Neural stem cells traffic functional mitochondria via extracellular vesicles
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mec...
Saved in:
Published in | PLoS biology Vol. 19; no. 4; p. e3001166 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
07.04.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.3001166 |
Cover
Abstract | Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho
0
cells rescued mitochondrial function and increased Rho
0
cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. |
---|---|
AbstractList | Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho(0) cells rescued mitochondrial function and increased Rho(0) cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho 0 cells rescued mitochondrial function and increased Rho 0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. Volcano plots show statistical significance (y axis) vs. fold change (x axis) for 9,951/9,971 cellular proteins quantitated across all 3 biological replicates (no missing values) in the multiplex TMT-based functional proteomic experiment illustrated in a. Proteins annotated with the following GOCC subcellular localisations are highlighted in red: mitochondrial outer membrane (GO:0005741, enriched in EVs); mitochondrial inner membrane (GO: 0005743, enriched in EVs); and mitochondrial matrix (GO:0005759, enriched in EVs). Mitochondrial complex (C) proteins enriched in EVs and encoded in the mitochondrial (upper panel) or nuclear (lower panel) genomes in the multiplex TMT-based functional proteomic experiment include: NADH:ubiquinone oxidoreductase or CI [mtnd2 (ND2 subunit), mtnd5 (ND5 subunit), ndufaf6 (assembly factor 6), ndufa9 (subunit A9), ndufs3 (core subunit S3), ndufb5 (1 beta subcomplex subunit 5)], succinate dehydrogenase or CII [Sdha (Subunit A), sdhd (cytochrome b small subunit), sdhb (iron-sulfur subunit), sdhc (cytochrome b560 subunit)], cytochrome b-c1 or CIII [mt-cyb (cytochrome B), Uqcrfs1 (subunit 5), Uqcrc2 (subunit 2), coq10b (coenzyme Q10B), uqcrq (subunit 8)], cytochrome C oxidase or CIV [mt-co3 (oxidase III), mtco1 (oxidase I), mtco2 (oxidase II), cox15 (subunit 15), cox18 (assembly protein 18), cox6c (subunit 6C), cox5a (subunit 5a)] and ATP synthase or CV [atp5f1 (subunit gamma), atp5s (subunit S), atp5d (subunit delta), atp5h (subunit D)]. The mitochondrial encoded gene mt-ND1 (NADH-ubiquinone oxidoreductase chain 1) was found to be present in EVs, Mito, and NSCs (L929 Rho0 were used as negative controls). (f) Representative protein expression analysis by WB of NSCs, EVs, and isolated mitochondria (Mito). CI, II, II, IV, V, complex I, II, II, IV, V; EV, extracellular vesicle; FDR, false discovery rate; GOCC, Gene Ontology Cellular Component; NSC, neural stem cell; PCR, polymerase chain reaction; TMT, Tandem Mass Tag; WB, western blot. https://doi.org/10.1371/journal.pbio.3001166.g001 Using Gene Ontology Cellular Component (GOCC) annotations, we investigated the subcellular origin of proteins enriched in EVs compared with NSCs (Fig 1B). Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho.sup.0 cells rescued mitochondrial function and increased Rho.sup.0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho 0 cells rescued mitochondrial function and increased Rho 0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. This study shows that neural stem cells are able to transfer functional mitochondria via extracellular vesicles to target cells both in vitro and in vivo, suggesting that functional mitochondrial transfer via extracellular vesicles is a signaling mechanism used by neural stem cells to modulate the physiology and metabolism of target cells. Volcano plots show statistical significance (y axis) vs. fold change (x axis) for 9,951/9,971 cellular proteins quantitated across all 3 biological replicates (no missing values) in the multiplex TMT-based functional proteomic experiment illustrated in a. Proteins annotated with the following GOCC subcellular localisations are highlighted in red: mitochondrial outer membrane (GO:0005741, enriched in EVs); mitochondrial inner membrane (GO: 0005743, enriched in EVs); and mitochondrial matrix (GO:0005759, enriched in EVs). Mitochondrial complex (C) proteins enriched in EVs and encoded in the mitochondrial (upper panel) or nuclear (lower panel) genomes in the multiplex TMT-based functional proteomic experiment include: NADH:ubiquinone oxidoreductase or CI [mtnd2 (ND2 subunit), mtnd5 (ND5 subunit), ndufaf6 (assembly factor 6), ndufa9 (subunit A9), ndufs3 (core subunit S3), ndufb5 (1 beta subcomplex subunit 5)], succinate dehydrogenase or CII [Sdha (Subunit A), sdhd (cytochrome b small subunit), sdhb (iron-sulfur subunit), sdhc (cytochrome b560 subunit)], cytochrome b-c1 or CIII [mt-cyb (cytochrome B), Uqcrfs1 (subunit 5), Uqcrc2 (subunit 2), coq10b (coenzyme Q10B), uqcrq (subunit 8)], cytochrome C oxidase or CIV [mt-co3 (oxidase III), mtco1 (oxidase I), mtco2 (oxidase II), cox15 (subunit 15), cox18 (assembly protein 18), cox6c (subunit 6C), cox5a (subunit 5a)] and ATP synthase or CV [atp5f1 (subunit gamma), atp5s (subunit S), atp5d (subunit delta), atp5h (subunit D)]. The mitochondrial encoded gene mt-ND1 (NADH-ubiquinone oxidoreductase chain 1) was found to be present in EVs, Mito, and NSCs (L929 Rho0 were used as negative controls). (f) Representative protein expression analysis by WB of NSCs, EVs, and isolated mitochondria (Mito). CI, II, II, IV, V, complex I, II, II, IV, V; EV, extracellular vesicle; FDR, false discovery rate; GOCC, Gene Ontology Cellular Component; NSC, neural stem cell; PCR, polymerase chain reaction; TMT, Tandem Mass Tag; WB, western blot. https://doi.org/10.1371/journal.pbio.3001166.g001 Using Gene Ontology Cellular Component (GOCC) annotations, we investigated the subcellular origin of proteins enriched in EVs compared with NSCs (Fig 1B). |
Audience | Academic |
Author | Willis, Cory M. Faria, Nuno Bernstock, Joshua D. Smith, Jayden A. Braga, Alice Bastos, Carlos Buzas, Edit Iren Tan, Sisareuth Brisson, Alain Vicario, Nunzio Frezza, Christian Peruzzotti-Jametti, Luca Benincá, Cristiane Zeviani, Massimo Williamson, James C. Viscomi, Carlo van den Bosch, Aletta Rogall, Rebecca Matheson, Nicholas J. Krzak, Grzegorz Fernandez-Vizarra, Erika Leonardi, Tommaso Peacock, Ben Manferrari, Giulia Kittel, Ágnes Bicci, Iacopo Iraci, Nunzio Lehner, Paul J. Muller, Karin H. Pluchino, Stefano |
AuthorAffiliation | University of Dundee, UNITED KINGDOM 5 NHS Blood and Transplant, Cambridge, United Kingdom 11 Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom 12 NanoFCM Co., Ltd, Nottingham, United Kingdom 7 Institute of Experimental Medicine, Eötvös Lorand Research Network, Budapest, Hungary 14 Semmelweis University, Budapest, Hungary 1 Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom 18 Department of Medicine, University of Cambridge, United Kingdom 2 National Institutes of Health (NINDS/NIH), Bethesda, Maryland, United States of America 6 Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy 10 Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom 13 Cambridge Advanced Imaging Centre (CAIC), United Kingdom 3 MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom 17 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridg |
AuthorAffiliation_xml | – name: 6 Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy – name: 5 NHS Blood and Transplant, Cambridge, United Kingdom – name: 17 MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge United Kingdom – name: 3 MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom – name: 4 Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom – name: University of Dundee, UNITED KINGDOM – name: 15 HCEMM Kft HU, Budapest, Hungary – name: 1 Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, United Kingdom – name: 9 UMR-CBMN CNRS-Université de Bordeaux-IPB, France – name: 11 Cambridge Innovation Technologies Consulting (CITC) Limited, United Kingdom – name: 18 Department of Medicine, University of Cambridge, United Kingdom – name: 16 ELKH-SE, Budapest, Hungary – name: 14 Semmelweis University, Budapest, Hungary – name: 2 National Institutes of Health (NINDS/NIH), Bethesda, Maryland, United States of America – name: 10 Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom – name: 7 Institute of Experimental Medicine, Eötvös Lorand Research Network, Budapest, Hungary – name: 8 Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Italy – name: 13 Cambridge Advanced Imaging Centre (CAIC), United Kingdom – name: 12 NanoFCM Co., Ltd, Nottingham, United Kingdom |
Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0002-9396-5607 surname: Peruzzotti-Jametti fullname: Peruzzotti-Jametti, Luca – sequence: 2 givenname: Joshua D. orcidid: 0000-0002-7814-3867 surname: Bernstock fullname: Bernstock, Joshua D. – sequence: 3 givenname: Cory M. orcidid: 0000-0001-7938-7276 surname: Willis fullname: Willis, Cory M. – sequence: 4 givenname: Giulia orcidid: 0000-0001-7062-1142 surname: Manferrari fullname: Manferrari, Giulia – sequence: 5 givenname: Rebecca orcidid: 0000-0003-0605-2322 surname: Rogall fullname: Rogall, Rebecca – sequence: 6 givenname: Erika orcidid: 0000-0002-2469-142X surname: Fernandez-Vizarra fullname: Fernandez-Vizarra, Erika – sequence: 7 givenname: James C. orcidid: 0000-0002-2009-189X surname: Williamson fullname: Williamson, James C. – sequence: 8 givenname: Alice orcidid: 0000-0003-3273-9742 surname: Braga fullname: Braga, Alice – sequence: 9 givenname: Aletta orcidid: 0000-0001-8886-8928 surname: van den Bosch fullname: van den Bosch, Aletta – sequence: 10 givenname: Tommaso orcidid: 0000-0002-4449-1863 surname: Leonardi fullname: Leonardi, Tommaso – sequence: 11 givenname: Grzegorz surname: Krzak fullname: Krzak, Grzegorz – sequence: 12 givenname: Ágnes surname: Kittel fullname: Kittel, Ágnes – sequence: 13 givenname: Cristiane orcidid: 0000-0001-7933-860X surname: Benincá fullname: Benincá, Cristiane – sequence: 14 givenname: Nunzio orcidid: 0000-0001-5934-3962 surname: Vicario fullname: Vicario, Nunzio – sequence: 15 givenname: Sisareuth orcidid: 0000-0003-3633-6318 surname: Tan fullname: Tan, Sisareuth – sequence: 16 givenname: Carlos surname: Bastos fullname: Bastos, Carlos – sequence: 17 givenname: Iacopo orcidid: 0000-0001-6994-3857 surname: Bicci fullname: Bicci, Iacopo – sequence: 18 givenname: Nunzio orcidid: 0000-0003-2146-9329 surname: Iraci fullname: Iraci, Nunzio – sequence: 19 givenname: Jayden A. orcidid: 0000-0003-2307-8452 surname: Smith fullname: Smith, Jayden A. – sequence: 20 givenname: Ben orcidid: 0000-0002-7823-8719 surname: Peacock fullname: Peacock, Ben – sequence: 21 givenname: Karin H. orcidid: 0000-0003-4693-8558 surname: Muller fullname: Muller, Karin H. – sequence: 22 givenname: Paul J. surname: Lehner fullname: Lehner, Paul J. – sequence: 23 givenname: Edit Iren surname: Buzas fullname: Buzas, Edit Iren – sequence: 24 givenname: Nuno surname: Faria fullname: Faria, Nuno – sequence: 25 givenname: Massimo surname: Zeviani fullname: Zeviani, Massimo – sequence: 26 givenname: Christian surname: Frezza fullname: Frezza, Christian – sequence: 27 givenname: Alain orcidid: 0000-0003-0342-352X surname: Brisson fullname: Brisson, Alain – sequence: 28 givenname: Nicholas J. orcidid: 0000-0002-3318-1851 surname: Matheson fullname: Matheson, Nicholas J. – sequence: 29 givenname: Carlo surname: Viscomi fullname: Viscomi, Carlo – sequence: 30 givenname: Stefano surname: Pluchino fullname: Pluchino, Stefano |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33826607$$D View this record in MEDLINE/PubMed https://hal.science/hal-03275565$$DView record in HAL |
BookMark | eNqVk1tr2zAUx83oWC_bNxibYS_rQzJdrIv3MAhlWwOhhd1ehSxLiYJtZZId1m9fqXFLE8rYMMZC_v3_R-fonNPsqHOdzrLXEEwhZvDD2g2-k810U1k3xQBASOmz7ASSgkwY5-To0fo4Ow1hDQBCJeIvsmOMOaIUsJNscaUHL5s89LrNlW6akPdeGmNVboZO9dbFGHlre6dWrqu9lfk2vvpPpBI-NNLnWx2sanR4mT03sgn61fg9y35--fzj4nKyuP46v5gtJoqVpJ8gyFVVVYQWhkOtC1aUoISYlBRIirFEACJqGKOFlIwhWBquuaqLUlYUG6zxWfZ257tpXBBjIYJABHEEECtxJOY7onZyLTbettLfCCetuNtwfimk79OhBUUaI0CRrEpQQAAlpEYBzbVBoC6Iil6fxmhD1epa6S7m3uyZ7v_p7Eos3VZwQAjANBqc7wxWB7LL2UKkPYARI4SSLYzs-zGYd78HHXrR2pAKLTvthpQjBIgSVCT03QH6dCVGailjsrYzLt1cMhWz2AIp57sjTp-g4lPr1qrYeMbG_T3B-Z4gMn1siqUcQhDz79_-g736d_b61z775vHFPJT2vrsjUOwA5V0IXpsHBAKRhui-YiINkRiHKMo-HsiU7WUahVgU2_xdfAsM0B_M |
CitedBy_id | crossref_primary_10_3390_bioengineering9090439 crossref_primary_10_4103_1673_5374_346466 crossref_primary_10_1016_j_neuron_2022_01_021 crossref_primary_10_1007_s12015_022_10492_z crossref_primary_10_1038_s41389_022_00380_z crossref_primary_10_1111_trf_17524 crossref_primary_10_1177_0271678X251325039 crossref_primary_10_3390_ijms222111709 crossref_primary_10_1186_s12967_023_04133_3 crossref_primary_10_3389_fpain_2022_1013577 crossref_primary_10_1186_s12885_022_10107_3 crossref_primary_10_3390_cells13060495 crossref_primary_10_1111_jnc_16108 crossref_primary_10_3390_cells13030204 crossref_primary_10_1016_j_lfs_2023_122257 crossref_primary_10_3390_biom12121770 crossref_primary_10_1016_j_arr_2024_102522 crossref_primary_10_1097_SCS_0000000000010706 crossref_primary_10_29296_25877313_2023_11_11 crossref_primary_10_1002_mco2_214 crossref_primary_10_1016_j_mito_2024_101935 crossref_primary_10_3390_antiox10071088 crossref_primary_10_3390_cells12141822 crossref_primary_10_1016_j_ecoenv_2024_116363 crossref_primary_10_1016_j_ijpharm_2024_124194 crossref_primary_10_1016_j_gande_2024_12_001 crossref_primary_10_1097_WNR_0000000000001725 crossref_primary_10_1182_blood_2023022147 crossref_primary_10_1038_s41467_023_41995_z crossref_primary_10_1016_j_neuint_2021_105192 crossref_primary_10_1111_tra_12951 crossref_primary_10_1038_s41416_021_01610_8 crossref_primary_10_4103_NRR_NRR_D_24_00243 crossref_primary_10_3390_cells12101416 crossref_primary_10_1007_s12020_024_03967_1 crossref_primary_10_1038_s42003_022_04050_z crossref_primary_10_3389_fragi_2022_866718 crossref_primary_10_1186_s12929_023_00979_3 crossref_primary_10_1002_ame2_12310 crossref_primary_10_3390_ijms241813835 crossref_primary_10_1016_j_gde_2021_06_001 crossref_primary_10_3390_biom13010165 crossref_primary_10_1016_j_ymthe_2023_02_013 crossref_primary_10_1016_j_cmet_2022_02_016 crossref_primary_10_32604_biocell_2022_018612 crossref_primary_10_1088_1748_605X_ad5819 crossref_primary_10_3390_cells13040325 crossref_primary_10_1093_function_zqab073 crossref_primary_10_1016_j_arr_2024_102549 crossref_primary_10_1038_s41467_022_31213_7 crossref_primary_10_3390_ijms24087005 crossref_primary_10_1016_j_mito_2022_02_004 crossref_primary_10_1096_fba_2021_00035 crossref_primary_10_3389_fnmol_2021_767219 crossref_primary_10_1016_j_expneurol_2022_114124 crossref_primary_10_1038_s41392_024_01839_8 crossref_primary_10_1038_s44222_023_00117_6 crossref_primary_10_3390_biomedicines9091092 crossref_primary_10_1016_j_neurot_2024_e00515 crossref_primary_10_3390_biomedicines10061251 crossref_primary_10_14336_AD_2021_0608 crossref_primary_10_1002_jex2_65 crossref_primary_10_3390_physiologia4040021 crossref_primary_10_1007_s00018_021_04020_4 crossref_primary_10_1021_acsnano_4c02940 crossref_primary_10_1016_j_bbrc_2024_150559 crossref_primary_10_1111_trf_17960 crossref_primary_10_3390_antiox11020356 crossref_primary_10_1038_s41467_024_52867_5 crossref_primary_10_1038_s42255_024_01125_5 crossref_primary_10_3390_ijms24044182 crossref_primary_10_3389_fimmu_2021_705920 crossref_primary_10_1186_s13287_023_03558_3 crossref_primary_10_1038_s41467_024_55217_7 crossref_primary_10_3390_ijms24032637 crossref_primary_10_1177_0271678X241300223 crossref_primary_10_1523_JNEUROSCI_1170_24_2024 crossref_primary_10_3390_bioengineering9110675 crossref_primary_10_1016_j_tice_2025_102875 crossref_primary_10_1177_0271678X251325805 crossref_primary_10_1016_j_mito_2024_101856 crossref_primary_10_1038_s41586_023_06537_z crossref_primary_10_3390_cells11152364 crossref_primary_10_1007_s12035_022_03055_3 crossref_primary_10_1080_17425247_2023_2279115 crossref_primary_10_3390_cells11223603 crossref_primary_10_1186_s12964_024_01843_z crossref_primary_10_1016_j_imlet_2025_106992 crossref_primary_10_1016_j_celrep_2023_112728 crossref_primary_10_3389_fphar_2021_748956 crossref_primary_10_3390_cancers15133446 crossref_primary_10_1007_s12035_024_04009_7 crossref_primary_10_1016_j_cophys_2024_100765 crossref_primary_10_1111_cns_14344 crossref_primary_10_3389_fmolb_2023_1187263 crossref_primary_10_3390_ijms23042245 crossref_primary_10_1007_s00441_021_03554_0 crossref_primary_10_4103_1673_5374_381493 crossref_primary_10_1242_dev_200870 crossref_primary_10_3389_fendo_2023_1346441 crossref_primary_10_1007_s12035_025_04774_z crossref_primary_10_1016_j_arr_2023_102038 crossref_primary_10_1016_j_bbrc_2024_149737 crossref_primary_10_1186_s12974_024_03147_y crossref_primary_10_1016_j_expneurol_2024_114757 crossref_primary_10_1186_s12967_024_05799_z crossref_primary_10_3390_ijms23137408 crossref_primary_10_1016_j_biopha_2023_115092 crossref_primary_10_1167_iovs_66_3_14 crossref_primary_10_3389_fendo_2024_1409000 crossref_primary_10_3390_ijms24031969 crossref_primary_10_3389_fnins_2024_1426700 crossref_primary_10_1186_s40035_024_00409_w crossref_primary_10_1016_j_omtn_2025_102449 crossref_primary_10_3389_fcell_2021_696434 crossref_primary_10_3390_brainsci14090899 crossref_primary_10_3390_ijms24098181 crossref_primary_10_1038_s12276_023_01141_7 crossref_primary_10_1016_j_neuron_2022_03_015 crossref_primary_10_1007_s00210_023_02636_w crossref_primary_10_1126_sciadv_add8164 crossref_primary_10_3390_ijms252312637 crossref_primary_10_1002_jev2_12320 crossref_primary_10_1016_j_celrep_2024_114755 crossref_primary_10_1186_s13048_024_01560_8 crossref_primary_10_1093_brain_awad332 crossref_primary_10_1186_s12951_024_02750_8 |
Cites_doi | 10.1038/nature18928 10.1016/S0076-6879(96)64043-9 10.1073/pnas.1103295108 10.1007/s12975-017-0599-2 10.1038/nrn1908 10.1038/s41593-019-0486-0 10.1007/978-1-4939-7253-1_30 10.1016/j.ejcb.2017.10.003 10.1126/scitranslmed.aba0599 10.3389/fcvm.2017.00071 10.4049/immunohorizons.1800063 10.1038/s41598-019-44922-9 10.1002/stem.2856 10.1016/j.tem.2015.12.001 10.1016/j.neuron.2013.10.037 10.1016/S0968-0004(00)01735-7 10.1080/15384101.2018.1445906 10.1016/j.jconrel.2014.11.029 10.1016/j.molcel.2014.08.020 10.1080/15548627.2015.1063765 10.1038/nature01552 10.1016/j.mito.2009.12.148 10.1161/CIRCRESAHA.118.314601 10.1111/jth.13190 10.3390/biom5031319 10.1080/09537104.2016.1268255 10.1016/j.redox.2018.06.009 10.1186/1471-2105-10-161 10.1073/pnas.0510511103 10.1111/j.1538-7836.2009.03434.x 10.1038/nm.2736 10.1371/journal.pone.0164199 10.1074/jbc.272.33.20332 10.1186/s13287-016-0354-8 10.1016/j.cell.2019.02.029 10.1016/S1046-2023(02)00038-5 10.1002/elps.1150181131 10.3727/096368915X689785 10.1155/2017/7068567 10.1016/j.bbabio.2008.03.027 10.1038/nrm.2017.125 10.1080/20013078.2019.1697028 10.1093/bioinformatics/btq431 10.1016/j.molmed.2018.07.007 10.1016/j.stem.2018.01.020 10.1007/s10549-012-2283-2 10.1002/stem.2372 10.1038/s41467-017-00494-8 10.1016/j.cub.2011.11.057 10.1038/nchembio.2422 10.1038/76095 10.1080/20013078.2018.1555410 10.1126/science.aau6977 10.1021/acsnano.7b07782 10.1165/rcmb.2013-0529OC 10.1186/s13287-018-1012-0 10.1111/jth.12554 10.1086/302150 10.3389/fcell.2016.00107 10.1371/journal.pone.0045799 10.1073/pnas.1404651111 10.1016/j.neuroscience.2014.04.036 10.3390/ijms17020171 10.18632/oncotarget.23455 10.1186/s12974-016-0667-7 10.1016/j.bcp.2016.07.011 10.1016/j.devcel.2006.04.002 10.1038/srep26057 10.1038/ncomms9472 10.21769/BioProtoc.2255 10.1038/nmeth.3252 10.1093/bioinformatics/btt285 10.1093/brain/awp174 10.1164/rccm.201701-0170OC 10.1182/blood-2014-05-573543 10.1371/journal.pone.0170628 10.1016/j.cub.2007.12.038 10.1016/j.devcel.2017.02.020 10.1038/s41598-017-05232-0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Peruzzotti-Jametti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution 2021 Peruzzotti-Jametti et al 2021 Peruzzotti-Jametti et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Peruzzotti-Jametti et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: 2021 Peruzzotti-Jametti et al 2021 Peruzzotti-Jametti et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PYCSY RC3 7X8 1XC VOOES 5PM DOA CZG |
DOI | 10.1371/journal.pbio.3001166 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Mitochondrial transfer by neural stem cell derived extracellular vesicles |
EISSN | 1545-7885 |
ExternalDocumentID | 2528202793 oai_doaj_org_article_62e32062ab904101a16fc0e8ef20d45c PMC8055036 oai_HAL_hal_03275565v1 A660904136 33826607 10_1371_journal_pbio_3001166 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_UP_1101/3 – fundername: Medical Research Council grantid: MC_UU_00015/5 – fundername: Department of Health – fundername: Medical Research Council grantid: MR/P008801/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: MR/K026682/1 – fundername: Wellcome Trust grantid: RRAG/214 – fundername: Medical Research Council grantid: MR/V011561/1 – fundername: Wellcome Trust grantid: 101835/Z/13/Z – fundername: Medical Research Council grantid: MC_UU_00015/8 – fundername: Medical Research Council grantid: MC_UP_1002/1 – fundername: ; grantid: 40.16.0.026MN – fundername: ; grantid: 2010/R/31 and 2014/PMS/4 – fundername: ; grantid: MR/P008801/1 – fundername: ; grantid: (MR/K026682/1 – fundername: ; grantid: ERC-2010-StG – fundername: ; grantid: RG 75149 – fundername: ; grantid: RRAG/214 – fundername: ; grantid: WPA15-02 – fundername: ; grantid: 2017/B/5 – fundername: ; grantid: RG79423 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 PYCSY QF4 QN7 RNS RPM RZL SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ ADRAZ ADXHL C1A CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 3V. 7QG 7QL 7SN 7SS 7T5 7TK 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 PUEGO 1XC VOOES 5PM - AAPBV ABFLS ABPTK ADACO AGJBV BBAFP CZG M~E PRINS ZA5 |
ID | FETCH-LOGICAL-c795t-218cbbb564f81ee474909135960a633a20126f7764aa77219f8e8cd49ab63f3e3 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Fri Nov 26 17:11:56 EST 2021 Wed Aug 27 01:20:45 EDT 2025 Thu Aug 21 14:30:41 EDT 2025 Sun Sep 28 07:54:16 EDT 2025 Thu Sep 04 18:04:05 EDT 2025 Fri Jul 25 10:06:05 EDT 2025 Tue Jun 17 22:01:51 EDT 2025 Tue Jun 10 21:02:15 EDT 2025 Fri Jun 27 05:31:45 EDT 2025 Fri Jun 27 05:31:02 EDT 2025 Fri Jun 27 05:30:16 EDT 2025 Mon Jul 21 06:00:04 EDT 2025 Tue Jul 01 04:20:13 EDT 2025 Thu Apr 24 23:05:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Polymerase chain reaction Phagocytes Vesicles Mitochondria Computer software Proteomics Outer membrane proteins Exosomes |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c795t-218cbbb564f81ee474909135960a633a20126f7764aa77219f8e8cd49ab63f3e3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 I have read the journal’s policy and the authors of this manuscript have the following competing interests: SP is co-founder, CSO and shareholder (>5%) of CITC Ltd. and iSTEM Therapeutics Litd., and co-founder and Non-executive Director at asitia Therapeutics Ltd.; LPJ is shareholder of CITC Ltd.; JAS is a Project Manager and Senior Research Associate at CITC Ltd. and Director of Research of iSTEM Therapeutics Ltd.; BP is an employee of NanoFCM and his contributions to this paper were made as part of their employment. |
ORCID | 0000-0003-0605-2322 0000-0002-7814-3867 0000-0001-7938-7276 0000-0002-7823-8719 0000-0003-0342-352X 0000-0001-7062-1142 0000-0002-2009-189X 0000-0003-4693-8558 0000-0003-2307-8452 0000-0002-4449-1863 0000-0003-2146-9329 0000-0002-2469-142X 0000-0001-7933-860X 0000-0003-3633-6318 0000-0003-3273-9742 0000-0001-5934-3962 0000-0001-6994-3857 0000-0002-3318-1851 0000-0002-9396-5607 0000-0001-8886-8928 0000-0002-3293-7397 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.3001166 |
PMID | 33826607 |
PQID | 2528202793 |
PQPubID | 1436341 |
ParticipantIDs | plos_journals_2528202793 doaj_primary_oai_doaj_org_article_62e32062ab904101a16fc0e8ef20d45c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8055036 hal_primary_oai_HAL_hal_03275565v1 proquest_miscellaneous_2510265241 proquest_journals_2528202793 gale_infotracmisc_A660904136 gale_infotracacademiconefile_A660904136 gale_incontextgauss_ISR_A660904136 gale_incontextgauss_ISN_A660904136 gale_incontextgauss_IOV_A660904136 pubmed_primary_33826607 crossref_primary_10_1371_journal_pbio_3001166 crossref_citationtrail_10_1371_journal_pbio_3001166 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210407 |
PublicationDateYYYYMMDD | 2021-04-07 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210407 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | E Macia (pbio.3001166.ref041) 2006; 10 T Wai (pbio.3001166.ref044) 2016; 27 FH Gage (pbio.3001166.ref006) 2013; 80 RL Webb (pbio.3001166.ref071) 2018; 9 MV Jackson (pbio.3001166.ref014) 2016; 34 G Mallucci (pbio.3001166.ref073) 2015 MV Jackson (pbio.3001166.ref017) 2017; 7 AR Brisson (pbio.3001166.ref061) 2017; 28 S Pluchino (pbio.3001166.ref051) 2016; 146 EA Bordt (pbio.3001166.ref065) 2017; 40 TJ Morrison (pbio.3001166.ref016) 2017; 196 R Kalluri (pbio.3001166.ref005) 2020; 367 D Indira (pbio.3001166.ref032) 2018; 97 E van der Pol (pbio.3001166.ref002) 2016; 14 M Katoh (pbio.3001166.ref043) 2017; 7 M Neuspiel (pbio.3001166.ref055) 2008; 18 A Follenzi (pbio.3001166.ref082) 2000; 25 W Luo (pbio.3001166.ref045) 2009; 10 AM Rodriguez (pbio.3001166.ref058) 2018; 17 C Cossetti (pbio.3001166.ref010) 2014; 56 N Arraud (pbio.3001166.ref028) 2014; 12 G van Niel (pbio.3001166.ref003) 2018; 19 L Peruzzotti-Jametti (pbio.3001166.ref009) 2018; 24 TS Kapellos (pbio.3001166.ref039) 2016; 116 D Gustafson (pbio.3001166.ref004) 2017; 4 KP Hough (pbio.3001166.ref063) 2018; 18 M Bernimoulin (pbio.3001166.ref018) 2009; 7 I Helwa (pbio.3001166.ref022) 2017; 12 Y Tian (pbio.3001166.ref027) 2018; 12 BS Carvalho (pbio.3001166.ref084) 2010; 26 G Volpe (pbio.3001166.ref079) 2016 F Puhm (pbio.3001166.ref062) 2019; 125 A Schneider (pbio.3001166.ref034) 2019; 9 W Huber (pbio.3001166.ref083) 2015; 12 E Fernandez-Vizarra (pbio.3001166.ref020) 2010; 10 EE Kesner (pbio.3001166.ref064) 2016; 6 D Torralba (pbio.3001166.ref012) 2016; 4 L Peruzzotti-Jametti (pbio.3001166.ref037) 2018; 22 D Drago (pbio.3001166.ref078) 2016; 13 JL Spees (pbio.3001166.ref059) 2006; 103 M Fernandez-Moreno (pbio.3001166.ref036) 2016; 11 G Casella (pbio.3001166.ref070) 2020; 12 PJ Huang (pbio.3001166.ref069) 2016; 25 AU Joshi (pbio.3001166.ref013) 2019; 22 KG Lyamzaev (pbio.3001166.ref054) 2008; 1777 DK Jeppesen (pbio.3001166.ref076) 2019; 177 AL Isola (pbio.3001166.ref021) 2018; 9 DG Phinney (pbio.3001166.ref053) 2015; 6 VP Skulachev (pbio.3001166.ref047) 2001; 26 V Soubannier (pbio.3001166.ref056) 2012; 22 L Peruzzotti-Jametti (pbio.3001166.ref074) 2014; 283 S Paliwal (pbio.3001166.ref077) 2018; 9 V Tiranti (pbio.3001166.ref035) 1998; 63 M Zhu (pbio.3001166.ref068) 2018; 2 K Hayakawa (pbio.3001166.ref050) 2016; 535 M Bacigaluppi (pbio.3001166.ref008) 2009; 132 W Luo (pbio.3001166.ref046) 2013; 29 G Martino (pbio.3001166.ref007) 2006; 7 G Fuhrmann (pbio.3001166.ref080) 2015; 205 KA Sinclair (pbio.3001166.ref060) 2016; 7 RL Elliott (pbio.3001166.ref075) 2012; 136 N Iraci (pbio.3001166.ref001) 2016; 17 M Makrecka-Kuka (pbio.3001166.ref029) 2015; 5 CH Davis (pbio.3001166.ref052) 2014; 111 K Hayakawa (pbio.3001166.ref057) 2018; 36 T Ahmad (pbio.3001166.ref067) 2014; 33 C Wang (pbio.3001166.ref025) 2017; 1660 S Feng (pbio.3001166.ref038) 2017; 8 D Dutta (pbio.3001166.ref042) 2012; 7 LG Nijtmans (pbio.3001166.ref030) 2002; 26 K Mitra (pbio.3001166.ref033) 2010 X Li (pbio.3001166.ref066) 2014; 51 Y Tian (pbio.3001166.ref026) 2020; 9 N Iraci (pbio.3001166.ref011) 2017; 13 C Lamaze (pbio.3001166.ref040) 1997; 272 S Pluchino (pbio.3001166.ref048) 2003; 422 J Karttunen (pbio.3001166.ref023) 2019; 8 LH Boudreau (pbio.3001166.ref019) 2014; 124 FH Sterky (pbio.3001166.ref049) 2011; 108 G Hofhaus (pbio.3001166.ref081) 1996; 264 K Unuma (pbio.3001166.ref072) 2015; 11 MN Islam (pbio.3001166.ref015) 2012; 18 E Zerbetto (pbio.3001166.ref031) 1997; 18 DC Woods (pbio.3001166.ref024) 2017; 2017 |
References_xml | – volume: 535 start-page: 551 issue: 7613 year: 2016 ident: pbio.3001166.ref050 article-title: Transfer of mitochondria from astrocytes to neurons after stroke publication-title: Nature doi: 10.1038/nature18928 – volume: 264 start-page: 476 year: 1996 ident: pbio.3001166.ref081 article-title: Use of polarography to detect respiration defects in cell cultures publication-title: Methods Enzymol doi: 10.1016/S0076-6879(96)64043-9 – volume: 108 start-page: 12937 issue: 31 year: 2011 ident: pbio.3001166.ref049 article-title: Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1103295108 – volume: 9 start-page: 530 issue: 5 year: 2018 ident: pbio.3001166.ref071 article-title: Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model. publication-title: Transl Stroke Res doi: 10.1007/s12975-017-0599-2 – volume: 7 start-page: 395 issue: 5 year: 2006 ident: pbio.3001166.ref007 article-title: The therapeutic potential of neural stem cells publication-title: Nat Rev Neurosci doi: 10.1038/nrn1908 – volume: 22 start-page: 1635 issue: 10 year: 2019 ident: pbio.3001166.ref013 article-title: Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration publication-title: Nat Neurosci doi: 10.1038/s41593-019-0486-0 – volume: 1660 start-page: 367 year: 2017 ident: pbio.3001166.ref025 article-title: Electric Field-Induced Disruption and Releasing Viable Content from Extracellular Vesicles. publication-title: Methods Mol Biol (Clifton, NJ). doi: 10.1007/978-1-4939-7253-1_30 – volume: 97 start-page: 1 issue: 1 year: 2018 ident: pbio.3001166.ref032 article-title: Strategies for imaging mitophagy in high-resolution and high-throughput publication-title: Eur J Cell Biol doi: 10.1016/j.ejcb.2017.10.003 – volume: 12 issue: 568 year: 2020 ident: pbio.3001166.ref070 article-title: Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. publication-title: Sci Transl Med. doi: 10.1126/scitranslmed.aba0599 – volume: 4 start-page: 71 year: 2017 ident: pbio.3001166.ref004 article-title: Extracellular Vesicles as Protagonists of Diabetic Cardiovascular Pathology. publication-title: Front Cardiovasc Med. doi: 10.3389/fcvm.2017.00071 – volume: 2 start-page: 384 issue: 11 year: 2018 ident: pbio.3001166.ref068 article-title: Mitochondria Released by Apoptotic Cell Death Initiate Innate Immune Responses. publication-title: Immunohorizons doi: 10.4049/immunohorizons.1800063 – volume: 9 start-page: 8492 issue: 1 year: 2019 ident: pbio.3001166.ref034 article-title: Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection. publication-title: Sci Rep. doi: 10.1038/s41598-019-44922-9 – volume: 36 start-page: 1404 issue: 9 year: 2018 ident: pbio.3001166.ref057 article-title: Protective Effects of Endothelial Progenitor Cell-Derived Extracellular Mitochondria in Brain Endothelium publication-title: Stem Cells doi: 10.1002/stem.2856 – volume: 27 start-page: 105 issue: 2 year: 2016 ident: pbio.3001166.ref044 article-title: Mitochondrial Dynamics and Metabolic Regulation publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2015.12.001 – year: 2016 ident: pbio.3001166.ref079 article-title: Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis publication-title: J Neuroimmunol – volume: 80 start-page: 588 issue: 3 year: 2013 ident: pbio.3001166.ref006 article-title: Neural stem cells: generating and regenerating the brain publication-title: Neuron doi: 10.1016/j.neuron.2013.10.037 – volume: 26 start-page: 23 issue: 1 year: 2001 ident: pbio.3001166.ref047 article-title: Mitochondrial filaments and clusters as intracellular power-transmitting cables publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(00)01735-7 – volume: 17 start-page: 712 issue: 6 year: 2018 ident: pbio.3001166.ref058 article-title: Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury publication-title: Cell Cycle doi: 10.1080/15384101.2018.1445906 – start-page: 127 year: 2015 ident: pbio.3001166.ref073 article-title: The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis publication-title: Prog Neurobiol – year: 2010 ident: pbio.3001166.ref033 article-title: Analysis of mitochondrial dynamics and functions using imaging approaches publication-title: Curr Protoc Cell Biol – volume: 205 start-page: 35 year: 2015 ident: pbio.3001166.ref080 article-title: Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins publication-title: J Control Release doi: 10.1016/j.jconrel.2014.11.029 – volume: 56 start-page: 193 issue: 2 year: 2014 ident: pbio.3001166.ref010 article-title: Extracellular vesicles from neural stem cells transfer IFN-gamma via Ifngr1 to activate Stat1 signaling in target cells publication-title: Mol Cell doi: 10.1016/j.molcel.2014.08.020 – volume: 11 start-page: 1520 issue: 9 year: 2015 ident: pbio.3001166.ref072 article-title: Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. publication-title: Autophagy doi: 10.1080/15548627.2015.1063765 – volume: 422 start-page: 688 issue: 6933 year: 2003 ident: pbio.3001166.ref048 article-title: Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis publication-title: Nature doi: 10.1038/nature01552 – volume: 10 start-page: 253 issue: 3 year: 2010 ident: pbio.3001166.ref020 article-title: Isolation of mitochondria for biogenetical studies: An update publication-title: Mitochondrion doi: 10.1016/j.mito.2009.12.148 – volume: 125 start-page: 43 issue: 1 year: 2019 ident: pbio.3001166.ref062 article-title: Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells publication-title: Circ Res doi: 10.1161/CIRCRESAHA.118.314601 – volume: 14 start-page: 48 issue: 1 year: 2016 ident: pbio.3001166.ref002 article-title: Recent developments in the nomenclature, presence, isolation, detection and clinical impact of extracellular vesicles publication-title: J Thromb Haemost doi: 10.1111/jth.13190 – volume: 5 start-page: 1319 issue: 3 year: 2015 ident: pbio.3001166.ref029 article-title: High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria. publication-title: Biomolecules doi: 10.3390/biom5031319 – volume: 28 start-page: 263 issue: 3 year: 2017 ident: pbio.3001166.ref061 article-title: Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study. publication-title: Platelets doi: 10.1080/09537104.2016.1268255 – volume: 18 start-page: 54 year: 2018 ident: pbio.3001166.ref063 article-title: Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. publication-title: Redox Biol. doi: 10.1016/j.redox.2018.06.009 – volume: 10 start-page: 161 year: 2009 ident: pbio.3001166.ref045 article-title: GAGE: generally applicable gene set enrichment for pathway analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-161 – volume: 103 start-page: 1283 issue: 5 year: 2006 ident: pbio.3001166.ref059 article-title: Mitochondrial transfer between cells can rescue aerobic respiration publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0510511103 – volume: 7 start-page: 1019 issue: 6 year: 2009 ident: pbio.3001166.ref018 article-title: Differential stimulation of monocytic cells results in distinct populations of microparticles publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2009.03434.x – volume: 18 start-page: 759 issue: 5 year: 2012 ident: pbio.3001166.ref015 article-title: Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury publication-title: Nat Med doi: 10.1038/nm.2736 – volume: 11 start-page: e0164199 issue: 10 year: 2016 ident: pbio.3001166.ref036 article-title: Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines. publication-title: PLoS ONE doi: 10.1371/journal.pone.0164199 – volume: 146 start-page: w14374 year: 2016 ident: pbio.3001166.ref051 article-title: Astrocyte power fuels neurons during stroke publication-title: Swiss Med Wkly – volume: 272 start-page: 20332 issue: 33 year: 1997 ident: pbio.3001166.ref040 article-title: The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells publication-title: J Biol Chem doi: 10.1074/jbc.272.33.20332 – volume: 7 start-page: 91 issue: 1 year: 2016 ident: pbio.3001166.ref060 article-title: Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung publication-title: Stem Cell Res Ther doi: 10.1186/s13287-016-0354-8 – volume: 177 start-page: 428 issue: 2 year: 2019 ident: pbio.3001166.ref076 article-title: Reassessment of Exosome Composition. publication-title: Cell doi: 10.1016/j.cell.2019.02.029 – volume: 26 start-page: 327 issue: 4 year: 2002 ident: pbio.3001166.ref030 article-title: Blue Native electrophoresis to study mitochondrial and other protein complexes publication-title: Methods doi: 10.1016/S1046-2023(02)00038-5 – volume: 18 start-page: 2059 issue: 11 year: 1997 ident: pbio.3001166.ref031 article-title: Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels publication-title: Electrophoresis doi: 10.1002/elps.1150181131 – volume: 25 start-page: 913 issue: 5 year: 2016 ident: pbio.3001166.ref069 article-title: Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains publication-title: Cell Transplant doi: 10.3727/096368915X689785 – volume: 2017 start-page: 7068567 year: 2017 ident: pbio.3001166.ref024 article-title: Mitochondrial Heterogeneity: Evaluating Mitochondrial Subpopulation Dynamics in Stem Cells. publication-title: Stem Cells Int doi: 10.1155/2017/7068567 – volume: 1777 start-page: 817 issue: 7–8 year: 2008 ident: pbio.3001166.ref054 article-title: Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2008.03.027 – volume: 19 start-page: 213 issue: 4 year: 2018 ident: pbio.3001166.ref003 article-title: Shedding light on the cell biology of extracellular vesicles publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm.2017.125 – volume: 9 start-page: 1697028 issue: 1 year: 2020 ident: pbio.3001166.ref026 article-title: Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. publication-title: J Extracell Vesicles. doi: 10.1080/20013078.2019.1697028 – volume: 26 start-page: 2363 issue: 19 year: 2010 ident: pbio.3001166.ref084 article-title: A framework for oligonucleotide microarray preprocessing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq431 – volume: 24 start-page: 838 issue: 10 year: 2018 ident: pbio.3001166.ref009 article-title: Targeting Mitochondrial Metabolism in Neuroinflammation: Towards a Therapy for Progressive Multiple Sclerosis publication-title: Trends Mol Med doi: 10.1016/j.molmed.2018.07.007 – volume: 22 start-page: 355 issue: 3 year: 2018 ident: pbio.3001166.ref037 article-title: Macrophage-Derived Extracellular Succinate Licenses Neural Stem Cells to Suppress Chronic Neuroinflammation. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2018.01.020 – volume: 136 start-page: 347 issue: 2 year: 2012 ident: pbio.3001166.ref075 article-title: Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-012-2283-2 – volume: 34 start-page: 2210 issue: 8 year: 2016 ident: pbio.3001166.ref014 article-title: Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS publication-title: Stem Cells doi: 10.1002/stem.2372 – volume: 8 start-page: 370 issue: 1 year: 2017 ident: pbio.3001166.ref038 article-title: Improved split fluorescent proteins for endogenous protein labeling publication-title: Nat Commun doi: 10.1038/s41467-017-00494-8 – volume: 22 start-page: 135 issue: 2 year: 2012 ident: pbio.3001166.ref056 article-title: A vesicular transport pathway shuttles cargo from mitochondria to lysosomes publication-title: Curr Biol doi: 10.1016/j.cub.2011.11.057 – volume: 13 start-page: 951 issue: 9 year: 2017 ident: pbio.3001166.ref011 article-title: Extracellular vesicles are independent metabolic units with asparaginase activity publication-title: Nat Chem Biol doi: 10.1038/nchembio.2422 – volume: 25 start-page: 217 issue: 2 year: 2000 ident: pbio.3001166.ref082 article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences publication-title: Nat Genet doi: 10.1038/76095 – volume: 8 start-page: 1555410 issue: 1 year: 2019 ident: pbio.3001166.ref023 article-title: Precipitation-based extracellular vesicle isolation from rat plasma co-precipitate vesicle-free microRNAs. publication-title: J Extracell Vesicles doi: 10.1080/20013078.2018.1555410 – volume: 367 issue: 6478 year: 2020 ident: pbio.3001166.ref005 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science (New York, NY). doi: 10.1126/science.aau6977 – volume: 12 start-page: 671 issue: 1 year: 2018 ident: pbio.3001166.ref027 article-title: Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry. publication-title: ACS Nano doi: 10.1021/acsnano.7b07782 – volume: 51 start-page: 455 issue: 3 year: 2014 ident: pbio.3001166.ref066 article-title: Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2013-0529OC – volume: 9 start-page: 298 issue: 1 year: 2018 ident: pbio.3001166.ref077 article-title: Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-1012-0 – volume: 12 start-page: 614 issue: 5 year: 2014 ident: pbio.3001166.ref028 article-title: Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration publication-title: J Thromb Haemost doi: 10.1111/jth.12554 – volume: 63 start-page: 1609 issue: 6 year: 1998 ident: pbio.3001166.ref035 article-title: Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency publication-title: Am J Hum Genet doi: 10.1086/302150 – volume: 4 start-page: 107 year: 2016 ident: pbio.3001166.ref012 article-title: Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer. publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2016.00107 – volume: 7 start-page: e45799 issue: 9 year: 2012 ident: pbio.3001166.ref042 article-title: Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. publication-title: PLoS ONE. doi: 10.1371/journal.pone.0045799 – volume: 111 start-page: 9633 issue: 26 year: 2014 ident: pbio.3001166.ref052 article-title: Transcellular degradation of axonal mitochondria publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1404651111 – volume: 283 start-page: 210 year: 2014 ident: pbio.3001166.ref074 article-title: The role of the immune system in central nervous system plasticity after acute injury publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.04.036 – volume: 17 start-page: 171 issue: 2 year: 2016 ident: pbio.3001166.ref001 article-title: Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. publication-title: Int J Mol Sci. doi: 10.3390/ijms17020171 – volume: 9 start-page: 1187 issue: 1 year: 2018 ident: pbio.3001166.ref021 article-title: Exosomes released by metabotropic glutamate receptor 1 (GRM1) expressing melanoma cells increase cell migration and invasiveness. publication-title: Oncotarget. doi: 10.18632/oncotarget.23455 – volume: 13 start-page: 232 issue: 1 year: 2016 ident: pbio.3001166.ref078 article-title: Metabolic determinants of the immune modulatory function of neural stem cells publication-title: J Neuroinflammation doi: 10.1186/s12974-016-0667-7 – volume: 116 start-page: 107 year: 2016 ident: pbio.3001166.ref039 article-title: A novel real time imaging platform to quantify macrophage phagocytosis publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2016.07.011 – volume: 10 start-page: 839 issue: 6 year: 2006 ident: pbio.3001166.ref041 article-title: Dynasore, a cell-permeable inhibitor of dynamin publication-title: Dev Cell doi: 10.1016/j.devcel.2006.04.002 – volume: 6 start-page: 26057 year: 2016 ident: pbio.3001166.ref064 article-title: Characteristics of Mitochondrial Transformation into Human Cells. publication-title: Sci Rep. doi: 10.1038/srep26057 – volume: 6 start-page: 8472 year: 2015 ident: pbio.3001166.ref053 article-title: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs publication-title: Nat Commun doi: 10.1038/ncomms9472 – volume: 7 issue: 9 year: 2017 ident: pbio.3001166.ref017 article-title: Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived Macrophages (MDM) and Mesenchymal Stem Cells (MSC). publication-title: Bio Protoc. doi: 10.21769/BioProtoc.2255 – volume: 12 start-page: 115 issue: 2 year: 2015 ident: pbio.3001166.ref083 article-title: Orchestrating high-throughput genomic analysis with Bioconductor. publication-title: Nat Methods. doi: 10.1038/nmeth.3252 – volume: 29 start-page: 1830 issue: 14 year: 2013 ident: pbio.3001166.ref046 article-title: Pathview: an R/Bioconductor package for pathway-based data integration and visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt285 – volume: 33 start-page: 994 issue: 9 year: 2014 ident: pbio.3001166.ref067 article-title: Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy publication-title: EMBO J – volume: 132 start-page: 2239 issue: Pt 8 year: 2009 ident: pbio.3001166.ref008 article-title: Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms publication-title: Brain doi: 10.1093/brain/awp174 – volume: 196 start-page: 1275 issue: 10 year: 2017 ident: pbio.3001166.ref016 article-title: Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201701-0170OC – volume: 124 start-page: 2173 issue: 14 year: 2014 ident: pbio.3001166.ref019 article-title: Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation publication-title: Blood doi: 10.1182/blood-2014-05-573543 – volume: 12 start-page: e0170628 issue: 1 year: 2017 ident: pbio.3001166.ref022 article-title: A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. publication-title: PLoS ONE. doi: 10.1371/journal.pone.0170628 – volume: 18 start-page: 102 issue: 2 year: 2008 ident: pbio.3001166.ref055 article-title: Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers publication-title: Curr Biol doi: 10.1016/j.cub.2007.12.038 – volume: 40 start-page: 583 issue: 6 year: 2017 ident: pbio.3001166.ref065 article-title: The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species publication-title: Dev Cell doi: 10.1016/j.devcel.2017.02.020 – volume: 7 start-page: 4942 issue: 1 year: 2017 ident: pbio.3001166.ref043 article-title: Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. publication-title: Sci Rep. doi: 10.1038/s41598-017-05232-0 |
SSID | ssj0022928 |
Score | 2.6636922 |
Snippet | Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous... Volcano plots show statistical significance (y axis) vs. fold change (x axis) for 9,951/9,971 cellular proteins quantitated across all 3 biological replicates... |
SourceID | plos doaj pubmedcentral hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e3001166 |
SubjectTerms | Animals Annotations Assembly ATP synthase Biochemistry, Molecular Biology Biological Transport Biology and Life Sciences Cell organelles Cells, Cultured Cytochrome Cytochrome b Cytochrome-c oxidase Cytochromes Dehydrogenases Electron transport chain Enrichment Experiments Extracellular vesicles Extracellular Vesicles - metabolism Female Gene expression Genomes Genomics Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Life Sciences Localization Medicine and Health Sciences Membranes Mesenchymal Stem Cells - metabolism Mesenchymal Stem Cells - physiology Metabolism Mice Mice, Inbred C57BL Mice, Transgenic Mitochondria Mitochondria - metabolism Mitochondrial DNA Morphology Multiplexing NADH NADH-ubiquinone oxidoreductase Neural stem cells Neural Stem Cells - metabolism Neural Stem Cells - ultrastructure Neurobiology Neurons Neurons and Cognition Nicotinamide adenine dinucleotide Ontology Oxidase Oxidoreductase Physiological aspects Polymerase chain reaction Proteins Research and Analysis Methods Stem cells Succinate dehydrogenase Sulfur Ubiquinone Ubiquinone oxidoreductase |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgJSQuiHcDBQWExCmtYyd2fFwQ1YJKkYCi3izbsbuVSrJqdlfi3zOTeFcbVFQOHHJIPHnNjOeRjL8h5E0NbrtyELnVeeWzwjCfKQ_T3SkjpXA8BIOrkT-fiNlp8emsPNtp9YU1YQM88MC4Q8E8Z1QwYxUtQH9MLoKjvvKB0booHVpfqugmmYqpFlN9V1WEmoHpLHlcNMdlfhhldLCwF-0B739EiJFT6rH7txb69hwLJCeLy7a7Lgj9s5Zyxzkd3Sf3YlSZToe3eUBu-eYhuTP0mfz1iBwjBAeMI2hzip_quxSuguARKfq14XNg-hMmNxjDpgadTNewgd2-MkiOparp2nd9Cd1jcnr04fv7WRbbKGROqnKZgRN31tpSFKHKvS9koRAMtITcxQjODYQATASQTGFAPmDBQuWxpZEyVvDAPX9CJk3b-D2SViw4CyGHsywv6qpUNRMO9pSFSAdSt4TwDR-1ixjj2OriUvc_ziTkGgNDNHJfR-4nJNuetRgwNm6gf4ci2tIiQnZ_APRGR73RN-lNQl6jgDViYDRYZHNuVl2nP375oadCUDyJi78RfTv5F6KvI6K3kSi0KDsTVz8AXxGAa0S5P6KE6e7Gd5sjP3befTY91niMciZLCNDXeUL2UGE33Os0KyG1pgyMMVx-o8TXD7_aDuOdsQSv8e0KaSAWFSVEfAl5Ouj89ik4hyxVUJkQOZoNo8ccjzQX8x7MvKKQI3Px7H_I9Dm5y7DkCAur5D6ZLK9W_gXEjEv7sjcPvwGz-2Wi priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdYERIviO8FBgoIiadsiZ3Y8RMqiKmgMSRgqG-W7djrpC0pTVuJ_567xO0WND4e-tD4kjh3vvOdff4dIa8qmLZLC55blZUuyTV1iXSg7lZqIbhl3ms8jfzpmE9O8o_TYhoW3NqQVrmxiZ2hrhqLa-QHtIDgAGIoyd7MfyRYNQp3V0MJjR1yMwNPBEs3iOllwEVlV1sVAWdAqQULR-eYyA6CpPbn5qzZZ912BB9MTR2C_9ZO78wwTXI0P2_a61zR3zMqr0xRh3fJneBbxuN-MNwjN1x9n9zqq03-fECOEIgD2hG6OcYF-zaGpyCERIyzW78oGF-AioNJrCsYmfEafmC9FxrJMWE1Xru2S6R7SE4O3397N0lCMYXEClksE5jKrTGm4LkvM-dykUuEBC0ggtGcMQ2OAOUe5JNrkBLYMV86LGwkteHMM8cekVHd1G6XxCX11oDjYQ3N8qosZEW5hX_SgL8DAVxE2IaPygakcSx4ca667TMBEUfPEIXcV4H7EUm2d817pI1_0L9FEW1pESe7u9AsTlVQO8WpYzTlVBuZ5mB9dMa9TV3pPE2rvLAReYkCVoiEUWOqzaleta368Pm7GnOe4k2M_4no6_H_EH0ZEL0ORL5B2elwBgL4ijBcA8q9ASUovR2-bYb8uPLtk_GRwmspo6IAN32dRWQXB-yGe6261CF4_GYQX9_8YtuMb8ZEvNo1K6QBj5QX4PdF5HE_5re9YAxiVZ6KiIiBNgy6OWypz2YdpHmZQqTM-JO_d-spuU0xpQgTp8QeGS0XK_cMfMKled4p_i_s0V2W priority: 102 providerName: ProQuest |
Title | Neural stem cells traffic functional mitochondria via extracellular vesicles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33826607 https://www.proquest.com/docview/2528202793 https://www.proquest.com/docview/2510265241 https://hal.science/hal-03275565 https://pubmed.ncbi.nlm.nih.gov/PMC8055036 https://doaj.org/article/62e32062ab904101a16fc0e8ef20d45c http://dx.doi.org/10.1371/journal.pbio.3001166 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfWTki8IL4XGFVASDylSuzETh4Q6tCmAqPAoGhvluM466SSlKat2H_PnZNGC-rEHhqp8dlJzr7znX3-HSGvM5i2Yw2WWxbExgsVNV5iQNx1ooTgmuW5wtPInyd8PA0_nkfne2Sbs7VhYLXTtcN8UtPlfPjn99U7EPi3NmuDCLaVhov0shwyu7XAe2Tf7hhhMF_Y7itQmthsqwhBA2IuWHOY7qZWOpOVxfRvNXdvhoGT_cW8rHYZp__GWF6btE7uk3uNtemO6uHxgOyZ4iG5U-efvHpEThGaA8oRzNnFJfzKhVYQVMLF-a5eJnR_gdADn4oMxqq7gR_o86VCcgxhdTemsqF1j8n05PjH-7HXpFfwtEiilQeTu07TNOJhHgfGhCJMECQ0Ap9GccYUmAaU59BjoYJ-A82WxwZTHSUq5Sxnhj0h_aIszAFxY5rrFEwRndIgzOIoySjX8C9JwQICl84hbMtHqRvscUyBMZd2Q02AD1IzRCL3ZcN9h3htrUWNvfEf-iPsopYWkbPtjXJ5IRtBlJwaRn1OVZr4IegjFfBc-yY2OfWzMNIOeYUdLBEbo8Dgmwu1rir54ctPOeLcx0qM30T0fXIborMO0ZuGKC-x71RzKgL4isBcHcrDDiWoAd192gz5ce3bx6NTifd8RkUEhvsmcMgBDtgt9ypJI3C5fQpKGprfDuLdxS_bYnwyhuYVplwjDdioPAJpc8jTesy3b8EYeK_cFw4RHWnovGa3pLicWZDz2AffmfFnt_ms5-QuxVAjDKgSh6S_Wq7NC7AVV-mA9MS5GJD9o-PJ17OBXXGB66dv8cAqhr9O72m2 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbarRBcEO8GCgQE4pQ2sRMnOVRoC6126XZBpa16M47jdCuVZNnsFvXP8duYSZzQoPK49LCHjSeJM_a87PE3hLxKwWxHCjy31Iu040uqnViDuKtYhiFXLMsknkbeG_PBof_hODheIj-aszCYVtnoxEpRp4XCNfINGkBwADFUzN5OvzlYNQp3V5sSGtKUVkg3K4gxc7BjV198hxCu3By-h_F-TenO9sG7gWOqDDgqjIO5AzZOJUkScD-LPK390I8RKzMA115yxiRYSMoz6Lgvofsg4FmkseJPLBPOMqYZPHeZrPi4gNIjK1vb40_7bchH46q6K0LegFoJmTm8x0Jvw8yV9WlyWqyzakOEd4xjVUOgtRTLE0zU7E3PivIqZ_j3nM5LRnLnDrltvFu7X0_Hu2RJ5_fIjbre5cV9MkIoEGhH8GgbtwxKG56CIBY22td6WdL-CkoGlHKegmzY5_AD-zGTSI4ps_a5LqtUvgfk8FoY_ZD08iLXq8SOaKYScH1UQj0_jYI4pVzBvzgBjwtCSIuwho9CGaxzLLlxJqoNvBBinpohArkvDPct4rR3TWusj3_Qb-EQtbSI1F1dKGYnwgi-4FQz6nIqk9j1Qf9Jj2fK1ZHOqJv6gbLISxxggVgcOSb7nMhFWYrhxyPR59zFmxj_E9Hn8f8Q7XeI3hiirMCxk-YUBvAVgcA6lGsdSlA7qvu2CfLj0rcP-iOB11xGwwAChXPPIqs4YRvuleKXFMPjm0l8dfOLthnfjKmAuS4WSAM-MQ_A87TIo3rOt71gDKJl7oYWCTvS0OlmtyU_nVSg6pELsTrjj__erefk5uBgbyRGw_HuE3KLYoITpnGFa6Q3ny30U_BQ58kzowZs8uW6Nc9P7POfgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2TiBeEN8LDAgIxFPWxE7s5GFCHVvVslKmwaa9Bcdx1kkjKU07tH-Rv4q7xA0LGh8ve-hD40tin8_3EZ9_R8irFMx2qMBzS71QO76k2ok0LHcVSSG4Ylkm8TTyhzEfHPrvj4PjFfJjeRYG0yqXOrFS1Gmh8Bt5lwYQHEAMFbFuZtIi9nf6b6ffHKwghTuty3Ia0pRZSLcquDFzyGNPX3yHcK7cGu7A3L-mtL_7-d3AMRUHHCWiYO6AvVNJkgTcz0JPa1_4EeJmBuDmS86YBGtJeQaD8CUMBRZ7Fmqs_hPJhLOMaQbPXSVrAqw-BIJr27vj_YMm_KNRVekV4W9AxQhmDvIx4XWN3GxOk9Nik1WbI7xlKKt6Ao3VWJ1g0mZnelaUVznGv-d3XjKY_TvktvF07V4tmnfJis7vkRt17cuL-2SEsCDQjkDSNm4flDY8BQEtbLS19SdK-ysoHFDQeQrrxD6HH0zITCI5ps_a57qs0voekMNrYfRD0smLXK8TO6SZSsANUgn1_DQMopRyBf-iBLwvCCctwpZ8jJXBPcfyG2dxtZknIP6pGRIj92PDfYs4zV3TGvfjH_TbOEUNLaJ2VxeK2UlslEDMqWbU5VQmkeuDLpQez5SrQ51RN_UDZZGXOMEx4nLkKOEnclGW8fDjUdzj3MWbGP8T0afx_xAdtIjeGKKswLmT5kQG8BVBwVqUGy1KUEGq_bYJ8uPS2Ae9UYzXXEZFAEHDuWeRdRTYJffK-NeKhscvhfjq5hdNM74Z0wJzXSyQBvxjHoAXapFHtcw3vWAMImfuCouI1mpodbPdkp9OKoD10IW4nfHHf-_Wc3ITNFA8Go73npBbFHOdMKNLbJDOfLbQT8FZnSfPjBawyZfrVjw_Af6So8Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+stem+cells+traffic+functional+mitochondria+via+extracellular+vesicles&rft.jtitle=PLoS+biology&rft.au=Peruzzotti-Jametti%2C+Luca&rft.au=Bernstock%2C+Joshua+D.&rft.au=Willis%2C+Cory+M.&rft.au=Manferrari%2C+Giulia&rft.date=2021-04-07&rft.pub=Public+Library+of+Science&rft.issn=1544-9173&rft.eissn=1545-7885&rft.volume=19&rft.issue=4&rft_id=info:doi/10.1371%2Fjournal.pbio.3001166&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03275565v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |