On the Out-of-Sample Performance of Stochastic Dynamic Programming and Model Predictive Control
This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making under uncertainty. It reveals a connection to distributionally ambiguous optimization that depends on problem structure, and provides more speci...
Saved in:
Published in | INFORMS journal on optimization |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.08.2025
|
Online Access | Get full text |
ISSN | 2575-1484 2575-1492 2575-1492 |
DOI | 10.1287/ijoo.2024.0060 |
Cover
Abstract | This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making under uncertainty. It reveals a connection to distributionally ambiguous optimization that depends on problem structure, and provides more specific conditions for an example revenue optimization problem. The research emerged from initial studies of the out-of-sample performance of distributionally robust optimization by the second and third authors, and observations of good performance of model predictive control applied to practical problems arising in the New Zealand dairy industry. This phenomenon is the subject of the Ph.D. study of the first author, under the supervision of the second.
Sample average approximation-based stochastic dynamic programming (SDP) and model predictive control (MPC) are two different methods for approaching multistage stochastic optimization. In this paper we investigate the conditions under which SDP may be outperformed by MPC. We show that, depending on the presence of concavity or convexity, MPC can be interpreted as solving a mean-constrained distributionally ambiguous version of the problem that is solved by SDP. This furnishes performance guarantees when the true mean is known and provides intuition for why MPC performs better in some applications and worse in others. We then study a multistage stochastic optimization problem that is representative of the type for which MPC may be the better choice. We find that this can indeed be the case when the probability distribution of the underlying random variable is skewed or has enough weight in the right-hand tail.
Funding: The first and second authors acknowledge support from UOCX2117 MBIE Catalyst Fund New Zealand–German Platform for Green Hydrogen Integration (HINT). |
---|---|
AbstractList | This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making under uncertainty. It reveals a connection to distributionally ambiguous optimization that depends on problem structure, and provides more specific conditions for an example revenue optimization problem. The research emerged from initial studies of the out-of-sample performance of distributionally robust optimization by the second and third authors, and observations of good performance of model predictive control applied to practical problems arising in the New Zealand dairy industry. This phenomenon is the subject of the Ph.D. study of the first author, under the supervision of the second.
Sample average approximation-based stochastic dynamic programming (SDP) and model predictive control (MPC) are two different methods for approaching multistage stochastic optimization. In this paper we investigate the conditions under which SDP may be outperformed by MPC. We show that, depending on the presence of concavity or convexity, MPC can be interpreted as solving a mean-constrained distributionally ambiguous version of the problem that is solved by SDP. This furnishes performance guarantees when the true mean is known and provides intuition for why MPC performs better in some applications and worse in others. We then study a multistage stochastic optimization problem that is representative of the type for which MPC may be the better choice. We find that this can indeed be the case when the probability distribution of the underlying random variable is skewed or has enough weight in the right-hand tail.
Funding: The first and second authors acknowledge support from UOCX2117 MBIE Catalyst Fund New Zealand–German Platform for Green Hydrogen Integration (HINT). |
Author | Anderson, Edward J. Keehan, Dominic S. T. Philpott, Andrew B. |
Author_xml | – sequence: 1 givenname: Dominic S. T. orcidid: 0000-0003-3375-3562 surname: Keehan fullname: Keehan, Dominic S. T. – sequence: 2 givenname: Andrew B. orcidid: 0000-0002-7094-3405 surname: Philpott fullname: Philpott, Andrew B. – sequence: 3 givenname: Edward J. orcidid: 0000-0002-6375-4067 surname: Anderson fullname: Anderson, Edward J. |
BookMark | eNqFkEtrwkAUhYdioda67Xr-QOKdyegky2KfYFHQ_XCdh0aSGZnElvz7Jli67eocLnyHy3dPRj54S8gjg5TxXM7KUwgpBy5SgAXckDGfy3nCRMFHfz0Xd2TaNCcA4JxljMGYqLWn7dHS9aVNgku2WJ8rSzc2uhBr9NrS4Oi2DfqITVtq-tx5rPvcxHCIWNelP1D0hn4GY6v-ak2p2_LL0mXwbQzVA7l1WDV2-psTsnt92S3fk9X67WP5tEq0LCDZ68JkkmtRGGYcd9pohjwXRkJhF9bIvYPhY9SQMcilmOdWggHRN8xwn03I7Dp78WfsvrGq1DmWNcZOMVCDITUYUoMhNRjqifRK6BiaJlr3H_ADEztrVA |
Cites_doi | 10.1287/opre.2015.1466 10.1016/j.orl.2019.11.002 10.1016/j.orl.2005.02.003 10.1007/0-387-26771-9_4 10.1007/BF01582895 10.2307/1910260 10.1137/1.9780898718751 10.1287/opre.2021.0393 10.1287/mnsc.17.7.450 10.2307/j.ctvjnrt76 10.21136/CPM.1966.117583 10.1287/moor.1040.0129 10.1137/19M129406X 10.1007/s10107-005-0597-0 10.3166/ejc.11.310-334 10.1287/ijoo.2021.0061 10.1137/141000671 10.1287/opre.1090.0741 10.1007/s12667-022-00522-7 |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTOC UNPAY |
DOI | 10.1287/ijoo.2024.0060 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2575-1492 |
ExternalDocumentID | 10.1287/ijoo.2024.0060 10_1287_ijoo_2024_0060 |
GroupedDBID | AADHG AAYXX AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBA EBE EBO EBR EBS EBU EJD RPU XHW ADTOC UNPAY |
ID | FETCH-LOGICAL-c790-bc9d372c49d1df2fcdc1a284d709e6ed7bf02131ac031087458e70d04745a3ab3 |
IEDL.DBID | UNPAY |
ISSN | 2575-1484 2575-1492 |
IngestDate | Sun Sep 07 11:01:56 EDT 2025 Wed Oct 01 05:36:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c790-bc9d372c49d1df2fcdc1a284d709e6ed7bf02131ac031087458e70d04745a3ab3 |
ORCID | 0000-0003-3375-3562 0000-0002-7094-3405 0000-0002-6375-4067 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1287/ijoo.2024.0060 |
ParticipantIDs | unpaywall_primary_10_1287_ijoo_2024_0060 crossref_primary_10_1287_ijoo_2024_0060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | INFORMS journal on optimization |
PublicationYear | 2025 |
References | Dupačová J (B10) 1966; 91 Gotoh J (B12) 2023; 73 Stokey NL (B23) 1989 Shapiro A (B18) 2006; 34 B13 B25 Bezanson J (B5) 2017; 59 Dyer M (B11) 2006; 106 David HA (B6) 2004 B19 B1 Pacaud F (B15) 2024; 15 Bertsekas DP (B4) 1996 Downward A (B8) 2020; 48 Pereira MVF (B16) 1991; 52 Shapiro A (B20) 2020; 30 B7 Bertsekas DP (B3) 2005; 11 Shapiro A (B21) 2005 Scarf HE (B17) 1958 Shapiro A (B22) 2009 Theil H (B24) 1957; 25 Bellman R (B2) 1957 |
References_xml | – volume-title: Order Statistics year: 2004 ident: B6 – volume-title: Stochastic Optimal Control: The Discrete-Time Case year: 1996 ident: B4 – ident: B19 doi: 10.1287/opre.2015.1466 – start-page: 201 volume-title: Studies in the Mathematical Theory of Inventory and Production year: 1958 ident: B17 – volume: 48 start-page: 33 issue: 1 year: 2020 ident: B8 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2019.11.002 – volume: 34 start-page: 1 issue: 1 year: 2006 ident: B18 publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2005.02.003 – start-page: 111 volume-title: Continuous Optimization: Current Trends and Modern Applications year: 2005 ident: B21 doi: 10.1007/0-387-26771-9_4 – volume: 52 start-page: 359 year: 1991 ident: B16 publication-title: Math. Programming doi: 10.1007/BF01582895 – volume: 25 start-page: 346 issue: 2 year: 1957 ident: B24 publication-title: Econometrica doi: 10.2307/1910260 – volume-title: Lectures on Stochastic Programming: Modeling and Theory year: 2009 ident: B22 doi: 10.1137/1.9780898718751 – volume: 73 start-page: 829 issue: 2 year: 2023 ident: B12 publication-title: Oper. Res. doi: 10.1287/opre.2021.0393 – volume-title: Dynamic Programming year: 1957 ident: B2 – ident: B25 doi: 10.1287/mnsc.17.7.450 – volume-title: Recursive Methods in Economic Dynamics year: 1989 ident: B23 doi: 10.2307/j.ctvjnrt76 – volume: 91 start-page: 423 issue: 4 year: 1966 ident: B10 publication-title: Časopis Pro Pěstování Matematiky doi: 10.21136/CPM.1966.117583 – ident: B13 doi: 10.1287/moor.1040.0129 – volume: 30 start-page: 2083 issue: 3 year: 2020 ident: B20 publication-title: SIAM J. Optim. doi: 10.1137/19M129406X – volume: 106 start-page: 423 year: 2006 ident: B11 publication-title: Math. Programming doi: 10.1007/s10107-005-0597-0 – volume: 11 start-page: 310 issue: 4 year: 2005 ident: B3 publication-title: Eur. J. Control doi: 10.3166/ejc.11.310-334 – ident: B1 doi: 10.1287/ijoo.2021.0061 – volume: 59 start-page: 65 issue: 1 year: 2017 ident: B5 publication-title: SIAM Rev. doi: 10.1137/141000671 – ident: B7 doi: 10.1287/opre.1090.0741 – volume: 15 start-page: 115 year: 2024 ident: B15 publication-title: Energy Systems doi: 10.1007/s12667-022-00522-7 |
SSID | ssj0002213110 |
Score | 2.3025792 |
Snippet | This paper aims to understand when stochastic dynamic programming or model predictive control is the more appropriate method for multistage decision making... |
SourceID | unpaywall crossref |
SourceType | Open Access Repository Index Database |
Title | On the Out-of-Sample Performance of Stochastic Dynamic Programming and Model Predictive Control |
URI | https://doi.org/10.1287/ijoo.2024.0060 |
UnpaywallVersion | publishedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Business Source Ultimate customDbUrl: eissn: 2575-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213110 issn: 2575-1492 databaseCode: AKVCP dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEIAXaQ_iwbdY0bIHQS9b02Sz6R5LtRbFNtBW6insK_ioSZEE0V_vDklt1UO9DWFZlskmM8PMfIPQaROgZQFVBMIHQpnnkRalHgEUmmExd6WGfue7PuuN6c3En5QFstALs5y_t878xdNzCi16LjCumQ3NqwwSSRVUHffD9gNMjrP-BrE-PV3I3C3pjH83-GF91vNkJj7exXS6ZFK6W-h6fpiikuSlkWeyoT5_cRpXn3YbbZZeJW4X12AHrZlkF20ssQb3UDRIsHX28CDPSBqToQAsMA4XfQM4jfEwS9WjAHQzvixG1eOwKOB6tZtgkWgMw9Om9ikkeOBXiTtFsfs-GnWvRp0eKacrEBVwh0jFtRe4inLd1LEbK62awtoqHTjcMKMDGVvz7zWFAngoQPFbJnC0Q60kPCG9A1RJ0sQcItxiUmruU6OAPWl8ITgVgR_7VrafP6uhs7nSo1nB0Igg9rAai0BjEWgsAo3V0Pn3O1mx9Oj_S49RJXvLzYn1HjJZR9X27X0nrJdX6AvPbsGp |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1LS8NAEIAXaQ_iwbdYUdmDoJetSXaz6R5LtRbBttAW6insK_ioSZEE0V_vDklt1YPehrAsy2STmWFmvkHozAdoWcQ0gfCBME4paTFGCaDQLE9EoAz0O9_1eW_CbqfhtCqQhV6Y1fy9c-YvH58yaNELgHHNXWhe55BIqqH6pD9s38PkOOdvEOfTs6UsgorO-HuDb9ZnvUjn8v1NzmYrJqW7hW4WhykrSZ6bRa6a-uMHp_Hv026jzcqrxO3yGuygNZvuoo0V1uAeigcpds4eHhQ5yRIykoAFxsNl3wDOEjzKM_0gAd2Mr8pR9XhYFnC9uE2wTA2G4Wkz9xQSPPCrxJ2y2H0fjbvX406PVNMViI6ER5QWhkaBZsL4JgkSbbQvna0ykScstyZSiTP_1Jca4KEAxW_ZyDMec5KkUtEDVEuz1B4i3OJKGREyq4E9aUMpBZNRmIROdp8_b6DzhdLjecnQiCH2cBqLQWMxaCwGjTXQxdc7-WPp0f-XHqNa_lrYE-c95Oq0ujqfyfXAEQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Out-of-Sample+Performance+of+Stochastic+Dynamic+Programming+and+Model+Predictive+Control&rft.jtitle=INFORMS+journal+on+optimization&rft.au=Keehan%2C+Dominic+S.+T.&rft.au=Philpott%2C+Andrew+B.&rft.au=Anderson%2C+Edward+J.&rft.date=2025-08-01&rft.issn=2575-1484&rft.eissn=2575-1492&rft_id=info:doi/10.1287%2Fijoo.2024.0060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_ijoo_2024_0060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-1484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-1484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-1484&client=summon |