Neural stem cells traffic functional mitochondria via extracellular vesicles

Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mec...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 19; no. 4; p. e3001166
Main Authors Peruzzotti-Jametti, Luca, Bernstock, Joshua D., Willis, Cory M., Manferrari, Giulia, Rogall, Rebecca, Fernandez-Vizarra, Erika, Williamson, James C., Braga, Alice, van den Bosch, Aletta, Leonardi, Tommaso, Krzak, Grzegorz, Kittel, Ágnes, Benincá, Cristiane, Vicario, Nunzio, Tan, Sisareuth, Bastos, Carlos, Bicci, Iacopo, Iraci, Nunzio, Smith, Jayden A., Peacock, Ben, Muller, Karin H., Lehner, Paul J., Buzas, Edit Iren, Faria, Nuno, Zeviani, Massimo, Frezza, Christian, Brisson, Alain, Matheson, Nicholas J., Viscomi, Carlo, Pluchino, Stefano
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.04.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.3001166

Cover

Abstract Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho 0 cells rescued mitochondrial function and increased Rho 0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
AbstractList Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho(0) cells rescued mitochondrial function and increased Rho(0) cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho 0 cells rescued mitochondrial function and increased Rho 0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Volcano plots show statistical significance (y axis) vs. fold change (x axis) for 9,951/9,971 cellular proteins quantitated across all 3 biological replicates (no missing values) in the multiplex TMT-based functional proteomic experiment illustrated in a. Proteins annotated with the following GOCC subcellular localisations are highlighted in red: mitochondrial outer membrane (GO:0005741, enriched in EVs); mitochondrial inner membrane (GO: 0005743, enriched in EVs); and mitochondrial matrix (GO:0005759, enriched in EVs). Mitochondrial complex (C) proteins enriched in EVs and encoded in the mitochondrial (upper panel) or nuclear (lower panel) genomes in the multiplex TMT-based functional proteomic experiment include: NADH:ubiquinone oxidoreductase or CI [mtnd2 (ND2 subunit), mtnd5 (ND5 subunit), ndufaf6 (assembly factor 6), ndufa9 (subunit A9), ndufs3 (core subunit S3), ndufb5 (1 beta subcomplex subunit 5)], succinate dehydrogenase or CII [Sdha (Subunit A), sdhd (cytochrome b small subunit), sdhb (iron-sulfur subunit), sdhc (cytochrome b560 subunit)], cytochrome b-c1 or CIII [mt-cyb (cytochrome B), Uqcrfs1 (subunit 5), Uqcrc2 (subunit 2), coq10b (coenzyme Q10B), uqcrq (subunit 8)], cytochrome C oxidase or CIV [mt-co3 (oxidase III), mtco1 (oxidase I), mtco2 (oxidase II), cox15 (subunit 15), cox18 (assembly protein 18), cox6c (subunit 6C), cox5a (subunit 5a)] and ATP synthase or CV [atp5f1 (subunit gamma), atp5s (subunit S), atp5d (subunit delta), atp5h (subunit D)]. The mitochondrial encoded gene mt-ND1 (NADH-ubiquinone oxidoreductase chain 1) was found to be present in EVs, Mito, and NSCs (L929 Rho0 were used as negative controls). (f) Representative protein expression analysis by WB of NSCs, EVs, and isolated mitochondria (Mito). CI, II, II, IV, V, complex I, II, II, IV, V; EV, extracellular vesicle; FDR, false discovery rate; GOCC, Gene Ontology Cellular Component; NSC, neural stem cell; PCR, polymerase chain reaction; TMT, Tandem Mass Tag; WB, western blot. https://doi.org/10.1371/journal.pbio.3001166.g001 Using Gene Ontology Cellular Component (GOCC) annotations, we investigated the subcellular origin of proteins enriched in EVs compared with NSCs (Fig 1B).
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho.sup.0 cells rescued mitochondrial function and increased Rho.sup.0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho 0 cells rescued mitochondrial function and increased Rho 0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. This study shows that neural stem cells are able to transfer functional mitochondria via extracellular vesicles to target cells both in vitro and in vivo, suggesting that functional mitochondrial transfer via extracellular vesicles is a signaling mechanism used by neural stem cells to modulate the physiology and metabolism of target cells.
Volcano plots show statistical significance (y axis) vs. fold change (x axis) for 9,951/9,971 cellular proteins quantitated across all 3 biological replicates (no missing values) in the multiplex TMT-based functional proteomic experiment illustrated in a. Proteins annotated with the following GOCC subcellular localisations are highlighted in red: mitochondrial outer membrane (GO:0005741, enriched in EVs); mitochondrial inner membrane (GO: 0005743, enriched in EVs); and mitochondrial matrix (GO:0005759, enriched in EVs). Mitochondrial complex (C) proteins enriched in EVs and encoded in the mitochondrial (upper panel) or nuclear (lower panel) genomes in the multiplex TMT-based functional proteomic experiment include: NADH:ubiquinone oxidoreductase or CI [mtnd2 (ND2 subunit), mtnd5 (ND5 subunit), ndufaf6 (assembly factor 6), ndufa9 (subunit A9), ndufs3 (core subunit S3), ndufb5 (1 beta subcomplex subunit 5)], succinate dehydrogenase or CII [Sdha (Subunit A), sdhd (cytochrome b small subunit), sdhb (iron-sulfur subunit), sdhc (cytochrome b560 subunit)], cytochrome b-c1 or CIII [mt-cyb (cytochrome B), Uqcrfs1 (subunit 5), Uqcrc2 (subunit 2), coq10b (coenzyme Q10B), uqcrq (subunit 8)], cytochrome C oxidase or CIV [mt-co3 (oxidase III), mtco1 (oxidase I), mtco2 (oxidase II), cox15 (subunit 15), cox18 (assembly protein 18), cox6c (subunit 6C), cox5a (subunit 5a)] and ATP synthase or CV [atp5f1 (subunit gamma), atp5s (subunit S), atp5d (subunit delta), atp5h (subunit D)]. The mitochondrial encoded gene mt-ND1 (NADH-ubiquinone oxidoreductase chain 1) was found to be present in EVs, Mito, and NSCs (L929 Rho0 were used as negative controls). (f) Representative protein expression analysis by WB of NSCs, EVs, and isolated mitochondria (Mito). CI, II, II, IV, V, complex I, II, II, IV, V; EV, extracellular vesicle; FDR, false discovery rate; GOCC, Gene Ontology Cellular Component; NSC, neural stem cell; PCR, polymerase chain reaction; TMT, Tandem Mass Tag; WB, western blot. https://doi.org/10.1371/journal.pbio.3001166.g001 Using Gene Ontology Cellular Component (GOCC) annotations, we investigated the subcellular origin of proteins enriched in EVs compared with NSCs (Fig 1B).
Audience Academic
Author Willis, Cory M.
Faria, Nuno
Bernstock, Joshua D.
Smith, Jayden A.
Braga, Alice
Bastos, Carlos
Buzas, Edit Iren
Tan, Sisareuth
Brisson, Alain
Vicario, Nunzio
Frezza, Christian
Peruzzotti-Jametti, Luca
Benincá, Cristiane
Zeviani, Massimo
Williamson, James C.
Viscomi, Carlo
van den Bosch, Aletta
Rogall, Rebecca
Matheson, Nicholas J.
Krzak, Grzegorz
Fernandez-Vizarra, Erika
Leonardi, Tommaso
Peacock, Ben
Manferrari, Giulia
Kittel, Ágnes
Bicci, Iacopo
Iraci, Nunzio
Lehner, Paul J.
Muller, Karin H.
Pluchino, Stefano
AuthorAffiliation University of Dundee, UNITED KINGDOM
5 NHS Blood and Transplant, Cambridge, United Kingdom
11 Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom
12 NanoFCM Co., Ltd, Nottingham, United Kingdom
7 Institute of Experimental Medicine, Eötvös Lorand Research Network, Budapest, Hungary
14 Semmelweis University, Budapest, Hungary
1 Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
18 Department of Medicine, University of Cambridge, United Kingdom
2 National Institutes of Health (NINDS/NIH), Bethesda, Maryland, United States of America
6 Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
10 Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
13 Cambridge Advanced Imaging Centre (CAIC), United Kingdom
3 MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
17 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridg
AuthorAffiliation_xml – name: 6 Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
– name: 5 NHS Blood and Transplant, Cambridge, United Kingdom
– name: 17 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge United Kingdom
– name: 3 MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
– name: 4 Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
– name: University of Dundee, UNITED KINGDOM
– name: 15 HCEMM Kft HU, Budapest, Hungary
– name: 1 Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom
– name: 9 UMR-CBMN CNRS-Université de Bordeaux-IPB, France
– name: 11 Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom
– name: 18 Department of Medicine, University of Cambridge, United Kingdom
– name: 16 ELKH-SE, Budapest, Hungary
– name: 14 Semmelweis University, Budapest, Hungary
– name: 2 National Institutes of Health (NINDS/NIH), Bethesda, Maryland, United States of America
– name: 10 Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
– name: 7 Institute of Experimental Medicine, Eötvös Lorand Research Network, Budapest, Hungary
– name: 8 Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Italy
– name: 13 Cambridge Advanced Imaging Centre (CAIC), United Kingdom
– name: 12 NanoFCM Co., Ltd, Nottingham, United Kingdom
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0002-9396-5607
  surname: Peruzzotti-Jametti
  fullname: Peruzzotti-Jametti, Luca
– sequence: 2
  givenname: Joshua D.
  orcidid: 0000-0002-7814-3867
  surname: Bernstock
  fullname: Bernstock, Joshua D.
– sequence: 3
  givenname: Cory M.
  orcidid: 0000-0001-7938-7276
  surname: Willis
  fullname: Willis, Cory M.
– sequence: 4
  givenname: Giulia
  orcidid: 0000-0001-7062-1142
  surname: Manferrari
  fullname: Manferrari, Giulia
– sequence: 5
  givenname: Rebecca
  orcidid: 0000-0003-0605-2322
  surname: Rogall
  fullname: Rogall, Rebecca
– sequence: 6
  givenname: Erika
  orcidid: 0000-0002-2469-142X
  surname: Fernandez-Vizarra
  fullname: Fernandez-Vizarra, Erika
– sequence: 7
  givenname: James C.
  orcidid: 0000-0002-2009-189X
  surname: Williamson
  fullname: Williamson, James C.
– sequence: 8
  givenname: Alice
  orcidid: 0000-0003-3273-9742
  surname: Braga
  fullname: Braga, Alice
– sequence: 9
  givenname: Aletta
  orcidid: 0000-0001-8886-8928
  surname: van den Bosch
  fullname: van den Bosch, Aletta
– sequence: 10
  givenname: Tommaso
  orcidid: 0000-0002-4449-1863
  surname: Leonardi
  fullname: Leonardi, Tommaso
– sequence: 11
  givenname: Grzegorz
  surname: Krzak
  fullname: Krzak, Grzegorz
– sequence: 12
  givenname: Ágnes
  surname: Kittel
  fullname: Kittel, Ágnes
– sequence: 13
  givenname: Cristiane
  orcidid: 0000-0001-7933-860X
  surname: Benincá
  fullname: Benincá, Cristiane
– sequence: 14
  givenname: Nunzio
  orcidid: 0000-0001-5934-3962
  surname: Vicario
  fullname: Vicario, Nunzio
– sequence: 15
  givenname: Sisareuth
  orcidid: 0000-0003-3633-6318
  surname: Tan
  fullname: Tan, Sisareuth
– sequence: 16
  givenname: Carlos
  surname: Bastos
  fullname: Bastos, Carlos
– sequence: 17
  givenname: Iacopo
  orcidid: 0000-0001-6994-3857
  surname: Bicci
  fullname: Bicci, Iacopo
– sequence: 18
  givenname: Nunzio
  orcidid: 0000-0003-2146-9329
  surname: Iraci
  fullname: Iraci, Nunzio
– sequence: 19
  givenname: Jayden A.
  orcidid: 0000-0003-2307-8452
  surname: Smith
  fullname: Smith, Jayden A.
– sequence: 20
  givenname: Ben
  orcidid: 0000-0002-7823-8719
  surname: Peacock
  fullname: Peacock, Ben
– sequence: 21
  givenname: Karin H.
  orcidid: 0000-0003-4693-8558
  surname: Muller
  fullname: Muller, Karin H.
– sequence: 22
  givenname: Paul J.
  surname: Lehner
  fullname: Lehner, Paul J.
– sequence: 23
  givenname: Edit Iren
  surname: Buzas
  fullname: Buzas, Edit Iren
– sequence: 24
  givenname: Nuno
  surname: Faria
  fullname: Faria, Nuno
– sequence: 25
  givenname: Massimo
  surname: Zeviani
  fullname: Zeviani, Massimo
– sequence: 26
  givenname: Christian
  surname: Frezza
  fullname: Frezza, Christian
– sequence: 27
  givenname: Alain
  orcidid: 0000-0003-0342-352X
  surname: Brisson
  fullname: Brisson, Alain
– sequence: 28
  givenname: Nicholas J.
  orcidid: 0000-0002-3318-1851
  surname: Matheson
  fullname: Matheson, Nicholas J.
– sequence: 29
  givenname: Carlo
  surname: Viscomi
  fullname: Viscomi, Carlo
– sequence: 30
  givenname: Stefano
  surname: Pluchino
  fullname: Pluchino, Stefano
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33826607$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03275565$$DView record in HAL
BookMark eNqVk1tr2zAUx83oWC_bNxibYS_rQzJdrIv3MAhlWwOhhd1ehSxLiYJtZZId1m9fqXFLE8rYMMZC_v3_R-fonNPsqHOdzrLXEEwhZvDD2g2-k810U1k3xQBASOmz7ASSgkwY5-To0fo4Ow1hDQBCJeIvsmOMOaIUsJNscaUHL5s89LrNlW6akPdeGmNVboZO9dbFGHlre6dWrqu9lfk2vvpPpBI-NNLnWx2sanR4mT03sgn61fg9y35--fzj4nKyuP46v5gtJoqVpJ8gyFVVVYQWhkOtC1aUoISYlBRIirFEACJqGKOFlIwhWBquuaqLUlYUG6zxWfZ257tpXBBjIYJABHEEECtxJOY7onZyLTbettLfCCetuNtwfimk79OhBUUaI0CRrEpQQAAlpEYBzbVBoC6Iil6fxmhD1epa6S7m3uyZ7v_p7Eos3VZwQAjANBqc7wxWB7LL2UKkPYARI4SSLYzs-zGYd78HHXrR2pAKLTvthpQjBIgSVCT03QH6dCVGailjsrYzLt1cMhWz2AIp57sjTp-g4lPr1qrYeMbG_T3B-Z4gMn1siqUcQhDz79_-g736d_b61z775vHFPJT2vrsjUOwA5V0IXpsHBAKRhui-YiINkRiHKMo-HsiU7WUahVgU2_xdfAsM0B_M
CitedBy_id crossref_primary_10_3390_bioengineering9090439
crossref_primary_10_4103_1673_5374_346466
crossref_primary_10_1016_j_neuron_2022_01_021
crossref_primary_10_1007_s12015_022_10492_z
crossref_primary_10_1038_s41389_022_00380_z
crossref_primary_10_1111_trf_17524
crossref_primary_10_1177_0271678X251325039
crossref_primary_10_3390_ijms222111709
crossref_primary_10_1186_s12967_023_04133_3
crossref_primary_10_3389_fpain_2022_1013577
crossref_primary_10_1186_s12885_022_10107_3
crossref_primary_10_3390_cells13060495
crossref_primary_10_1111_jnc_16108
crossref_primary_10_3390_cells13030204
crossref_primary_10_1016_j_lfs_2023_122257
crossref_primary_10_3390_biom12121770
crossref_primary_10_1016_j_arr_2024_102522
crossref_primary_10_1097_SCS_0000000000010706
crossref_primary_10_29296_25877313_2023_11_11
crossref_primary_10_1002_mco2_214
crossref_primary_10_1016_j_mito_2024_101935
crossref_primary_10_3390_antiox10071088
crossref_primary_10_3390_cells12141822
crossref_primary_10_1016_j_ecoenv_2024_116363
crossref_primary_10_1016_j_ijpharm_2024_124194
crossref_primary_10_1016_j_gande_2024_12_001
crossref_primary_10_1097_WNR_0000000000001725
crossref_primary_10_1182_blood_2023022147
crossref_primary_10_1038_s41467_023_41995_z
crossref_primary_10_1016_j_neuint_2021_105192
crossref_primary_10_1111_tra_12951
crossref_primary_10_1038_s41416_021_01610_8
crossref_primary_10_4103_NRR_NRR_D_24_00243
crossref_primary_10_3390_cells12101416
crossref_primary_10_1007_s12020_024_03967_1
crossref_primary_10_1038_s42003_022_04050_z
crossref_primary_10_3389_fragi_2022_866718
crossref_primary_10_1186_s12929_023_00979_3
crossref_primary_10_1002_ame2_12310
crossref_primary_10_3390_ijms241813835
crossref_primary_10_1016_j_gde_2021_06_001
crossref_primary_10_3390_biom13010165
crossref_primary_10_1016_j_ymthe_2023_02_013
crossref_primary_10_1016_j_cmet_2022_02_016
crossref_primary_10_32604_biocell_2022_018612
crossref_primary_10_1088_1748_605X_ad5819
crossref_primary_10_3390_cells13040325
crossref_primary_10_1093_function_zqab073
crossref_primary_10_1016_j_arr_2024_102549
crossref_primary_10_1038_s41467_022_31213_7
crossref_primary_10_3390_ijms24087005
crossref_primary_10_1016_j_mito_2022_02_004
crossref_primary_10_1096_fba_2021_00035
crossref_primary_10_3389_fnmol_2021_767219
crossref_primary_10_1016_j_expneurol_2022_114124
crossref_primary_10_1038_s41392_024_01839_8
crossref_primary_10_1038_s44222_023_00117_6
crossref_primary_10_3390_biomedicines9091092
crossref_primary_10_1016_j_neurot_2024_e00515
crossref_primary_10_3390_biomedicines10061251
crossref_primary_10_14336_AD_2021_0608
crossref_primary_10_1002_jex2_65
crossref_primary_10_3390_physiologia4040021
crossref_primary_10_1007_s00018_021_04020_4
crossref_primary_10_1021_acsnano_4c02940
crossref_primary_10_1016_j_bbrc_2024_150559
crossref_primary_10_1111_trf_17960
crossref_primary_10_3390_antiox11020356
crossref_primary_10_1038_s41467_024_52867_5
crossref_primary_10_1038_s42255_024_01125_5
crossref_primary_10_3390_ijms24044182
crossref_primary_10_3389_fimmu_2021_705920
crossref_primary_10_1186_s13287_023_03558_3
crossref_primary_10_1038_s41467_024_55217_7
crossref_primary_10_3390_ijms24032637
crossref_primary_10_1177_0271678X241300223
crossref_primary_10_1523_JNEUROSCI_1170_24_2024
crossref_primary_10_3390_bioengineering9110675
crossref_primary_10_1016_j_tice_2025_102875
crossref_primary_10_1177_0271678X251325805
crossref_primary_10_1016_j_mito_2024_101856
crossref_primary_10_1038_s41586_023_06537_z
crossref_primary_10_3390_cells11152364
crossref_primary_10_1007_s12035_022_03055_3
crossref_primary_10_1080_17425247_2023_2279115
crossref_primary_10_3390_cells11223603
crossref_primary_10_1186_s12964_024_01843_z
crossref_primary_10_1016_j_imlet_2025_106992
crossref_primary_10_1016_j_celrep_2023_112728
crossref_primary_10_3389_fphar_2021_748956
crossref_primary_10_3390_cancers15133446
crossref_primary_10_1007_s12035_024_04009_7
crossref_primary_10_1016_j_cophys_2024_100765
crossref_primary_10_1111_cns_14344
crossref_primary_10_3389_fmolb_2023_1187263
crossref_primary_10_3390_ijms23042245
crossref_primary_10_1007_s00441_021_03554_0
crossref_primary_10_4103_1673_5374_381493
crossref_primary_10_1242_dev_200870
crossref_primary_10_3389_fendo_2023_1346441
crossref_primary_10_1007_s12035_025_04774_z
crossref_primary_10_1016_j_arr_2023_102038
crossref_primary_10_1016_j_bbrc_2024_149737
crossref_primary_10_1186_s12974_024_03147_y
crossref_primary_10_1016_j_expneurol_2024_114757
crossref_primary_10_1186_s12967_024_05799_z
crossref_primary_10_3390_ijms23137408
crossref_primary_10_1016_j_biopha_2023_115092
crossref_primary_10_1167_iovs_66_3_14
crossref_primary_10_3389_fendo_2024_1409000
crossref_primary_10_3390_ijms24031969
crossref_primary_10_3389_fnins_2024_1426700
crossref_primary_10_1186_s40035_024_00409_w
crossref_primary_10_1016_j_omtn_2025_102449
crossref_primary_10_3389_fcell_2021_696434
crossref_primary_10_3390_brainsci14090899
crossref_primary_10_3390_ijms24098181
crossref_primary_10_1038_s12276_023_01141_7
crossref_primary_10_1016_j_neuron_2022_03_015
crossref_primary_10_1007_s00210_023_02636_w
crossref_primary_10_1126_sciadv_add8164
crossref_primary_10_3390_ijms252312637
crossref_primary_10_1002_jev2_12320
crossref_primary_10_1016_j_celrep_2024_114755
crossref_primary_10_1186_s13048_024_01560_8
crossref_primary_10_1093_brain_awad332
crossref_primary_10_1186_s12951_024_02750_8
Cites_doi 10.1038/nature18928
10.1016/S0076-6879(96)64043-9
10.1073/pnas.1103295108
10.1007/s12975-017-0599-2
10.1038/nrn1908
10.1038/s41593-019-0486-0
10.1007/978-1-4939-7253-1_30
10.1016/j.ejcb.2017.10.003
10.1126/scitranslmed.aba0599
10.3389/fcvm.2017.00071
10.4049/immunohorizons.1800063
10.1038/s41598-019-44922-9
10.1002/stem.2856
10.1016/j.tem.2015.12.001
10.1016/j.neuron.2013.10.037
10.1016/S0968-0004(00)01735-7
10.1080/15384101.2018.1445906
10.1016/j.jconrel.2014.11.029
10.1016/j.molcel.2014.08.020
10.1080/15548627.2015.1063765
10.1038/nature01552
10.1016/j.mito.2009.12.148
10.1161/CIRCRESAHA.118.314601
10.1111/jth.13190
10.3390/biom5031319
10.1080/09537104.2016.1268255
10.1016/j.redox.2018.06.009
10.1186/1471-2105-10-161
10.1073/pnas.0510511103
10.1111/j.1538-7836.2009.03434.x
10.1038/nm.2736
10.1371/journal.pone.0164199
10.1074/jbc.272.33.20332
10.1186/s13287-016-0354-8
10.1016/j.cell.2019.02.029
10.1016/S1046-2023(02)00038-5
10.1002/elps.1150181131
10.3727/096368915X689785
10.1155/2017/7068567
10.1016/j.bbabio.2008.03.027
10.1038/nrm.2017.125
10.1080/20013078.2019.1697028
10.1093/bioinformatics/btq431
10.1016/j.molmed.2018.07.007
10.1016/j.stem.2018.01.020
10.1007/s10549-012-2283-2
10.1002/stem.2372
10.1038/s41467-017-00494-8
10.1016/j.cub.2011.11.057
10.1038/nchembio.2422
10.1038/76095
10.1080/20013078.2018.1555410
10.1126/science.aau6977
10.1021/acsnano.7b07782
10.1165/rcmb.2013-0529OC
10.1186/s13287-018-1012-0
10.1111/jth.12554
10.1086/302150
10.3389/fcell.2016.00107
10.1371/journal.pone.0045799
10.1073/pnas.1404651111
10.1016/j.neuroscience.2014.04.036
10.3390/ijms17020171
10.18632/oncotarget.23455
10.1186/s12974-016-0667-7
10.1016/j.bcp.2016.07.011
10.1016/j.devcel.2006.04.002
10.1038/srep26057
10.1038/ncomms9472
10.21769/BioProtoc.2255
10.1038/nmeth.3252
10.1093/bioinformatics/btt285
10.1093/brain/awp174
10.1164/rccm.201701-0170OC
10.1182/blood-2014-05-573543
10.1371/journal.pone.0170628
10.1016/j.cub.2007.12.038
10.1016/j.devcel.2017.02.020
10.1038/s41598-017-05232-0
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Peruzzotti-Jametti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
2021 Peruzzotti-Jametti et al 2021 Peruzzotti-Jametti et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Peruzzotti-Jametti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: 2021 Peruzzotti-Jametti et al 2021 Peruzzotti-Jametti et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
RC3
7X8
1XC
VOOES
5PM
DOA
CZG
DOI 10.1371/journal.pbio.3001166
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic



Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Mitochondrial transfer by neural stem cell derived extracellular vesicles
EISSN 1545-7885
ExternalDocumentID 2528202793
oai_doaj_org_article_62e32062ab904101a16fc0e8ef20d45c
PMC8055036
oai_HAL_hal_03275565v1
A660904136
33826607
10_1371_journal_pbio_3001166
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UP_1101/3
– fundername: Medical Research Council
  grantid: MC_UU_00015/5
– fundername: Department of Health
– fundername: Medical Research Council
  grantid: MR/P008801/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: MR/K026682/1
– fundername: Wellcome Trust
  grantid: RRAG/214
– fundername: Medical Research Council
  grantid: MR/V011561/1
– fundername: Wellcome Trust
  grantid: 101835/Z/13/Z
– fundername: Medical Research Council
  grantid: MC_UU_00015/8
– fundername: Medical Research Council
  grantid: MC_UP_1002/1
– fundername: ;
  grantid: 40.16.0.026MN
– fundername: ;
  grantid: 2010/R/31 and 2014/PMS/4
– fundername: ;
  grantid: MR/P008801/1
– fundername: ;
  grantid: (MR/K026682/1
– fundername: ;
  grantid: ERC-2010-StG
– fundername: ;
  grantid: RG 75149
– fundername: ;
  grantid: RRAG/214
– fundername: ;
  grantid: WPA15-02
– fundername: ;
  grantid: 2017/B/5
– fundername: ;
  grantid: RG79423
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
PYCSY
QF4
QN7
RNS
RPM
RZL
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
.GJ
ADRAZ
ADXHL
C1A
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
WOQ
PMFND
3V.
7QG
7QL
7SN
7SS
7T5
7TK
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
1XC
VOOES
5PM
-
AAPBV
ABFLS
ABPTK
ADACO
AGJBV
BBAFP
CZG
M~E
PRINS
ZA5
ID FETCH-LOGICAL-c795t-218cbbb564f81ee474909135960a633a20126f7764aa77219f8e8cd49ab63f3e3
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Fri Nov 26 17:11:56 EST 2021
Wed Aug 27 01:20:45 EDT 2025
Thu Aug 21 14:30:41 EDT 2025
Sun Sep 28 07:54:16 EDT 2025
Thu Sep 04 18:04:05 EDT 2025
Fri Jul 25 10:06:05 EDT 2025
Tue Jun 17 22:01:51 EDT 2025
Tue Jun 10 21:02:15 EDT 2025
Fri Jun 27 05:31:45 EDT 2025
Fri Jun 27 05:31:02 EDT 2025
Fri Jun 27 05:30:16 EDT 2025
Mon Jul 21 06:00:04 EDT 2025
Tue Jul 01 04:20:13 EDT 2025
Thu Apr 24 23:05:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Polymerase chain reaction
Phagocytes
Vesicles
Mitochondria
Computer software
Proteomics
Outer membrane proteins
Exosomes
Language English
License Attribution: http://creativecommons.org/licenses/by
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c795t-218cbbb564f81ee474909135960a633a20126f7764aa77219f8e8cd49ab63f3e3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
I have read the journal’s policy and the authors of this manuscript have the following competing interests: SP is co-founder, CSO and shareholder (>5%) of CITC Ltd. and iSTEM Therapeutics Litd., and co-founder and Non-executive Director at asitia Therapeutics Ltd.; LPJ is shareholder of CITC Ltd.; JAS is a Project Manager and Senior Research Associate at CITC Ltd. and Director of Research of iSTEM Therapeutics Ltd.; BP is an employee of NanoFCM and his contributions to this paper were made as part of their employment.
ORCID 0000-0003-0605-2322
0000-0002-7814-3867
0000-0001-7938-7276
0000-0002-7823-8719
0000-0003-0342-352X
0000-0001-7062-1142
0000-0002-2009-189X
0000-0003-4693-8558
0000-0003-2307-8452
0000-0002-4449-1863
0000-0003-2146-9329
0000-0002-2469-142X
0000-0001-7933-860X
0000-0003-3633-6318
0000-0003-3273-9742
0000-0001-5934-3962
0000-0001-6994-3857
0000-0002-3318-1851
0000-0002-9396-5607
0000-0001-8886-8928
0000-0002-3293-7397
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.3001166
PMID 33826607
PQID 2528202793
PQPubID 1436341
ParticipantIDs plos_journals_2528202793
doaj_primary_oai_doaj_org_article_62e32062ab904101a16fc0e8ef20d45c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8055036
hal_primary_oai_HAL_hal_03275565v1
proquest_miscellaneous_2510265241
proquest_journals_2528202793
gale_infotracmisc_A660904136
gale_infotracacademiconefile_A660904136
gale_incontextgauss_ISR_A660904136
gale_incontextgauss_ISN_A660904136
gale_incontextgauss_IOV_A660904136
pubmed_primary_33826607
crossref_primary_10_1371_journal_pbio_3001166
crossref_citationtrail_10_1371_journal_pbio_3001166
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210407
PublicationDateYYYYMMDD 2021-04-07
PublicationDate_xml – month: 4
  year: 2021
  text: 20210407
  day: 7
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E Macia (pbio.3001166.ref041) 2006; 10
T Wai (pbio.3001166.ref044) 2016; 27
FH Gage (pbio.3001166.ref006) 2013; 80
RL Webb (pbio.3001166.ref071) 2018; 9
MV Jackson (pbio.3001166.ref014) 2016; 34
G Mallucci (pbio.3001166.ref073) 2015
MV Jackson (pbio.3001166.ref017) 2017; 7
AR Brisson (pbio.3001166.ref061) 2017; 28
S Pluchino (pbio.3001166.ref051) 2016; 146
EA Bordt (pbio.3001166.ref065) 2017; 40
TJ Morrison (pbio.3001166.ref016) 2017; 196
R Kalluri (pbio.3001166.ref005) 2020; 367
D Indira (pbio.3001166.ref032) 2018; 97
E van der Pol (pbio.3001166.ref002) 2016; 14
M Katoh (pbio.3001166.ref043) 2017; 7
M Neuspiel (pbio.3001166.ref055) 2008; 18
A Follenzi (pbio.3001166.ref082) 2000; 25
W Luo (pbio.3001166.ref045) 2009; 10
AM Rodriguez (pbio.3001166.ref058) 2018; 17
C Cossetti (pbio.3001166.ref010) 2014; 56
N Arraud (pbio.3001166.ref028) 2014; 12
G van Niel (pbio.3001166.ref003) 2018; 19
L Peruzzotti-Jametti (pbio.3001166.ref009) 2018; 24
TS Kapellos (pbio.3001166.ref039) 2016; 116
D Gustafson (pbio.3001166.ref004) 2017; 4
KP Hough (pbio.3001166.ref063) 2018; 18
M Bernimoulin (pbio.3001166.ref018) 2009; 7
I Helwa (pbio.3001166.ref022) 2017; 12
Y Tian (pbio.3001166.ref027) 2018; 12
BS Carvalho (pbio.3001166.ref084) 2010; 26
G Volpe (pbio.3001166.ref079) 2016
F Puhm (pbio.3001166.ref062) 2019; 125
A Schneider (pbio.3001166.ref034) 2019; 9
W Huber (pbio.3001166.ref083) 2015; 12
E Fernandez-Vizarra (pbio.3001166.ref020) 2010; 10
EE Kesner (pbio.3001166.ref064) 2016; 6
D Torralba (pbio.3001166.ref012) 2016; 4
L Peruzzotti-Jametti (pbio.3001166.ref037) 2018; 22
D Drago (pbio.3001166.ref078) 2016; 13
JL Spees (pbio.3001166.ref059) 2006; 103
M Fernandez-Moreno (pbio.3001166.ref036) 2016; 11
G Casella (pbio.3001166.ref070) 2020; 12
PJ Huang (pbio.3001166.ref069) 2016; 25
AU Joshi (pbio.3001166.ref013) 2019; 22
KG Lyamzaev (pbio.3001166.ref054) 2008; 1777
DK Jeppesen (pbio.3001166.ref076) 2019; 177
AL Isola (pbio.3001166.ref021) 2018; 9
DG Phinney (pbio.3001166.ref053) 2015; 6
VP Skulachev (pbio.3001166.ref047) 2001; 26
V Soubannier (pbio.3001166.ref056) 2012; 22
L Peruzzotti-Jametti (pbio.3001166.ref074) 2014; 283
S Paliwal (pbio.3001166.ref077) 2018; 9
V Tiranti (pbio.3001166.ref035) 1998; 63
M Zhu (pbio.3001166.ref068) 2018; 2
K Hayakawa (pbio.3001166.ref050) 2016; 535
M Bacigaluppi (pbio.3001166.ref008) 2009; 132
W Luo (pbio.3001166.ref046) 2013; 29
G Martino (pbio.3001166.ref007) 2006; 7
G Fuhrmann (pbio.3001166.ref080) 2015; 205
KA Sinclair (pbio.3001166.ref060) 2016; 7
RL Elliott (pbio.3001166.ref075) 2012; 136
N Iraci (pbio.3001166.ref001) 2016; 17
M Makrecka-Kuka (pbio.3001166.ref029) 2015; 5
CH Davis (pbio.3001166.ref052) 2014; 111
K Hayakawa (pbio.3001166.ref057) 2018; 36
T Ahmad (pbio.3001166.ref067) 2014; 33
C Wang (pbio.3001166.ref025) 2017; 1660
S Feng (pbio.3001166.ref038) 2017; 8
D Dutta (pbio.3001166.ref042) 2012; 7
LG Nijtmans (pbio.3001166.ref030) 2002; 26
K Mitra (pbio.3001166.ref033) 2010
X Li (pbio.3001166.ref066) 2014; 51
Y Tian (pbio.3001166.ref026) 2020; 9
N Iraci (pbio.3001166.ref011) 2017; 13
C Lamaze (pbio.3001166.ref040) 1997; 272
S Pluchino (pbio.3001166.ref048) 2003; 422
J Karttunen (pbio.3001166.ref023) 2019; 8
LH Boudreau (pbio.3001166.ref019) 2014; 124
FH Sterky (pbio.3001166.ref049) 2011; 108
G Hofhaus (pbio.3001166.ref081) 1996; 264
K Unuma (pbio.3001166.ref072) 2015; 11
MN Islam (pbio.3001166.ref015) 2012; 18
E Zerbetto (pbio.3001166.ref031) 1997; 18
DC Woods (pbio.3001166.ref024) 2017; 2017
References_xml – volume: 535
  start-page: 551
  issue: 7613
  year: 2016
  ident: pbio.3001166.ref050
  article-title: Transfer of mitochondria from astrocytes to neurons after stroke
  publication-title: Nature
  doi: 10.1038/nature18928
– volume: 264
  start-page: 476
  year: 1996
  ident: pbio.3001166.ref081
  article-title: Use of polarography to detect respiration defects in cell cultures
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(96)64043-9
– volume: 108
  start-page: 12937
  issue: 31
  year: 2011
  ident: pbio.3001166.ref049
  article-title: Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1103295108
– volume: 9
  start-page: 530
  issue: 5
  year: 2018
  ident: pbio.3001166.ref071
  article-title: Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model.
  publication-title: Transl Stroke Res
  doi: 10.1007/s12975-017-0599-2
– volume: 7
  start-page: 395
  issue: 5
  year: 2006
  ident: pbio.3001166.ref007
  article-title: The therapeutic potential of neural stem cells
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1908
– volume: 22
  start-page: 1635
  issue: 10
  year: 2019
  ident: pbio.3001166.ref013
  article-title: Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-019-0486-0
– volume: 1660
  start-page: 367
  year: 2017
  ident: pbio.3001166.ref025
  article-title: Electric Field-Induced Disruption and Releasing Viable Content from Extracellular Vesicles.
  publication-title: Methods Mol Biol (Clifton, NJ).
  doi: 10.1007/978-1-4939-7253-1_30
– volume: 97
  start-page: 1
  issue: 1
  year: 2018
  ident: pbio.3001166.ref032
  article-title: Strategies for imaging mitophagy in high-resolution and high-throughput
  publication-title: Eur J Cell Biol
  doi: 10.1016/j.ejcb.2017.10.003
– volume: 12
  issue: 568
  year: 2020
  ident: pbio.3001166.ref070
  article-title: Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice.
  publication-title: Sci Transl Med.
  doi: 10.1126/scitranslmed.aba0599
– volume: 4
  start-page: 71
  year: 2017
  ident: pbio.3001166.ref004
  article-title: Extracellular Vesicles as Protagonists of Diabetic Cardiovascular Pathology.
  publication-title: Front Cardiovasc Med.
  doi: 10.3389/fcvm.2017.00071
– volume: 2
  start-page: 384
  issue: 11
  year: 2018
  ident: pbio.3001166.ref068
  article-title: Mitochondria Released by Apoptotic Cell Death Initiate Innate Immune Responses.
  publication-title: Immunohorizons
  doi: 10.4049/immunohorizons.1800063
– volume: 9
  start-page: 8492
  issue: 1
  year: 2019
  ident: pbio.3001166.ref034
  article-title: Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-44922-9
– volume: 36
  start-page: 1404
  issue: 9
  year: 2018
  ident: pbio.3001166.ref057
  article-title: Protective Effects of Endothelial Progenitor Cell-Derived Extracellular Mitochondria in Brain Endothelium
  publication-title: Stem Cells
  doi: 10.1002/stem.2856
– volume: 27
  start-page: 105
  issue: 2
  year: 2016
  ident: pbio.3001166.ref044
  article-title: Mitochondrial Dynamics and Metabolic Regulation
  publication-title: Trends Endocrinol Metab
  doi: 10.1016/j.tem.2015.12.001
– year: 2016
  ident: pbio.3001166.ref079
  article-title: Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis
  publication-title: J Neuroimmunol
– volume: 80
  start-page: 588
  issue: 3
  year: 2013
  ident: pbio.3001166.ref006
  article-title: Neural stem cells: generating and regenerating the brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.037
– volume: 26
  start-page: 23
  issue: 1
  year: 2001
  ident: pbio.3001166.ref047
  article-title: Mitochondrial filaments and clusters as intracellular power-transmitting cables
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(00)01735-7
– volume: 17
  start-page: 712
  issue: 6
  year: 2018
  ident: pbio.3001166.ref058
  article-title: Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2018.1445906
– start-page: 127
  year: 2015
  ident: pbio.3001166.ref073
  article-title: The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis
  publication-title: Prog Neurobiol
– year: 2010
  ident: pbio.3001166.ref033
  article-title: Analysis of mitochondrial dynamics and functions using imaging approaches
  publication-title: Curr Protoc Cell Biol
– volume: 205
  start-page: 35
  year: 2015
  ident: pbio.3001166.ref080
  article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2014.11.029
– volume: 56
  start-page: 193
  issue: 2
  year: 2014
  ident: pbio.3001166.ref010
  article-title: Extracellular vesicles from neural stem cells transfer IFN-gamma via Ifngr1 to activate Stat1 signaling in target cells
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.08.020
– volume: 11
  start-page: 1520
  issue: 9
  year: 2015
  ident: pbio.3001166.ref072
  article-title: Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy.
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1063765
– volume: 422
  start-page: 688
  issue: 6933
  year: 2003
  ident: pbio.3001166.ref048
  article-title: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis
  publication-title: Nature
  doi: 10.1038/nature01552
– volume: 10
  start-page: 253
  issue: 3
  year: 2010
  ident: pbio.3001166.ref020
  article-title: Isolation of mitochondria for biogenetical studies: An update
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2009.12.148
– volume: 125
  start-page: 43
  issue: 1
  year: 2019
  ident: pbio.3001166.ref062
  article-title: Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.118.314601
– volume: 14
  start-page: 48
  issue: 1
  year: 2016
  ident: pbio.3001166.ref002
  article-title: Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.13190
– volume: 5
  start-page: 1319
  issue: 3
  year: 2015
  ident: pbio.3001166.ref029
  article-title: High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria.
  publication-title: Biomolecules
  doi: 10.3390/biom5031319
– volume: 28
  start-page: 263
  issue: 3
  year: 2017
  ident: pbio.3001166.ref061
  article-title: Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study.
  publication-title: Platelets
  doi: 10.1080/09537104.2016.1268255
– volume: 18
  start-page: 54
  year: 2018
  ident: pbio.3001166.ref063
  article-title: Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells.
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2018.06.009
– volume: 10
  start-page: 161
  year: 2009
  ident: pbio.3001166.ref045
  article-title: GAGE: generally applicable gene set enrichment for pathway analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-161
– volume: 103
  start-page: 1283
  issue: 5
  year: 2006
  ident: pbio.3001166.ref059
  article-title: Mitochondrial transfer between cells can rescue aerobic respiration
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0510511103
– volume: 7
  start-page: 1019
  issue: 6
  year: 2009
  ident: pbio.3001166.ref018
  article-title: Differential stimulation of monocytic cells results in distinct populations of microparticles
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2009.03434.x
– volume: 18
  start-page: 759
  issue: 5
  year: 2012
  ident: pbio.3001166.ref015
  article-title: Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury
  publication-title: Nat Med
  doi: 10.1038/nm.2736
– volume: 11
  start-page: e0164199
  issue: 10
  year: 2016
  ident: pbio.3001166.ref036
  article-title: Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0164199
– volume: 146
  start-page: w14374
  year: 2016
  ident: pbio.3001166.ref051
  article-title: Astrocyte power fuels neurons during stroke
  publication-title: Swiss Med Wkly
– volume: 272
  start-page: 20332
  issue: 33
  year: 1997
  ident: pbio.3001166.ref040
  article-title: The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.33.20332
– volume: 7
  start-page: 91
  issue: 1
  year: 2016
  ident: pbio.3001166.ref060
  article-title: Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-016-0354-8
– volume: 177
  start-page: 428
  issue: 2
  year: 2019
  ident: pbio.3001166.ref076
  article-title: Reassessment of Exosome Composition.
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.029
– volume: 26
  start-page: 327
  issue: 4
  year: 2002
  ident: pbio.3001166.ref030
  article-title: Blue Native electrophoresis to study mitochondrial and other protein complexes
  publication-title: Methods
  doi: 10.1016/S1046-2023(02)00038-5
– volume: 18
  start-page: 2059
  issue: 11
  year: 1997
  ident: pbio.3001166.ref031
  article-title: Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181131
– volume: 25
  start-page: 913
  issue: 5
  year: 2016
  ident: pbio.3001166.ref069
  article-title: Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains
  publication-title: Cell Transplant
  doi: 10.3727/096368915X689785
– volume: 2017
  start-page: 7068567
  year: 2017
  ident: pbio.3001166.ref024
  article-title: Mitochondrial Heterogeneity: Evaluating Mitochondrial Subpopulation Dynamics in Stem Cells.
  publication-title: Stem Cells Int
  doi: 10.1155/2017/7068567
– volume: 1777
  start-page: 817
  issue: 7–8
  year: 2008
  ident: pbio.3001166.ref054
  article-title: Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2008.03.027
– volume: 19
  start-page: 213
  issue: 4
  year: 2018
  ident: pbio.3001166.ref003
  article-title: Shedding light on the cell biology of extracellular vesicles
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2017.125
– volume: 9
  start-page: 1697028
  issue: 1
  year: 2020
  ident: pbio.3001166.ref026
  article-title: Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry.
  publication-title: J Extracell Vesicles.
  doi: 10.1080/20013078.2019.1697028
– volume: 26
  start-page: 2363
  issue: 19
  year: 2010
  ident: pbio.3001166.ref084
  article-title: A framework for oligonucleotide microarray preprocessing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq431
– volume: 24
  start-page: 838
  issue: 10
  year: 2018
  ident: pbio.3001166.ref009
  article-title: Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2018.07.007
– volume: 22
  start-page: 355
  issue: 3
  year: 2018
  ident: pbio.3001166.ref037
  article-title: Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2018.01.020
– volume: 136
  start-page: 347
  issue: 2
  year: 2012
  ident: pbio.3001166.ref075
  article-title: Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-012-2283-2
– volume: 34
  start-page: 2210
  issue: 8
  year: 2016
  ident: pbio.3001166.ref014
  article-title: Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS
  publication-title: Stem Cells
  doi: 10.1002/stem.2372
– volume: 8
  start-page: 370
  issue: 1
  year: 2017
  ident: pbio.3001166.ref038
  article-title: Improved split fluorescent proteins for endogenous protein labeling
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00494-8
– volume: 22
  start-page: 135
  issue: 2
  year: 2012
  ident: pbio.3001166.ref056
  article-title: A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.11.057
– volume: 13
  start-page: 951
  issue: 9
  year: 2017
  ident: pbio.3001166.ref011
  article-title: Extracellular vesicles are independent metabolic units with asparaginase activity
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2422
– volume: 25
  start-page: 217
  issue: 2
  year: 2000
  ident: pbio.3001166.ref082
  article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences
  publication-title: Nat Genet
  doi: 10.1038/76095
– volume: 8
  start-page: 1555410
  issue: 1
  year: 2019
  ident: pbio.3001166.ref023
  article-title: Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs.
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2018.1555410
– volume: 367
  issue: 6478
  year: 2020
  ident: pbio.3001166.ref005
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science (New York, NY).
  doi: 10.1126/science.aau6977
– volume: 12
  start-page: 671
  issue: 1
  year: 2018
  ident: pbio.3001166.ref027
  article-title: Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry.
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07782
– volume: 51
  start-page: 455
  issue: 3
  year: 2014
  ident: pbio.3001166.ref066
  article-title: Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2013-0529OC
– volume: 9
  start-page: 298
  issue: 1
  year: 2018
  ident: pbio.3001166.ref077
  article-title: Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-1012-0
– volume: 12
  start-page: 614
  issue: 5
  year: 2014
  ident: pbio.3001166.ref028
  article-title: Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.12554
– volume: 63
  start-page: 1609
  issue: 6
  year: 1998
  ident: pbio.3001166.ref035
  article-title: Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency
  publication-title: Am J Hum Genet
  doi: 10.1086/302150
– volume: 4
  start-page: 107
  year: 2016
  ident: pbio.3001166.ref012
  article-title: Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer.
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2016.00107
– volume: 7
  start-page: e45799
  issue: 9
  year: 2012
  ident: pbio.3001166.ref042
  article-title: Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis.
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0045799
– volume: 111
  start-page: 9633
  issue: 26
  year: 2014
  ident: pbio.3001166.ref052
  article-title: Transcellular degradation of axonal mitochondria
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1404651111
– volume: 283
  start-page: 210
  year: 2014
  ident: pbio.3001166.ref074
  article-title: The role of the immune system in central nervous system plasticity after acute injury
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.04.036
– volume: 17
  start-page: 171
  issue: 2
  year: 2016
  ident: pbio.3001166.ref001
  article-title: Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles.
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms17020171
– volume: 9
  start-page: 1187
  issue: 1
  year: 2018
  ident: pbio.3001166.ref021
  article-title: Exosomes released by metabotropic glutamate receptor 1 (GRM1) expressing melanoma cells increase cell migration and invasiveness.
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.23455
– volume: 13
  start-page: 232
  issue: 1
  year: 2016
  ident: pbio.3001166.ref078
  article-title: Metabolic determinants of the immune modulatory function of neural stem cells
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-016-0667-7
– volume: 116
  start-page: 107
  year: 2016
  ident: pbio.3001166.ref039
  article-title: A novel real time imaging platform to quantify macrophage phagocytosis
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2016.07.011
– volume: 10
  start-page: 839
  issue: 6
  year: 2006
  ident: pbio.3001166.ref041
  article-title: Dynasore, a cell-permeable inhibitor of dynamin
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2006.04.002
– volume: 6
  start-page: 26057
  year: 2016
  ident: pbio.3001166.ref064
  article-title: Characteristics of Mitochondrial Transformation into Human Cells.
  publication-title: Sci Rep.
  doi: 10.1038/srep26057
– volume: 6
  start-page: 8472
  year: 2015
  ident: pbio.3001166.ref053
  article-title: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
  publication-title: Nat Commun
  doi: 10.1038/ncomms9472
– volume: 7
  issue: 9
  year: 2017
  ident: pbio.3001166.ref017
  article-title: Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC).
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.2255
– volume: 12
  start-page: 115
  issue: 2
  year: 2015
  ident: pbio.3001166.ref083
  article-title: Orchestrating high-throughput genomic analysis with Bioconductor.
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.3252
– volume: 29
  start-page: 1830
  issue: 14
  year: 2013
  ident: pbio.3001166.ref046
  article-title: Pathview: an R/Bioconductor package for pathway-based data integration and visualization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt285
– volume: 33
  start-page: 994
  issue: 9
  year: 2014
  ident: pbio.3001166.ref067
  article-title: Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy
  publication-title: EMBO J
– volume: 132
  start-page: 2239
  issue: Pt 8
  year: 2009
  ident: pbio.3001166.ref008
  article-title: Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms
  publication-title: Brain
  doi: 10.1093/brain/awp174
– volume: 196
  start-page: 1275
  issue: 10
  year: 2017
  ident: pbio.3001166.ref016
  article-title: Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201701-0170OC
– volume: 124
  start-page: 2173
  issue: 14
  year: 2014
  ident: pbio.3001166.ref019
  article-title: Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation
  publication-title: Blood
  doi: 10.1182/blood-2014-05-573543
– volume: 12
  start-page: e0170628
  issue: 1
  year: 2017
  ident: pbio.3001166.ref022
  article-title: A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents.
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0170628
– volume: 18
  start-page: 102
  issue: 2
  year: 2008
  ident: pbio.3001166.ref055
  article-title: Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.12.038
– volume: 40
  start-page: 583
  issue: 6
  year: 2017
  ident: pbio.3001166.ref065
  article-title: The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2017.02.020
– volume: 7
  start-page: 4942
  issue: 1
  year: 2017
  ident: pbio.3001166.ref043
  article-title: Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-05232-0
SSID ssj0022928
Score 2.6636922
Snippet Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous...
Volcano plots show statistical significance (y axis) vs. fold change (x axis) for 9,951/9,971 cellular proteins quantitated across all 3 biological replicates...
SourceID plos
doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e3001166
SubjectTerms Animals
Annotations
Assembly
ATP synthase
Biochemistry, Molecular Biology
Biological Transport
Biology and Life Sciences
Cell organelles
Cells, Cultured
Cytochrome
Cytochrome b
Cytochrome-c oxidase
Cytochromes
Dehydrogenases
Electron transport chain
Enrichment
Experiments
Extracellular vesicles
Extracellular Vesicles - metabolism
Female
Gene expression
Genomes
Genomics
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Life Sciences
Localization
Medicine and Health Sciences
Membranes
Mesenchymal Stem Cells - metabolism
Mesenchymal Stem Cells - physiology
Metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mitochondria
Mitochondria - metabolism
Mitochondrial DNA
Morphology
Multiplexing
NADH
NADH-ubiquinone oxidoreductase
Neural stem cells
Neural Stem Cells - metabolism
Neural Stem Cells - ultrastructure
Neurobiology
Neurons
Neurons and Cognition
Nicotinamide adenine dinucleotide
Ontology
Oxidase
Oxidoreductase
Physiological aspects
Polymerase chain reaction
Proteins
Research and Analysis Methods
Stem cells
Succinate dehydrogenase
Sulfur
Ubiquinone
Ubiquinone oxidoreductase
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgJSQuiHcDBQWExCmtYyd2fFwQ1YJKkYCi3izbsbuVSrJqdlfi3zOTeFcbVFQOHHJIPHnNjOeRjL8h5E0NbrtyELnVeeWzwjCfKQ_T3SkjpXA8BIOrkT-fiNlp8emsPNtp9YU1YQM88MC4Q8E8Z1QwYxUtQH9MLoKjvvKB0booHVpfqugmmYqpFlN9V1WEmoHpLHlcNMdlfhhldLCwF-0B739EiJFT6rH7txb69hwLJCeLy7a7Lgj9s5Zyxzkd3Sf3YlSZToe3eUBu-eYhuTP0mfz1iBwjBAeMI2hzip_quxSuguARKfq14XNg-hMmNxjDpgadTNewgd2-MkiOparp2nd9Cd1jcnr04fv7WRbbKGROqnKZgRN31tpSFKHKvS9koRAMtITcxQjODYQATASQTGFAPmDBQuWxpZEyVvDAPX9CJk3b-D2SViw4CyGHsywv6qpUNRMO9pSFSAdSt4TwDR-1ixjj2OriUvc_ziTkGgNDNHJfR-4nJNuetRgwNm6gf4ci2tIiQnZ_APRGR73RN-lNQl6jgDViYDRYZHNuVl2nP375oadCUDyJi78RfTv5F6KvI6K3kSi0KDsTVz8AXxGAa0S5P6KE6e7Gd5sjP3befTY91niMciZLCNDXeUL2UGE33Os0KyG1pgyMMVx-o8TXD7_aDuOdsQSv8e0KaSAWFSVEfAl5Ouj89ik4hyxVUJkQOZoNo8ccjzQX8x7MvKKQI3Px7H_I9Dm5y7DkCAur5D6ZLK9W_gXEjEv7sjcPvwGz-2Wi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdYERIviO8FBgoIiadsiZ3Y8RMqiKmgMSRgqG-W7djrpC0pTVuJ_567xO0WND4e-tD4kjh3vvOdff4dIa8qmLZLC55blZUuyTV1iXSg7lZqIbhl3ms8jfzpmE9O8o_TYhoW3NqQVrmxiZ2hrhqLa-QHtIDgAGIoyd7MfyRYNQp3V0MJjR1yMwNPBEs3iOllwEVlV1sVAWdAqQULR-eYyA6CpPbn5qzZZ912BB9MTR2C_9ZO78wwTXI0P2_a61zR3zMqr0xRh3fJneBbxuN-MNwjN1x9n9zqq03-fECOEIgD2hG6OcYF-zaGpyCERIyzW78oGF-AioNJrCsYmfEafmC9FxrJMWE1Xru2S6R7SE4O3397N0lCMYXEClksE5jKrTGm4LkvM-dykUuEBC0ggtGcMQ2OAOUe5JNrkBLYMV86LGwkteHMM8cekVHd1G6XxCX11oDjYQ3N8qosZEW5hX_SgL8DAVxE2IaPygakcSx4ca667TMBEUfPEIXcV4H7EUm2d817pI1_0L9FEW1pESe7u9AsTlVQO8WpYzTlVBuZ5mB9dMa9TV3pPE2rvLAReYkCVoiEUWOqzaleta368Pm7GnOe4k2M_4no6_H_EH0ZEL0ORL5B2elwBgL4ijBcA8q9ASUovR2-bYb8uPLtk_GRwmspo6IAN32dRWQXB-yGe6261CF4_GYQX9_8YtuMb8ZEvNo1K6QBj5QX4PdF5HE_5re9YAxiVZ6KiIiBNgy6OWypz2YdpHmZQqTM-JO_d-spuU0xpQgTp8QeGS0XK_cMfMKled4p_i_s0V2W
  priority: 102
  providerName: ProQuest
Title Neural stem cells traffic functional mitochondria via extracellular vesicles
URI https://www.ncbi.nlm.nih.gov/pubmed/33826607
https://www.proquest.com/docview/2528202793
https://www.proquest.com/docview/2510265241
https://hal.science/hal-03275565
https://pubmed.ncbi.nlm.nih.gov/PMC8055036
https://doaj.org/article/62e32062ab904101a16fc0e8ef20d45c
http://dx.doi.org/10.1371/journal.pbio.3001166
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfWTki8IL4XGFVASDylSuzETh4Q6tCmAqPAoGhvluM466SSlKat2H_PnZNGC-rEHhqp8dlJzr7znX3-HSGvM5i2Yw2WWxbExgsVNV5iQNx1ooTgmuW5wtPInyd8PA0_nkfne2Sbs7VhYLXTtcN8UtPlfPjn99U7EPi3NmuDCLaVhov0shwyu7XAe2Tf7hhhMF_Y7itQmthsqwhBA2IuWHOY7qZWOpOVxfRvNXdvhoGT_cW8rHYZp__GWF6btE7uk3uNtemO6uHxgOyZ4iG5U-efvHpEThGaA8oRzNnFJfzKhVYQVMLF-a5eJnR_gdADn4oMxqq7gR_o86VCcgxhdTemsqF1j8n05PjH-7HXpFfwtEiilQeTu07TNOJhHgfGhCJMECQ0Ap9GccYUmAaU59BjoYJ-A82WxwZTHSUq5Sxnhj0h_aIszAFxY5rrFEwRndIgzOIoySjX8C9JwQICl84hbMtHqRvscUyBMZd2Q02AD1IzRCL3ZcN9h3htrUWNvfEf-iPsopYWkbPtjXJ5IRtBlJwaRn1OVZr4IegjFfBc-yY2OfWzMNIOeYUdLBEbo8Dgmwu1rir54ctPOeLcx0qM30T0fXIborMO0ZuGKC-x71RzKgL4isBcHcrDDiWoAd192gz5ce3bx6NTifd8RkUEhvsmcMgBDtgt9ypJI3C5fQpKGprfDuLdxS_bYnwyhuYVplwjDdioPAJpc8jTesy3b8EYeK_cFw4RHWnovGa3pLicWZDz2AffmfFnt_ms5-QuxVAjDKgSh6S_Wq7NC7AVV-mA9MS5GJD9o-PJ17OBXXGB66dv8cAqhr9O72m2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbarRBcEO8GCgQE4pQ2sRMnOVRoC6126XZBpa16M47jdCuVZNnsFvXP8duYSZzQoPK49LCHjSeJM_a87PE3hLxKwWxHCjy31Iu040uqnViDuKtYhiFXLMsknkbeG_PBof_hODheIj-aszCYVtnoxEpRp4XCNfINGkBwADFUzN5OvzlYNQp3V5sSGtKUVkg3K4gxc7BjV198hxCu3By-h_F-TenO9sG7gWOqDDgqjIO5AzZOJUkScD-LPK390I8RKzMA115yxiRYSMoz6Lgvofsg4FmkseJPLBPOMqYZPHeZrPi4gNIjK1vb40_7bchH46q6K0LegFoJmTm8x0Jvw8yV9WlyWqyzakOEd4xjVUOgtRTLE0zU7E3PivIqZ_j3nM5LRnLnDrltvFu7X0_Hu2RJ5_fIjbre5cV9MkIoEGhH8GgbtwxKG56CIBY22td6WdL-CkoGlHKegmzY5_AD-zGTSI4ps_a5LqtUvgfk8FoY_ZD08iLXq8SOaKYScH1UQj0_jYI4pVzBvzgBjwtCSIuwho9CGaxzLLlxJqoNvBBinpohArkvDPct4rR3TWusj3_Qb-EQtbSI1F1dKGYnwgi-4FQz6nIqk9j1Qf9Jj2fK1ZHOqJv6gbLISxxggVgcOSb7nMhFWYrhxyPR59zFmxj_E9Hn8f8Q7XeI3hiirMCxk-YUBvAVgcA6lGsdSlA7qvu2CfLj0rcP-iOB11xGwwAChXPPIqs4YRvuleKXFMPjm0l8dfOLthnfjKmAuS4WSAM-MQ_A87TIo3rOt71gDKJl7oYWCTvS0OlmtyU_nVSg6pELsTrjj__erefk5uBgbyRGw_HuE3KLYoITpnGFa6Q3ny30U_BQ58kzowZs8uW6Nc9P7POfgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2TiBeEN8LDAgIxFPWxE7s5GFCHVvVslKmwaa9Bcdx1kkjKU07tH-Rv4q7xA0LGh8ve-hD40tin8_3EZ9_R8irFMx2qMBzS71QO76k2ok0LHcVSSG4Ylkm8TTyhzEfHPrvj4PjFfJjeRYG0yqXOrFS1Gmh8Bt5lwYQHEAMFbFuZtIi9nf6b6ffHKwghTuty3Ia0pRZSLcquDFzyGNPX3yHcK7cGu7A3L-mtL_7-d3AMRUHHCWiYO6AvVNJkgTcz0JPa1_4EeJmBuDmS86YBGtJeQaD8CUMBRZ7Fmqs_hPJhLOMaQbPXSVrAqw-BIJr27vj_YMm_KNRVekV4W9AxQhmDvIx4XWN3GxOk9Nik1WbI7xlKKt6Ao3VWJ1g0mZnelaUVznGv-d3XjKY_TvktvF07V4tmnfJis7vkRt17cuL-2SEsCDQjkDSNm4flDY8BQEtbLS19SdK-ysoHFDQeQrrxD6HH0zITCI5ps_a57qs0voekMNrYfRD0smLXK8TO6SZSsANUgn1_DQMopRyBf-iBLwvCCctwpZ8jJXBPcfyG2dxtZknIP6pGRIj92PDfYs4zV3TGvfjH_TbOEUNLaJ2VxeK2UlslEDMqWbU5VQmkeuDLpQez5SrQ51RN_UDZZGXOMEx4nLkKOEnclGW8fDjUdzj3MWbGP8T0afx_xAdtIjeGKKswLmT5kQG8BVBwVqUGy1KUEGq_bYJ8uPS2Ae9UYzXXEZFAEHDuWeRdRTYJffK-NeKhscvhfjq5hdNM74Z0wJzXSyQBvxjHoAXapFHtcw3vWAMImfuCouI1mpodbPdkp9OKoD10IW4nfHHf-_Wc3ITNFA8Go73npBbFHOdMKNLbJDOfLbQT8FZnSfPjBawyZfrVjw_Af6So8Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+stem+cells+traffic+functional+mitochondria+via+extracellular+vesicles&rft.jtitle=PLoS+biology&rft.au=Peruzzotti-Jametti%2C+Luca&rft.au=Bernstock%2C+Joshua+D.&rft.au=Willis%2C+Cory+M.&rft.au=Manferrari%2C+Giulia&rft.date=2021-04-07&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=19&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pbio.3001166&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03275565v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon