On the Out-of-Sample Performance of Stochastic Dynamic Programming and Model Predictive Control

This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making under uncertainty. It reveals a connection to distributionally ambiguous optimization that depends on problem structure, and provides more speci...

Full description

Saved in:
Bibliographic Details
Published inINFORMS journal on optimization
Main Authors Keehan, Dominic S. T., Philpott, Andrew B., Anderson, Edward J.
Format Journal Article
LanguageEnglish
Published 01.08.2025
Online AccessGet full text
ISSN2575-1484
2575-1492
2575-1492
DOI10.1287/ijoo.2024.0060

Cover

Abstract This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making under uncertainty. It reveals a connection to distributionally ambiguous optimization that depends on problem structure, and provides more specific conditions for an example revenue optimization problem. The research emerged from initial studies of the out-of-sample performance of distributionally robust optimization by the second and third authors, and observations of good performance of model predictive control applied to practical problems arising in the New Zealand dairy industry. This phenomenon is the subject of the Ph.D. study of the first author, under the supervision of the second. Sample average approximation-based stochastic dynamic programming (SDP) and model predictive control (MPC) are two different methods for approaching multistage stochastic optimization. In this paper we investigate the conditions under which SDP may be outperformed by MPC. We show that, depending on the presence of concavity or convexity, MPC can be interpreted as solving a mean-constrained distributionally ambiguous version of the problem that is solved by SDP. This furnishes performance guarantees when the true mean is known and provides intuition for why MPC performs better in some applications and worse in others. We then study a multistage stochastic optimization problem that is representative of the type for which MPC may be the better choice. We find that this can indeed be the case when the probability distribution of the underlying random variable is skewed or has enough weight in the right-hand tail. Funding: The first and second authors acknowledge support from UOCX2117 MBIE Catalyst Fund New Zealand–German Platform for Green Hydrogen Integration (HINT).
AbstractList This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making under uncertainty. It reveals a connection to distributionally ambiguous optimization that depends on problem structure, and provides more specific conditions for an example revenue optimization problem. The research emerged from initial studies of the out-of-sample performance of distributionally robust optimization by the second and third authors, and observations of good performance of model predictive control applied to practical problems arising in the New Zealand dairy industry. This phenomenon is the subject of the Ph.D. study of the first author, under the supervision of the second. Sample average approximation-based stochastic dynamic programming (SDP) and model predictive control (MPC) are two different methods for approaching multistage stochastic optimization. In this paper we investigate the conditions under which SDP may be outperformed by MPC. We show that, depending on the presence of concavity or convexity, MPC can be interpreted as solving a mean-constrained distributionally ambiguous version of the problem that is solved by SDP. This furnishes performance guarantees when the true mean is known and provides intuition for why MPC performs better in some applications and worse in others. We then study a multistage stochastic optimization problem that is representative of the type for which MPC may be the better choice. We find that this can indeed be the case when the probability distribution of the underlying random variable is skewed or has enough weight in the right-hand tail. Funding: The first and second authors acknowledge support from UOCX2117 MBIE Catalyst Fund New Zealand–German Platform for Green Hydrogen Integration (HINT).
Author Anderson, Edward J.
Keehan, Dominic S. T.
Philpott, Andrew B.
Author_xml – sequence: 1
  givenname: Dominic S. T.
  orcidid: 0000-0003-3375-3562
  surname: Keehan
  fullname: Keehan, Dominic S. T.
– sequence: 2
  givenname: Andrew B.
  orcidid: 0000-0002-7094-3405
  surname: Philpott
  fullname: Philpott, Andrew B.
– sequence: 3
  givenname: Edward J.
  orcidid: 0000-0002-6375-4067
  surname: Anderson
  fullname: Anderson, Edward J.
BookMark eNqFkEtrwkAUhYdioda67Xr-QOKdyegky2KfYFHQ_XCdh0aSGZnElvz7Jli67eocLnyHy3dPRj54S8gjg5TxXM7KUwgpBy5SgAXckDGfy3nCRMFHfz0Xd2TaNCcA4JxljMGYqLWn7dHS9aVNgku2WJ8rSzc2uhBr9NrS4Oi2DfqITVtq-tx5rPvcxHCIWNelP1D0hn4GY6v-ak2p2_LL0mXwbQzVA7l1WDV2-psTsnt92S3fk9X67WP5tEq0LCDZ68JkkmtRGGYcd9pohjwXRkJhF9bIvYPhY9SQMcilmOdWggHRN8xwn03I7Dp78WfsvrGq1DmWNcZOMVCDITUYUoMhNRjqifRK6BiaJlr3H_ADEztrVA
Cites_doi 10.1287/opre.2015.1466
10.1016/j.orl.2019.11.002
10.1016/j.orl.2005.02.003
10.1007/0-387-26771-9_4
10.1007/BF01582895
10.2307/1910260
10.1137/1.9780898718751
10.1287/opre.2021.0393
10.1287/mnsc.17.7.450
10.2307/j.ctvjnrt76
10.21136/CPM.1966.117583
10.1287/moor.1040.0129
10.1137/19M129406X
10.1007/s10107-005-0597-0
10.3166/ejc.11.310-334
10.1287/ijoo.2021.0061
10.1137/141000671
10.1287/opre.1090.0741
10.1007/s12667-022-00522-7
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1287/ijoo.2024.0060
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2575-1492
ExternalDocumentID 10.1287/ijoo.2024.0060
10_1287_ijoo_2024_0060
GroupedDBID AADHG
AAYXX
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBA
EBE
EBO
EBR
EBS
EBU
EJD
RPU
XHW
ADTOC
UNPAY
ID FETCH-LOGICAL-c790-bc9d372c49d1df2fcdc1a284d709e6ed7bf02131ac031087458e70d04745a3ab3
IEDL.DBID UNPAY
ISSN 2575-1484
2575-1492
IngestDate Sun Sep 07 11:01:56 EDT 2025
Wed Oct 01 05:36:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c790-bc9d372c49d1df2fcdc1a284d709e6ed7bf02131ac031087458e70d04745a3ab3
ORCID 0000-0003-3375-3562
0000-0002-7094-3405
0000-0002-6375-4067
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1287/ijoo.2024.0060
ParticipantIDs unpaywall_primary_10_1287_ijoo_2024_0060
crossref_primary_10_1287_ijoo_2024_0060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle INFORMS journal on optimization
PublicationYear 2025
References Dupačová J (B10) 1966; 91
Gotoh J (B12) 2023; 73
Stokey NL (B23) 1989
Shapiro A (B18) 2006; 34
B13
B25
Bezanson J (B5) 2017; 59
Dyer M (B11) 2006; 106
David HA (B6) 2004
B19
B1
Pacaud F (B15) 2024; 15
Bertsekas DP (B4) 1996
Downward A (B8) 2020; 48
Pereira MVF (B16) 1991; 52
Shapiro A (B20) 2020; 30
B7
Bertsekas DP (B3) 2005; 11
Shapiro A (B21) 2005
Scarf HE (B17) 1958
Shapiro A (B22) 2009
Theil H (B24) 1957; 25
Bellman R (B2) 1957
References_xml – volume-title: Order Statistics
  year: 2004
  ident: B6
– volume-title: Stochastic Optimal Control: The Discrete-Time Case
  year: 1996
  ident: B4
– ident: B19
  doi: 10.1287/opre.2015.1466
– start-page: 201
  volume-title: Studies in the Mathematical Theory of Inventory and Production
  year: 1958
  ident: B17
– volume: 48
  start-page: 33
  issue: 1
  year: 2020
  ident: B8
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2019.11.002
– volume: 34
  start-page: 1
  issue: 1
  year: 2006
  ident: B18
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2005.02.003
– start-page: 111
  volume-title: Continuous Optimization: Current Trends and Modern Applications
  year: 2005
  ident: B21
  doi: 10.1007/0-387-26771-9_4
– volume: 52
  start-page: 359
  year: 1991
  ident: B16
  publication-title: Math. Programming
  doi: 10.1007/BF01582895
– volume: 25
  start-page: 346
  issue: 2
  year: 1957
  ident: B24
  publication-title: Econometrica
  doi: 10.2307/1910260
– volume-title: Lectures on Stochastic Programming: Modeling and Theory
  year: 2009
  ident: B22
  doi: 10.1137/1.9780898718751
– volume: 73
  start-page: 829
  issue: 2
  year: 2023
  ident: B12
  publication-title: Oper. Res.
  doi: 10.1287/opre.2021.0393
– volume-title: Dynamic Programming
  year: 1957
  ident: B2
– ident: B25
  doi: 10.1287/mnsc.17.7.450
– volume-title: Recursive Methods in Economic Dynamics
  year: 1989
  ident: B23
  doi: 10.2307/j.ctvjnrt76
– volume: 91
  start-page: 423
  issue: 4
  year: 1966
  ident: B10
  publication-title: Časopis Pro Pěstování Matematiky
  doi: 10.21136/CPM.1966.117583
– ident: B13
  doi: 10.1287/moor.1040.0129
– volume: 30
  start-page: 2083
  issue: 3
  year: 2020
  ident: B20
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M129406X
– volume: 106
  start-page: 423
  year: 2006
  ident: B11
  publication-title: Math. Programming
  doi: 10.1007/s10107-005-0597-0
– volume: 11
  start-page: 310
  issue: 4
  year: 2005
  ident: B3
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.11.310-334
– ident: B1
  doi: 10.1287/ijoo.2021.0061
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  ident: B5
  publication-title: SIAM Rev.
  doi: 10.1137/141000671
– ident: B7
  doi: 10.1287/opre.1090.0741
– volume: 15
  start-page: 115
  year: 2024
  ident: B15
  publication-title: Energy Systems
  doi: 10.1007/s12667-022-00522-7
SSID ssj0002213110
Score 2.3025792
Snippet This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title On the Out-of-Sample Performance of Stochastic Dynamic Programming and Model Predictive Control
URI https://doi.org/10.1287/ijoo.2024.0060
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Business Source Ultimate
  customDbUrl:
  eissn: 2575-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213110
  issn: 2575-1492
  databaseCode: AKVCP
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEIAXaQ_iwbdY0bIHQS9b02Sz6R5LtRbFNtBW6insK_ioSZEE0V_vDklt1UO9DWFZlskmM8PMfIPQaROgZQFVBMIHQpnnkRalHgEUmmExd6WGfue7PuuN6c3En5QFstALs5y_t878xdNzCi16LjCumQ3NqwwSSRVUHffD9gNMjrP-BrE-PV3I3C3pjH83-GF91vNkJj7exXS6ZFK6W-h6fpiikuSlkWeyoT5_cRpXn3YbbZZeJW4X12AHrZlkF20ssQb3UDRIsHX28CDPSBqToQAsMA4XfQM4jfEwS9WjAHQzvixG1eOwKOB6tZtgkWgMw9Om9ikkeOBXiTtFsfs-GnWvRp0eKacrEBVwh0jFtRe4inLd1LEbK62awtoqHTjcMKMDGVvz7zWFAngoQPFbJnC0Q60kPCG9A1RJ0sQcItxiUmruU6OAPWl8ITgVgR_7VrafP6uhs7nSo1nB0Igg9rAai0BjEWgsAo3V0Pn3O1mx9Oj_S49RJXvLzYn1HjJZR9X27X0nrJdX6AvPbsGp
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEIAXaQ_iwbdYUdmDoJetSXaz6R5LtRbBttAW6insK_ioSZEE0V_vDklt1YPehrAsy2STmWFmvkHozAdoWcQ0gfCBME4paTFGCaDQLE9EoAz0O9_1eW_CbqfhtCqQhV6Y1fy9c-YvH58yaNELgHHNXWhe55BIqqH6pD9s38PkOOdvEOfTs6UsgorO-HuDb9ZnvUjn8v1NzmYrJqW7hW4WhykrSZ6bRa6a-uMHp_Hv026jzcqrxO3yGuygNZvuoo0V1uAeigcpds4eHhQ5yRIykoAFxsNl3wDOEjzKM_0gAd2Mr8pR9XhYFnC9uE2wTA2G4Wkz9xQSPPCrxJ2y2H0fjbvX406PVNMViI6ER5QWhkaBZsL4JgkSbbQvna0ykScstyZSiTP_1Jca4KEAxW_ZyDMec5KkUtEDVEuz1B4i3OJKGREyq4E9aUMpBZNRmIROdp8_b6DzhdLjecnQiCH2cBqLQWMxaCwGjTXQxdc7-WPp0f-XHqNa_lrYE-c95Oq0ujqfyfXAEQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Out-of-Sample+Performance+of+Stochastic+Dynamic+Programming+and+Model+Predictive+Control&rft.jtitle=INFORMS+journal+on+optimization&rft.au=Keehan%2C+Dominic+S.+T.&rft.au=Philpott%2C+Andrew+B.&rft.au=Anderson%2C+Edward+J.&rft.date=2025-08-01&rft.issn=2575-1484&rft.eissn=2575-1492&rft_id=info:doi/10.1287%2Fijoo.2024.0060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_ijoo_2024_0060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-1484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-1484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-1484&client=summon