TMS-Induced Cortical Potentiation during Wakefulness Locally Increases Slow Wave Activity during Sleep
Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a...
Saved in:
Published in | PloS one Vol. 2; no. 3; p. e276 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
07.03.2007
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0000276 |
Cover
Abstract | Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.
To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.
These results provide direct evidence for a link between plastic changes and the local regulation of sleep need. |
---|---|
AbstractList | Background Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning. Methodology/Principal Findings To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1±17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep. Conclusions/Significance These results provide direct evidence for a link between plastic changes and the local regulation of sleep need. Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning. To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep. These results provide direct evidence for a link between plastic changes and the local regulation of sleep need. Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning. To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1±17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep. These results provide direct evidence for a link between plastic changes and the local regulation of sleep need. Background Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning. Methodology/Principal Findings To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1±17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep. Conclusions/Significance These results provide direct evidence for a link between plastic changes and the local regulation of sleep need. Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.These results provide direct evidence for a link between plastic changes and the local regulation of sleep need. Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.BACKGROUNDSleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA may reflect plastic changes triggered by learning.To test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.METHODOLOGY/PRINCIPAL FINDINGSTo test this hypothesis directly, we used transcranial magnetic stimulation (TMS) in conjunction with high-density EEG in humans. We show that 5-Hz TMS applied to motor cortex induces a localized potentiation of TMS-evoked cortical EEG responses. We then show that, in the sleep episode following 5-Hz TMS, SWA increases markedly (+39.1+/-17.4%, p<0.01, n = 10). Electrode coregistration with magnetic resonance images localized the increase in SWA to the same premotor site as the maximum TMS-induced potentiation during wakefulness. Moreover, the magnitude of potentiation during wakefulness predicts the local increase in SWA during sleep.These results provide direct evidence for a link between plastic changes and the local regulation of sleep need.CONCLUSIONS/SIGNIFICANCEThese results provide direct evidence for a link between plastic changes and the local regulation of sleep need. |
Audience | Academic |
Author | Esser, Steve K. Ferrarelli, Fabio Tononi, Giulio Huber, Reto Peterson, Michael J. Massimini, Marcello |
AuthorAffiliation | University of California, Irvine, United States of America Department of Psychiatry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America |
AuthorAffiliation_xml | – name: University of California, Irvine, United States of America – name: Department of Psychiatry, University of Wisconsin, Madison, Madison, Wisconsin, United States of America |
Author_xml | – sequence: 1 givenname: Reto surname: Huber fullname: Huber, Reto – sequence: 2 givenname: Steve K. surname: Esser fullname: Esser, Steve K. – sequence: 3 givenname: Fabio surname: Ferrarelli fullname: Ferrarelli, Fabio – sequence: 4 givenname: Marcello surname: Massimini fullname: Massimini, Marcello – sequence: 5 givenname: Michael J. surname: Peterson fullname: Peterson, Michael J. – sequence: 6 givenname: Giulio surname: Tononi fullname: Tononi, Giulio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17342210$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk11v0zAUhiM0xLbCP0AQCWkSFy3-SuLsAqmq-KhUNEQHXFqOfdx6uHGJk0L_Pe7aTu3EEPFFopPnfZPz6pzz5KT2NSTJc4wGmBb4zY3vmlq6wTKWByhepMgfJWe4pKSfE0RPDp5Pk_MQbhDKKM_zJ8kpLigjBKOzxFx_mvbHte4U6HTkm9Yq6dLPvoW6tbK1vk5119h6ln6XP8B0roYQ0omPlFun41o1IAOEdOr8r4isIB2q1q5su97rpg5g-TR5bKQL8Gx37yVf37-7Hn3sT64-jEfDSV8VHLV9QqQuNCq5wgUuMcPMFIhSYjhgXoIyuMpzk1c8JxnOqS4hk4SAJpUqCNWa9pKXW9-l80HsIgoClxnCsXvGHiQILzFFOcsiMd4S2ssbsWzsQjZr4aUVtwXfzITc5ORAYKY5MzwzrFKsgqIqK8hLpmXFgbMKRa-3u6911QK0iqk20h2ZHr-p7VzM_Epgjujm9JKLnUHjf3YQWrGwQYFzsgbfBVEgQjmNzfeSV_fAv3f_MHWYwGBLzWRs0tbGx39T8WhYWBXnzdhYH7KCEM4LVkbB6yNBZFr43c5kF4IYT7_8P3v17Zi9OGDnIF07D951m7kMx-CLw5zvAt4PegQut4BqfAgNGKFsezvfsTXrBEZis1X7OMRmq8Ruq6KY3RPf-f9L9gdcnyT- |
CitedBy_id | crossref_primary_10_1016_j_smrv_2008_04_001 crossref_primary_10_1111_bcpt_13598 crossref_primary_10_1016_j_jneumeth_2020_108746 crossref_primary_10_1523_JNEUROSCI_0763_12_2013 crossref_primary_10_5664_jcsm_9846 crossref_primary_10_1016_j_conb_2018_10_006 crossref_primary_10_1002_hbm_22288 crossref_primary_10_1111_jsr_12242 crossref_primary_10_3389_fnhum_2021_738605 crossref_primary_10_1016_j_tins_2018_03_003 crossref_primary_10_1186_s13023_017_0569_5 crossref_primary_10_1249_JES_0000000000000273 crossref_primary_10_3988_jcn_2017_13_4_340 crossref_primary_10_1038_s41583_019_0223_4 crossref_primary_10_1002_jnr_25029 crossref_primary_10_1152_physiol_00019_2024 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1124_pr_119_018697 crossref_primary_10_3389_fncel_2015_00477 crossref_primary_10_1016_j_concog_2015_04_024 crossref_primary_10_1016_j_neulet_2007_12_025 crossref_primary_10_1016_j_neurobiolaging_2018_06_035 crossref_primary_10_1097_JCMA_0000000000000924 crossref_primary_10_1093_sleep_33_1_19 crossref_primary_10_1016_j_jsmc_2023_05_010 crossref_primary_10_1016_j_psychres_2012_09_011 crossref_primary_10_1016_j_clinph_2008_04_294 crossref_primary_10_1371_journal_pone_0002483 crossref_primary_10_3389_fnins_2019_01086 crossref_primary_10_1016_j_neuroimage_2012_03_053 crossref_primary_10_17241_smr_2024_02607 crossref_primary_10_1016_j_sleep_2014_06_006 crossref_primary_10_1016_j_smrv_2018_10_001 crossref_primary_10_1007_s00429_018_1703_4 crossref_primary_10_1016_j_clinph_2015_10_040 crossref_primary_10_1007_s11920_024_01540_1 crossref_primary_10_1038_nrn2762 crossref_primary_10_1016_j_jneumeth_2018_12_011 crossref_primary_10_1186_1743_0003_6_7 crossref_primary_10_1371_journal_pone_0073417 crossref_primary_10_3390_brainsci12060761 crossref_primary_10_1111_ane_13699 crossref_primary_10_1111_ner_12222 crossref_primary_10_3389_fnhum_2018_00387 crossref_primary_10_1016_j_brs_2024_03_008 crossref_primary_10_1093_sleep_zsab006 crossref_primary_10_1016_S0208_5216_11_70017_1 crossref_primary_10_1371_journal_pcbi_1002939 crossref_primary_10_5665_sleep_4164 crossref_primary_10_1097_YCT_0000000000000470 crossref_primary_10_1113_JP280966 crossref_primary_10_1016_j_brs_2012_08_004 crossref_primary_10_1038_s41598_021_88142_6 crossref_primary_10_3389_fpsyg_2015_00622 crossref_primary_10_1016_j_clinph_2014_09_029 crossref_primary_10_1016_j_neurobiolaging_2019_04_002 crossref_primary_10_5665_sleep_2302 crossref_primary_10_1016_j_brs_2009_10_005 crossref_primary_10_1016_j_neuron_2013_12_025 crossref_primary_10_1080_14737175_2019_1564042 crossref_primary_10_1177_1073858410377064 crossref_primary_10_1016_j_sleep_2019_01_052 crossref_primary_10_1007_s10548_009_0115_4 crossref_primary_10_1016_j_neuroimage_2021_118772 crossref_primary_10_1152_jn_00858_2013 crossref_primary_10_3389_fnagi_2019_00258 crossref_primary_10_1016_j_neuron_2009_08_024 crossref_primary_10_1186_s12888_020_02568_2 crossref_primary_10_1016_j_pharmthera_2020_107741 crossref_primary_10_1093_brain_awx017 crossref_primary_10_1152_physrev_00032_2012 crossref_primary_10_1371_journal_pbio_0060106 crossref_primary_10_3389_fneur_2025_1543725 crossref_primary_10_3389_fnagi_2022_745014 crossref_primary_10_1016_j_jsmc_2019_11_002 crossref_primary_10_1111_jsr_13385 crossref_primary_10_1016_j_sleep_2010_02_009 crossref_primary_10_1523_JNEUROSCI_5510_07_2008 crossref_primary_10_1098_rspb_2010_2316 crossref_primary_10_1073_pnas_0904438106 crossref_primary_10_1016_j_smrv_2018_01_008 crossref_primary_10_1111_j_1460_9568_2008_06178_x crossref_primary_10_1016_j_clinph_2017_03_042 crossref_primary_10_1002_mds_22462 crossref_primary_10_1016_j_smrv_2022_101738 crossref_primary_10_1016_j_concog_2015_09_012 crossref_primary_10_1016_j_bbi_2014_11_008 crossref_primary_10_1016_j_neuroimage_2016_05_028 crossref_primary_10_1016_j_brainresbull_2010_01_006 crossref_primary_10_1016_j_brainresbull_2022_05_002 crossref_primary_10_1016_j_smrv_2015_11_003 crossref_primary_10_1016_j_smrv_2020_101381 crossref_primary_10_1016_j_pnpbp_2009_03_027 crossref_primary_10_1016_j_pneurobio_2011_04_004 crossref_primary_10_1186_s41606_020_00057_9 crossref_primary_10_1016_j_neubiorev_2017_10_006 crossref_primary_10_1016_j_neubiorev_2023_105465 crossref_primary_10_1016_j_sleep_2010_05_003 crossref_primary_10_1016_j_brs_2014_11_005 crossref_primary_10_1016_j_sleep_2024_09_043 crossref_primary_10_1016_j_neuroscience_2014_06_067 crossref_primary_10_1016_j_clinph_2011_01_041 crossref_primary_10_1016_j_nbd_2020_104865 crossref_primary_10_1177_1545968313498651 crossref_primary_10_1080_87565640903133418 crossref_primary_10_1097_YCT_0b013e31818dd40a crossref_primary_10_3389_fncel_2015_00307 crossref_primary_10_1111_j_1460_9568_2009_06720_x crossref_primary_10_1016_j_tics_2013_09_014 crossref_primary_10_1016_j_jad_2022_11_062 crossref_primary_10_1016_j_bpsc_2022_12_005 crossref_primary_10_1186_s41983_023_00771_y crossref_primary_10_1016_j_sleep_2007_10_015 crossref_primary_10_3109_07853890_2015_1131327 crossref_primary_10_1093_sleep_zsz060 crossref_primary_10_1016_j_conb_2017_05_007 crossref_primary_10_1016_j_neuroimage_2008_05_027 crossref_primary_10_1016_j_bpsgos_2022_02_001 crossref_primary_10_1371_journal_pcbi_1004449 crossref_primary_10_1016_j_biopsych_2018_09_004 crossref_primary_10_1016_j_clinph_2009_08_016 crossref_primary_10_1523_JNEUROSCI_1636_08_2008 crossref_primary_10_1007_s10548_009_0123_4 crossref_primary_10_1016_j_sleep_2020_05_029 crossref_primary_10_1111_febs_16320 crossref_primary_10_3389_fneur_2019_00020 crossref_primary_10_1016_j_neubiorev_2020_07_023 crossref_primary_10_1155_2013_103949 crossref_primary_10_1038_nn0208_123 crossref_primary_10_1155_2018_3076986 crossref_primary_10_1007_s43440_021_00232_4 crossref_primary_10_3389_fnsys_2019_00002 crossref_primary_10_1111_j_1460_9568_2012_08181_x crossref_primary_10_1016_j_brs_2008_11_002 crossref_primary_10_1186_1756_6606_4_11 crossref_primary_10_1523_JNEUROSCI_5548_07_2008 crossref_primary_10_1038_s41562_017_0111 crossref_primary_10_1016_j_neubiorev_2010_06_005 crossref_primary_10_2217_fnl_10_7 crossref_primary_10_1016_j_clinph_2020_12_027 crossref_primary_10_1002_hbm_22016 crossref_primary_10_1016_j_clinph_2014_08_028 crossref_primary_10_13078_jsm_230027 crossref_primary_10_1371_journal_pone_0000867 crossref_primary_10_1016_j_neuroimage_2012_10_027 crossref_primary_10_3389_fpsyg_2020_575328 crossref_primary_10_1016_j_sleep_2024_10_008 crossref_primary_10_1111_j_1600_0447_2011_01796_x crossref_primary_10_3724_SP_J_1206_2008_00443 crossref_primary_10_1002_hbm_23101 crossref_primary_10_1097_WCO_0b013e3283052cf7 crossref_primary_10_1016_j_jsmc_2022_06_013 crossref_primary_10_1073_pnas_0909710107 crossref_primary_10_1073_pnas_1210735110 crossref_primary_10_1038_s41598_022_10802_y crossref_primary_10_1111_psyp_12011 crossref_primary_10_1007_s12035_018_1364_6 crossref_primary_10_1016_j_neurol_2021_12_014 crossref_primary_10_1177_20438087221090350 crossref_primary_10_3389_fncir_2015_00062 crossref_primary_10_1007_s00424_011_1016_4 crossref_primary_10_1016_j_neuroimage_2014_05_028 crossref_primary_10_1016_j_pnpbp_2019_109763 |
Cites_doi | 10.1126/science.8235588 10.1016/S0006-8993(99)01257-3 10.1016/j.brainresbull.2004.04.020 10.1016/j.clinph.2004.02.005 10.1152/jn.1997.77.4.2164 10.1097/00001756-200512190-00001 10.1126/science.1117256 10.1515/REVNEURO.2004.15.4.253 10.1002/cne.903370411 10.2741/1043 10.1093/brain/awl082 10.1093/brain/117.4.847 10.1212/WNL.54.4.956 10.1016/j.brainresbull.2003.09.004 10.1007/s00221-002-1106-9 10.1007/s00221-004-2052-5 10.1111/j.1460-9568.2005.04007.x 10.1016/0013-4694(80)90419-8 10.1152/jn.00915.2004 10.1046/j.1365-2869.1997.d01-36.x 10.1016/j.neuron.2004.12.033 10.1111/j.1460-9568.2004.03277.x 10.1046/j.1365-2869.2000.00230.x 10.1016/j.neuron.2006.06.026 10.1371/journal.pbio.0030362 10.1152/jn.01230.2004 10.1016/j.smrv.2005.05.002 10.1016/S0168-5597(97)00096-8 10.1038/nature02663 10.1002/hbm.1058 10.1093/cercor/10.1.58 10.1113/jphysiol.2004.070755 10.1016/j.jad.2005.08.001 10.1097/00001756-199711100-00024 10.1097/00001756-200010200-00012 10.1016/j.brainresbull.2005.11.003 10.1113/jphysiol.1973.sp010273 10.1016/S0959-4388(00)00099-4 10.1046/j.0953-816x.2001.01597.x 10.1016/S0006-8993(00)02365-9 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 Public Library of Science 2007 Huber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Huber et al. 2007 |
Copyright_xml | – notice: COPYRIGHT 2007 Public Library of Science – notice: 2007 Huber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Huber et al. 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0000276 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | TMS-Induced Slow Wave Activity |
EISSN | 1932-6203 |
ExternalDocumentID | 1950105344 1289130645 oai_doaj_org_article_14d84f85f4bc4be7b9be694dab8e84b0 PMC1803030 2896713151 A472288749 17342210 10_1371_journal_pone_0000276 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Wisconsin |
GeographicLocations_xml | – name: Wisconsin – name: United States--US |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: F31 NS055553 – fundername: NINDS NIH HHS grantid: 1R01 NS 055 185-01 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PYCSY RNS RPM TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK A8Z AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c780t-22ad7d098c17191414f70332f8e189ecf1b66f6b8625163d9e5a22ed2bc723dd3 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:24 EST 2021 Fri Nov 26 17:13:21 EST 2021 Wed Aug 27 01:25:01 EDT 2025 Thu Aug 21 18:16:59 EDT 2025 Thu Sep 04 22:43:39 EDT 2025 Fri Jul 25 10:38:35 EDT 2025 Sun Aug 17 05:42:24 EDT 2025 Tue Jun 10 21:31:11 EDT 2025 Fri Jun 27 03:58:23 EDT 2025 Fri Jun 27 03:43:51 EDT 2025 Thu May 22 20:57:32 EDT 2025 Mon Jul 21 06:04:38 EDT 2025 Tue Jul 01 00:45:04 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c780t-22ad7d098c17191414f70332f8e189ecf1b66f6b8625163d9e5a22ed2bc723dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: RH GT SE. Performed the experiments: RH SE FF MM MP. Analyzed the data: RH SE. Contributed reagents/materials/analysis tools: RH SE FF MM. Wrote the paper: RH GT. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0000276 |
PMID | 17342210 |
PQID | 1289130645 |
PQPubID | 1436336 |
PageCount | e276 |
ParticipantIDs | plos_journals_1950105344 plos_journals_1289130645 doaj_primary_oai_doaj_org_article_14d84f85f4bc4be7b9be694dab8e84b0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1803030 proquest_miscellaneous_70238372 proquest_journals_1950105344 proquest_journals_1289130645 gale_infotracacademiconefile_A472288749 gale_incontextgauss_ISR_A472288749 gale_incontextgauss_IOV_A472288749 gale_healthsolutions_A472288749 pubmed_primary_17342210 crossref_citationtrail_10_1371_journal_pone_0000276 crossref_primary_10_1371_journal_pone_0000276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-03-07 |
PublicationDateYYYYMMDD | 2007-03-07 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-07 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2007 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | SK Esser (ref12) 2006; 69 S Hill (ref10) 2005; 93 YZ Huang (ref21) 2005; 45 K Matsunaga (ref39) 2005; 562 H Tokuno (ref34) 2000; 10 G Tononi (ref38) 2003; 62 R Huber (ref6) 2004; 430 MY Frenkel (ref17) 2006; 51 SK Esser (ref37) 2005; 94 A Rechtschaffen (ref43) 1968 V Vyazovskiy (ref7) 2000; 9 S Bestmann (ref35) 2004; 19 F Ferrarelli (ref36) 2004; 64 M Steriade (ref2) 1993; 262 M Tegenthoff (ref20) 2005; 3 GR Fink (ref32) 1997; 77 LA Finelli (ref15) 2001; 13 E Werth (ref16) 1997; 6 MF Ghilardi (ref40) 2000; 871 AA Borbély (ref5) 2001; 139 G Tononi (ref9) 2006; 10 CK Loo (ref31) 2005; 88 TE Nichols (ref45) 2001; 15 TJ Teyler (ref29) 2005; 21 RJ Morecraft (ref33) 1993; 337 HR Siebner (ref30) 2000; 54 R Huber (ref44) 2000; 11 A Peinemann (ref13) 2004; 115 TV Bliss (ref11) 1973; 232 D Lehmann (ref42) 1980; 48 RJ Ilmoniemi (ref26) 1997; 8 A Pascual-Leone (ref22) 1994; 117 ( Pt 4) SF Cooke (ref25) 2006; 129 MH Kole (ref24) 1999; 826 AA Borbély (ref4) 1982; 1 M Massimini (ref27) 2005; 309 M Steriade (ref1) 2003; 8 A Quartarone (ref14) 2005; 161 U Ziemann (ref19) 2004; 15 R Malinow (ref18) 2000; 10 V Di Lazzaro (ref23) 2002; 144 RD Pascual-Marqui (ref46) 2002 AA Borbély (ref3) 2000 WC Clapp (ref28) 2005; 16 EM Wassermann (ref41) 1998; 108 R Huber (ref8) 2006 |
References_xml | – start-page: 377 year: 2000 ident: ref3 article-title: Homeostasis of human sleep and models of sleep regulation. – volume: 262 start-page: 679 year: 1993 ident: ref2 article-title: Thalamocortical oscillations in the sleeping and aroused brain. publication-title: Science doi: 10.1126/science.8235588 – volume: 1 start-page: 195 year: 1982 ident: ref4 article-title: A two process model of sleep regulation. publication-title: Human Neurobiol – volume: 826 start-page: 309 year: 1999 ident: ref24 article-title: Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. publication-title: Brain Res doi: 10.1016/S0006-8993(99)01257-3 – volume: 64 start-page: 103 year: 2004 ident: ref36 article-title: A [17F]-fluoromethane PET/TMS study of effective connectivity. publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2004.04.020 – volume: 115 start-page: 1519 year: 2004 ident: ref13 article-title: Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2004.02.005 – volume: 77 start-page: 2164 year: 1997 ident: ref32 article-title: Multiple nonprimary motor areas in the human cortex. publication-title: J Neurophysiol doi: 10.1152/jn.1997.77.4.2164 – volume: 16 start-page: 1977 year: 2005 ident: ref28 article-title: Effects of long-term potentiation in the human visual cortex: a functional magnetic resonance imaging study. publication-title: Neuroreport doi: 10.1097/00001756-200512190-00001 – volume: 139 start-page: 53 year: 2001 ident: ref5 article-title: From slow waves to sleep homeostasis: new perspectives. publication-title: Arch Ital Biol – volume: 309 start-page: 2228 year: 2005 ident: ref27 article-title: Breakdown of cortical effective connectivity during sleep. publication-title: Science doi: 10.1126/science.1117256 – volume: 15 start-page: 253 year: 2004 ident: ref19 article-title: TMS induced plasticity in human cortex. publication-title: Rev Neurosci doi: 10.1515/REVNEURO.2004.15.4.253 – volume: 337 start-page: 669 year: 1993 ident: ref33 article-title: Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. publication-title: J Comp Neurol doi: 10.1002/cne.903370411 – volume: 8 start-page: d878 year: 2003 ident: ref1 article-title: The corticothalamic system in sleep. publication-title: Front Biosci doi: 10.2741/1043 – volume: 129 start-page: 1659 year: 2006 ident: ref25 article-title: Plasticity in the human central nervous system. publication-title: Brain doi: 10.1093/brain/awl082 – volume: 117 ( Pt 4) start-page: 847 year: 1994 ident: ref22 article-title: Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. publication-title: Brain doi: 10.1093/brain/117.4.847 – year: 1968 ident: ref43 article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. – volume: 54 start-page: 956 year: 2000 ident: ref30 article-title: Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. publication-title: Neurology doi: 10.1212/WNL.54.4.956 – volume: 62 start-page: 143 year: 2003 ident: ref38 article-title: Sleep and synaptic homeostasis: a hypothesis. publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2003.09.004 – start-page: 5 year: 2002 ident: ref46 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. publication-title: Methods Find Exp Clin Pharmacol – volume: 144 start-page: 549 year: 2002 ident: ref23 article-title: Direct demonstration of the effects of repetitive transcranial magnetic stimulation on the excitability of the human motor cortex. publication-title: Exp Brain Res doi: 10.1007/s00221-002-1106-9 – volume: 161 start-page: 114 year: 2005 ident: ref14 article-title: Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex. publication-title: Exp Brain Res doi: 10.1007/s00221-004-2052-5 – volume: 21 start-page: 2045 year: 2005 ident: ref29 article-title: Long-term potentiation of human visual evoked responses. publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2005.04007.x – volume: 48 start-page: 609 year: 1980 ident: ref42 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields. publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(80)90419-8 – volume: 93 start-page: 1671 year: 2005 ident: ref10 article-title: Modeling sleep and wakefulness in the thalamocortical system. publication-title: J Neurophysiol doi: 10.1152/jn.00915.2004 – volume: 6 start-page: 102 year: 1997 ident: ref16 article-title: Fronto-occipital EEG power gradients in human sleep. publication-title: J Sleep Res doi: 10.1046/j.1365-2869.1997.d01-36.x – volume: 45 start-page: 201 year: 2005 ident: ref21 article-title: Theta burst stimulation of the human motor cortex. publication-title: Neuron doi: 10.1016/j.neuron.2004.12.033 – volume: 19 start-page: 1950 year: 2004 ident: ref35 article-title: Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2004.03277.x – volume: 9 start-page: 367 year: 2000 ident: ref7 article-title: Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. publication-title: J Sleep Res doi: 10.1046/j.1365-2869.2000.00230.x – volume: 51 start-page: 339 year: 2006 ident: ref17 article-title: Instructive effect of visual experience in mouse visual cortex. publication-title: Neuron doi: 10.1016/j.neuron.2006.06.026 – volume: 3 start-page: e362 year: 2005 ident: ref20 article-title: Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030362 – volume: 94 start-page: 622 year: 2005 ident: ref37 article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits. publication-title: J Neurophysiol doi: 10.1152/jn.01230.2004 – volume: 10 start-page: 49 year: 2006 ident: ref9 article-title: Sleep function and synaptic homeostasis. publication-title: Sleep Med Rev doi: 10.1016/j.smrv.2005.05.002 – volume: 108 start-page: 1 year: 1998 ident: ref41 article-title: Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0168-5597(97)00096-8 – volume: 430 start-page: 78 year: 2004 ident: ref6 article-title: Local sleep and learning. publication-title: Nature doi: 10.1038/nature02663 – volume: 15 start-page: 1 year: 2001 ident: ref45 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples. publication-title: Hum Brain Mapp doi: 10.1002/hbm.1058 – volume: 10 start-page: 58 year: 2000 ident: ref34 article-title: Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: An electrophysiological study in the macaque monkey. publication-title: Cereb Cortex doi: 10.1093/cercor/10.1.58 – volume: 562 start-page: 295 year: 2005 ident: ref39 article-title: Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area. publication-title: J Physiol doi: 10.1113/jphysiol.2004.070755 – volume: 88 start-page: 255 year: 2005 ident: ref31 article-title: A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. publication-title: J Affect Disord doi: 10.1016/j.jad.2005.08.001 – volume: 8 start-page: 3537 year: 1997 ident: ref26 article-title: Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. publication-title: Neuroreport doi: 10.1097/00001756-199711100-00024 – volume: 11 start-page: 3321 year: 2000 ident: ref44 article-title: Exposure to pulsed high-frequency electromagnetic field during waking affects human sleep EEG. publication-title: Neuroreport doi: 10.1097/00001756-200010200-00012 – volume: 69 start-page: 86 year: 2006 ident: ref12 article-title: A direct demonstration of cortical LTP in humans: A combined TMS/EEG study. publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2005.11.003 – volume: 232 start-page: 331 year: 1973 ident: ref11 article-title: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. publication-title: J Physiol doi: 10.1113/jphysiol.1973.sp010273 – volume: 10 start-page: 352 year: 2000 ident: ref18 article-title: LTP mechanisms: from silence to four-lane traffic. publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(00)00099-4 – volume: 13 start-page: 2282 year: 2001 ident: ref15 article-title: Functional topography of the human nonREM sleep electroencephalogram. publication-title: Eur J Neurosci doi: 10.1046/j.0953-816x.2001.01597.x – volume: 871 start-page: 127 year: 2000 ident: ref40 article-title: Patterns of regional brain activation associated with different forms of motor learning. publication-title: Brain Res doi: 10.1016/S0006-8993(00)02365-9 – year: 2006 ident: ref8 article-title: Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. publication-title: Nat Neurosci. |
SSID | ssj0053866 |
Score | 2.330012 |
Snippet | Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep.... Background Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during... Background Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e276 |
SubjectTerms | Brain Brain Mapping - methods Cerebral Cortex - physiology Cortex Cortex (motor) Cortex (premotor) EEG Electrodes Electroencephalography Electromagnetism Evoked Potentials - physiology Homeostasis Human subjects Humans Hypotheses Laws, regulations and rules Long-Term Potentiation - physiology Magnetic fields Magnetic resonance Magnetic resonance imaging Medical imaging Motor Cortex - physiology Neuroscience Neuroscience/Neural Homeostasis Neuroscience/Neuronal and Glial Cell Biology Plasticity Potentiation Psychiatry Sleep Sleep - physiology Sleep and wakefulness Sleep Stages - physiology Studies Time Factors Tomography Transcranial Magnetic Stimulation Wakefulness Wakefulness - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggyquBQiOEBBxC40di-1gQVUEqSLRFvVnxCyqiJCK7VPx7PI532YWVyoFrPI6SeXkmmfkGoWdBC7xmWBcaageZ9bYQsjKF5k5iYWzDHfQOn3yoj8_Z-4vqYm3UF9SETfDAE-MOMLOCeVF5pg3TjmupXS2ZbbRwgumYrZeyXCZTkw8OVlzXqVGOcnyQ5PJq6DsXEQsJYIysHUQRr3_llWdD24_bQs4_KyfXjqKj2-hWiiHzw-nZd9AN191BO8lKx_xFgpJ-eRf5s5PTImTdQX42D3lm_HCdD_0caoSiTPKpTzG_ar45v2jB8eXxfGt_5pcdhJRjuOXY9leB5IfLoQ8Cxk0s942tc8M9dH709uzNcZEmKxSGi3JeENJYbkspDOYA8IaZD5ZPiRcOC-mMx7qufa1DulOFgM1KVzWEOEu04YRaS--jWRd4uYtyAPyiRmjtQm7jqJfGYq5LQ6GrtWEuQ3TJZmUS7DhMv2hV_JfGQ_oxcU2BcFQSToaK1a5hgt24hv41SHBFC6DZ8UJQJZVUSV2nShnaB_mrqQN1ZfrqEAA1gzNmMkNPIwUAZ3RQmfOlWYyjevfx8z8QnX7aIHqeiHwf2GGa1A0R3gkAuTYod0Edl689qhBRSAyJY_X3kqxg4illLEN7S-3dvnPb8tru_dVycDfwD6npXL8YFYcYj3KSoQeTJfwWD6eMEBy4yDdsZEMmmyvd5dcIaI5FOGpo-fB_CPERujl9fqdFyffQbP594R6HuHGun0QX8Qt64G7Z priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9sIFUV5NKTRCSMAhNI6d2DkgtK1aFUSXqttCb1H8KogoCZtdEP8eT-KEXVgB13gcJR7P57E98w1CT-0sMIJiEQiIHaTKqICnsQwE0ynmUuVMQ-7w6SQ5uaRvr-KrDTTpc2EgrLLHxBaoVSXhjHwfypVaX4BQ-rr-GkDVKLhd7Uto5K60gnrVUozdQJsWkuNwhDYPjiZn5z02W-tOEpdARxjed_p6WVelbpkMI-AeWVqgWh7_Aa1HdVE161zR3yMql5ao49volvMt_XE3GbbQhi7voC1nvY3_3FFMv7iLzMXpNICqHVIr_7CatQfa_lk1h9ihVld-l7_of8y_aLMoABD9d7DuFT98iykQym5fOS2q71bkm_bHsitD0febFlrX99Dl8dHF4UngKi4EkvFwHkRRrpgKUy4xA-I3TI1FBBIZrjFPtTRYJIlJhN0GxdaRU6mO8yjSKhKSRUQpch-NSjuW28gHIjAiuRDa7nk0MalUmIlQEsh2zan2EOmHOZOOjhyqYhRZe8fG7LakG7UMlJM55XgoGHrVHR3HP-QPQIODLJBptw-q2XXmbNPufhSnhseGCkmFZiIVOkmpygXXnIrQQ3ug_6zLTB0gIRsD0aYFaZp66EkrAYQaJUTsXOeLpsnevP_wH0LT8xWhZ07IVHY4ZO6yJOw_AVHXiuQ2TMf-t5vMehophg1l_GfTYDwe2u1n7_qe65qXeu8NzRaG4G4pL3W1aDIGvh9hkYcedJbwSz2M0CjCdhTZio2s6GS1pfz8qSU6x9wuQSTc-ftHPUQ3uwN3EoRsF43ms4V-ZD3FuXjszP8n4aNqPg priority: 102 providerName: ProQuest |
Title | TMS-Induced Cortical Potentiation during Wakefulness Locally Increases Slow Wave Activity during Sleep |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17342210 https://www.proquest.com/docview/1289130645 https://www.proquest.com/docview/1950105344 https://www.proquest.com/docview/70238372 https://pubmed.ncbi.nlm.nih.gov/PMC1803030 https://doaj.org/article/14d84f85f4bc4be7b9be694dab8e84b0 http://dx.doi.org/10.1371/journal.pone.0000276 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELba7YULorwaKNsIIQGHVIntxM4Boe2qS0G0VN0u9BbFjxRElCybXaD_Ho_zoIFF9JJDPI6UGc94xp75BqFnZhVkggbCE5A7SFWmPB6H0hNMxwGXKmUaaoePT6KjGX13EV5soLZna8PAam1oB_2kZot8_-e3q9dG4V_Zrg0saCftz8tCWzxCzKJNtGVvjCCZj3b3Cka77e0leC1ehH3SFNP96yu9zcpi-neWezDPy2qdW_pnduW17WpyB91u_Ex3VC-MbbShi7tou9Hkyn3RwE2_vIey8-OpBx08pFbuuFzYw233tFxCHpGVm1vXMrqf0q86W-VgHN33sAfmV66xL5DWbj45zcsfhuS7dkeybknRzpvmWs_vo9nk8Hx85DXdFzzJuL_0ME4VU37MZcAABC6gmbEOBGdcBzzWMgtEFGWRMCFRaJw6FeswxVgrLCTDRCnyAA0Kw8sd5AIoGJFcCG3iH02yWKqACV8SqHxNqXYQadmcyAaaHDpk5Im9b2MmRKm5loBwkkY4DvK6WfMamuM_9AcgwY4WgLXti3JxmTR6aiIhxWnGw4wKSYVmIhY6iqlKBdecCt9BeyD_pK5S7cxDMgLQTWOwaeygp5YCwDUKyN65TFdVlbz98PEGRNOzHtHzhigrDTtk2lRMmH8C0K4e5Q4sx_a3q8R4HXEAwWX491AcQldUQqmDdtvVu37muuFrs_e6YWOS4J4pLXS5qhIGfiBh2EEPa034LR5GKMaB4SLr6UhPJv2R4stnC3oecLMdEf_RTRj3GN2qj-CJ57NdNFguVvqJ8R2XYog22QUzTz4O4Dl5M0RbB4cnp2dDexoztObiF2pHcp0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAviPG1wKARAgEPYYntxMnDhLqxqWVtmdZt7C3EHxmIKClNy7R_jr8NX-KUFirgZa_xOUruzndn--53CD3XWpBy6nGHQ-4glal0wsgXDmcq8kIhE6agdngwDLqn9P25f76GfjS1MJBW2djEylDLQsAZ-Ta0K9WxAKH07fibA12j4Ha1aaGRmNYKcqeCGDOFHYfq6lJv4cqd3jst7xcYH-yf7HUd02XAESx0pw7GiWTSjULhMQA782iqVwHBaai8MFIi9XgQpAHXob-vgxcZKT_BWEnMBcNESqLfewOtUzhAaaH13f3h0XHjC7Q1CQJTsEeYt2304824yFWFnIgB62TBIVZ9A-beoTXOinJV6Pt7BueCSzy4g26bWNbu1Mq3gdZUfhdtGGtR2q8MpPXreyg9GYwc6BIilLT3ikl1gG4fFVPIVap0w67rJe2PyVeVzjIwwHYf_Gx2ZWsbBqnz-pWjrLjUJN-V3RF124tm3ihTanwfnV4L7x-gVq55uYlsAB4jIuRc6T2WImkkpMe4KwhU1yZUWYg0bI6FgT-HLhxZXN3pMb0NqrkWg3BiIxwLOfNZ4xr-4x_0uyDBOS2Ad1cPislFbGyB3m3JkKahn1IuKFeMR1wFEZUJD1VIuWuhNsg_rith5yYo7gCwp3YKNLLQs4oCADxyyBC6SGZlGfc-nP0H0eh4ieilIUoLzQ6RmKoM_U8ADLZEuQnq2Px2GevIJvJgA-v_OTRfrBbaarR39cxVwwuz2_NhbfbgLivJVTErYwaxJmHYQg_rlfBLPIxQjD3NRba0RpZksjySf_lcAat7oXZ5xH30949qo5vdk0E_7veGh4_Rrfqwnzgu20Kt6WSmnugodcqfGlNgo0_XbX1-AlyTpjk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJcEOXVQCEWAgEHk3h347UPFUofUUPbEDUt9Ga8DxdEZIc4oepf5FcxY69DAhFw6TU7a8Uzs_NYz3xDyHPQgkRyT7oSawe5TrQbhG3lSmFCL1A6FgZ7h4_7_sEZf3fePl8jP6peGCyrrGxiYah1pvCOvInjSiEWYJw3E1sWMdjrvh1_c3GCFH5prcZpxHbMgt4u4MZsk8ehubqEdC7f7u2B7F9Q2t0_3T1w7cQBV4mgNXUpjbXQrTBQnkDgM48ncCIYTQLjBaFRiSd9P_ElpAFtCGR0aNoxpUZTqQRlWjN47g2yLsDrQyK4vrPfH5xUfgEsi-_b5j0mvKbVlTfjLDUFiiJF3JMF51jMEJh7itp4lOWrwuDfqzkX3GP3Drlt41qnUyriBlkz6V2yYS1H7ryy8Nav75Hk9Hjo4sQQZbSzm02Ky3RnkE2xbqnQE6fsnXQ-xl8NSAGNsXOEPnd05YA9wzJ6eORwlF0CyXfjdFQ5AqPaNxwZM75Pzq6F9w9ILQVebhIHQciYCqQ0kG8ZloRKe0K2FMNO25ibOmEVmyNlodBxIscoKr7vCUiJSq5FKJzICqdO3PmucQkF8g_6HZTgnBaBvIsfsslFZO0CZF464EnQTrhUXBohQ2n8kOtYBibgslUnDZR_VHbFzs1R1EGQT3AQPKyTZwUFgnmkeCwu4lmeR733H_6DaHiyRPTSEiUZsEPFtkMD3glBwpYoN1Edq9fOI4hyQg-T2fafS_ODWydblfau3rlqeWF3Y74MJhC_a8WpyWZ5JDDuZILWycPyJPwSj2CcUg-4KJbOyJJMllfSL58LkHUvAPfHWo_-_qca5CZYoeio1z98TG6V9_7MbYktUptOZuYJBKxT-dRaAod8um7j8xN756p9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMS-Induced+Cortical+Potentiation+during+Wakefulness+Locally+Increases+Slow+Wave+Activity+during+Sleep&rft.jtitle=PloS+one&rft.au=Huber%2C+Reto&rft.au=Esser%2C+Steve+K&rft.au=Ferrarelli%2C+Fabio&rft.au=Massimini%2C+Marcello&rft.date=2007-03-07&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=2&rft.issue=3&rft.spage=e276&rft_id=info:doi/10.1371%2Fjournal.pone.0000276&rft.externalDBID=ISR&rft.externalDocID=A472288749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |