Deep learning pipeline for fully automated myocardial infarct segmentation from clinical cardiac MR scans

Saved in:
Bibliographic Details
Published inRadiology advances Vol. 2; no. 4
Main Authors Schwab, Matthias, Pamminger, Mathias, Kremser, Christian, Haltmeier, Markus, Mayr, Agnes
Format Journal Article
LanguageEnglish
Published 03.07.2025
Online AccessGet full text
ISSN2976-9337
2976-9337
DOI10.1093/radadv/umaf023

Cover

Author Mayr, Agnes
Kremser, Christian
Pamminger, Mathias
Haltmeier, Markus
Schwab, Matthias
Author_xml – sequence: 1
  givenname: Matthias
  surname: Schwab
  fullname: Schwab, Matthias
– sequence: 2
  givenname: Mathias
  orcidid: 0000-0001-9241-6334
  surname: Pamminger
  fullname: Pamminger, Mathias
– sequence: 3
  givenname: Christian
  surname: Kremser
  fullname: Kremser, Christian
– sequence: 4
  givenname: Markus
  surname: Haltmeier
  fullname: Haltmeier, Markus
– sequence: 5
  givenname: Agnes
  orcidid: 0000-0001-9363-873X
  surname: Mayr
  fullname: Mayr, Agnes
BookMark eNpNkE9LAzEUxINUsNZePecLbJvdbDabo9Q_FSqCel8eeS8lspssyVbot7fSHjzNHGYG5nfLZiEGYuy-FKtSGLlOgIA_68MATlTyis0ro5vCSKln__wNW-b8LYSQUmhdmznzj0Qj7wlS8GHPRz9S7wNxFxN3h74_cjhMcYCJkA_HaCGhh5774CDZiWfaDxQmmHwM3KU4cHuqe3uKnKOWv33wbCHkO3btoM-0vOiCfT4_fW22xe795XXzsCusNrIwiJoUOFSmxZqQ2raVCixWSmpE1YCzSGhr0tYpiboWTak0ico17enWgq3OqzbFnBO5bkx-gHTsStH9kerOpLoLKfkLUDFjfg
Cites_doi 10.1016/j.media.2025.103594
10.1016/j.patcog.2009.03.008
10.1007/978-3-030-32245-8_62
10.1093/eurheartj/ehab621
10.1016/S0140-6736
10.1093/neuonc/noab071
10.1007/s00234-021-02649-3
10.1117/1.JMI.7.5.055501
10.1016/j.cvdhj.2021.11.007
10.1056/NEJM200011163432003
10.1109/TMI.2018.2791721
10.1002/jmri.21498
10.59275/j.melba.2023-dg1f
10.1016/j.jacc.2010.02.033
10.1186/1532-429X-11-33
10.1093/eurheartj/ehx414
10.1186/s12968-020-00695-z
10.1007/s10334-018-0718-4
10.1016/S0378-3758
10.1161/CIRCOUTCOMES.118.005375
10.2307/2532051
10.1016/j.jacc.2011.09.073
10.1148/ryai.220231
10.2307/2529310
10.1016/j.jcmg.2010.11.015
10.1016/j.jcmg.2022.02.010
10.1148/radiol.2019190737
10.1016/j.bspc.2023.105710
10.1109/ICIP.2014.7025904
10.3390/s22062084
10.1016/j.ijcard.2022.05.009
10.1016/j.media.2023.102808
10.1161/01.CIR.100.19.1992
10.1186/s12968-022-00888-8
10.1016/j.media.2022.102428
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1093/radadv/umaf023
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2976-9337
ExternalDocumentID 10_1093_radadv_umaf023
GroupedDBID 0R~
AAYXX
ABEJV
ABGNP
ABXVV
ALMA_UNASSIGNED_HOLDINGS
AMNDL
CITATION
GROUPED_DOAJ
M~E
TOX
ID FETCH-LOGICAL-c793-9dd7e5afd598d4ede88835acd2537dd56afcdedc4e7cf53d7406157e02f68033
ISSN 2976-9337
IngestDate Thu Jul 31 00:36:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c793-9dd7e5afd598d4ede88835acd2537dd56afcdedc4e7cf53d7406157e02f68033
ORCID 0000-0001-9363-873X
0000-0001-9241-6334
OpenAccessLink https://doi.org/10.1093/radadv/umaf023
ParticipantIDs crossref_primary_10_1093_radadv_umaf023
PublicationCentury 2000
PublicationDate 2025-07-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-03
  day: 03
PublicationDecade 2020
PublicationTitle Radiology advances
PublicationYear 2025
References Yue (2025072814265352600_umaf023-B10) 2019
Shi (2025072814265352600_umaf023-B19)
Lu (2025072814265352600_umaf023-B20) 2021; 23
Al-antari (2025072814265352600_umaf023-B13) 2024; 89
Wang (2025072814265352600_umaf023-B21) 2018; 37
Nowbar (2025072814265352600_umaf023-B1) 2019; 12
Di Ieva (2025072814265352600_umaf023-B22) 2021; 63
Brahim (2025072814265352600_umaf023-B11) 2022; 22
Lalande (2025072814265352600_umaf023-B14) 2022; 79
Kim (2025072814265352600_umaf023-B3) 2000; 343
Popescu (2025072814265352600_umaf023-B12) 2022; 3
Li (2025072814265352600_umaf023-B15) 2023; 87
Mather (2025072814265352600_umaf023-B34) 2009; 11
Heiberg (2025072814265352600_umaf023-B33) 2022; 24
Gerber (2025072814265352600_umaf023-B4) 2012; 59
Fahmy (2025072814265352600_umaf023-B9) 2020; 294
Kim (2025072814265352600_umaf023-B35) 1999; 100
Lechner (2025072814265352600_umaf023-B25) 2022; 43
Klug (2025072814265352600_umaf023-B27) 2009; 29
Mayr (2025072814265352600_umaf023-B24) 2022; 15
Fadil (2025072814265352600_umaf023-B32) 2021; 23
Flett (2025072814265352600_umaf023-B7) 2011; 4
Mitchell (2025072814265352600_umaf023-B23) 2020; 7
Moccia (2025072814265352600_umaf023-B8) 2019; 32
Kofler (2025072814265352600_umaf023-B16) 2023; 2(May 2023)
Vos (2025072814265352600_umaf023-B2) 2020; 396
Schwab (2025072814265352600_umaf023-B28) 2025; 103
Lechner (2025072814265352600_umaf023-B26) 2022; 361
de Waha (2025072814265352600_umaf023-B6) 2017; 38
Lawrence (2025072814265352600_umaf023-B29) 1989; 45
Hoebel (2025072814265352600_umaf023-B17) 2024; 6
Landis (2025072814265352600_umaf023-B31) 1977; 33
Larose (2025072814265352600_umaf023-B5) 2010; 55
McGuinness (2025072814265352600_umaf023-B18) 2010; 43
Glaz (2025072814265352600_umaf023-B30) 1999; 82
References_xml – volume: 103
  start-page: 103594
  year: 2025
  ident: 2025072814265352600_umaf023-B28
  article-title: Error correcting 2D-3D cascaded network for myocardial infarct scar segmentation on late gadolinium enhancement cardiac magnetic resonance images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2025.103594
– volume: 43
  start-page: 434
  issue: 2
  year: 2010
  ident: 2025072814265352600_umaf023-B18
  article-title: A comparative evaluation of interactive segmentation algorithms
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2009.03.008
– start-page: 559
  volume-title: Medical Image Computing and Computer Assisted Intervention - MICCAI 2019
  year: 2019
  ident: 2025072814265352600_umaf023-B10
  doi: 10.1007/978-3-030-32245-8_62
– volume: 43
  start-page: 1141
  issue: 11
  year: 2022
  ident: 2025072814265352600_umaf023-B25
  article-title: Impact of COVID-19 pandemic restrictions on ST-elevation myocardial infarction: a cardiac magnetic resonance imaging study
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehab621
– volume: 396
  start-page: 1204
  issue: 10258
  year: 2020
  ident: 2025072814265352600_umaf023-B2
  article-title: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet
  doi: 10.1016/S0140-6736
– volume: 23
  start-page: 1560
  issue: 9
  year: 2021
  ident: 2025072814265352600_umaf023-B20
  article-title: Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noab071
– volume: 63
  start-page: 1253
  issue: 8
  year: 2021
  ident: 2025072814265352600_umaf023-B22
  article-title: Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario
  publication-title: Neuroradiology
  doi: 10.1007/s00234-021-02649-3
– volume: 7
  start-page: 055501
  issue: 5
  year: 2020
  ident: 2025072814265352600_umaf023-B23
  article-title: Deep neural network to locate and segment brain tumors outperformed the expert technicians who created the training data
  publication-title: J Med Imaging (Bellingham)
  doi: 10.1117/1.JMI.7.5.055501
– volume: 3
  start-page: 2
  issue: 1
  year: 2022
  ident: 2025072814265352600_umaf023-B12
  article-title: Anatomically informed deep learning on contrast-enhanced cardiac magnetic resonance imaging for scar segmentation and clinical feature extraction
  publication-title: Cardiovasc Digit Health J
  doi: 10.1016/j.cvdhj.2021.11.007
– volume: 343
  start-page: 1445
  issue: 20
  year: 2000
  ident: 2025072814265352600_umaf023-B3
  article-title: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200011163432003
– volume: 37
  start-page: 1562
  issue: 7
  year: 2018
  ident: 2025072814265352600_umaf023-B21
  article-title: Interactive medical image segmentation using deep learning with image-specific fine tuning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2791721
– volume: 29
  start-page: 298
  issue: 2
  year: 2009
  ident: 2025072814265352600_umaf023-B27
  article-title: Quantification of regional functional improvement of infarcted myocardium after primary PTCA by contrast-enhanced magnetic resonance imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21498
– volume: 2(May 2023)
  start-page: 27
  year: 2023
  ident: 2025072814265352600_umaf023-B16
  article-title: Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
  publication-title: J Mach Learn Biomed Imaging
  doi: 10.59275/j.melba.2023-dg1f
– volume: 55
  start-page: 2459
  issue: 22
  year: 2010
  ident: 2025072814265352600_umaf023-B5
  article-title: Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction: traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2010.02.033
– volume: 11
  start-page: 33
  issue: 1
  year: 2009
  ident: 2025072814265352600_umaf023-B34
  article-title: Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/1532-429X-11-33
– volume: 38
  start-page: 3502
  issue: 47
  year: 2017
  ident: 2025072814265352600_umaf023-B6
  article-title: Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehx414
– volume: 23
  start-page: 47
  issue: 1
  year: 2021
  ident: 2025072814265352600_umaf023-B32
  article-title: A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-020-00695-z
– volume: 32
  start-page: 187
  issue: 2
  year: 2019
  ident: 2025072814265352600_umaf023-B8
  article-title: Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images
  publication-title: MAGMA
  doi: 10.1007/s10334-018-0718-4
– volume: 82
  start-page: 251
  issue: 1-2
  year: 1999
  ident: 2025072814265352600_umaf023-B30
  article-title: Simultaneous confidence intervals for multinomial proportions
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758
– volume: 12
  start-page: e005375
  issue: 6
  year: 2019
  ident: 2025072814265352600_umaf023-B1
  article-title: Mortality from ischemic heart disease: analysis of data from the World Health Organization and coronary artery disease risk factors from NCD risk factor collaboration
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.118.005375
– volume: 45
  start-page: 255
  issue: 1
  year: 1989
  ident: 2025072814265352600_umaf023-B29
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 59
  start-page: 825
  issue: 9
  year: 2012
  ident: 2025072814265352600_umaf023-B4
  article-title: Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2011.09.073
– volume: 6
  start-page: e220231
  issue: 1
  year: 2024
  ident: 2025072814265352600_umaf023-B17
  article-title: Expert-centered evaluation of deep learning algorithms for brain tumor segmentation
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.220231
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  ident: 2025072814265352600_umaf023-B31
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– volume: 4
  start-page: 150
  issue: 2
  year: 2011
  ident: 2025072814265352600_umaf023-B7
  article-title: Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2010.11.015
– volume: 15
  start-page: 1030
  issue: 6
  year: 2022
  ident: 2025072814265352600_umaf023-B24
  article-title: Evolution of myocardial tissue injury: a CMR study over a decade after STEMI
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2022.02.010
– volume: 294
  start-page: 52
  issue: 1
  year: 2020
  ident: 2025072814265352600_umaf023-B9
  article-title: Three-dimensional deep convolutional neural networks for automated myocardial scar quantification in hypertrophic cardiomyopathy: a multicenter multivendor study
  publication-title: Radiology
  doi: 10.1148/radiol.2019190737
– volume: 89
  start-page: 105710
  year: 2024
  ident: 2025072814265352600_umaf023-B13
  article-title: Deep learning myocardial infarction segmentation framework from cardiac magnetic resonance images
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2023.105710
– ident: 2025072814265352600_umaf023-B19
  doi: 10.1109/ICIP.2014.7025904
– volume: 22
  start-page: 2084
  issue: 6
  year: 2022
  ident: 2025072814265352600_umaf023-B11
  article-title: An improved 3D deep learning-based segmentation of left ventricular myocardial diseases from delayed-enhancement MRI with inclusion and classification prior information U-Net (ICPIU-Net)
  publication-title: Sensors
  doi: 10.3390/s22062084
– volume: 361
  start-page: 1
  year: 2022
  ident: 2025072814265352600_umaf023-B26
  article-title: Association between inflammation and left ventricular thrombus formation following ST-elevation myocardial infarction
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2022.05.009
– volume: 87
  start-page: 102808
  year: 2023
  ident: 2025072814265352600_umaf023-B15
  article-title: MyoPS: a benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2023.102808
– volume: 100
  start-page: 1992
  issue: 19
  year: 1999
  ident: 2025072814265352600_umaf023-B35
  article-title: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.19.1992
– volume: 24
  start-page: 53
  issue: 1
  year: 2022
  ident: 2025072814265352600_umaf023-B33
  article-title: Infarct quantification with cardiovascular magnetic resonance using “standard deviation from remote” is unreliable: validation in multi-centre multi-vendor data
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-022-00888-8
– volume: 79
  start-page: 102428
  year: 2022
  ident: 2025072814265352600_umaf023-B14
  article-title: Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102428
SSID ssj0003307749
Score 2.3001053
SourceID crossref
SourceType Index Database
Title Deep learning pipeline for fully automated myocardial infarct segmentation from clinical cardiac MR scans
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFFQEC-pAPSByitCs7zuNYFVAFKkLbVuptNfGju4JsV9msqvbQA7-c8SOPoj0ULlFkJ07i-TL-ZjIzIeSDSQ2TUEI8TmUZJzm-c4DmcowMCTLJuC2RZaMtvqenl8nXK3E1Gv0eRC2tm_JQ3m_MK_kfqWIbytVmyf6DZLtBsQH3Ub64RQnj9kky_qT1sv3vw3W0nC-1I402ctC61e8iWDc3SEmRVFZ3uGjVLksEr4zobqKVvq5C5tHCp5l0aZL-UBmdTaIVzv1qSGEnoNrCTT5-oGPl53J2C6XPAGqa2Ry6nh9QVc5_GDqHfd9qXa1COuIsqJxeL_5qKj1vz6t_PnZTMOFCWnmvzRjynrjgvsLLod7QFtQxG6Au2ajkfQGsGhQ-Ju6sKzBjn7T8uJ72X-tcF33ov7vzqR9hGs5_RrZZhvzLhn8-9H46jkowc1ZUd7dd7U9-5Ic4CkMMuM2ApFzskBfBuqDHHiovyUgvXpG5hQltYUJbmFCECXUwoR1MaA8TGmBChzChFia0hQkNMKFnE-pg8pqcf_l8cXIahz9sxBL1clwolWkBRokiV4lWOs-RkINUTPBMKZGCkUormehMGsFVZtmfyPSYmTTHmXlDthY3C_2WUDTbQRhmjIE8KcCUpSjcF75CcoU2_zvysZ2Z6dKXUZluFsP7Jx-5S573QNsjW0291vvIEJvywHlWDpwg_wBYPnQr
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+pipeline+for+fully+automated+myocardial+infarct+segmentation+from+clinical+cardiac+MR+scans&rft.jtitle=Radiology+advances&rft.au=Schwab%2C+Matthias&rft.au=Pamminger%2C+Mathias&rft.au=Kremser%2C+Christian&rft.au=Haltmeier%2C+Markus&rft.date=2025-07-03&rft.issn=2976-9337&rft.eissn=2976-9337&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1093%2Fradadv%2Fumaf023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_radadv_umaf023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2976-9337&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2976-9337&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2976-9337&client=summon