7iX8DgBTyd0IPwgTlQvzrws9LUPv3uNLAjfjzGdUBy3mz2wI2FoS_V80Vu3mrE2LnKzVp33IsrJOVdYdQxo_cLCCI_MEXB1VJQXBb9_53DemOVjdXaqRqNzDnL7DrllI1u6UaviIpkz-RK53XSNoNaILJFFe1XSlxbz-tVdsjvAwkP8xkgPzBBbihWTM7pf56iXFItg6NZPm7Sb076aKlplO9DDiTHuJvjilO5V3bDLe-ToSqRwn8znMK_LhPIsjrOgp3pcGe57UaK58VKfCxYkEEplDvGbKZfagqBjL46RrE72BGyG6tmSKChpBeUQt31qXIOA_Id-E6XZ0iKEd3WjmAyltQjwtGG-H6bK0wHXwLZQgUbonVAxhEx3yCrqgqzrYVtDJDc4AhBhKwqHPK0oEMYjxwUxVLOylIOPXy5B9PmgQ_TCEmUFTIdWtjYDeEJ4sA7lSocSjJHuDL-uNBc4TU7kD1axXl3PRsC6lomREPBHUvgQaztkGfW7mcNS_lnk8D-Nzl88TNthfAXMFMxNMSulCEQPttACXuVBvUJaMTAvZgI2LA4RnbXTkVN3JD_5VkGus5iHEFg7ZK1dZZfShIf_ZmOVXAcjJj8M9ncfkZt1YkrssmiFzE8nM_MY4t1p8qQyLJR8vWpL9hvrYb3a
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG-wAvwPhaYECEEB9CyVLHiZPHDjZtoBU0NjQekOU4zpio0qpJgPHA386d40YEhhgPvEX1OfWd7fM5d_c7Qh6qFM5cyRG3Vecey5PASzCYKo-pTuEIUonGi-LeJN45ZC-PoqMV8mGZC2MlCHfE6awynnx8mJV6w0pyA_GKWu-pPwr5aNnDnwORbzypPH5kEIfwy1iNCUgXyDCOwFQfkOHh5M34fetppl5Mg9Cm0_3pTb3jyqD6d7p7OEW3NoKiwgjPMlB_j7O82JRzefpFTqc_HWLbV8j3Jftt7Monv6kzX337BRnyv8nnKrlszV933L5llazo8hpZtQqmcp9YFOyn18mrXUxFxK-O7r4-xiJjs8WpO2mj1isX02Lcra82jLd0X8hauib-wT1YaO1twumcu3umPnZ1gxxubx083_Fs5QdPgQFbe1kU0SxNmZKUJjki2ORKBQruNjmNNC9ySXWoWZCxNAMLhKuIh1GayVFaBEUcqvAmGZTA7xpxWZGmRTSSIyY1C4MkU0wHecg4jTIwrgqHhMsJFsrComN1jqkwvj4O16NWNAIFKKwAHeJ1veYtLMhf6Ddx7XS0COptfoAZFHbmoLemYRjnMlARU8A2l5FCMJ5YUgRRd8h9XHmizZDtVJMYM4QkwuIUDnlgKBDYo8TIoWPZVJXYff3uHERv93tEjy1RMQNxKGmzNYAnXGA9yvUeJagn1Wt-ZvYJcJqdiM_UsG6emymwrkSmBVwBEsFDsL4dsobreSnDSoA5ShlWyE7gf5Y77Oxmt2vGIWDsYKlnTSV4xEdwqeYwlFvtfuymgQYp5aAKHMJ7O7U3T_2W8uSjAWGnKYvB1HaI3-3pc62E2__a4Q651EaspB5N1smgXjT6LhjCdXbPqrMf3GC2Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+Regulatory+Networks+from+Expression+Data+Using+Tree-Based+Methods&rft.jtitle=PloS+one&rft.au=Huynh-Thu%2C+V%C3%A2n+Anh&rft.au=Irrthum%2C+Alexandre&rft.au=Wehenkel%2C+Louis&rft.au=Geurts%2C+Pierre&rft.date=2010-09-28&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=5&rft.issue=9&rft.spage=e12776&rft_id=info:doi/10.1371%2Fjournal.pone.0012776&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2898422151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon