A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates

Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammat...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 5; p. e0284480
Main Authors Anwer, Danish M., Gubinelli, Francesco, Kurt, Yunus A., Sarauskyte, Livija, Jacobs, Febe, Venuti, Chiara, Sandoval, Ivette M., Yang, Yiyi, Stancati, Jennifer, Mazzocchi, Martina, Brandi, Edoardo, O’Keeffe, Gerard, Steece-Collier, Kathy, Li, Jia-Yi, Deierborg, Tomas, Manfredsson, Fredric P., Davidsson, Marcus, Heuer, Andreas
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0284480

Cover

Abstract Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson’s disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
AbstractList Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson’s disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.
Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that manylaboratories will implement machine learning-based quantification of microglial cells in their research.
Audience Academic
Author Manfredsson, Fredric P.
Jacobs, Febe
Davidsson, Marcus
Venuti, Chiara
Stancati, Jennifer
Yang, Yiyi
Sarauskyte, Livija
O’Keeffe, Gerard
Gubinelli, Francesco
Deierborg, Tomas
Steece-Collier, Kathy
Anwer, Danish M.
Mazzocchi, Martina
Heuer, Andreas
Li, Jia-Yi
Brandi, Edoardo
Kurt, Yunus A.
Sandoval, Ivette M.
AuthorAffiliation 2 Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
6 Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
Louisiana State University Health, Shreveport, UNITED STATES
1 Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
3 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
5 Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
4 Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
AuthorAffiliation_xml – name: Louisiana State University Health, Shreveport, UNITED STATES
– name: 6 Neural Plasticity and Repair, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
– name: 3 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
– name: 5 Brain Development and Repair Group, Department of Anatomy and Neuroscience University College Cork, Cork, Ireland
– name: 1 Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University Lund, Sweden
– name: 2 Barrow Neurological Institute, Parkinson’s Disease Research Unit, Department of Translational Neuroscience, Phoenix, Arizona, United States of America
– name: 4 Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
Author_xml – sequence: 1
  givenname: Danish M.
  surname: Anwer
  fullname: Anwer, Danish M.
– sequence: 2
  givenname: Francesco
  surname: Gubinelli
  fullname: Gubinelli, Francesco
– sequence: 3
  givenname: Yunus A.
  surname: Kurt
  fullname: Kurt, Yunus A.
– sequence: 4
  givenname: Livija
  surname: Sarauskyte
  fullname: Sarauskyte, Livija
– sequence: 5
  givenname: Febe
  surname: Jacobs
  fullname: Jacobs, Febe
– sequence: 6
  givenname: Chiara
  surname: Venuti
  fullname: Venuti, Chiara
– sequence: 7
  givenname: Ivette M.
  surname: Sandoval
  fullname: Sandoval, Ivette M.
– sequence: 8
  givenname: Yiyi
  surname: Yang
  fullname: Yang, Yiyi
– sequence: 9
  givenname: Jennifer
  surname: Stancati
  fullname: Stancati, Jennifer
– sequence: 10
  givenname: Martina
  surname: Mazzocchi
  fullname: Mazzocchi, Martina
– sequence: 11
  givenname: Edoardo
  surname: Brandi
  fullname: Brandi, Edoardo
– sequence: 12
  givenname: Gerard
  surname: O’Keeffe
  fullname: O’Keeffe, Gerard
– sequence: 13
  givenname: Kathy
  surname: Steece-Collier
  fullname: Steece-Collier, Kathy
– sequence: 14
  givenname: Jia-Yi
  surname: Li
  fullname: Li, Jia-Yi
– sequence: 15
  givenname: Tomas
  surname: Deierborg
  fullname: Deierborg, Tomas
– sequence: 16
  givenname: Fredric P.
  orcidid: 0000-0001-5802-5487
  surname: Manfredsson
  fullname: Manfredsson, Fredric P.
– sequence: 17
  givenname: Marcus
  surname: Davidsson
  fullname: Davidsson, Marcus
– sequence: 18
  givenname: Andreas
  orcidid: 0000-0003-0300-7606
  surname: Heuer
  fullname: Heuer, Andreas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37126506$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAURU1JaS7tH5TWUCgtdFJJlmW5LyWEXgKBQG-v4liXGQWN5Eh20_xBP7uaGSdkQqDBDzbH62wd7S3tFzs-eF0UzzE6xFWD35-HMXpwh30uHyLCKeXoUbGH24rMGEHVzq3v3WI_pXOE6ooz9qTYzf2E1YjtFX-PShmWPUSbgi-DKZcgF9br0mmI3vp5CX0fQy7qVJoQy2Ghy4sR_GCNlTDYqcvKGObOgiuldi6V1q_JLoK9BvS7MsKQSvCqzHuZLcYl-LKPdgmDTk-LxwZc0s-m90Hx8_OnH8dfZ6dnX06Oj05nsuHVMIOOVqpuGVUSg2YNB6JopwlnBjWKE6pQRXhrOoSl7lTVkIp0pKuIUYbTpqsOipcb3d6FJCYTkyAccdxixlkmTjaECnAu1vPFKxHAinUhxLmAOFjptDBSma7JrhqFKWayk0xWXCkmuUKS6qxVb7RG38PVJTh3I4iRWOV4PYJY5SimHHMfbPrSpe7HbmuKPsQh81GnHJFcCDeKpEWm3BRIEl2rNcaoFcaQRlCNiABaa8FwXUljasDr2T5OTozdUiup_RDBbS-19cfbhZiH33lyXKO2abLCm0khhotRp0EsbVrlD16HcWMqwbRiNKOv7qD3Wz9Rc8juWm9CXliuRMVRQxvWYk5X5hzeQ-VH6XzMso3G5vpWw9uthswM-s8whzElcfL928PZs1_b7Otb7EKDGxYpuHETwhb44rbVNx5f38MMfNgA-RqlFLUR0g7rMPPWrPvfYaF3mh90xv4B_sJesQ
CitedBy_id crossref_primary_10_3390_cells13231965
crossref_primary_10_1016_j_neuropharm_2025_110319
Cites_doi 10.1186/s40635-019-0291-9
10.1016/j.gde.2020.05.040
10.1016/j.bbr.2022.113887
10.1186/s13024-019-0335-3
10.1016/j.jneumeth.2022.109640
10.3389/fncel.2018.00106
10.1038/s41598-021-01929-5
10.1126/sciadv.abg0505
10.1093/brain/awz104
10.1111/j.1749-6632.1988.tb27086.x
10.1016/j.crneur.2022.100065
10.1186/s12974-015-0427-0
10.1016/0923-2516(96)80220-2
10.1111/bpa.13003
10.1016/S0301-0082(98)00035-5
10.1007/s00259-021-05379-z
10.1038/s41598-018-19699-y
10.1038/s41598-020-58309-8
10.1016/j.expneurol.2013.01.020
10.3390/ijms21228421
10.1098/rsob.210045
10.1002/cpns.103
10.1016/j.devcel.2015.01.018
10.1016/j.bbih.2022.100462
10.1016/0166-2236(96)10049-7
10.3389/fneur.2019.00122
10.1016/j.celrep.2015.02.012
10.1109/TPAMI.2016.2577031
10.1016/j.cell.2019.11.010
10.1002/cyto.a.24541
10.1161/CIRCULATIONAHA.115.001593
10.1093/brain/awn323
10.1111/imm.12922
10.1038/nri.2017.125
10.1186/1750-1326-9-33
10.1109/CVPR.2017.634
10.1523/JNEUROSCI.4440-12.2013
10.1136/jclinpath-2021-207524
10.1073/pnas.1710442114
10.1002/mds.28264
10.3389/fncel.2013.00006
10.1038/s41598-017-13581-z
10.1371/journal.pone.0055375
10.1002/ana.20338
10.1186/s40035-020-00221-2
10.1016/j.brainresbull.2011.10.004
10.1186/s13024-022-00566-4
10.1038/s41598-021-83998-0
10.1016/j.parkreldis.2004.01.005
10.1038/nmeth.3125
10.1016/S1353-8020(11)70064-5
10.1016/j.cell.2010.02.016
10.1038/s41598-022-05815-6
10.1093/nar/gkn084
10.3390/cells8060639
10.1002/glia.440010502
10.1186/s12974-021-02376-9
10.1016/j.stemcr.2021.03.018
10.1016/j.expneurol.2016.05.027
10.1152/physrev.00011.2010
10.3389/fncel.2013.00044
10.1186/s12974-014-0182-7
10.1109/CVPR.2017.106
10.3389/fnmol.2018.00036
10.1038/s41598-020-78521-w
10.1111/jnc.13607
10.1038/s41592-018-0261-2
10.1038/s41580-021-00407-0
10.3892/mmr.2016.4948
10.1016/0166-2236(93)90180-T
10.3791/57648
10.1126/science.1110647
10.1111/ejn.14129
10.1038/s41597-021-01054-y
10.1371/journal.pcbi.1007673
10.1038/s41592-019-0582-9
10.1089/hgtb.2013.131
10.4324/9780203006399
10.3389/fcell.2021.674710
10.1016/j.neulet.2006.12.003
10.1016/0304-3940(94)90684-X
10.3233/JPD-202366
10.1186/s12974-022-02515-w
10.1021/ac202028g
10.1038/srep23431
10.3389/fphar.2019.01008
10.1038/emm.2006.40
10.1212/WNL.38.8.1285
10.1007/s00401-019-02013-z
10.1038/538020a
10.3389/fncel.2021.701673
10.1038/s41596-020-00432-x
ContentType Journal Article
Copyright Copyright: © 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
COPYRIGHT 2023 Public Library of Science
2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 Anwer et al 2023 Anwer et al
2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: COPYRIGHT 2023 Public Library of Science
– notice: 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 Anwer et al 2023 Anwer et al
– notice: 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Beteendevetenskapligt laboratorium
Lunds universitets profilområden
LU Profile Area: Proactive Ageing
Behavioural Neuroscience Laboratory
MultiPark: Multidisciplinary research focused on Parkinson's disease
Lunds universitet
Institutionen för experimentell medicinsk vetenskap
Profile areas and other strong research environments
Neuroinflammation
Lund University
Neural plasticitet och reparation
Lund University Profile areas
Strategiska forskningsområden (SFO)
Department of Experimental Medical Science
Faculty of Medicine
Strategic research areas (SRA)
Medicinska fakulteten
LU profilområde: Proaktivt åldrande
Neural Plasticity and Repair
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Department of Experimental Medical Science
– name: Neural plasticitet och reparation
– name: LU profilområde: Proaktivt åldrande
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Lunds universitets profilområden
– name: Lund University Profile areas
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Neuroinflammation
– name: LU Profile Area: Proactive Ageing
– name: Behavioural Neuroscience Laboratory
– name: Institutionen för experimentell medicinsk vetenskap
– name: Profile areas and other strong research environments
– name: Neural Plasticity and Repair
– name: Beteendevetenskapligt laboratorium
– name: MultiPark: Multidisciplinary research focused on Parkinson's disease
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0284480
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef


MEDLINE - Academic
Agricultural Science Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate automated quantification of microlial cell numbers
EISSN 1932-6203
ExternalDocumentID 2808191686
oai_doaj_org_article_fcdfb7538fd1416cbc6c38dd6c8d0c4e
10.1371/journal.pone.0284480
oai_portal_research_lu_se_publications_b9ee1109_ff27_4e02_a45e_6153cff5a14e
PMC10150977
A747691840
37126506
10_1371_journal_pone_0284480
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Sweden
Fiji
United States--US
GeographicLocations_xml – name: Sweden
– name: Fiji
– name: United States--US
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R21 NS099416
– fundername: NINDS NIH HHS
  grantid: R01 NS110398
– fundername: NINDS NIH HHS
  grantid: R33 NS099416
– fundername: NINDS NIH HHS
  grantid: R01 NS105826
– fundername: NIDDK NIH HHS
  grantid: R01 DK108798
– fundername: ;
– fundername: ;
  grantid: NS105826
– fundername: ;
  grantid: 2019-01551
– fundername: ;
  grantid: VR2016-01789
– fundername: ;
  grantid: NS099416
– fundername: ;
  grantid: VR2018-03033
– fundername: ;
  grantid: R01 DK108798-05
– fundername: ;
  grantid: NS110398
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ADTOC
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c783t-ab43d5964dc1ae678a2d4be286f07d824d03289fb01cebd37232b2b32fdf847b3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jul 02 11:04:00 EDT 2023
Fri Oct 03 12:45:06 EDT 2025
Sun Oct 26 04:03:44 EDT 2025
Tue Oct 21 03:40:40 EDT 2025
Tue Sep 30 17:14:23 EDT 2025
Fri Sep 05 10:29:23 EDT 2025
Tue Oct 07 07:58:28 EDT 2025
Mon Oct 20 21:56:35 EDT 2025
Mon Oct 20 16:35:44 EDT 2025
Thu Oct 16 15:56:38 EDT 2025
Thu Oct 16 16:28:26 EDT 2025
Thu May 22 21:19:38 EDT 2025
Mon Jul 21 06:04:44 EDT 2025
Wed Oct 01 03:30:39 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright: © 2023 Anwer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c783t-ab43d5964dc1ae678a2d4be286f07d824d03289fb01cebd37232b2b32fdf847b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5802-5487
0000-0003-0300-7606
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0284480
PMID 37126506
PQID 2808191686
PQPubID 1436336
PageCount e0284480
ParticipantIDs plos_journals_2808191686
doaj_primary_oai_doaj_org_article_fcdfb7538fd1416cbc6c38dd6c8d0c4e
unpaywall_primary_10_1371_journal_pone_0284480
swepub_primary_oai_portal_research_lu_se_publications_b9ee1109_ff27_4e02_a45e_6153cff5a14e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10150977
proquest_miscellaneous_2808214364
proquest_journals_2808191686
gale_infotracmisc_A747691840
gale_infotracacademiconefile_A747691840
gale_incontextgauss_ISR_A747691840
gale_incontextgauss_IOV_A747691840
gale_healthsolutions_A747691840
pubmed_primary_37126506
crossref_citationtrail_10_1371_journal_pone_0284480
crossref_primary_10_1371_journal_pone_0284480
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References T Falk (pone.0284480.ref070) 2019; 16
BJ Hindson (pone.0284480.ref045) 2011; 83
ET McKinley (pone.0284480.ref074) 2022; 101
G Boka (pone.0284480.ref098) 1994; 172
L Quintino (pone.0284480.ref058) 2022; 378
D Gomez-Nicola (pone.0284480.ref010) 2013; 33
S Phani (pone.0284480.ref026) 2012; 18
D Clarke (pone.0284480.ref032) 2021; 11
JG Greener (pone.0284480.ref072) 2022; 23
WY Wang (pone.0284480.ref018) 2015; 3
M Lock (pone.0284480.ref046) 2014; 25
Q Li (pone.0284480.ref002) 2018; 18
A Boza-Serrano (pone.0284480.ref030) 2018; 8
PL McGeer (pone.0284480.ref095) 1988; 38
K Young (pone.0284480.ref042) 2018
H Olai (pone.0284480.ref066) 2020; 8
V Landel (pone.0284480.ref087) 2014; 9
MJ Benskey (pone.0284480.ref050) 2018; 11
J. Gehrmann (pone.0284480.ref005) 1996; 147
R Kongsui (pone.0284480.ref037) 2014; 11
TA Ferreira (pone.0284480.ref033) 2014; 11
WW Chen (pone.0284480.ref020) 2016; 13
S George (pone.0284480.ref034) 2019; 14
EW Lankau (pone.0284480.ref064) 2014; 53
CW Olanow (pone.0284480.ref090) 2019; 142
DJ DiSabato (pone.0284480.ref001) 2016; 139
M Mogi (pone.0284480.ref096) 2007; 414
T Aida (pone.0284480.ref062) 2020; 65
RC Deo (pone.0284480.ref073) 2015; 132
HE Whitson (pone.0284480.ref088) 2022; 22
M Negrini (pone.0284480.ref039) 2022
A Sierra (pone.0284480.ref012) 2013; 7
K Kierdorf (pone.0284480.ref016) 2013; 7
V Howard (pone.0284480.ref067) 2004
B. Ratner (pone.0284480.ref065) 2009; 17
J Leyh (pone.0284480.ref069) 2021; 15
P Gross (pone.0284480.ref079) 2016; 6
C Marogianni (pone.0284480.ref024) 2020; 21
G Codolo (pone.0284480.ref092) 2013; 8
E Becht (pone.0284480.ref071) 2021; 7
K Baranova (pone.0284480.ref078) 2021; 74
M Negrini (pone.0284480.ref043) 2020; 93
YS Kim (pone.0284480.ref013) 2006; 38
AM Penttinen (pone.0284480.ref081) 2018; 48
L Guzman-Martinez (pone.0284480.ref022) 2019; 10
R Fernandez-Calle (pone.0284480.ref089) 2022; 17
F Gubinelli (pone.0284480.ref047) 2022
AM Casano (pone.0284480.ref004) 2015; 32
JB Lugagne (pone.0284480.ref080) 2020; 16
Y Ouchi (pone.0284480.ref094) 2005; 57
MA Burguillos (pone.0284480.ref029) 2015; 10
S Forner (pone.0284480.ref085) 2021; 8
F Simunovic (pone.0284480.ref099) 2009; 132
J Silburt (pone.0284480.ref082) 2022; 19
D. Castelvecchi (pone.0284480.ref084) 2016; 538
S Shrigley (pone.0284480.ref040) 2021; 11
WJ Streit (pone.0284480.ref008) 1988; 1
H Morrison (pone.0284480.ref038) 2017; 7
P Thakur (pone.0284480.ref041) 2017; 114
S Choi (pone.0284480.ref083) 2022; 12
J Guo (pone.0284480.ref075) 2021; 16
R Gober (pone.0284480.ref035) 2022; 32
N Van Camp (pone.0284480.ref093) 2021; 49
A Heuer (pone.0284480.ref048) 2013; 247
MA Cuadros (pone.0284480.ref011) 1998; 56
CK Glass (pone.0284480.ref021) 2010; 140
HS Kwon (pone.0284480.ref023) 2020; 9
L Geirsdottir (pone.0284480.ref086) 2019; 179
S Berg (pone.0284480.ref057) 2019; 16
VH Perry (pone.0284480.ref007) 1993; 16
M Davidsson (pone.0284480.ref044) 2020; 10
A Heuer (pone.0284480.ref049) 2016; 282
TY Lin (pone.0284480.ref055) 2017
A Nimmerjahn (pone.0284480.ref003) 2005; 308
JA Smith (pone.0284480.ref017) 2012; 87
E Caggiu (pone.0284480.ref019) 2019; 10
M Svensson (pone.0284480.ref060) 2021; 11
R Morelli (pone.0284480.ref056) 2021; 11
A Boza-Serrano (pone.0284480.ref031) 2019; 138
K Chatfield (pone.0284480.ref063) 2018
AS Harms (pone.0284480.ref091) 2021; 36
J Stephenson (pone.0284480.ref027) 2018; 154
H Kettenmann (pone.0284480.ref015) 2011; 91
DK Franco-Bocanegra (pone.0284480.ref009) 2019; 8
G Rosoff (pone.0284480.ref077) 2022
F Gubinelli (pone.0284480.ref100) 2023; 4
S Heindl (pone.0284480.ref036) 2018; 12
J Redmon (pone.0284480.ref052) 2018
M Svensson (pone.0284480.ref061) 2020; 10
J Grundemann (pone.0284480.ref097) 2008; 36
S Bachiller (pone.0284480.ref059) 2022; 19
S Ren (pone.0284480.ref053) 2017; 39
JM Phillip (pone.0284480.ref068) 2021; 16
E Cohen-Karlik (pone.0284480.ref076) 2021; 9
PL McGeer (pone.0284480.ref014) 1988; 540
NA Mohanad (pone.0284480.ref054) 2021; 11
AR Inacio (pone.0284480.ref028) 2015; 12
PL McGeer (pone.0284480.ref025) 2004; 10
GW Kreutzberg (pone.0284480.ref006) 1996; 19
S Xie (pone.0284480.ref051) 2017
References_xml – volume: 8
  start-page: 3
  issue: 1
  year: 2020
  ident: pone.0284480.ref066
  article-title: Meta-analysis of targeted temperature management in animal models of cardiac arrest.
  publication-title: Intensive Care Med Exp
  doi: 10.1186/s40635-019-0291-9
– volume: 65
  start-page: 160
  year: 2020
  ident: pone.0284480.ref062
  article-title: The dawn of non-human primate models for neurodevelopmental disorders
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2020.05.040
– start-page: 113887
  year: 2022
  ident: pone.0284480.ref047
  article-title: Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2022.113887
– volume: 14
  start-page: 34
  issue: 1
  year: 2019
  ident: pone.0284480.ref034
  article-title: Microglia affect alpha-synuclein cell-to-cell transfer in a mouse model of Parkinson’s disease.
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-019-0335-3
– volume: 378
  start-page: 109640
  year: 2022
  ident: pone.0284480.ref058
  article-title: Automated quantification of neuronal swellings in a preclinical rodent model of Parkinson’s disease detects region-specific changes in pathology
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109640
– volume: 12
  start-page: 106
  year: 2018
  ident: pone.0284480.ref036
  article-title: Automated Morphological Analysis of Microglia After Stroke.
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2018.00106
– volume: 11
  start-page: 22920
  issue: 1
  year: 2021
  ident: pone.0284480.ref056
  article-title: Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-01929-5
– volume: 7
  start-page: eabg0505
  issue: 39
  year: 2021
  ident: pone.0284480.ref071
  article-title: High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abg0505
– volume: 142
  start-page: 1690
  issue: 6
  year: 2019
  ident: pone.0284480.ref090
  article-title: Temporal evolution of microglia and alpha-synuclein accumulation following foetal grafting in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awz104
– volume: 540
  start-page: 319
  year: 1988
  ident: pone.0284480.ref014
  article-title: Occurrence of HLA-DR reactive microglia in Alzheimer’s disease
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1988.tb27086.x
– start-page: 1
  year: 2022
  ident: pone.0284480.ref077
  article-title: Machine-Learning-Aided Quantification of Area Coverage of Adherent Cells from Phase-Contrast Images
  publication-title: Microsc Microanal
– volume: 4
  start-page: 100065
  year: 2023
  ident: pone.0284480.ref100
  article-title: Characterisation of functional deficits induced by AAV overexpression of aplha-synucelin in rats.
  publication-title: Current Research in Neurobiology
  doi: 10.1016/j.crneur.2022.100065
– volume: 12
  start-page: 211
  year: 2015
  ident: pone.0284480.ref028
  article-title: Endogenous IFN-beta signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia.
  publication-title: J Neuroinflammation.
  doi: 10.1186/s12974-015-0427-0
– volume: 147
  start-page: 79
  issue: 2–3
  year: 1996
  ident: pone.0284480.ref005
  article-title: Microglia: a sensor to threats in the nervous system
  publication-title: Res Virol
  doi: 10.1016/0923-2516(96)80220-2
– volume: 32
  start-page: e13003
  issue: 1
  year: 2022
  ident: pone.0284480.ref035
  article-title: Microglia activation in postmortem brains with schizophrenia demonstrates distinct morphological changes between brain regions
  publication-title: Brain Pathol
  doi: 10.1111/bpa.13003
– volume: 56
  start-page: 173
  issue: 2
  year: 1998
  ident: pone.0284480.ref011
  article-title: The origin and differentiation of microglial cells during development
  publication-title: Prog Neurobiol
  doi: 10.1016/S0301-0082(98)00035-5
– volume: 49
  start-page: 77
  issue: 1
  year: 2021
  ident: pone.0284480.ref093
  article-title: TSPO imaging in animal models of brain diseases
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05379-z
– volume: 8
  start-page: 1550
  issue: 1
  year: 2018
  ident: pone.0284480.ref030
  article-title: Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer’s disease mouse model 5xFAD.
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-19699-y
– volume: 10
  start-page: 1346
  issue: 1
  year: 2020
  ident: pone.0284480.ref061
  article-title: Voluntary running does not reduce neuroinflammation or improve non-cognitive behavior in the 5xFAD mouse model of Alzheimer’s disease.
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58309-8
– volume: 247
  start-page: 485
  year: 2013
  ident: pone.0284480.ref048
  article-title: Dopamine-rich grafts alleviate deficits in contralateral response space induced by extensive dopamine depletion in rats
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2013.01.020
– volume: 11
  issue: 1
  year: 2021
  ident: pone.0284480.ref054
  article-title: RetinaNet-based Approach for Object Detection and Distance Estimation in an Image.
  publication-title: International Journal on Communications Antenna and Propagation (IRECAP).
– volume: 21
  issue: 22
  year: 2020
  ident: pone.0284480.ref024
  article-title: Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson’s Disease.
  publication-title: Int J Mol Sci.
  doi: 10.3390/ijms21228421
– volume: 11
  start-page: 210045
  issue: 8
  year: 2021
  ident: pone.0284480.ref032
  article-title: An open-source pipeline for analysing changes in microglial morphology.
  publication-title: Open Biol.
  doi: 10.1098/rsob.210045
– volume: 93
  start-page: e103
  issue: 1
  year: 2020
  ident: pone.0284480.ref043
  article-title: AAV Production Everywhere: A Simple, Fast, and Reliable Protocol for In-house AAV Vector Production Based on Chloroform Extraction.
  publication-title: Curr Protoc Neurosci.
  doi: 10.1002/cpns.103
– volume: 32
  start-page: 469
  issue: 4
  year: 2015
  ident: pone.0284480.ref004
  article-title: Microglia: multitasking specialists of the brain
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2015.01.018
– volume: 22
  start-page: 100462
  year: 2022
  ident: pone.0284480.ref088
  article-title: Infection and inflammation: New perspectives on Alzheimer’s disease
  publication-title: Brain Behav Immun Health
  doi: 10.1016/j.bbih.2022.100462
– volume: 19
  start-page: 312
  issue: 8
  year: 1996
  ident: pone.0284480.ref006
  article-title: Microglia: a sensor for pathological events in the CNS
  publication-title: Trends Neurosci
  doi: 10.1016/0166-2236(96)10049-7
– volume: 10
  start-page: 122
  year: 2019
  ident: pone.0284480.ref019
  article-title: Inflammation, Infectious Triggers, and Parkinson’s Disease.
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2019.00122
– volume: 10
  start-page: 1626
  issue: 9
  year: 2015
  ident: pone.0284480.ref029
  article-title: Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.02.012
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: pone.0284480.ref053
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 179
  start-page: 1609
  issue: 7
  year: 2019
  ident: pone.0284480.ref086
  article-title: Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.010
– year: 2022
  ident: pone.0284480.ref039
  article-title: Sequential or Simultaneous Injection of Preformed Fibrils and AAV Overexpression of Alpha-Synuclein Are Equipotent in Producing Relevant Pathology and Behavioral Deficits.
  publication-title: J Parkinsons Dis.
– volume: 101
  start-page: 521
  issue: 6
  year: 2022
  ident: pone.0284480.ref074
  article-title: MIRIAM: A machine and deep learning single-cell segmentation and quantification pipeline for multi-dimensional tissue images.
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.24541
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  ident: pone.0284480.ref073
  article-title: Machine Learning in Medicine.
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 132
  start-page: 1795
  issue: Pt 7
  year: 2009
  ident: pone.0284480.ref099
  article-title: Gene expression profiling of substantia nigra dopamine neurons: further insights into Parkinson’s disease pathology
  publication-title: Brain
  doi: 10.1093/brain/awn323
– volume: 154
  start-page: 204
  issue: 2
  year: 2018
  ident: pone.0284480.ref027
  article-title: Inflammation in CNS neurodegenerative diseases
  publication-title: Immunology
  doi: 10.1111/imm.12922
– volume: 18
  start-page: 225
  issue: 4
  year: 2018
  ident: pone.0284480.ref002
  article-title: Microglia and macrophages in brain homeostasis and disease
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.125
– volume: 9
  start-page: 33
  year: 2014
  ident: pone.0284480.ref087
  article-title: Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease.
  publication-title: Mol Neurodegener.
  doi: 10.1186/1750-1326-9-33
– year: 2017
  ident: pone.0284480.ref051
  article-title: Aggregated Residual Transformations for Deep Neural Networks.
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  doi: 10.1109/CVPR.2017.634
– volume: 33
  start-page: 2481
  issue: 6
  year: 2013
  ident: pone.0284480.ref010
  article-title: Regulation of microglial proliferation during chronic neurodegeneration
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4440-12.2013
– volume: 74
  start-page: 462
  issue: 7
  year: 2021
  ident: pone.0284480.ref078
  article-title: Evaluation of an open-source machine-learning tool to quantify bone marrow plasma cells
  publication-title: J Clin Pathol
  doi: 10.1136/jclinpath-2021-207524
– volume: 114
  start-page: E8284
  issue: 39
  year: 2017
  ident: pone.0284480.ref041
  article-title: Modeling Parkinson’s disease pathology by combination of fibril seeds and alpha-synuclein overexpression in the rat brain
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1710442114
– volume: 36
  start-page: 37
  issue: 1
  year: 2021
  ident: pone.0284480.ref091
  article-title: Inflammation in Experimental Models of alpha-Synucleinopathies
  publication-title: Mov Disord
  doi: 10.1002/mds.28264
– volume: 7
  start-page: 6
  year: 2013
  ident: pone.0284480.ref012
  article-title: Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2013.00006
– volume: 7
  start-page: 13211
  issue: 1
  year: 2017
  ident: pone.0284480.ref038
  article-title: Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13581-z
– volume: 8
  start-page: e55375
  issue: 1
  year: 2013
  ident: pone.0284480.ref092
  article-title: Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies.
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0055375
– volume: 57
  start-page: 168
  issue: 2
  year: 2005
  ident: pone.0284480.ref094
  article-title: Microglial activation and dopamine terminal loss in early Parkinson’s disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.20338
– volume: 9
  start-page: 42
  issue: 1
  year: 2020
  ident: pone.0284480.ref023
  article-title: Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes.
  publication-title: Transl Neurodegener
  doi: 10.1186/s40035-020-00221-2
– volume: 87
  start-page: 10
  issue: 1
  year: 2012
  ident: pone.0284480.ref017
  article-title: Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2011.10.004
– volume: 17
  start-page: 62
  issue: 1
  year: 2022
  ident: pone.0284480.ref089
  article-title: APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-022-00566-4
– volume: 11
  start-page: 4910
  issue: 1
  year: 2021
  ident: pone.0284480.ref060
  article-title: The effect of electroconvulsive therapy on neuroinflammation, behavior and amyloid plaques in the 5xFAD mouse model of Alzheimer’s disease.
  publication-title: Sci Rep.
  doi: 10.1038/s41598-021-83998-0
– volume: 10
  start-page: S3
  issue: Suppl 1
  year: 2004
  ident: pone.0284480.ref025
  article-title: Inflammation and neurodegeneration in Parkinson’s disease
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2004.01.005
– volume: 11
  start-page: 982
  issue: 10
  year: 2014
  ident: pone.0284480.ref033
  article-title: Neuronal morphometry directly from bitmap images.
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3125
– volume: 18
  start-page: S207
  issue: Suppl 1
  year: 2012
  ident: pone.0284480.ref026
  article-title: Neurodegeneration and inflammation in Parkinson’s disease
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/S1353-8020(11)70064-5
– start-page: 81
  volume-title: The Use of Non-human Primates in Research.
  year: 2018
  ident: pone.0284480.ref063
– volume: 140
  start-page: 918
  issue: 6
  year: 2010
  ident: pone.0284480.ref021
  article-title: Mechanisms underlying inflammation in neurodegeneration
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.016
– volume: 12
  start-page: 1806
  issue: 1
  year: 2022
  ident: pone.0284480.ref083
  article-title: Automated characterisation of microglia in ageing mice using image processing and supervised machine learning algorithms.
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-05815-6
– volume: 36
  start-page: e38
  issue: 7
  year: 2008
  ident: pone.0284480.ref097
  article-title: Elevated alpha-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson’s disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn084
– volume: 8
  issue: 6
  year: 2019
  ident: pone.0284480.ref009
  article-title: Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer’s Disease.
  publication-title: Cells
  doi: 10.3390/cells8060639
– volume: 3
  start-page: 136
  issue: 10
  year: 2015
  ident: pone.0284480.ref018
  article-title: Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.
  publication-title: Ann Transl Med.
– volume: 1
  start-page: 301
  issue: 5
  year: 1988
  ident: pone.0284480.ref008
  article-title: Functional plasticity of microglia: a review
  publication-title: Glia
  doi: 10.1002/glia.440010502
– volume: 19
  start-page: 24
  issue: 1
  year: 2022
  ident: pone.0284480.ref082
  article-title: MORPHIOUS: an unsupervised machine learning workflow to detect the activation of microglia and astrocytes.
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-021-02376-9
– volume: 16
  start-page: 1331
  issue: 5
  year: 2021
  ident: pone.0284480.ref075
  article-title: Machine learning-assisted high-content analysis of pluripotent stem cell-derived embryos in vitro
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2021.03.018
– volume: 17
  start-page: 139
  year: 2009
  ident: pone.0284480.ref065
  article-title: The correlation coefficient: Its values range between +1/−1, or do they?
  publication-title: The correlation coefficient: Its values range between +1/−1, or do they?
– volume: 282
  start-page: 78
  year: 2016
  ident: pone.0284480.ref049
  article-title: hESC-derived neural progenitors prevent xenograft rejection through neonatal desensitisation
  publication-title: Exp Neurol
  doi: 10.1016/j.expneurol.2016.05.027
– volume: 91
  start-page: 461
  issue: 2
  year: 2011
  ident: pone.0284480.ref015
  article-title: Physiology of microglia
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00011.2010
– volume: 7
  start-page: 44
  year: 2013
  ident: pone.0284480.ref016
  article-title: Factors regulating microglia activation
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2013.00044
– volume: 11
  start-page: 182
  year: 2014
  ident: pone.0284480.ref037
  article-title: Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat.
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-014-0182-7
– volume: 53
  start-page: 278
  issue: 3
  year: 2014
  ident: pone.0284480.ref064
  article-title: Use of nonhuman primates in research in North America.
  publication-title: J Am Assoc Lab Anim Sci
– year: 2017
  ident: pone.0284480.ref055
  article-title: Feature Pyramid Networks for Object Detection.
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  doi: 10.1109/CVPR.2017.106
– volume: 11
  start-page: 36
  year: 2018
  ident: pone.0284480.ref050
  article-title: Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity.
  publication-title: Front Mol Neurosci.
  doi: 10.3389/fnmol.2018.00036
– volume: 10
  start-page: 21532
  issue: 1
  year: 2020
  ident: pone.0284480.ref044
  article-title: A comparison of AAV-vector production methods for gene therapy and preclinical assessment
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78521-w
– volume: 139
  start-page: 136
  issue: Suppl 2
  year: 2016
  ident: pone.0284480.ref001
  article-title: Neuroinflammation: the devil is in the details
  publication-title: J Neurochem
  doi: 10.1111/jnc.13607
– volume: 16
  start-page: 67
  issue: 1
  year: 2019
  ident: pone.0284480.ref070
  article-title: U-Net: deep learning for cell counting, detection, and morphometry.
  publication-title: Nat Methods.
  doi: 10.1038/s41592-018-0261-2
– volume: 23
  start-page: 40
  issue: 1
  year: 2022
  ident: pone.0284480.ref072
  article-title: A guide to machine learning for biologists
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-021-00407-0
– volume: 13
  start-page: 3391
  issue: 4
  year: 2016
  ident: pone.0284480.ref020
  article-title: Role of neuroinflammation in neurodegenerative diseases (Review).
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2016.4948
– volume: 16
  start-page: 268
  issue: 7
  year: 1993
  ident: pone.0284480.ref007
  article-title: Macrophages and inflammation in the central nervous system
  publication-title: Trends Neurosci
  doi: 10.1016/0166-2236(93)90180-T
– issue: 136
  year: 2018
  ident: pone.0284480.ref042
  article-title: Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ.
  publication-title: J Vis Exp.
  doi: 10.3791/57648
– volume: 308
  start-page: 1314
  issue: 5726
  year: 2005
  ident: pone.0284480.ref003
  article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
  publication-title: Science
  doi: 10.1126/science.1110647
– volume: 48
  start-page: 2354
  issue: 6
  year: 2018
  ident: pone.0284480.ref081
  article-title: Implementation of deep neural networks to count dopamine neurons in substantia nigra
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.14129
– volume: 8
  start-page: 270
  issue: 1
  year: 2021
  ident: pone.0284480.ref085
  article-title: Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease.
  publication-title: Sci Data
  doi: 10.1038/s41597-021-01054-y
– volume: 16
  start-page: e1007673
  issue: 4
  year: 2020
  ident: pone.0284480.ref080
  article-title: DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning.
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1007673
– volume: 16
  start-page: 1226
  issue: 12
  year: 2019
  ident: pone.0284480.ref057
  article-title: ilastik: interactive machine learning for (bio)image analysis.
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0582-9
– volume: 25
  start-page: 115
  issue: 2
  year: 2014
  ident: pone.0284480.ref046
  article-title: Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR
  publication-title: Hum Gene Ther Methods
  doi: 10.1089/hgtb.2013.131
– volume-title: Unbiased Stereology: Three-Dimensional Measurement in Microscopy
  year: 2004
  ident: pone.0284480.ref067
  doi: 10.4324/9780203006399
– volume: 9
  start-page: 674710
  year: 2021
  ident: pone.0284480.ref076
  article-title: Quantification of Osteoclasts in Culture, Powered by Machine Learning.
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.674710
– volume: 414
  start-page: 94
  issue: 1
  year: 2007
  ident: pone.0284480.ref096
  article-title: p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2006.12.003
– volume: 172
  start-page: 151
  issue: 1–2
  year: 1994
  ident: pone.0284480.ref098
  article-title: Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(94)90684-X
– volume: 11
  start-page: 515
  issue: 2
  year: 2021
  ident: pone.0284480.ref040
  article-title: Grafts Derived from an alpha-Synuclein Triplication Patient Mediate Functional Recovery but Develop Disease-Associated Pathology in the 6-OHDA Model of Parkinson’s Disease.
  publication-title: J Parkinsons Dis.
  doi: 10.3233/JPD-202366
– volume: 19
  start-page: 151
  issue: 1
  year: 2022
  ident: pone.0284480.ref059
  article-title: Early-life stress elicits peripheral and brain immune activation differently in wild type and 5xFAD mice in a sex-specific manner.
  publication-title: J Neuroinflammation.
  doi: 10.1186/s12974-022-02515-w
– year: 2018
  ident: pone.0284480.ref052
  publication-title: YOLOv3: An Incremental Improvement
– volume: 83
  start-page: 8604
  issue: 22
  year: 2011
  ident: pone.0284480.ref045
  article-title: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number
  publication-title: Anal Chem
  doi: 10.1021/ac202028g
– volume: 6
  start-page: 23431
  year: 2016
  ident: pone.0284480.ref079
  article-title: Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images
  publication-title: Sci Rep
  doi: 10.1038/srep23431
– volume: 10
  start-page: 1008
  year: 2019
  ident: pone.0284480.ref022
  article-title: Neuroinflammation as a Common Feature of Neurodegenerative Disorders.
  publication-title: Front Pharmacol.
  doi: 10.3389/fphar.2019.01008
– volume: 38
  start-page: 333
  issue: 4
  year: 2006
  ident: pone.0284480.ref013
  article-title: Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease
  publication-title: Exp Mol Med
  doi: 10.1038/emm.2006.40
– volume: 38
  start-page: 1285
  issue: 8
  year: 1988
  ident: pone.0284480.ref095
  article-title: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains.
  publication-title: Neurology
  doi: 10.1212/WNL.38.8.1285
– volume: 138
  start-page: 251
  issue: 2
  year: 2019
  ident: pone.0284480.ref031
  article-title: Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-019-02013-z
– volume: 538
  start-page: 20
  issue: 7623
  year: 2016
  ident: pone.0284480.ref084
  article-title: Can we open the black box of AI?
  publication-title: Nature
  doi: 10.1038/538020a
– volume: 15
  start-page: 701673
  year: 2021
  ident: pone.0284480.ref069
  article-title: Classification of Microglial Morphological Phenotypes Using Machine Learning.
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2021.701673
– volume: 16
  start-page: 754
  issue: 2
  year: 2021
  ident: pone.0284480.ref068
  article-title: A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei.
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-00432-x
SSID ssj0053866
Score 2.4543512
Snippet Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications,...
SourceID plos
doaj
unpaywall
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0284480
SubjectTerms Algorithms
Alzheimer's disease
Alzheimers disease
Analysis
Animal tissues
Animals
Basic Medicine
Biocompatibility
Biology and Life Sciences
Biomedical research
Brain
Brain research
Care and treatment
Central nervous system diseases
Comparative analysis
Computer and Information Sciences
Data mining
Diagnosis
Engineering and Technology
EU directives
Gene expression
Health aspects
Hemispheres
Humidity
Inflammation
Laboratories
Laboratory animals
Learning algorithms
Leukocyte migration
Machine Learning
Macrophages
Mammals
Medical and Health Sciences
Medicin och hälsovetenskap
Medicine and Health Sciences
Medicinska och farmaceutiska grundvetenskaper
Mice
Microglia
Microglia - metabolism
Microglial cells
Monkeys & apes
Morphology
Movement disorders
Mutation
Nervous system diseases
Neural networks
Neurodegenerative diseases
Neurosciences
Neurovetenskaper
Open source software
Parkinson Disease - metabolism
Parkinson's disease
Parkinsons disease
Physical Sciences
Primates
Rats
Reproducibility of Results
Research and Analysis Methods
Rodents
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXIADorzqUmBBSICEUz_Wr2NAVAUJkICiistqn2klYxucCPEP-NnMeDdWLCq1By45ZGcceWZ2HpvZbwh5qiBuQCmbhiKFDyZYEVYVE2GUqNyWBoKSxgvO7z_kR8fs3Ul2sjXqC3vCHDywE9yBVdpKyKlLq2NIHpRUuUpLrXNV6kgxg943KqtNMeV8MJDnub8olxbxgdfLvGsbM4eICjVJNAlEA17_6JVnXd3256Wc_3ZOenzR6-TquunE71-irrfi0-FNcsMnlnThXmiHXDHNLbLjt25Pn3t86Re3yZ8FVeP0Qdpa-n1oqDTUT5BY0g3QOPBBTkshR6Q_1sK1FQ2aHLiwlW9Zg_1SPP3v6VkzUEocOuEJzEsKFtZT0WjatE04TASkHSJcQIp7hxwfvvny-ij0AxlCVZTpKhSSpTqrcqZVLAyEOZFoJk1S5jYqdJkwjeh8lZVRrIzUaQHpmkxkmlhtIQrK9C6ZwY-ZXUIro6XNtCqYrVgsTalYlJoqq5RiEp4SkHSjHa48WjkOzaj58BdcAVWLkytHnXKv04CEI1fn0DouoH-Fih9pEWt7-AIskHsL5BdZYEAeodlwd3F19Bh8AZVaXmEFHZAnAwXibTTY0LMU677nbz9-vQTR508TomeeyLYgDiX8JQp4J8TxmlDuTyjBa6jJ8i4a-UYqPU9wBAvUCmUOnBvDP3_58biMD8Umvca0a0eTQP6ds4Dcc_tklCxoIIFiALjLyQ6aiH660pydDnDnMR7KQZkSkG9us015hiqVe2isU16veW94t3XmzWVlDALrcmuTgjMTJVywzHCsdZS1mYhRifNxA1_KdPb-h-ncJ9cSSJpdA-0-ma1-rs0DSHJX8uHgz_4CeBWsKA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9AAcEOXVQIEFIQESbu31xo8DQilqVZAIqFBUcVntM60UbLduhPgH_Gxm7LWpRQW95JCddZR5z3r2G0KeaYgbUMrGgYzhg0ueBnnOZRAynbjMQlAyeMH5wyzZO-DvDyeHK2TW3YXBtsrOJzaO2pQaz8i3GI6IgFwmS95UJwFOjcK3q90IDelHK5jXDcTYFbLKEBlrRFa3d2af9jvfDNadJP4CXZxGW15em1VZ2E2ItFCrhIMA1eD49956VC3K-qJU9O-OSo87ep1cXRaV_PlDLhbn4tbuTXLDJ5x02mrIGlmxxS2y5k26pi887vTL2-TXlOp-KiEtHf3eNFpa6idLzGkHQA77INelkDvSk6Vs240aCTe7sMVvvgC9pvhWoKbHRUOpcBiFJ7CvKGheTWVhaFEWQTMpkFaIfAGp7x1ysLvz5e1e4Ac1BDrN4rNAKh6bSZ5woyNpIfxJZriyLEtcmJqMcYOofblTYaStMnEKaZxiKmbOOIiOKr5LRvBjdp3Q3BrlJkan3OU8UjbTPIxtPsm15gqeMiZxJx2hPYo5DtNYiObVXArVTMtXgTIVXqZjEvS7qhbF4z_02yj4nhYxuJsvytO58CYtnDZOQbWXORNBWquVTnScGZPozISa2zF5jGoj2gutvScRU6jgkhwr6zF52lAgDkeBjT5zuaxr8e7j10sQfd4fED33RK4EdmjpL1fAf0J8rwHlxoASvIkeLK-jkndcqcUfu4OdneJfvPykX8aHYvNeYctlS8MgL0_4mNxr7aTnLEiAQZEAu7OBBQ1YP1wpjo8aGPQID-ugfBmTb62xDfc01avwkFlHYrEUtRXVubNwoXJrEXBXOMdSwW3IhOQTK7AG0s5NZIRC3OwN-FKqc__fXHpArjFIk9uW2Q0yOjtd2oeQ1p6pR95X_QYM6qg1
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wA8AONrhQEGIT4k0iWOm4_HgpgGEgMBQwMJWf7sJkpaSCMEDzzzZ3OXONECQ4wHXqqqvnOa89l3Z59_R8htDXYDQtk4kDF8cMnTIM-5DEKmE5dZMEoGLzg_20m2d_nTvfHeCnnf3oXxEoQYcTYv65N8_DIv7KaX5CbiFTWnp6MoTqOWY7QAohFYS4g3wjs14hDujC3xAtIJspqMwVUfkNXdnReTt81JMwsSFsb-Ot2feuqZqxrVv1u7B_jPjnJMf8-v9Cikp8nJqljIr1_kbHbIim2dJd_b92-SVz6MqqUa6W-_QEP-NwGdI2e8_0snTS9rZMUW58maX2FKes_DYN-_QH5MqO6KJNK5ox_rvE9LfaGLKW3x0IEPXG8Kriz9VMkm-6lWuJoLMw6nM5hmFA8pSnpQ1JQKa2N4AvuAwkQoqSwMLeZFUBcupAsE4gBP_CLZ3Xr8-tF24OtGBDrN4mUgFY8NjDc3OpIWrLFkhivLssSFqckYNwgimDsVRtoqE6fgVSqmYuaMA2Ot4ktkAA-z64Tm1ig3NjrlLueRspnmYWzzca41V9DLkMStegjtQdWxtsdM1CeFKQRXjVwFSl946Q9J0HEtGlCRv9A_RM3raBESvP4Bhl_4YRdOG6cg-MycicDL1konOs6MSXRmQs3tkNxAvRXN_dpuYRMTCCiTHAP9IblVUyAsSIF5R1NZlaV48vzNMYhevewR3fVEbg7i0NLf9YB3Qu3sUW70KGFx073mdVTvViqlYFgpBkKaLAHOduYd3Xyza8ZOMZewsPOqoWEQJiR8SC43E7WTLIwAg5gFuLPeFO6Jvt9SHOzXqOwR7h1CNDUk75rZ3uepg2nhEbz2xawSpRWLQ1vzQuXWIv6vcI6lgtuQCcnHVmBIpp0bywgHcdStIMdSnSv_ynCVnGLgxzc5vRtksPxc2Wvgdy_Vdb96_gRa5uFh
  priority: 102
  providerName: Unpaywall
Title A comparison of machine learning approaches for the quantification of microglial cells in the brain of mice, rats and non-human primates
URI https://www.ncbi.nlm.nih.gov/pubmed/37126506
https://www.proquest.com/docview/2808191686
https://www.proquest.com/docview/2808214364
https://pubmed.ncbi.nlm.nih.gov/PMC10150977
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0284480&type=printable
https://doaj.org/article/fcdfb7538fd1416cbc6c38dd6c8d0c4e
http://dx.doi.org/10.1371/journal.pone.0284480
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJ8F4QIyvBUYxCAmQSNUkbj4eEOqmjYG0MQ2KCi-WP7tJIemaVbD_gD-bs-NEi9jEXvwQ3yWKfee7s8-_Q-ilALsBoWzkswgawkjiZxlh_jAUsU4VGCVpLjjvH8R7E_JpOpquoKZmqxvA6tLQztSTmizywe_T8_eg8O9s1YYkaJgG87JQA7CXEHFAEL8KtiozxRz2SXuuANodx-4C3VWca-gmdIXgucQdW2Uh_duFuzfPy-oyr_Tf5EoHQXob3VoWc3b-i-X5BRO2exfdcb4nHtfCso5WVHEPrTvtrvBrB0H95j76M8aiLVCIS41_2pxLhV2RiRlusMiBD9xeDG4kPl2yOvPITrblMtl-sxxEHJsDggqfFJaSm7oUjkC9xSCEFWaFxEVZ-LZoIJ4bEAzwgh-gye7O1-0939Vs8EWSRmc-4ySSoywmUgRMgSVkoSRchWmsh4lMQyINgF-m-TAQissoAY-OhzwKtdRgKHn0EPXgY2oD4UxJrkdSJERnJOAqFWQYqWyUCUE4vMVDUTM7VDhAc1NXI6f2lC6BwKYeV2qml7rp9ZDfcs1rQI__0G-ZiW9pDRy3fVAuZtRpN9VCag6BX6plAB6u4CIWUSplLFI5FER56JkRG1rfbW0XFTqGYC7OTJDtoReWwkByFCbnZ8aWVUU_fv52DaIvRx2iV45IlzAcgrl7FvBPBuqrQ7nZoYSFRXS6N4yQN6NS0dBUaYFwIo2BsxH8y7uft93mpSaPr1DlsqYJwUWPiYce1XrSjmyjdR5KOxrUGfpuT3FybBHRA7NvB5GMh37UytblsWsIdehZxzRf0krR-YVtccozpQz2LtU6TChRw5AyMlLUhENC6xELzCQOWgW-lug8vvIXn6C1EJzlOnF2E_XOFkv1FJzbM95HN5JpAm26HZh290MfrW7tHBwe9e12Ud-uZ_BscnA4_v4XIWSuGw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOiPLqQqEGgQCJtInjzeOAUHlULX0gQYtWXIyf20pLkjZdVf0H_Bp-I2PHCY2ooJde9rAee7Xz8ow9_gahpxL2DUhl44DH8EE5TYM8pzwIiUxMpmFTUvaB8_ZOsr5HP46Goxn0q30LY8sqW5_oHLUqpT0jXyG2RQTEMlnypjoMbNcoe7vattBo1GJTn55Ayla_3ngP8n1GyNqH3Xfrge8qEMg0i48DLmishnlClYy4Bl_NiaJCkywxYaoyQpWFmMuNCCOphYpTiDkEETExyoArFzGsewVdpTH4ErCfdNQleOA7ksQ_z4vTaMVrw3JVFnoZ9nHIhMLe9ue6BHR7wWw1KevzAt2_6zU9qul1NDctKn56wieTM7vi2k10w4ezeLXRv3k0o4tbaN47jBq_8KjWL2-jn6tYdj0PcWnwD1fGqbHvWzHGLbw5zINIGkNkig-nvClmcvrjZtkCwvEErAbbO4caHxSOUthWF55Av8Kg1zXmhcJFWQSuDyGuLK4GBNZ30N6lCOwumoUf0wsI51oJM1QypSankdCZpGGs82EuJRWwygDFrXSY9BjptlXHhLmLvxRypYavzMqUeZkOUNDNqhqMkP_Qv7WC72gtwrf7ojwaM-8wmJHKCMglM6MiCJqlkImMM6USmalQUj1AS1ZtWPNctvNTbBXywyS3efsAPXEUFuWjsGVEYz6ta7bx6esFiL587hE990SmBHZI7p9uwH-y6GE9ysUeJfgq2RtesErecqVmf6waZraKf_7w427YLmpLAwtdThsaAlF_QgfoXmMnHWdBAgRSEJid9Syox_r-SHGw70DWI3sUCMnRAH1rjK0_x-XGzANy7bPJlNWaVWdO2pnItbZwvswYkjKqQ8I4HWpmMyxpzJBHVojLnQFfSHXu_5tLS2hufXd7i21t7Gw-QNcIBORNce4imj0-muqHEEAfi0fOa2H0_bLd5G_kCd8E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFJ4gJl4ejHhjFWU0GjWx0E5ne3kwBkUComhUDPFlnOtCsrYLZUP4B_4mf53ntNNKI1FefNmHnTPd7JzLnG965juEPNSwbwCUjQMZwweXPA3ynMsgZDpxmYVNyeAF53dbyfo2f7Mz3JkhP9u7MFhW2cbEOlCbUuMZ-TLDFhGQy2TJsvNlER9W115M9gPsIIVvWtt2Go2JbNrjI4Bv1fONVdD1I8bWXn9-tR74DgOBTrP4MJCKx2aYJ9zoSFqI25IZrizLEhemJmPcIN1c7lQYaatMnEL-oZiKmTMOwrqK4bnnyPk0jnMsJ0x3OrAHcSRJ_FW9OI2WvWUsTcrCLsGeDqgo7G2FdceAbl-YnYzL6rSk98_aTc9weplcnBYTeXwkx-MTO-TaVXLFp7Z0pbHFOTJji2tkzgePij7xDNdPr5MfK1R3_Q9p6ej3uqTTUt_DYkRbqnOYB1k1hSyV7k9lU9hU21I9C4sJR2PwIIrvHyq6V9SSCtteeAH7jIKNV1QWhhZlEdQ9CekEOTYgyb5Btv-Lwm6SWfgxO09obo1yQ6NT7nIeKZtpHsY2H-ZacwVPGZC41Y7Qni8d23aMRf0SMAXc1KyrQJ0Kr9MBCbpZk4Yv5B_yL1HxnSyyfddflAcj4YOHcNo4BbgycyaCBForneg4MybRmQk1twOyiGYjmquzXcwSK4AVkxwx_IA8qCWQ8aNA3xnJaVWJjfdfziD06WNP6LEXciUsh5b-Ggf8J2QS60ku9CQhbune8Dwaebsqlfjt4TCzNfzTh-93w_hQLBMsbDltZBgggIQPyK3GT7qVBQ0wgCMwO-t5UG_p-yPF3m5NuB7hsSAApQH52jhbf06Nk4Un59oV46morJicOHUXKrcWqX2FcywV3IZMSD60AtGWdm4oI1TiUufAZzKd239fpUVyAQKkeLuxtXmHXGKQmzd1ugtk9vBgau9CLn2o7tVBi5Jv_ztK_gJ-IONH
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wA8AONrhQEGIT4k0iWOm4_HgpgGEgMBQwMJWf7sJkpaSCMEDzzzZ3OXONECQ4wHXqqqvnOa89l3Z59_R8htDXYDQtk4kDF8cMnTIM-5DEKmE5dZMEoGLzg_20m2d_nTvfHeCnnf3oXxEoQYcTYv65N8_DIv7KaX5CbiFTWnp6MoTqOWY7QAohFYS4g3wjs14hDujC3xAtIJspqMwVUfkNXdnReTt81JMwsSFsb-Ot2feuqZqxrVv1u7B_jPjnJMf8-v9Cikp8nJqljIr1_kbHbIim2dJd_b92-SVz6MqqUa6W-_QEP-NwGdI2e8_0snTS9rZMUW58maX2FKes_DYN-_QH5MqO6KJNK5ox_rvE9LfaGLKW3x0IEPXG8Kriz9VMkm-6lWuJoLMw6nM5hmFA8pSnpQ1JQKa2N4AvuAwkQoqSwMLeZFUBcupAsE4gBP_CLZ3Xr8-tF24OtGBDrN4mUgFY8NjDc3OpIWrLFkhivLssSFqckYNwgimDsVRtoqE6fgVSqmYuaMA2Ot4ktkAA-z64Tm1ig3NjrlLueRspnmYWzzca41V9DLkMStegjtQdWxtsdM1CeFKQRXjVwFSl946Q9J0HEtGlCRv9A_RM3raBESvP4Bhl_4YRdOG6cg-MycicDL1konOs6MSXRmQs3tkNxAvRXN_dpuYRMTCCiTHAP9IblVUyAsSIF5R1NZlaV48vzNMYhevewR3fVEbg7i0NLf9YB3Qu3sUW70KGFx073mdVTvViqlYFgpBkKaLAHOduYd3Xyza8ZOMZewsPOqoWEQJiR8SC43E7WTLIwAg5gFuLPeFO6Jvt9SHOzXqOwR7h1CNDUk75rZ3uepg2nhEbz2xawSpRWLQ1vzQuXWIv6vcI6lgtuQCcnHVmBIpp0bywgHcdStIMdSnSv_ynCVnGLgxzc5vRtksPxc2Wvgdy_Vdb96_gRa5uFh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+machine+learning+approaches+for+the+quantification+of+microglial+cells+in+the+brain+of+mice%2C+rats+and+non-human+primates&rft.jtitle=PloS+one&rft.au=Anwer%2C+Danish+M&rft.au=Gubinelli%2C+Francesco&rft.au=Kurt%2C+Yunus+A&rft.au=Sarauskyte%2C+Livija&rft.date=2023-05-01&rft.eissn=1932-6203&rft.volume=18&rft.issue=5&rft.spage=e0284480&rft_id=info:doi/10.1371%2Fjournal.pone.0284480&rft_id=info%3Apmid%2F37126506&rft.externalDocID=37126506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon