A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammat...
Saved in:
| Published in | PloS one Vol. 18; no. 5; p. e0284480 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.05.2023
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0284480 |
Cover
| Abstract | Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson’s disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research. |
|---|---|
| AbstractList | Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson’s disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research. Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research. Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that manylaboratories will implement machine learning-based quantification of microglial cells in their research. |
| Audience | Academic |
| Author | Manfredsson, Fredric P. Jacobs, Febe Davidsson, Marcus Venuti, Chiara Stancati, Jennifer Yang, Yiyi Sarauskyte, Livija O’Keeffe, Gerard Gubinelli, Francesco Deierborg, Tomas Steece-Collier, Kathy Anwer, Danish M. Mazzocchi, Martina Heuer, Andreas Li, Jia-Yi Brandi, Edoardo Kurt, Yunus A. Sandoval, Ivette M. |
| AuthorAffiliation | 2 Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America 6 Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden Louisiana State University Health, Shreveport, UNITED STATES 1 Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden 3 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden 5 Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland 4 Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America |
| AuthorAffiliation_xml | – name: Louisiana State University Health, Shreveport, UNITED STATES – name: 6 Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden – name: 3 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden – name: 5 Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland – name: 1 Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden – name: 2 Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America – name: 4 Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America |
| Author_xml | – sequence: 1 givenname: Danish M. surname: Anwer fullname: Anwer, Danish M. – sequence: 2 givenname: Francesco surname: Gubinelli fullname: Gubinelli, Francesco – sequence: 3 givenname: Yunus A. surname: Kurt fullname: Kurt, Yunus A. – sequence: 4 givenname: Livija surname: Sarauskyte fullname: Sarauskyte, Livija – sequence: 5 givenname: Febe surname: Jacobs fullname: Jacobs, Febe – sequence: 6 givenname: Chiara surname: Venuti fullname: Venuti, Chiara – sequence: 7 givenname: Ivette M. surname: Sandoval fullname: Sandoval, Ivette M. – sequence: 8 givenname: Yiyi surname: Yang fullname: Yang, Yiyi – sequence: 9 givenname: Jennifer surname: Stancati fullname: Stancati, Jennifer – sequence: 10 givenname: Martina surname: Mazzocchi fullname: Mazzocchi, Martina – sequence: 11 givenname: Edoardo surname: Brandi fullname: Brandi, Edoardo – sequence: 12 givenname: Gerard surname: O’Keeffe fullname: O’Keeffe, Gerard – sequence: 13 givenname: Kathy surname: Steece-Collier fullname: Steece-Collier, Kathy – sequence: 14 givenname: Jia-Yi surname: Li fullname: Li, Jia-Yi – sequence: 15 givenname: Tomas surname: Deierborg fullname: Deierborg, Tomas – sequence: 16 givenname: Fredric P. orcidid: 0000-0001-5802-5487 surname: Manfredsson fullname: Manfredsson, Fredric P. – sequence: 17 givenname: Marcus surname: Davidsson fullname: Davidsson, Marcus – sequence: 18 givenname: Andreas orcidid: 0000-0003-0300-7606 surname: Heuer fullname: Heuer, Andreas |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37126506$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAURU1JaS7tH5TWUCgtdFJJlmW5LyWEXgKBQG-v4liXGQWN5Eh20_xBP7uaGSdkQqDBDzbH62wd7S3tFzs-eF0UzzE6xFWD35-HMXpwh30uHyLCKeXoUbGH24rMGEHVzq3v3WI_pXOE6ooz9qTYzf2E1YjtFX-PShmWPUSbgi-DKZcgF9br0mmI3vp5CX0fQy7qVJoQy2Ghy4sR_GCNlTDYqcvKGObOgiuldi6V1q_JLoK9BvS7MsKQSvCqzHuZLcYl-LKPdgmDTk-LxwZc0s-m90Hx8_OnH8dfZ6dnX06Oj05nsuHVMIOOVqpuGVUSg2YNB6JopwlnBjWKE6pQRXhrOoSl7lTVkIp0pKuIUYbTpqsOipcb3d6FJCYTkyAccdxixlkmTjaECnAu1vPFKxHAinUhxLmAOFjptDBSma7JrhqFKWayk0xWXCkmuUKS6qxVb7RG38PVJTh3I4iRWOV4PYJY5SimHHMfbPrSpe7HbmuKPsQh81GnHJFcCDeKpEWm3BRIEl2rNcaoFcaQRlCNiABaa8FwXUljasDr2T5OTozdUiup_RDBbS-19cfbhZiH33lyXKO2abLCm0khhotRp0EsbVrlD16HcWMqwbRiNKOv7qD3Wz9Rc8juWm9CXliuRMVRQxvWYk5X5hzeQ-VH6XzMso3G5vpWw9uthswM-s8whzElcfL928PZs1_b7Otb7EKDGxYpuHETwhb44rbVNx5f38MMfNgA-RqlFLUR0g7rMPPWrPvfYaF3mh90xv4B_sJesQ |
| CitedBy_id | crossref_primary_10_3390_cells13231965 crossref_primary_10_1016_j_neuropharm_2025_110319 |
| Cites_doi | 10.1186/s40635-019-0291-9 10.1016/j.gde.2020.05.040 10.1016/j.bbr.2022.113887 10.1186/s13024-019-0335-3 10.1016/j.jneumeth.2022.109640 10.3389/fncel.2018.00106 10.1038/s41598-021-01929-5 10.1126/sciadv.abg0505 10.1093/brain/awz104 10.1111/j.1749-6632.1988.tb27086.x 10.1016/j.crneur.2022.100065 10.1186/s12974-015-0427-0 10.1016/0923-2516(96)80220-2 10.1111/bpa.13003 10.1016/S0301-0082(98)00035-5 10.1007/s00259-021-05379-z 10.1038/s41598-018-19699-y 10.1038/s41598-020-58309-8 10.1016/j.expneurol.2013.01.020 10.3390/ijms21228421 10.1098/rsob.210045 10.1002/cpns.103 10.1016/j.devcel.2015.01.018 10.1016/j.bbih.2022.100462 10.1016/0166-2236(96)10049-7 10.3389/fneur.2019.00122 10.1016/j.celrep.2015.02.012 10.1109/TPAMI.2016.2577031 10.1016/j.cell.2019.11.010 10.1002/cyto.a.24541 10.1161/CIRCULATIONAHA.115.001593 10.1093/brain/awn323 10.1111/imm.12922 10.1038/nri.2017.125 10.1186/1750-1326-9-33 10.1109/CVPR.2017.634 10.1523/JNEUROSCI.4440-12.2013 10.1136/jclinpath-2021-207524 10.1073/pnas.1710442114 10.1002/mds.28264 10.3389/fncel.2013.00006 10.1038/s41598-017-13581-z 10.1371/journal.pone.0055375 10.1002/ana.20338 10.1186/s40035-020-00221-2 10.1016/j.brainresbull.2011.10.004 10.1186/s13024-022-00566-4 10.1038/s41598-021-83998-0 10.1016/j.parkreldis.2004.01.005 10.1038/nmeth.3125 10.1016/S1353-8020(11)70064-5 10.1016/j.cell.2010.02.016 10.1038/s41598-022-05815-6 10.1093/nar/gkn084 10.3390/cells8060639 10.1002/glia.440010502 10.1186/s12974-021-02376-9 10.1016/j.stemcr.2021.03.018 10.1016/j.expneurol.2016.05.027 10.1152/physrev.00011.2010 10.3389/fncel.2013.00044 10.1186/s12974-014-0182-7 10.1109/CVPR.2017.106 10.3389/fnmol.2018.00036 10.1038/s41598-020-78521-w 10.1111/jnc.13607 10.1038/s41592-018-0261-2 10.1038/s41580-021-00407-0 10.3892/mmr.2016.4948 10.1016/0166-2236(93)90180-T 10.3791/57648 10.1126/science.1110647 10.1111/ejn.14129 10.1038/s41597-021-01054-y 10.1371/journal.pcbi.1007673 10.1038/s41592-019-0582-9 10.1089/hgtb.2013.131 10.4324/9780203006399 10.3389/fcell.2021.674710 10.1016/j.neulet.2006.12.003 10.1016/0304-3940(94)90684-X 10.3233/JPD-202366 10.1186/s12974-022-02515-w 10.1021/ac202028g 10.1038/srep23431 10.3389/fphar.2019.01008 10.1038/emm.2006.40 10.1212/WNL.38.8.1285 10.1007/s00401-019-02013-z 10.1038/538020a 10.3389/fncel.2021.701673 10.1038/s41596-020-00432-x |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2023 Public Library of Science 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 Anwer et al 2023 Anwer et al 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2023 Public Library of Science – notice: 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 Anwer et al 2023 Anwer et al – notice: 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Beteendevetenskapligt laboratorium Lunds universitets profilområden LU Profile Area: Proactive Ageing Behavioural Neuroscience Laboratory MultiPark: Multidisciplinary research focused on Parkinson's disease Lunds universitet Institutionen för experimentell medicinsk vetenskap Profile areas and other strong research environments Neuroinflammation Lund University Neural plasticitet och reparation Lund University Profile areas Strategiska forskningsområden (SFO) Department of Experimental Medical Science Faculty of Medicine Strategic research areas (SRA) Medicinska fakulteten LU profilområde: Proaktivt åldrande Neural Plasticity and Repair Profilområden och andra starka forskningsmiljöer |
| CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Strategiska forskningsområden (SFO) – name: Department of Experimental Medical Science – name: Neural plasticitet och reparation – name: LU profilområde: Proaktivt åldrande – name: Strategic research areas (SRA) – name: Lunds universitet – name: Lunds universitets profilområden – name: Lund University Profile areas – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Neuroinflammation – name: LU Profile Area: Proactive Ageing – name: Behavioural Neuroscience Laboratory – name: Institutionen för experimentell medicinsk vetenskap – name: Profile areas and other strong research environments – name: Neural Plasticity and Repair – name: Beteendevetenskapligt laboratorium – name: MultiPark: Multidisciplinary research focused on Parkinson's disease |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0284480 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | automated quantification of microlial cell numbers |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2808191686 oai_doaj_org_article_fcdfb7538fd1416cbc6c38dd6c8d0c4e 10.1371/journal.pone.0284480 oai_portal_research_lu_se_publications_b9ee1109_ff27_4e02_a45e_6153cff5a14e PMC10150977 A747691840 37126506 10_1371_journal_pone_0284480 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | Sweden Fiji United States--US |
| GeographicLocations_xml | – name: Sweden – name: Fiji – name: United States--US |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R21 NS099416 – fundername: NINDS NIH HHS grantid: R01 NS110398 – fundername: NINDS NIH HHS grantid: R33 NS099416 – fundername: NINDS NIH HHS grantid: R01 NS105826 – fundername: NIDDK NIH HHS grantid: R01 DK108798 – fundername: ; – fundername: ; grantid: NS105826 – fundername: ; grantid: 2019-01551 – fundername: ; grantid: VR2016-01789 – fundername: ; grantid: NS099416 – fundername: ; grantid: VR2018-03033 – fundername: ; grantid: R01 DK108798-05 – fundername: ; grantid: NS110398 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC ADTOC UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c783t-ab43d5964dc1ae678a2d4be286f07d824d03289fb01cebd37232b2b32fdf847b3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Jul 02 11:04:00 EDT 2023 Fri Oct 03 12:45:06 EDT 2025 Sun Oct 26 04:03:44 EDT 2025 Tue Oct 21 03:40:40 EDT 2025 Tue Sep 30 17:14:23 EDT 2025 Fri Sep 05 10:29:23 EDT 2025 Tue Oct 07 07:58:28 EDT 2025 Mon Oct 20 21:56:35 EDT 2025 Mon Oct 20 16:35:44 EDT 2025 Thu Oct 16 15:56:38 EDT 2025 Thu Oct 16 16:28:26 EDT 2025 Thu May 22 21:19:38 EDT 2025 Mon Jul 21 06:04:44 EDT 2025 Wed Oct 01 03:30:39 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright: © 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c783t-ab43d5964dc1ae678a2d4be286f07d824d03289fb01cebd37232b2b32fdf847b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-5802-5487 0000-0003-0300-7606 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0284480 |
| PMID | 37126506 |
| PQID | 2808191686 |
| PQPubID | 1436336 |
| PageCount | e0284480 |
| ParticipantIDs | plos_journals_2808191686 doaj_primary_oai_doaj_org_article_fcdfb7538fd1416cbc6c38dd6c8d0c4e unpaywall_primary_10_1371_journal_pone_0284480 swepub_primary_oai_portal_research_lu_se_publications_b9ee1109_ff27_4e02_a45e_6153cff5a14e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150977 proquest_miscellaneous_2808214364 proquest_journals_2808191686 gale_infotracmisc_A747691840 gale_infotracacademiconefile_A747691840 gale_incontextgauss_ISR_A747691840 gale_incontextgauss_IOV_A747691840 gale_healthsolutions_A747691840 pubmed_primary_37126506 crossref_citationtrail_10_1371_journal_pone_0284480 crossref_primary_10_1371_journal_pone_0284480 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | T Falk (pone.0284480.ref070) 2019; 16 BJ Hindson (pone.0284480.ref045) 2011; 83 ET McKinley (pone.0284480.ref074) 2022; 101 G Boka (pone.0284480.ref098) 1994; 172 L Quintino (pone.0284480.ref058) 2022; 378 D Gomez-Nicola (pone.0284480.ref010) 2013; 33 S Phani (pone.0284480.ref026) 2012; 18 D Clarke (pone.0284480.ref032) 2021; 11 JG Greener (pone.0284480.ref072) 2022; 23 WY Wang (pone.0284480.ref018) 2015; 3 M Lock (pone.0284480.ref046) 2014; 25 Q Li (pone.0284480.ref002) 2018; 18 A Boza-Serrano (pone.0284480.ref030) 2018; 8 PL McGeer (pone.0284480.ref095) 1988; 38 K Young (pone.0284480.ref042) 2018 H Olai (pone.0284480.ref066) 2020; 8 V Landel (pone.0284480.ref087) 2014; 9 MJ Benskey (pone.0284480.ref050) 2018; 11 J. Gehrmann (pone.0284480.ref005) 1996; 147 R Kongsui (pone.0284480.ref037) 2014; 11 TA Ferreira (pone.0284480.ref033) 2014; 11 WW Chen (pone.0284480.ref020) 2016; 13 S George (pone.0284480.ref034) 2019; 14 EW Lankau (pone.0284480.ref064) 2014; 53 CW Olanow (pone.0284480.ref090) 2019; 142 DJ DiSabato (pone.0284480.ref001) 2016; 139 M Mogi (pone.0284480.ref096) 2007; 414 T Aida (pone.0284480.ref062) 2020; 65 RC Deo (pone.0284480.ref073) 2015; 132 HE Whitson (pone.0284480.ref088) 2022; 22 M Negrini (pone.0284480.ref039) 2022 A Sierra (pone.0284480.ref012) 2013; 7 K Kierdorf (pone.0284480.ref016) 2013; 7 V Howard (pone.0284480.ref067) 2004 B. Ratner (pone.0284480.ref065) 2009; 17 J Leyh (pone.0284480.ref069) 2021; 15 P Gross (pone.0284480.ref079) 2016; 6 C Marogianni (pone.0284480.ref024) 2020; 21 G Codolo (pone.0284480.ref092) 2013; 8 E Becht (pone.0284480.ref071) 2021; 7 K Baranova (pone.0284480.ref078) 2021; 74 M Negrini (pone.0284480.ref043) 2020; 93 YS Kim (pone.0284480.ref013) 2006; 38 AM Penttinen (pone.0284480.ref081) 2018; 48 L Guzman-Martinez (pone.0284480.ref022) 2019; 10 R Fernandez-Calle (pone.0284480.ref089) 2022; 17 F Gubinelli (pone.0284480.ref047) 2022 AM Casano (pone.0284480.ref004) 2015; 32 JB Lugagne (pone.0284480.ref080) 2020; 16 Y Ouchi (pone.0284480.ref094) 2005; 57 MA Burguillos (pone.0284480.ref029) 2015; 10 S Forner (pone.0284480.ref085) 2021; 8 F Simunovic (pone.0284480.ref099) 2009; 132 J Silburt (pone.0284480.ref082) 2022; 19 D. Castelvecchi (pone.0284480.ref084) 2016; 538 S Shrigley (pone.0284480.ref040) 2021; 11 WJ Streit (pone.0284480.ref008) 1988; 1 H Morrison (pone.0284480.ref038) 2017; 7 P Thakur (pone.0284480.ref041) 2017; 114 S Choi (pone.0284480.ref083) 2022; 12 J Guo (pone.0284480.ref075) 2021; 16 R Gober (pone.0284480.ref035) 2022; 32 N Van Camp (pone.0284480.ref093) 2021; 49 A Heuer (pone.0284480.ref048) 2013; 247 MA Cuadros (pone.0284480.ref011) 1998; 56 CK Glass (pone.0284480.ref021) 2010; 140 HS Kwon (pone.0284480.ref023) 2020; 9 L Geirsdottir (pone.0284480.ref086) 2019; 179 S Berg (pone.0284480.ref057) 2019; 16 VH Perry (pone.0284480.ref007) 1993; 16 M Davidsson (pone.0284480.ref044) 2020; 10 A Heuer (pone.0284480.ref049) 2016; 282 TY Lin (pone.0284480.ref055) 2017 A Nimmerjahn (pone.0284480.ref003) 2005; 308 JA Smith (pone.0284480.ref017) 2012; 87 E Caggiu (pone.0284480.ref019) 2019; 10 M Svensson (pone.0284480.ref060) 2021; 11 R Morelli (pone.0284480.ref056) 2021; 11 A Boza-Serrano (pone.0284480.ref031) 2019; 138 K Chatfield (pone.0284480.ref063) 2018 AS Harms (pone.0284480.ref091) 2021; 36 J Stephenson (pone.0284480.ref027) 2018; 154 H Kettenmann (pone.0284480.ref015) 2011; 91 DK Franco-Bocanegra (pone.0284480.ref009) 2019; 8 G Rosoff (pone.0284480.ref077) 2022 F Gubinelli (pone.0284480.ref100) 2023; 4 S Heindl (pone.0284480.ref036) 2018; 12 J Redmon (pone.0284480.ref052) 2018 M Svensson (pone.0284480.ref061) 2020; 10 J Grundemann (pone.0284480.ref097) 2008; 36 S Bachiller (pone.0284480.ref059) 2022; 19 S Ren (pone.0284480.ref053) 2017; 39 JM Phillip (pone.0284480.ref068) 2021; 16 E Cohen-Karlik (pone.0284480.ref076) 2021; 9 PL McGeer (pone.0284480.ref014) 1988; 540 NA Mohanad (pone.0284480.ref054) 2021; 11 AR Inacio (pone.0284480.ref028) 2015; 12 PL McGeer (pone.0284480.ref025) 2004; 10 GW Kreutzberg (pone.0284480.ref006) 1996; 19 S Xie (pone.0284480.ref051) 2017 |
| References_xml | – volume: 8 start-page: 3 issue: 1 year: 2020 ident: pone.0284480.ref066 article-title: Meta-analysis of targeted temperature management in animal models of cardiac arrest. publication-title: Intensive Care Med Exp doi: 10.1186/s40635-019-0291-9 – volume: 65 start-page: 160 year: 2020 ident: pone.0284480.ref062 article-title: The dawn of non-human primate models for neurodevelopmental disorders publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2020.05.040 – start-page: 113887 year: 2022 ident: pone.0284480.ref047 article-title: Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests publication-title: Behav Brain Res doi: 10.1016/j.bbr.2022.113887 – volume: 14 start-page: 34 issue: 1 year: 2019 ident: pone.0284480.ref034 article-title: Microglia affect alpha-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease. publication-title: Mol Neurodegener doi: 10.1186/s13024-019-0335-3 – volume: 378 start-page: 109640 year: 2022 ident: pone.0284480.ref058 article-title: Automated quantification of neuronal swellings in a preclinical rodent model of Parkinson’s disease detects region-specific changes in pathology publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2022.109640 – volume: 12 start-page: 106 year: 2018 ident: pone.0284480.ref036 article-title: Automated Morphological Analysis of Microglia After Stroke. publication-title: Front Cell Neurosci doi: 10.3389/fncel.2018.00106 – volume: 11 start-page: 22920 issue: 1 year: 2021 ident: pone.0284480.ref056 article-title: Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet publication-title: Sci Rep doi: 10.1038/s41598-021-01929-5 – volume: 7 start-page: eabg0505 issue: 39 year: 2021 ident: pone.0284480.ref071 article-title: High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning publication-title: Sci Adv doi: 10.1126/sciadv.abg0505 – volume: 142 start-page: 1690 issue: 6 year: 2019 ident: pone.0284480.ref090 article-title: Temporal evolution of microglia and alpha-synuclein accumulation following foetal grafting in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awz104 – volume: 540 start-page: 319 year: 1988 ident: pone.0284480.ref014 article-title: Occurrence of HLA-DR reactive microglia in Alzheimer’s disease publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1988.tb27086.x – start-page: 1 year: 2022 ident: pone.0284480.ref077 article-title: Machine-Learning-Aided Quantification of Area Coverage of Adherent Cells from Phase-Contrast Images publication-title: Microsc Microanal – volume: 4 start-page: 100065 year: 2023 ident: pone.0284480.ref100 article-title: Characterisation of functional deficits induced by AAV overexpression of aplha-synucelin in rats. publication-title: Current Research in Neurobiology doi: 10.1016/j.crneur.2022.100065 – volume: 12 start-page: 211 year: 2015 ident: pone.0284480.ref028 article-title: Endogenous IFN-beta signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. publication-title: J Neuroinflammation. doi: 10.1186/s12974-015-0427-0 – volume: 147 start-page: 79 issue: 2–3 year: 1996 ident: pone.0284480.ref005 article-title: Microglia: a sensor to threats in the nervous system publication-title: Res Virol doi: 10.1016/0923-2516(96)80220-2 – volume: 32 start-page: e13003 issue: 1 year: 2022 ident: pone.0284480.ref035 article-title: Microglia activation in postmortem brains with schizophrenia demonstrates distinct morphological changes between brain regions publication-title: Brain Pathol doi: 10.1111/bpa.13003 – volume: 56 start-page: 173 issue: 2 year: 1998 ident: pone.0284480.ref011 article-title: The origin and differentiation of microglial cells during development publication-title: Prog Neurobiol doi: 10.1016/S0301-0082(98)00035-5 – volume: 49 start-page: 77 issue: 1 year: 2021 ident: pone.0284480.ref093 article-title: TSPO imaging in animal models of brain diseases publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05379-z – volume: 8 start-page: 1550 issue: 1 year: 2018 ident: pone.0284480.ref030 article-title: Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer’s disease mouse model 5xFAD. publication-title: Sci Rep doi: 10.1038/s41598-018-19699-y – volume: 10 start-page: 1346 issue: 1 year: 2020 ident: pone.0284480.ref061 article-title: Voluntary running does not reduce neuroinflammation or improve non-cognitive behavior in the 5xFAD mouse model of Alzheimer’s disease. publication-title: Sci Rep doi: 10.1038/s41598-020-58309-8 – volume: 247 start-page: 485 year: 2013 ident: pone.0284480.ref048 article-title: Dopamine-rich grafts alleviate deficits in contralateral response space induced by extensive dopamine depletion in rats publication-title: Exp Neurol doi: 10.1016/j.expneurol.2013.01.020 – volume: 11 issue: 1 year: 2021 ident: pone.0284480.ref054 article-title: RetinaNet-based Approach for Object Detection and Distance Estimation in an Image. publication-title: International Journal on Communications Antenna and Propagation (IRECAP). – volume: 21 issue: 22 year: 2020 ident: pone.0284480.ref024 article-title: Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson’s Disease. publication-title: Int J Mol Sci. doi: 10.3390/ijms21228421 – volume: 11 start-page: 210045 issue: 8 year: 2021 ident: pone.0284480.ref032 article-title: An open-source pipeline for analysing changes in microglial morphology. publication-title: Open Biol. doi: 10.1098/rsob.210045 – volume: 93 start-page: e103 issue: 1 year: 2020 ident: pone.0284480.ref043 article-title: AAV Production Everywhere: A Simple, Fast, and Reliable Protocol for In-house AAV Vector Production Based on Chloroform Extraction. publication-title: Curr Protoc Neurosci. doi: 10.1002/cpns.103 – volume: 32 start-page: 469 issue: 4 year: 2015 ident: pone.0284480.ref004 article-title: Microglia: multitasking specialists of the brain publication-title: Dev Cell doi: 10.1016/j.devcel.2015.01.018 – volume: 22 start-page: 100462 year: 2022 ident: pone.0284480.ref088 article-title: Infection and inflammation: New perspectives on Alzheimer’s disease publication-title: Brain Behav Immun Health doi: 10.1016/j.bbih.2022.100462 – volume: 19 start-page: 312 issue: 8 year: 1996 ident: pone.0284480.ref006 article-title: Microglia: a sensor for pathological events in the CNS publication-title: Trends Neurosci doi: 10.1016/0166-2236(96)10049-7 – volume: 10 start-page: 122 year: 2019 ident: pone.0284480.ref019 article-title: Inflammation, Infectious Triggers, and Parkinson’s Disease. publication-title: Front Neurol. doi: 10.3389/fneur.2019.00122 – volume: 10 start-page: 1626 issue: 9 year: 2015 ident: pone.0284480.ref029 article-title: Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation. publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.02.012 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: pone.0284480.ref053 article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 179 start-page: 1609 issue: 7 year: 2019 ident: pone.0284480.ref086 article-title: Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program publication-title: Cell doi: 10.1016/j.cell.2019.11.010 – year: 2022 ident: pone.0284480.ref039 article-title: Sequential or Simultaneous Injection of Preformed Fibrils and AAV Overexpression of Alpha-Synuclein Are Equipotent in Producing Relevant Pathology and Behavioral Deficits. publication-title: J Parkinsons Dis. – volume: 101 start-page: 521 issue: 6 year: 2022 ident: pone.0284480.ref074 article-title: MIRIAM: A machine and deep learning single-cell segmentation and quantification pipeline for multi-dimensional tissue images. publication-title: Cytometry A doi: 10.1002/cyto.a.24541 – volume: 132 start-page: 1920 issue: 20 year: 2015 ident: pone.0284480.ref073 article-title: Machine Learning in Medicine. publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 132 start-page: 1795 issue: Pt 7 year: 2009 ident: pone.0284480.ref099 article-title: Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology publication-title: Brain doi: 10.1093/brain/awn323 – volume: 154 start-page: 204 issue: 2 year: 2018 ident: pone.0284480.ref027 article-title: Inflammation in CNS neurodegenerative diseases publication-title: Immunology doi: 10.1111/imm.12922 – volume: 18 start-page: 225 issue: 4 year: 2018 ident: pone.0284480.ref002 article-title: Microglia and macrophages in brain homeostasis and disease publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.125 – volume: 9 start-page: 33 year: 2014 ident: pone.0284480.ref087 article-title: Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease. publication-title: Mol Neurodegener. doi: 10.1186/1750-1326-9-33 – year: 2017 ident: pone.0284480.ref051 article-title: Aggregated Residual Transformations for Deep Neural Networks. publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/CVPR.2017.634 – volume: 33 start-page: 2481 issue: 6 year: 2013 ident: pone.0284480.ref010 article-title: Regulation of microglial proliferation during chronic neurodegeneration publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4440-12.2013 – volume: 74 start-page: 462 issue: 7 year: 2021 ident: pone.0284480.ref078 article-title: Evaluation of an open-source machine-learning tool to quantify bone marrow plasma cells publication-title: J Clin Pathol doi: 10.1136/jclinpath-2021-207524 – volume: 114 start-page: E8284 issue: 39 year: 2017 ident: pone.0284480.ref041 article-title: Modeling Parkinson’s disease pathology by combination of fibril seeds and alpha-synuclein overexpression in the rat brain publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1710442114 – volume: 36 start-page: 37 issue: 1 year: 2021 ident: pone.0284480.ref091 article-title: Inflammation in Experimental Models of alpha-Synucleinopathies publication-title: Mov Disord doi: 10.1002/mds.28264 – volume: 7 start-page: 6 year: 2013 ident: pone.0284480.ref012 article-title: Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis publication-title: Front Cell Neurosci doi: 10.3389/fncel.2013.00006 – volume: 7 start-page: 13211 issue: 1 year: 2017 ident: pone.0284480.ref038 article-title: Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury publication-title: Sci Rep doi: 10.1038/s41598-017-13581-z – volume: 8 start-page: e55375 issue: 1 year: 2013 ident: pone.0284480.ref092 article-title: Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. publication-title: PLoS One. doi: 10.1371/journal.pone.0055375 – volume: 57 start-page: 168 issue: 2 year: 2005 ident: pone.0284480.ref094 article-title: Microglial activation and dopamine terminal loss in early Parkinson’s disease publication-title: Ann Neurol doi: 10.1002/ana.20338 – volume: 9 start-page: 42 issue: 1 year: 2020 ident: pone.0284480.ref023 article-title: Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. publication-title: Transl Neurodegener doi: 10.1186/s40035-020-00221-2 – volume: 87 start-page: 10 issue: 1 year: 2012 ident: pone.0284480.ref017 article-title: Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2011.10.004 – volume: 17 start-page: 62 issue: 1 year: 2022 ident: pone.0284480.ref089 article-title: APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases publication-title: Mol Neurodegener doi: 10.1186/s13024-022-00566-4 – volume: 11 start-page: 4910 issue: 1 year: 2021 ident: pone.0284480.ref060 article-title: The effect of electroconvulsive therapy on neuroinflammation, behavior and amyloid plaques in the 5xFAD mouse model of Alzheimer’s disease. publication-title: Sci Rep. doi: 10.1038/s41598-021-83998-0 – volume: 10 start-page: S3 issue: Suppl 1 year: 2004 ident: pone.0284480.ref025 article-title: Inflammation and neurodegeneration in Parkinson’s disease publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2004.01.005 – volume: 11 start-page: 982 issue: 10 year: 2014 ident: pone.0284480.ref033 article-title: Neuronal morphometry directly from bitmap images. publication-title: Nat Methods doi: 10.1038/nmeth.3125 – volume: 18 start-page: S207 issue: Suppl 1 year: 2012 ident: pone.0284480.ref026 article-title: Neurodegeneration and inflammation in Parkinson’s disease publication-title: Parkinsonism Relat Disord doi: 10.1016/S1353-8020(11)70064-5 – start-page: 81 volume-title: The Use of Non-human Primates in Research. year: 2018 ident: pone.0284480.ref063 – volume: 140 start-page: 918 issue: 6 year: 2010 ident: pone.0284480.ref021 article-title: Mechanisms underlying inflammation in neurodegeneration publication-title: Cell doi: 10.1016/j.cell.2010.02.016 – volume: 12 start-page: 1806 issue: 1 year: 2022 ident: pone.0284480.ref083 article-title: Automated characterisation of microglia in ageing mice using image processing and supervised machine learning algorithms. publication-title: Sci Rep doi: 10.1038/s41598-022-05815-6 – volume: 36 start-page: e38 issue: 7 year: 2008 ident: pone.0284480.ref097 article-title: Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn084 – volume: 8 issue: 6 year: 2019 ident: pone.0284480.ref009 article-title: Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer’s Disease. publication-title: Cells doi: 10.3390/cells8060639 – volume: 3 start-page: 136 issue: 10 year: 2015 ident: pone.0284480.ref018 article-title: Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. publication-title: Ann Transl Med. – volume: 1 start-page: 301 issue: 5 year: 1988 ident: pone.0284480.ref008 article-title: Functional plasticity of microglia: a review publication-title: Glia doi: 10.1002/glia.440010502 – volume: 19 start-page: 24 issue: 1 year: 2022 ident: pone.0284480.ref082 article-title: MORPHIOUS: an unsupervised machine learning workflow to detect the activation of microglia and astrocytes. publication-title: J Neuroinflammation doi: 10.1186/s12974-021-02376-9 – volume: 16 start-page: 1331 issue: 5 year: 2021 ident: pone.0284480.ref075 article-title: Machine learning-assisted high-content analysis of pluripotent stem cell-derived embryos in vitro publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2021.03.018 – volume: 17 start-page: 139 year: 2009 ident: pone.0284480.ref065 article-title: The correlation coefficient: Its values range between +1/−1, or do they? publication-title: The correlation coefficient: Its values range between +1/−1, or do they? – volume: 282 start-page: 78 year: 2016 ident: pone.0284480.ref049 article-title: hESC-derived neural progenitors prevent xenograft rejection through neonatal desensitisation publication-title: Exp Neurol doi: 10.1016/j.expneurol.2016.05.027 – volume: 91 start-page: 461 issue: 2 year: 2011 ident: pone.0284480.ref015 article-title: Physiology of microglia publication-title: Physiol Rev doi: 10.1152/physrev.00011.2010 – volume: 7 start-page: 44 year: 2013 ident: pone.0284480.ref016 article-title: Factors regulating microglia activation publication-title: Front Cell Neurosci doi: 10.3389/fncel.2013.00044 – volume: 11 start-page: 182 year: 2014 ident: pone.0284480.ref037 article-title: Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. publication-title: J Neuroinflammation doi: 10.1186/s12974-014-0182-7 – volume: 53 start-page: 278 issue: 3 year: 2014 ident: pone.0284480.ref064 article-title: Use of nonhuman primates in research in North America. publication-title: J Am Assoc Lab Anim Sci – year: 2017 ident: pone.0284480.ref055 article-title: Feature Pyramid Networks for Object Detection. publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/CVPR.2017.106 – volume: 11 start-page: 36 year: 2018 ident: pone.0284480.ref050 article-title: Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity. publication-title: Front Mol Neurosci. doi: 10.3389/fnmol.2018.00036 – volume: 10 start-page: 21532 issue: 1 year: 2020 ident: pone.0284480.ref044 article-title: A comparison of AAV-vector production methods for gene therapy and preclinical assessment publication-title: Sci Rep doi: 10.1038/s41598-020-78521-w – volume: 139 start-page: 136 issue: Suppl 2 year: 2016 ident: pone.0284480.ref001 article-title: Neuroinflammation: the devil is in the details publication-title: J Neurochem doi: 10.1111/jnc.13607 – volume: 16 start-page: 67 issue: 1 year: 2019 ident: pone.0284480.ref070 article-title: U-Net: deep learning for cell counting, detection, and morphometry. publication-title: Nat Methods. doi: 10.1038/s41592-018-0261-2 – volume: 23 start-page: 40 issue: 1 year: 2022 ident: pone.0284480.ref072 article-title: A guide to machine learning for biologists publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-021-00407-0 – volume: 13 start-page: 3391 issue: 4 year: 2016 ident: pone.0284480.ref020 article-title: Role of neuroinflammation in neurodegenerative diseases (Review). publication-title: Mol Med Rep doi: 10.3892/mmr.2016.4948 – volume: 16 start-page: 268 issue: 7 year: 1993 ident: pone.0284480.ref007 article-title: Macrophages and inflammation in the central nervous system publication-title: Trends Neurosci doi: 10.1016/0166-2236(93)90180-T – issue: 136 year: 2018 ident: pone.0284480.ref042 article-title: Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ. publication-title: J Vis Exp. doi: 10.3791/57648 – volume: 308 start-page: 1314 issue: 5726 year: 2005 ident: pone.0284480.ref003 article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo publication-title: Science doi: 10.1126/science.1110647 – volume: 48 start-page: 2354 issue: 6 year: 2018 ident: pone.0284480.ref081 article-title: Implementation of deep neural networks to count dopamine neurons in substantia nigra publication-title: Eur J Neurosci doi: 10.1111/ejn.14129 – volume: 8 start-page: 270 issue: 1 year: 2021 ident: pone.0284480.ref085 article-title: Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. publication-title: Sci Data doi: 10.1038/s41597-021-01054-y – volume: 16 start-page: e1007673 issue: 4 year: 2020 ident: pone.0284480.ref080 article-title: DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning. publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1007673 – volume: 16 start-page: 1226 issue: 12 year: 2019 ident: pone.0284480.ref057 article-title: ilastik: interactive machine learning for (bio)image analysis. publication-title: Nat Methods doi: 10.1038/s41592-019-0582-9 – volume: 25 start-page: 115 issue: 2 year: 2014 ident: pone.0284480.ref046 article-title: Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR publication-title: Hum Gene Ther Methods doi: 10.1089/hgtb.2013.131 – volume-title: Unbiased Stereology: Three-Dimensional Measurement in Microscopy year: 2004 ident: pone.0284480.ref067 doi: 10.4324/9780203006399 – volume: 9 start-page: 674710 year: 2021 ident: pone.0284480.ref076 article-title: Quantification of Osteoclasts in Culture, Powered by Machine Learning. publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.674710 – volume: 414 start-page: 94 issue: 1 year: 2007 ident: pone.0284480.ref096 article-title: p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain publication-title: Neurosci Lett doi: 10.1016/j.neulet.2006.12.003 – volume: 172 start-page: 151 issue: 1–2 year: 1994 ident: pone.0284480.ref098 article-title: Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease publication-title: Neurosci Lett doi: 10.1016/0304-3940(94)90684-X – volume: 11 start-page: 515 issue: 2 year: 2021 ident: pone.0284480.ref040 article-title: Grafts Derived from an alpha-Synuclein Triplication Patient Mediate Functional Recovery but Develop Disease-Associated Pathology in the 6-OHDA Model of Parkinson’s Disease. publication-title: J Parkinsons Dis. doi: 10.3233/JPD-202366 – volume: 19 start-page: 151 issue: 1 year: 2022 ident: pone.0284480.ref059 article-title: Early-life stress elicits peripheral and brain immune activation differently in wild type and 5xFAD mice in a sex-specific manner. publication-title: J Neuroinflammation. doi: 10.1186/s12974-022-02515-w – year: 2018 ident: pone.0284480.ref052 publication-title: YOLOv3: An Incremental Improvement – volume: 83 start-page: 8604 issue: 22 year: 2011 ident: pone.0284480.ref045 article-title: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number publication-title: Anal Chem doi: 10.1021/ac202028g – volume: 6 start-page: 23431 year: 2016 ident: pone.0284480.ref079 article-title: Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images publication-title: Sci Rep doi: 10.1038/srep23431 – volume: 10 start-page: 1008 year: 2019 ident: pone.0284480.ref022 article-title: Neuroinflammation as a Common Feature of Neurodegenerative Disorders. publication-title: Front Pharmacol. doi: 10.3389/fphar.2019.01008 – volume: 38 start-page: 333 issue: 4 year: 2006 ident: pone.0284480.ref013 article-title: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease publication-title: Exp Mol Med doi: 10.1038/emm.2006.40 – volume: 38 start-page: 1285 issue: 8 year: 1988 ident: pone.0284480.ref095 article-title: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. publication-title: Neurology doi: 10.1212/WNL.38.8.1285 – volume: 138 start-page: 251 issue: 2 year: 2019 ident: pone.0284480.ref031 article-title: Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease publication-title: Acta Neuropathol doi: 10.1007/s00401-019-02013-z – volume: 538 start-page: 20 issue: 7623 year: 2016 ident: pone.0284480.ref084 article-title: Can we open the black box of AI? publication-title: Nature doi: 10.1038/538020a – volume: 15 start-page: 701673 year: 2021 ident: pone.0284480.ref069 article-title: Classification of Microglial Morphological Phenotypes Using Machine Learning. publication-title: Front Cell Neurosci doi: 10.3389/fncel.2021.701673 – volume: 16 start-page: 754 issue: 2 year: 2021 ident: pone.0284480.ref068 article-title: A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei. publication-title: Nat Protoc doi: 10.1038/s41596-020-00432-x |
| SSID | ssj0053866 |
| Score | 2.4543512 |
| Snippet | Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications,... |
| SourceID | plos doaj unpaywall swepub pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0284480 |
| SubjectTerms | Algorithms Alzheimer's disease Alzheimers disease Analysis Animal tissues Animals Basic Medicine Biocompatibility Biology and Life Sciences Biomedical research Brain Brain research Care and treatment Central nervous system diseases Comparative analysis Computer and Information Sciences Data mining Diagnosis Engineering and Technology EU directives Gene expression Health aspects Hemispheres Humidity Inflammation Laboratories Laboratory animals Learning algorithms Leukocyte migration Machine Learning Macrophages Mammals Medical and Health Sciences Medicin och hälsovetenskap Medicine and Health Sciences Medicinska och farmaceutiska grundvetenskaper Mice Microglia Microglia - metabolism Microglial cells Monkeys & apes Morphology Movement disorders Mutation Nervous system diseases Neural networks Neurodegenerative diseases Neurosciences Neurovetenskaper Open source software Parkinson Disease - metabolism Parkinson's disease Parkinsons disease Physical Sciences Primates Rats Reproducibility of Results Research and Analysis Methods Rodents |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXIADorzqUmBBSICEUz_Wr2NAVAUJkICiistqn2klYxucCPEP-NnMeDdWLCq1By45ZGcceWZ2HpvZbwh5qiBuQCmbhiKFDyZYEVYVE2GUqNyWBoKSxgvO7z_kR8fs3Ul2sjXqC3vCHDywE9yBVdpKyKlLq2NIHpRUuUpLrXNV6kgxg943KqtNMeV8MJDnub8olxbxgdfLvGsbM4eICjVJNAlEA17_6JVnXd3256Wc_3ZOenzR6-TquunE71-irrfi0-FNcsMnlnThXmiHXDHNLbLjt25Pn3t86Re3yZ8FVeP0Qdpa-n1oqDTUT5BY0g3QOPBBTkshR6Q_1sK1FQ2aHLiwlW9Zg_1SPP3v6VkzUEocOuEJzEsKFtZT0WjatE04TASkHSJcQIp7hxwfvvny-ij0AxlCVZTpKhSSpTqrcqZVLAyEOZFoJk1S5jYqdJkwjeh8lZVRrIzUaQHpmkxkmlhtIQrK9C6ZwY-ZXUIro6XNtCqYrVgsTalYlJoqq5RiEp4SkHSjHa48WjkOzaj58BdcAVWLkytHnXKv04CEI1fn0DouoH-Fih9pEWt7-AIskHsL5BdZYEAeodlwd3F19Bh8AZVaXmEFHZAnAwXibTTY0LMU677nbz9-vQTR508TomeeyLYgDiX8JQp4J8TxmlDuTyjBa6jJ8i4a-UYqPU9wBAvUCmUOnBvDP3_58biMD8Umvca0a0eTQP6ds4Dcc_tklCxoIIFiALjLyQ6aiH660pydDnDnMR7KQZkSkG9us015hiqVe2isU16veW94t3XmzWVlDALrcmuTgjMTJVywzHCsdZS1mYhRifNxA1_KdPb-h-ncJ9cSSJpdA-0-ma1-rs0DSHJX8uHgz_4CeBWsKA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAcEOXVQIEFIQESbu31xo8DQilqVZAIqFBUcVntM60UbLduhPgH_Gxm7LWpRQW95JCddZR5z3r2G0KeaYgbUMrGgYzhg0ueBnnOZRAynbjMQlAyeMH5wyzZO-DvDyeHK2TW3YXBtsrOJzaO2pQaz8i3GI6IgFwmS95UJwFOjcK3q90IDelHK5jXDcTYFbLKEBlrRFa3d2af9jvfDNadJP4CXZxGW15em1VZ2E2ItFCrhIMA1eD49956VC3K-qJU9O-OSo87ep1cXRaV_PlDLhbn4tbuTXLDJ5x02mrIGlmxxS2y5k26pi887vTL2-TXlOp-KiEtHf3eNFpa6idLzGkHQA77INelkDvSk6Vs240aCTe7sMVvvgC9pvhWoKbHRUOpcBiFJ7CvKGheTWVhaFEWQTMpkFaIfAGp7x1ysLvz5e1e4Ac1BDrN4rNAKh6bSZ5woyNpIfxJZriyLEtcmJqMcYOofblTYaStMnEKaZxiKmbOOIiOKr5LRvBjdp3Q3BrlJkan3OU8UjbTPIxtPsm15gqeMiZxJx2hPYo5DtNYiObVXArVTMtXgTIVXqZjEvS7qhbF4z_02yj4nhYxuJsvytO58CYtnDZOQbWXORNBWquVTnScGZPozISa2zF5jGoj2gutvScRU6jgkhwr6zF52lAgDkeBjT5zuaxr8e7j10sQfd4fED33RK4EdmjpL1fAf0J8rwHlxoASvIkeLK-jkndcqcUfu4OdneJfvPykX8aHYvNeYctlS8MgL0_4mNxr7aTnLEiAQZEAu7OBBQ1YP1wpjo8aGPQID-ugfBmTb62xDfc01avwkFlHYrEUtRXVubNwoXJrEXBXOMdSwW3IhOQTK7AG0s5NZIRC3OwN-FKqc__fXHpArjFIk9uW2Q0yOjtd2oeQ1p6pR95X_QYM6qg1 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wA8AONrhQEGIT4k0iWOm4_HgpgGEgMBQwMJWf7sJkpaSCMEDzzzZ3OXONECQ4wHXqqqvnOa89l3Z59_R8htDXYDQtk4kDF8cMnTIM-5DEKmE5dZMEoGLzg_20m2d_nTvfHeCnnf3oXxEoQYcTYv65N8_DIv7KaX5CbiFTWnp6MoTqOWY7QAohFYS4g3wjs14hDujC3xAtIJspqMwVUfkNXdnReTt81JMwsSFsb-Ot2feuqZqxrVv1u7B_jPjnJMf8-v9Cikp8nJqljIr1_kbHbIim2dJd_b92-SVz6MqqUa6W-_QEP-NwGdI2e8_0snTS9rZMUW58maX2FKes_DYN-_QH5MqO6KJNK5ox_rvE9LfaGLKW3x0IEPXG8Kriz9VMkm-6lWuJoLMw6nM5hmFA8pSnpQ1JQKa2N4AvuAwkQoqSwMLeZFUBcupAsE4gBP_CLZ3Xr8-tF24OtGBDrN4mUgFY8NjDc3OpIWrLFkhivLssSFqckYNwgimDsVRtoqE6fgVSqmYuaMA2Ot4ktkAA-z64Tm1ig3NjrlLueRspnmYWzzca41V9DLkMStegjtQdWxtsdM1CeFKQRXjVwFSl946Q9J0HEtGlCRv9A_RM3raBESvP4Bhl_4YRdOG6cg-MycicDL1konOs6MSXRmQs3tkNxAvRXN_dpuYRMTCCiTHAP9IblVUyAsSIF5R1NZlaV48vzNMYhevewR3fVEbg7i0NLf9YB3Qu3sUW70KGFx073mdVTvViqlYFgpBkKaLAHOduYd3Xyza8ZOMZewsPOqoWEQJiR8SC43E7WTLIwAg5gFuLPeFO6Jvt9SHOzXqOwR7h1CNDUk75rZ3uepg2nhEbz2xawSpRWLQ1vzQuXWIv6vcI6lgtuQCcnHVmBIpp0bywgHcdStIMdSnSv_ynCVnGLgxzc5vRtksPxc2Wvgdy_Vdb96_gRa5uFh priority: 102 providerName: Unpaywall |
| Title | A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37126506 https://www.proquest.com/docview/2808191686 https://www.proquest.com/docview/2808214364 https://pubmed.ncbi.nlm.nih.gov/PMC10150977 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0284480&type=printable https://doaj.org/article/fcdfb7538fd1416cbc6c38dd6c8d0c4e http://dx.doi.org/10.1371/journal.pone.0284480 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJ8F4QIyvBUYxCAmQSNUkbj4eEOqmjYG0MQ2KCi-WP7tJIemaVbD_gD-bs-NEi9jEXvwQ3yWKfee7s8-_Q-ilALsBoWzkswgawkjiZxlh_jAUsU4VGCVpLjjvH8R7E_JpOpquoKZmqxvA6tLQztSTmizywe_T8_eg8O9s1YYkaJgG87JQA7CXEHFAEL8KtiozxRz2SXuuANodx-4C3VWca-gmdIXgucQdW2Uh_duFuzfPy-oyr_Tf5EoHQXob3VoWc3b-i-X5BRO2exfdcb4nHtfCso5WVHEPrTvtrvBrB0H95j76M8aiLVCIS41_2pxLhV2RiRlusMiBD9xeDG4kPl2yOvPITrblMtl-sxxEHJsDggqfFJaSm7oUjkC9xSCEFWaFxEVZ-LZoIJ4bEAzwgh-gye7O1-0939Vs8EWSRmc-4ySSoywmUgRMgSVkoSRchWmsh4lMQyINgF-m-TAQissoAY-OhzwKtdRgKHn0EPXgY2oD4UxJrkdSJERnJOAqFWQYqWyUCUE4vMVDUTM7VDhAc1NXI6f2lC6BwKYeV2qml7rp9ZDfcs1rQI__0G-ZiW9pDRy3fVAuZtRpN9VCag6BX6plAB6u4CIWUSplLFI5FER56JkRG1rfbW0XFTqGYC7OTJDtoReWwkByFCbnZ8aWVUU_fv52DaIvRx2iV45IlzAcgrl7FvBPBuqrQ7nZoYSFRXS6N4yQN6NS0dBUaYFwIo2BsxH8y7uft93mpSaPr1DlsqYJwUWPiYce1XrSjmyjdR5KOxrUGfpuT3FybBHRA7NvB5GMh37UytblsWsIdehZxzRf0krR-YVtccozpQz2LtU6TChRw5AyMlLUhENC6xELzCQOWgW-lug8vvIXn6C1EJzlOnF2E_XOFkv1FJzbM95HN5JpAm26HZh290MfrW7tHBwe9e12Ud-uZ_BscnA4_v4XIWSuGw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOiPLqQqEGgQCJtInjzeOAUHlULX0gQYtWXIyf20pLkjZdVf0H_Bp-I2PHCY2ooJde9rAee7Xz8ow9_gahpxL2DUhl44DH8EE5TYM8pzwIiUxMpmFTUvaB8_ZOsr5HP46Goxn0q30LY8sqW5_oHLUqpT0jXyG2RQTEMlnypjoMbNcoe7vattBo1GJTn55Ayla_3ngP8n1GyNqH3Xfrge8qEMg0i48DLmishnlClYy4Bl_NiaJCkywxYaoyQpWFmMuNCCOphYpTiDkEETExyoArFzGsewVdpTH4ErCfdNQleOA7ksQ_z4vTaMVrw3JVFnoZ9nHIhMLe9ue6BHR7wWw1KevzAt2_6zU9qul1NDctKn56wieTM7vi2k10w4ezeLXRv3k0o4tbaN47jBq_8KjWL2-jn6tYdj0PcWnwD1fGqbHvWzHGLbw5zINIGkNkig-nvClmcvrjZtkCwvEErAbbO4caHxSOUthWF55Av8Kg1zXmhcJFWQSuDyGuLK4GBNZ30N6lCOwumoUf0wsI51oJM1QypSankdCZpGGs82EuJRWwygDFrXSY9BjptlXHhLmLvxRypYavzMqUeZkOUNDNqhqMkP_Qv7WC72gtwrf7ojwaM-8wmJHKCMglM6MiCJqlkImMM6USmalQUj1AS1ZtWPNctvNTbBXywyS3efsAPXEUFuWjsGVEYz6ta7bx6esFiL587hE990SmBHZI7p9uwH-y6GE9ysUeJfgq2RtesErecqVmf6waZraKf_7w427YLmpLAwtdThsaAlF_QgfoXmMnHWdBAgRSEJid9Syox_r-SHGw70DWI3sUCMnRAH1rjK0_x-XGzANy7bPJlNWaVWdO2pnItbZwvswYkjKqQ8I4HWpmMyxpzJBHVojLnQFfSHXu_5tLS2hufXd7i21t7Gw-QNcIBORNce4imj0-muqHEEAfi0fOa2H0_bLd5G_kCd8E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJl4ejHhjFWU0GjWx0E5ne3kwBkUComhUDPFlnOtCsrYLZUP4B_4mf53ntNNKI1FefNmHnTPd7JzLnG965juEPNSwbwCUjQMZwweXPA3ynMsgZDpxmYVNyeAF53dbyfo2f7Mz3JkhP9u7MFhW2cbEOlCbUuMZ-TLDFhGQy2TJsvNlER9W115M9gPsIIVvWtt2Go2JbNrjI4Bv1fONVdD1I8bWXn9-tR74DgOBTrP4MJCKx2aYJ9zoSFqI25IZrizLEhemJmPcIN1c7lQYaatMnEL-oZiKmTMOwrqK4bnnyPk0jnMsJ0x3OrAHcSRJ_FW9OI2WvWUsTcrCLsGeDqgo7G2FdceAbl-YnYzL6rSk98_aTc9weplcnBYTeXwkx-MTO-TaVXLFp7Z0pbHFOTJji2tkzgePij7xDNdPr5MfK1R3_Q9p6ej3uqTTUt_DYkRbqnOYB1k1hSyV7k9lU9hU21I9C4sJR2PwIIrvHyq6V9SSCtteeAH7jIKNV1QWhhZlEdQ9CekEOTYgyb5Btv-Lwm6SWfgxO09obo1yQ6NT7nIeKZtpHsY2H-ZacwVPGZC41Y7Qni8d23aMRf0SMAXc1KyrQJ0Kr9MBCbpZk4Yv5B_yL1HxnSyyfddflAcj4YOHcNo4BbgycyaCBForneg4MybRmQk1twOyiGYjmquzXcwSK4AVkxwx_IA8qCWQ8aNA3xnJaVWJjfdfziD06WNP6LEXciUsh5b-Ggf8J2QS60ku9CQhbune8Dwaebsqlfjt4TCzNfzTh-93w_hQLBMsbDltZBgggIQPyK3GT7qVBQ0wgCMwO-t5UG_p-yPF3m5NuB7hsSAApQH52jhbf06Nk4Un59oV46morJicOHUXKrcWqX2FcywV3IZMSD60AtGWdm4oI1TiUufAZzKd239fpUVyAQKkeLuxtXmHXGKQmzd1ugtk9vBgau9CLn2o7tVBi5Jv_ztK_gJ-IONH |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wA8AONrhQEGIT4k0iWOm4_HgpgGEgMBQwMJWf7sJkpaSCMEDzzzZ3OXONECQ4wHXqqqvnOa89l3Z59_R8htDXYDQtk4kDF8cMnTIM-5DEKmE5dZMEoGLzg_20m2d_nTvfHeCnnf3oXxEoQYcTYv65N8_DIv7KaX5CbiFTWnp6MoTqOWY7QAohFYS4g3wjs14hDujC3xAtIJspqMwVUfkNXdnReTt81JMwsSFsb-Ot2feuqZqxrVv1u7B_jPjnJMf8-v9Cikp8nJqljIr1_kbHbIim2dJd_b92-SVz6MqqUa6W-_QEP-NwGdI2e8_0snTS9rZMUW58maX2FKes_DYN-_QH5MqO6KJNK5ox_rvE9LfaGLKW3x0IEPXG8Kriz9VMkm-6lWuJoLMw6nM5hmFA8pSnpQ1JQKa2N4AvuAwkQoqSwMLeZFUBcupAsE4gBP_CLZ3Xr8-tF24OtGBDrN4mUgFY8NjDc3OpIWrLFkhivLssSFqckYNwgimDsVRtoqE6fgVSqmYuaMA2Ot4ktkAA-z64Tm1ig3NjrlLueRspnmYWzzca41V9DLkMStegjtQdWxtsdM1CeFKQRXjVwFSl946Q9J0HEtGlCRv9A_RM3raBESvP4Bhl_4YRdOG6cg-MycicDL1konOs6MSXRmQs3tkNxAvRXN_dpuYRMTCCiTHAP9IblVUyAsSIF5R1NZlaV48vzNMYhevewR3fVEbg7i0NLf9YB3Qu3sUW70KGFx073mdVTvViqlYFgpBkKaLAHOduYd3Xyza8ZOMZewsPOqoWEQJiR8SC43E7WTLIwAg5gFuLPeFO6Jvt9SHOzXqOwR7h1CNDUk75rZ3uepg2nhEbz2xawSpRWLQ1vzQuXWIv6vcI6lgtuQCcnHVmBIpp0bywgHcdStIMdSnSv_ynCVnGLgxzc5vRtksPxc2Wvgdy_Vdb96_gRa5uFh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+machine+learning+approaches+for+the+quantification+of+microglial+cells+in+the+brain+of+mice%2C+rats+and+non-human+primates&rft.jtitle=PloS+one&rft.au=Anwer%2C+Danish+M&rft.au=Gubinelli%2C+Francesco&rft.au=Kurt%2C+Yunus+A&rft.au=Sarauskyte%2C+Livija&rft.date=2023-05-01&rft.eissn=1932-6203&rft.volume=18&rft.issue=5&rft.spage=e0284480&rft_id=info:doi/10.1371%2Fjournal.pone.0284480&rft_id=info%3Apmid%2F37126506&rft.externalDocID=37126506 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |