Atypical Bilateral Brain Synchronization in the Early Stage of Human Voice Auditory Processing in Young Children with Autism

Autism spectrum disorder (ASD) has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical interhemispheric circuitry. In the context of ASD, alterations in both peripheral and central auditory processes have also attracted a great deal of...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 11; no. 4; p. e0153077
Main Authors Kurita, Toshiharu, Kikuchi, Mitsuru, Yoshimura, Yuko, Hiraishi, Hirotoshi, Hasegawa, Chiaki, Takahashi, Tetsuya, Hirosawa, Tetsu, Furutani, Naoki, Higashida, Haruhiro, Ikeda, Takashi, Mutou, Kouhei, Asada, Minoru, Minabe, Yoshio
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.04.2016
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0153077

Cover

More Information
Summary:Autism spectrum disorder (ASD) has been postulated to involve impaired neuronal cooperation in large-scale neural networks, including cortico-cortical interhemispheric circuitry. In the context of ASD, alterations in both peripheral and central auditory processes have also attracted a great deal of interest because these changes appear to represent pathophysiological processes; therefore, many prior studies have focused on atypical auditory responses in ASD. The auditory evoked field (AEF), recorded by magnetoencephalography, and the synchronization of these processes between right and left hemispheres was recently suggested to reflect various cognitive abilities in children. However, to date, no previous study has focused on AEF synchronization in ASD subjects. To assess global coordination across spatially distributed brain regions, the analysis of Omega complexity from multichannel neurophysiological data was proposed. Using Omega complexity analysis, we investigated the global coordination of AEFs in 3-8-year-old typically developing (TD) children (n = 50) and children with ASD (n = 50) in 50-ms time-windows. Children with ASD displayed significantly higher Omega complexities compared with TD children in the time-window of 0-50 ms, suggesting lower whole brain synchronization in the early stage of the P1m component. When we analyzed the left and right hemispheres separately, no significant differences in any time-windows were observed. These results suggest lower right-left hemispheric synchronization in children with ASD compared with TD children. Our study provides new evidence of aberrant neural synchronization in young children with ASD by investigating auditory evoked neural responses to the human voice.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: TK MK MA YM. Performed the experiments: YY H Hiraishi H Higashida CH TT TH. Analyzed the data: TK MK TI KM NF. Contributed reagents/materials/analysis tools: TK MK TI NF. Wrote the paper: TK MK.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0153077