Plasticity of ether lipids promotes ferroptosis susceptibility and evasion
Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers 1 . The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during c...
Saved in:
Published in | Nature (London) Vol. 585; no. 7826; pp. 603 - 608 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.09.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-020-2732-8 |
Cover
Abstract | Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers
1
. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions
2
–
5
. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR–Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome–ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.
The cellular organelles peroxisomes contribute to the sensitivity of cells to ferroptosis by synthesizing polyunsaturated ether phospholipids, and changes in the abundances of these lipids are associated with altered sensitivity to ferroptosis during cell-state transitions. |
---|---|
AbstractList | Ferroptosis--an iron-dependent, non-apoptotic cell death process--is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers.sup.1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions.sup.2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. Ferroptosis, an iron-dependent, non-apoptotic cell death program, is involved in various degenerative diseases and represents a targetable vulnerability in certain cancers 1 . The ferroptosis-susceptible cell state can either preexist in cells arising from certain lineages or be acquired during cell-state transitions 2 – 5 . Precisely how ferroptosis susceptibility is dynamically regulated remains poorly understood. Using genome-wide CRISPR/Cas9 suppressor screens, we identify the peroxisome organelle as a critical contributor to ferroptosis sensitivity in human renal and ovarian carcinoma cells. By lipidomic profiling, we show that peroxisomes contribute to ferroptosis through the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), an understudied lipid class that provides substrates for lipid peroxidation, resulting in turn in induction of ferroptosis. Moreover, carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo , a state associated with extensive PUFA-ePL downregulation. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including normal neurons and cardiomyocytes. Together, our work reveals important roles for the peroxisome–ether phospholipid axis in driving ferroptosis susceptibility and evasion, highlights PUFA-ePL as a distinct functional lipid group that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases involving ferroptosis. Ferroptosis--an iron-dependent, non-apoptotic cell death process--is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers.sup.1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions.sup.2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. The cellular organelles peroxisomes contribute to the sensitivity of cells to ferroptosis by synthesizing polyunsaturated ether phospholipids, and changes in the abundances of these lipids are associated with altered sensitivity to ferroptosis during cell-state transitions. Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CR1SPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation ofPUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers . The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions . However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers 1 . The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions 2 – 5 . However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR–Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome–ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. The cellular organelles peroxisomes contribute to the sensitivity of cells to ferroptosis by synthesizing polyunsaturated ether phospholipids, and changes in the abundances of these lipids are associated with altered sensitivity to ferroptosis during cell-state transitions. |
Audience | Academic |
Author | Fairman, Joshua Eaton, John K. Reinhardt, Ferenc Clish, Clary B. Boyer, Laurie A. Ricq, Emily L. Graham, Emily T. Dančík, Vlado Hammond, Paula T. Weinberg, Robert A. Wang, Wenyu Henry, Whitney S. Paradkar, Sateja Deik, Amy A. Ferguson, Bryan Phadnis, Vaishnavi V. Boehnke, Natalie Zou, Yilong Maretich, Pema Schreiber, Stuart L. Clemons, Paul A. Keys, Heather R. |
AuthorAffiliation | 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A 4 Department of Biology, MIT, MA 02142, U.S.A 6 Department of Chemical Engineering, MIT, MA 02142, U.S.A 3 Whitehead Institute for Biomedical Research, MIT, MA 02142, U.S.A 5 Koch Institute for Integrative Cancer Research, MIT, MA 02142, U.S.A 7 Department of Biological Engineering, MIT, MA 02142, U.S.A 1 Broad Institute, Cambridge, MA 02142, U.S.A |
AuthorAffiliation_xml | – name: 3 Whitehead Institute for Biomedical Research, MIT, MA 02142, U.S.A – name: 7 Department of Biological Engineering, MIT, MA 02142, U.S.A – name: 4 Department of Biology, MIT, MA 02142, U.S.A – name: 1 Broad Institute, Cambridge, MA 02142, U.S.A – name: 6 Department of Chemical Engineering, MIT, MA 02142, U.S.A – name: 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A – name: 5 Koch Institute for Integrative Cancer Research, MIT, MA 02142, U.S.A |
Author_xml | – sequence: 1 givenname: Yilong orcidid: 0000-0001-8198-6067 surname: Zou fullname: Zou, Yilong email: yzou@broadinstitute.org organization: Broad Institute, Department of Chemistry and Chemical Biology, Harvard University – sequence: 2 givenname: Whitney S. surname: Henry fullname: Henry, Whitney S. organization: Whitehead Institute for Biomedical Research – sequence: 3 givenname: Emily L. surname: Ricq fullname: Ricq, Emily L. organization: Broad Institute, Department of Chemistry and Chemical Biology, Harvard University – sequence: 4 givenname: Emily T. orcidid: 0000-0001-6696-4564 surname: Graham fullname: Graham, Emily T. organization: Broad Institute – sequence: 5 givenname: Vaishnavi V. orcidid: 0000-0001-8452-8512 surname: Phadnis fullname: Phadnis, Vaishnavi V. organization: Whitehead Institute for Biomedical Research – sequence: 6 givenname: Pema surname: Maretich fullname: Maretich, Pema organization: Department of Biology, MIT – sequence: 7 givenname: Sateja surname: Paradkar fullname: Paradkar, Sateja organization: Whitehead Institute for Biomedical Research – sequence: 8 givenname: Natalie surname: Boehnke fullname: Boehnke, Natalie organization: Koch Institute for Integrative Cancer Research, MIT – sequence: 9 givenname: Amy A. surname: Deik fullname: Deik, Amy A. organization: Broad Institute – sequence: 10 givenname: Ferenc surname: Reinhardt fullname: Reinhardt, Ferenc organization: Whitehead Institute for Biomedical Research – sequence: 11 givenname: John K. orcidid: 0000-0003-4633-5546 surname: Eaton fullname: Eaton, John K. organization: Broad Institute – sequence: 12 givenname: Bryan surname: Ferguson fullname: Ferguson, Bryan organization: Broad Institute – sequence: 13 givenname: Wenyu surname: Wang fullname: Wang, Wenyu organization: Broad Institute – sequence: 14 givenname: Joshua surname: Fairman fullname: Fairman, Joshua organization: Whitehead Institute for Biomedical Research – sequence: 15 givenname: Heather R. orcidid: 0000-0003-1371-2288 surname: Keys fullname: Keys, Heather R. organization: Whitehead Institute for Biomedical Research – sequence: 16 givenname: Vlado surname: Dančík fullname: Dančík, Vlado organization: Broad Institute – sequence: 17 givenname: Clary B. orcidid: 0000-0001-8259-9245 surname: Clish fullname: Clish, Clary B. organization: Broad Institute – sequence: 18 givenname: Paul A. orcidid: 0000-0002-1800-5112 surname: Clemons fullname: Clemons, Paul A. organization: Broad Institute – sequence: 19 givenname: Paula T. orcidid: 0000-0002-9835-192X surname: Hammond fullname: Hammond, Paula T. organization: Koch Institute for Integrative Cancer Research, MIT, Department of Chemical Engineering, MIT – sequence: 20 givenname: Laurie A. surname: Boyer fullname: Boyer, Laurie A. organization: Department of Biology, MIT, Department of Biological Engineering, MIT – sequence: 21 givenname: Robert A. orcidid: 0000-0002-0895-3557 surname: Weinberg fullname: Weinberg, Robert A. email: weinberg@wi.mit.edu organization: Whitehead Institute for Biomedical Research – sequence: 22 givenname: Stuart L. orcidid: 0000-0003-1922-7558 surname: Schreiber fullname: Schreiber, Stuart L. email: stuart_schreiber@harvard.edu organization: Broad Institute, Department of Chemistry and Chemical Biology, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32939090$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kltv1DAQhS1URC_wA3hBEbyAUIoTx5d9qbRacSmqAMFKPFqOPdm6ytqp7VT03-NoW9qttsgPkezvnJnJnEO057wDhF5W-LjCRHyITUUFK3GNy5qTuhRP0EHVcFY2TPA9dIBxLUosCNtHhzFeYIxpxZtnaJ_UMzLDM3yAvv7oVUxW23Rd-K6AdA6h6O1gTSyG4Nc-QSw6CMEPyUcbizhGDUOyre0njXKmgCsVrXfP0dNO9RFe3HyP0PLTx-XiS3n2_fPpYn5Was5pKmfVDHeKUMKp4pjUmBHG27aiBjrdEKGJabXBnBnWtZRqAZ1pRacrgw3UlByhk43tMLZrMBpcCqqXQ7BrFa6lV1Zuvzh7Llf-Soo8vWBNNnh7YxD85QgxybXNM_W9cuDHKOsmdyHyD55qvXmAXvgxuDydrDmlbGqe3FEr1YO0rvO5rp5M5TwPRxhldCpb7qBW4CA3mffa2Xy9xb_ewevBXsr70PEOKB8Da6t3ur7bEmQmwZ-0UmOM8vTXz232_ePsfPl78W2bfnV_L_8Wcpu1DPANoIOPMUAnc-pUysnJPdteVlhOqZabVMucajmlWoqsrB4ob83_p6k3mphZt4Jwt7rHRX8BTyYF6g |
CitedBy_id | crossref_primary_10_1038_s42255_022_00645_2 crossref_primary_10_1007_s40820_024_01399_0 crossref_primary_10_1016_j_greeac_2024_100128 crossref_primary_10_4103_NRR_NRR_D_24_00025 crossref_primary_10_1111_jcmm_18076 crossref_primary_10_1021_acsnano_0c00764 crossref_primary_10_1039_D3BM00189J crossref_primary_10_1021_acsami_2c11130 crossref_primary_10_3389_fcell_2024_1372330 crossref_primary_10_1002_biof_1916 crossref_primary_10_3389_fonc_2023_1131473 crossref_primary_10_1016_j_yjmcc_2022_10_004 crossref_primary_10_1002_1878_0261_13649 crossref_primary_10_1007_s00210_021_02178_z crossref_primary_10_1016_j_isci_2024_109774 crossref_primary_10_71051_jnlm_1595473 crossref_primary_10_1038_s41467_022_34096_w crossref_primary_10_3389_fgene_2023_1275154 crossref_primary_10_1038_s41580_024_00703_5 crossref_primary_10_1038_s41589_024_01612_6 crossref_primary_10_1186_s13046_024_03047_2 crossref_primary_10_1038_s41556_024_01377_z crossref_primary_10_1042_BCJ20240445 crossref_primary_10_3389_fphar_2024_1288255 crossref_primary_10_1016_j_redox_2024_103480 crossref_primary_10_1002_anie_202300379 crossref_primary_10_1016_j_jgg_2021_10_003 crossref_primary_10_12677_acm_2024_1461896 crossref_primary_10_1038_s41418_021_00883_z crossref_primary_10_1111_febs_16244 crossref_primary_10_1016_j_cbd_2024_101215 crossref_primary_10_1038_s41467_023_37237_x crossref_primary_10_3389_fmolb_2022_892957 crossref_primary_10_1016_j_celrep_2022_111231 crossref_primary_10_3389_fmolb_2022_1102158 crossref_primary_10_1016_j_xpro_2023_102762 crossref_primary_10_1016_j_reth_2024_02_007 crossref_primary_10_3389_fendo_2020_628079 crossref_primary_10_1016_j_molmet_2024_101913 crossref_primary_10_1038_s41586_022_05443_0 crossref_primary_10_1021_jacs_1c05813 crossref_primary_10_1038_s42003_024_07180_8 crossref_primary_10_3389_fendo_2024_1390013 crossref_primary_10_1016_j_ejphar_2023_175497 crossref_primary_10_1038_s41598_023_31712_7 crossref_primary_10_3389_fimmu_2021_783362 crossref_primary_10_1055_s_0043_1773796 crossref_primary_10_1155_2022_7686956 crossref_primary_10_1016_j_ceca_2023_102703 crossref_primary_10_1038_s41586_023_06878_9 crossref_primary_10_3390_cells12081128 crossref_primary_10_1016_j_arr_2023_102077 crossref_primary_10_3390_antiox12061218 crossref_primary_10_1038_s41556_025_01610_3 crossref_primary_10_14348_molcells_2023_0005 crossref_primary_10_1016_j_molmed_2024_08_007 crossref_primary_10_3390_ijms252212463 crossref_primary_10_1016_j_apsb_2022_04_017 crossref_primary_10_1016_j_bbrc_2022_04_061 crossref_primary_10_1038_s41556_024_01398_8 crossref_primary_10_1016_j_chemosphere_2023_137853 crossref_primary_10_1016_j_jbc_2021_101470 crossref_primary_10_1016_j_phrs_2023_106645 crossref_primary_10_1097_MOL_0000000000000820 crossref_primary_10_1016_j_molcel_2022_05_028 crossref_primary_10_3724_abbs_2023120 crossref_primary_10_1002_smll_202310342 crossref_primary_10_1016_j_ejmech_2022_115015 crossref_primary_10_1080_21655979_2021_2017627 crossref_primary_10_1016_j_freeradbiomed_2024_05_045 crossref_primary_10_1016_j_molmet_2022_101577 crossref_primary_10_1021_acsnano_3c01369 crossref_primary_10_1016_j_trecan_2021_04_005 crossref_primary_10_1093_nar_gkab419 crossref_primary_10_1155_2022_3846217 crossref_primary_10_1111_febs_16059 crossref_primary_10_1038_s41420_024_02141_w crossref_primary_10_26508_lsa_202101287 crossref_primary_10_1038_s41419_023_06333_7 crossref_primary_10_1089_ars_2023_0340 crossref_primary_10_3390_nu14112303 crossref_primary_10_1016_j_heliyon_2023_e19801 crossref_primary_10_1038_s41589_023_01255_z crossref_primary_10_1016_j_intimp_2024_112433 crossref_primary_10_3389_fonc_2023_1098357 crossref_primary_10_1002_anie_202307838 crossref_primary_10_1002_alz_12538 crossref_primary_10_3389_fcell_2022_884689 crossref_primary_10_1016_j_ijbiomac_2024_135147 crossref_primary_10_3390_antiox13030298 crossref_primary_10_1016_j_chembiol_2022_08_002 crossref_primary_10_1158_1078_0432_CCR_22_0296 crossref_primary_10_1016_j_cej_2022_135311 crossref_primary_10_1016_j_jprot_2024_105144 crossref_primary_10_1021_acschembio_2c00209 crossref_primary_10_1039_D3CS00001J crossref_primary_10_1038_s41467_022_35707_2 crossref_primary_10_1098_rsob_240291 crossref_primary_10_1016_j_cbi_2024_111368 crossref_primary_10_15690_vramn4917 crossref_primary_10_1080_15548627_2023_2259732 crossref_primary_10_31083_j_rcm2510360 crossref_primary_10_1016_j_tcb_2021_02_005 crossref_primary_10_1016_j_biomaterials_2023_122395 crossref_primary_10_1071_CH22176 crossref_primary_10_1186_s12935_021_02166_6 crossref_primary_10_3389_fonc_2022_746030 crossref_primary_10_3390_biomedicines12030541 crossref_primary_10_2174_1389201024666230823091144 crossref_primary_10_3390_livers4040043 crossref_primary_10_1016_j_drup_2025_101224 crossref_primary_10_1016_j_jlr_2024_100544 crossref_primary_10_3389_fonc_2022_923915 crossref_primary_10_1038_s41401_024_01378_6 crossref_primary_10_1016_j_cell_2023_03_003 crossref_primary_10_1007_s12072_022_10459_9 crossref_primary_10_3389_fcell_2022_864716 crossref_primary_10_1051_medsci_2021108 crossref_primary_10_3390_metabo11010041 crossref_primary_10_1002_advs_202404073 crossref_primary_10_3390_antiox11020192 crossref_primary_10_1016_j_lfs_2021_119958 crossref_primary_10_1186_s12951_025_03117_3 crossref_primary_10_3390_biology13110949 crossref_primary_10_3389_fphar_2024_1374722 crossref_primary_10_1016_j_jbc_2022_101617 crossref_primary_10_1080_1061186X_2021_1971237 crossref_primary_10_1038_s41418_022_01099_5 crossref_primary_10_1002_adhm_202404215 crossref_primary_10_1016_j_cell_2022_06_003 crossref_primary_10_1155_2022_5361241 crossref_primary_10_1096_fj_202201848R crossref_primary_10_1016_j_eng_2023_04_012 crossref_primary_10_1016_j_chembiol_2021_11_001 crossref_primary_10_1016_j_cell_2023_01_020 crossref_primary_10_3389_fnut_2022_1094273 crossref_primary_10_3390_ijms241713560 crossref_primary_10_1016_j_jpba_2024_116399 crossref_primary_10_3390_cells14020108 crossref_primary_10_1016_j_jhep_2024_05_034 crossref_primary_10_1016_j_tem_2021_08_005 crossref_primary_10_3390_metabo11020070 crossref_primary_10_1021_acsami_3c00297 crossref_primary_10_1097_CM9_0000000000002642 crossref_primary_10_1155_2023_3400147 crossref_primary_10_1186_s10020_024_00797_9 crossref_primary_10_1016_j_molcel_2021_12_001 crossref_primary_10_3389_fimmu_2022_877634 crossref_primary_10_4196_kjpp_2024_28_3_183 crossref_primary_10_1038_s41467_023_44412_7 crossref_primary_10_3390_microorganisms9051067 crossref_primary_10_1016_j_freeradbiomed_2022_02_015 crossref_primary_10_1152_physrev_00031_2024 crossref_primary_10_1016_j_ccell_2022_10_009 crossref_primary_10_3390_molecules28176328 crossref_primary_10_1038_s41422_020_00434_0 crossref_primary_10_3389_fcell_2024_1423869 crossref_primary_10_3390_biom14111461 crossref_primary_10_1080_1061186X_2022_2071909 crossref_primary_10_1016_j_brainresbull_2024_110991 crossref_primary_10_1038_s41418_021_00859_z crossref_primary_10_1007_s13238_021_00841_y crossref_primary_10_1016_j_chembiol_2024_09_008 crossref_primary_10_1186_s12885_022_09972_9 crossref_primary_10_1016_j_envint_2025_109367 crossref_primary_10_1038_s41556_023_01136_6 crossref_primary_10_1038_s41467_024_46776_w crossref_primary_10_1016_j_scib_2022_12_030 crossref_primary_10_1038_s12276_023_01077_y crossref_primary_10_1038_s41593_022_01221_3 crossref_primary_10_1016_j_amjms_2023_04_024 crossref_primary_10_1016_j_immuni_2024_03_019 crossref_primary_10_1016_j_biochi_2023_09_004 crossref_primary_10_1016_j_pbi_2023_102499 crossref_primary_10_1002_cac2_12250 crossref_primary_10_1038_s41467_023_37593_8 crossref_primary_10_1016_j_phymed_2024_156034 crossref_primary_10_1080_10715762_2021_1876856 crossref_primary_10_1007_s10753_024_02000_x crossref_primary_10_1016_j_ijbiomac_2024_136776 crossref_primary_10_3390_biomedicines13020265 crossref_primary_10_1002_ange_202307838 crossref_primary_10_3390_cancers14194690 crossref_primary_10_2147_JAA_S416276 crossref_primary_10_1016_j_bbcan_2024_189258 crossref_primary_10_1039_D1FO03833H crossref_primary_10_1136_jitc_2021_003430 crossref_primary_10_15212_bioi_2020_0039 crossref_primary_10_1007_s11684_024_1082_6 crossref_primary_10_3389_fcell_2021_701788 crossref_primary_10_1152_ajpcell_00148_2022 crossref_primary_10_3389_fonc_2023_1181134 crossref_primary_10_1089_ars_2022_0048 crossref_primary_10_1016_j_brainresbull_2024_110897 crossref_primary_10_1038_s41392_020_00404_3 crossref_primary_10_1007_s00018_023_04907_4 crossref_primary_10_1002_ange_202300379 crossref_primary_10_1080_14728222_2021_2011206 crossref_primary_10_1016_j_nantod_2023_101865 crossref_primary_10_1186_s40170_020_00237_2 crossref_primary_10_3389_fphar_2023_1095366 crossref_primary_10_3389_fcell_2023_1179245 crossref_primary_10_1016_j_apsb_2024_04_020 crossref_primary_10_3390_metabo12090866 crossref_primary_10_1007_s10565_024_09853_w crossref_primary_10_3390_cells10020447 crossref_primary_10_1016_j_chembiol_2022_06_004 crossref_primary_10_1038_s41598_024_55050_4 crossref_primary_10_1146_annurev_biochem_052521_033527 crossref_primary_10_1021_jasms_3c00083 crossref_primary_10_1021_acs_analchem_3c02693 crossref_primary_10_1021_acs_chemrev_4c00546 crossref_primary_10_1007_s10495_023_01851_3 crossref_primary_10_1016_j_expneurol_2024_115031 crossref_primary_10_1038_s41467_023_37924_9 crossref_primary_10_1038_s41392_020_00428_9 crossref_primary_10_1016_j_foodchem_2025_143185 crossref_primary_10_1155_2021_3658196 crossref_primary_10_1016_j_jbc_2024_107259 crossref_primary_10_1038_s41418_022_01096_8 crossref_primary_10_3389_fcell_2021_675617 crossref_primary_10_1158_2159_8290_CD_21_0558 crossref_primary_10_2217_nnm_2023_0206 crossref_primary_10_3390_biom13121696 crossref_primary_10_1016_j_jhazmat_2021_128159 crossref_primary_10_1016_j_jid_2024_11_007 crossref_primary_10_1093_mtomcs_mfad019 crossref_primary_10_1016_j_cell_2024_10_047 crossref_primary_10_3390_cells13231969 crossref_primary_10_1186_s12964_024_01862_w crossref_primary_10_1016_j_bcp_2021_114584 crossref_primary_10_1016_j_biochi_2023_08_012 crossref_primary_10_3389_fcell_2022_951116 crossref_primary_10_1021_acs_jmedchem_3c01652 crossref_primary_10_1016_j_jgg_2023_03_005 crossref_primary_10_3390_cells10051163 crossref_primary_10_1016_j_autrev_2024_103640 crossref_primary_10_1038_s41556_024_01464_1 crossref_primary_10_1016_j_cej_2024_150126 crossref_primary_10_1016_j_biomaterials_2023_122442 crossref_primary_10_1039_D4SC02129K crossref_primary_10_1016_j_biopha_2024_116356 crossref_primary_10_1016_j_jpha_2024_03_001 crossref_primary_10_1186_s12943_024_02132_6 crossref_primary_10_1021_jasms_3c00181 crossref_primary_10_1371_journal_ppat_1009927 crossref_primary_10_3390_metabo11020125 crossref_primary_10_3390_metabo11020124 crossref_primary_10_1016_j_bbamcr_2022_119330 crossref_primary_10_1186_s12967_024_06059_w crossref_primary_10_32948_auo_2022_12_09 crossref_primary_10_1038_s41467_021_22336_4 crossref_primary_10_1016_j_jhazmat_2024_134356 crossref_primary_10_1038_s41419_024_06939_5 crossref_primary_10_1016_j_cell_2023_01_010 crossref_primary_10_1021_acsnano_0c10240 crossref_primary_10_3389_fonc_2022_977348 crossref_primary_10_1038_s41420_022_01212_0 crossref_primary_10_1038_s41467_024_51489_1 crossref_primary_10_1155_2022_8808677 crossref_primary_10_1002_adbi_202100396 crossref_primary_10_1016_j_bbrc_2020_12_066 crossref_primary_10_3389_fonc_2022_870721 crossref_primary_10_1016_j_ejphar_2025_177344 crossref_primary_10_1038_s41420_022_01127_w crossref_primary_10_1016_j_lfs_2022_120868 crossref_primary_10_1016_j_mitoco_2024_11_002 crossref_primary_10_3389_fcell_2022_946393 crossref_primary_10_1038_s41418_020_00728_1 crossref_primary_10_1158_0008_5472_CAN_21_0567 crossref_primary_10_3389_fphar_2022_1093244 crossref_primary_10_3390_data8070119 crossref_primary_10_1038_s41420_024_02007_1 crossref_primary_10_1016_j_jare_2025_01_026 crossref_primary_10_18632_aging_204176 crossref_primary_10_1016_j_jgg_2021_05_003 crossref_primary_10_1038_s41422_020_00441_1 crossref_primary_10_1016_j_jlr_2022_100223 crossref_primary_10_17816_RCF567780 crossref_primary_10_1016_j_chembiol_2022_11_003 crossref_primary_10_1038_s41589_022_01253_7 crossref_primary_10_1002_cac2_12319 crossref_primary_10_1016_j_freeradbiomed_2022_03_002 crossref_primary_10_1038_s41418_021_00769_0 crossref_primary_10_1038_s41467_023_41462_9 crossref_primary_10_1016_j_chemosphere_2025_144245 crossref_primary_10_1038_s41420_024_02127_8 crossref_primary_10_2147_JIR_S506760 crossref_primary_10_3390_biology14010012 crossref_primary_10_1111_acel_13968 crossref_primary_10_1155_2021_2178281 crossref_primary_10_1016_j_molcel_2023_11_040 crossref_primary_10_1371_journal_pgen_1010436 crossref_primary_10_1038_s41420_024_01863_1 crossref_primary_10_3389_fmed_2021_644053 crossref_primary_10_3389_fimmu_2022_972753 crossref_primary_10_3390_antiox11030501 crossref_primary_10_1101_cshperspect_a041409 crossref_primary_10_1002_advs_202206798 crossref_primary_10_3389_fendo_2024_1431652 crossref_primary_10_1007_s11684_023_0992_z crossref_primary_10_1152_physrev_00051_2021 crossref_primary_10_1021_acs_biomac_4c00260 crossref_primary_10_1016_j_talanta_2023_124628 crossref_primary_10_3892_ol_2024_14576 crossref_primary_10_1186_s12943_024_01999_9 crossref_primary_10_1172_jci_insight_163403 crossref_primary_10_1016_j_jep_2023_116551 crossref_primary_10_1080_10715762_2023_2244155 crossref_primary_10_1002_advs_202204006 crossref_primary_10_3389_fmolb_2022_915457 crossref_primary_10_3389_fimmu_2023_1327852 crossref_primary_10_1161_ATVBAHA_122_318161 crossref_primary_10_1038_s41419_024_06937_7 crossref_primary_10_2147_IJN_S372947 crossref_primary_10_1016_j_foodchem_2025_143481 crossref_primary_10_26599_NR_2025_94907314 crossref_primary_10_3390_ijms252011185 crossref_primary_10_1038_s41392_024_02088_5 crossref_primary_10_1002_advs_202300517 crossref_primary_10_1002_cbf_3985 crossref_primary_10_2147_IJGM_S401225 crossref_primary_10_3390_membranes11110838 crossref_primary_10_3389_fphar_2023_1330910 crossref_primary_10_1007_s00011_022_01672_1 crossref_primary_10_1002_advs_202300402 crossref_primary_10_1038_s41571_020_00462_0 crossref_primary_10_18632_aging_205460 crossref_primary_10_34133_research_0037 crossref_primary_10_1038_s41416_023_02557_8 crossref_primary_10_1016_j_jconrel_2022_05_022 crossref_primary_10_1016_j_biopha_2023_116112 crossref_primary_10_3389_fcell_2021_698679 crossref_primary_10_1021_acssensors_4c02484 crossref_primary_10_1016_j_bbrc_2024_150683 crossref_primary_10_1038_s41419_022_05070_7 crossref_primary_10_1016_j_cmet_2024_01_006 crossref_primary_10_1016_j_trac_2023_117327 crossref_primary_10_3389_fphar_2021_773909 crossref_primary_10_2147_BCTT_S475199 crossref_primary_10_3390_metabo11090597 crossref_primary_10_1016_j_cbpa_2021_05_013 crossref_primary_10_15252_emmm_202114764 crossref_primary_10_1016_j_mito_2024_101974 crossref_primary_10_1016_j_biocel_2021_106094 crossref_primary_10_1016_j_celrep_2023_113023 crossref_primary_10_1002_advs_202306298 crossref_primary_10_1016_j_ejmech_2022_114861 crossref_primary_10_1159_000530882 crossref_primary_10_1038_s41392_024_01769_5 crossref_primary_10_1016_j_plipres_2023_101234 crossref_primary_10_1038_s41467_024_52978_z crossref_primary_10_1016_j_foodchem_2023_138174 crossref_primary_10_1016_j_freeradbiomed_2022_11_003 crossref_primary_10_1016_j_cmet_2020_10_011 crossref_primary_10_3748_wjg_v29_i16_2433 crossref_primary_10_1097_MPA_0000000000002426 crossref_primary_10_1186_s12944_021_01615_5 crossref_primary_10_1080_23723556_2021_1933871 crossref_primary_10_1111_tra_12905 crossref_primary_10_3389_fendo_2024_1414289 crossref_primary_10_1080_15548627_2022_2059170 crossref_primary_10_1002_adfm_202300689 crossref_primary_10_1038_s41573_023_00749_8 crossref_primary_10_1016_j_canlet_2024_216811 crossref_primary_10_1038_s41568_022_00459_0 crossref_primary_10_1002_cbic_202400211 crossref_primary_10_3389_fcell_2021_699304 crossref_primary_10_1111_cod_14711 crossref_primary_10_3389_fphar_2025_1536375 crossref_primary_10_1016_j_jacbts_2022_12_001 crossref_primary_10_1186_s13046_023_02920_w crossref_primary_10_1038_s41467_024_55785_8 crossref_primary_10_1038_s41467_025_56711_2 crossref_primary_10_1155_2022_7449941 crossref_primary_10_1083_jcb_202105043 crossref_primary_10_1155_2021_8854790 crossref_primary_10_1038_s41598_022_14690_0 crossref_primary_10_1007_s12013_023_01134_3 crossref_primary_10_1093_pnasnexus_pgae216 crossref_primary_10_1021_acs_analchem_4c03260 crossref_primary_10_3390_cells11142134 crossref_primary_10_1016_j_cmet_2023_06_014 crossref_primary_10_1021_jacsau_2c00681 crossref_primary_10_3389_fcell_2021_646890 crossref_primary_10_1038_s41420_023_01645_1 crossref_primary_10_1186_s13062_023_00416_3 crossref_primary_10_3390_cells12050804 crossref_primary_10_7554_eLife_82210 crossref_primary_10_1038_s41556_024_01360_8 crossref_primary_10_1038_s41589_021_00772_z crossref_primary_10_3389_fonc_2023_1308869 crossref_primary_10_1016_j_expneurol_2023_114538 crossref_primary_10_3390_ijms24109092 crossref_primary_10_1016_j_tips_2023_07_007 crossref_primary_10_1016_j_tcb_2023_05_003 crossref_primary_10_1186_s12951_024_02842_5 crossref_primary_10_1016_j_heliyon_2024_e28942 crossref_primary_10_1042_BST20230550 crossref_primary_10_1002_smll_202106568 crossref_primary_10_1039_D3BM01894F crossref_primary_10_1038_s41419_023_06045_y crossref_primary_10_3389_fcell_2022_829029 crossref_primary_10_1016_j_aca_2024_343337 crossref_primary_10_1016_j_critrevonc_2023_103964 crossref_primary_10_1002_smll_202207825 crossref_primary_10_1016_j_aquaculture_2021_736760 crossref_primary_10_1021_acscentsci_3c00052 crossref_primary_10_2174_1574887117666220819094528 crossref_primary_10_1016_j_pharmthera_2021_107827 crossref_primary_10_1007_s00109_025_02528_x crossref_primary_10_1016_j_cmet_2024_07_008 crossref_primary_10_1016_j_jcmgh_2023_03_001 crossref_primary_10_1038_s41418_024_01348_9 crossref_primary_10_1016_j_jneuroim_2024_578444 crossref_primary_10_1186_s13062_024_00458_1 crossref_primary_10_1016_j_bbalip_2021_159067 crossref_primary_10_1016_j_biomaterials_2025_123135 crossref_primary_10_1038_s41419_024_06681_y crossref_primary_10_1016_j_gene_2023_147515 crossref_primary_10_1038_s12276_024_01167_5 crossref_primary_10_3390_cancers13040794 crossref_primary_10_1146_annurev_nutr_062320_114541 crossref_primary_10_1084_jem_20210518 crossref_primary_10_1016_j_tem_2021_04_012 crossref_primary_10_1016_j_molcel_2022_03_022 crossref_primary_10_1038_s41419_025_07330_8 crossref_primary_10_1016_j_trecan_2024_01_002 crossref_primary_10_1021_acsabm_2c00199 crossref_primary_10_3389_fgene_2022_906291 crossref_primary_10_1038_s41420_024_02037_9 crossref_primary_10_2147_JIR_S358470 crossref_primary_10_3390_cells11213508 crossref_primary_10_3390_membranes13090764 crossref_primary_10_1016_j_ceb_2023_102210 crossref_primary_10_1002_mco2_70010 crossref_primary_10_1016_j_ajps_2023_100829 crossref_primary_10_3389_fimmu_2023_1294317 crossref_primary_10_3390_ijms222212603 crossref_primary_10_1007_s10495_022_01785_2 crossref_primary_10_1155_2022_6084589 crossref_primary_10_1002_cbin_11705 crossref_primary_10_1016_j_cmet_2022_11_014 crossref_primary_10_1186_s12885_024_11943_1 crossref_primary_10_1038_s41556_024_01425_8 crossref_primary_10_1016_j_ceb_2023_102203 crossref_primary_10_1038_s41419_022_05447_8 crossref_primary_10_1186_s12943_024_02172_y crossref_primary_10_1021_acschembio_4c00229 crossref_primary_10_1186_s11658_024_00544_2 crossref_primary_10_1038_s41420_023_01746_x crossref_primary_10_3389_fimmu_2022_925290 crossref_primary_10_3390_cells10092462 crossref_primary_10_1186_s12951_024_02942_2 crossref_primary_10_1002_cac2_12519 crossref_primary_10_1016_j_tcb_2023_04_005 crossref_primary_10_1007_s00467_024_06595_z crossref_primary_10_1016_j_chembiol_2023_10_011 crossref_primary_10_1038_s41589_022_01249_3 crossref_primary_10_2174_1570180819666220610102444 crossref_primary_10_1016_j_jcmgh_2023_04_006 crossref_primary_10_1016_j_xinn_2022_100360 crossref_primary_10_1016_j_chembiol_2023_10_012 crossref_primary_10_1681_ASN_2021101293 crossref_primary_10_3389_fbioe_2024_1426477 crossref_primary_10_1016_j_bbadis_2023_166788 crossref_primary_10_1038_s42255_023_00879_8 crossref_primary_10_1016_j_biopha_2023_115415 crossref_primary_10_1016_j_envpol_2023_122211 crossref_primary_10_1038_s43018_023_00702_z crossref_primary_10_1097_HEP_0000000000000390 crossref_primary_10_3390_cancers14174099 crossref_primary_10_1016_j_ejphar_2024_176839 crossref_primary_10_1080_10715762_2024_2423691 crossref_primary_10_1039_D3FO03955B crossref_primary_10_3389_fimmu_2023_1188365 crossref_primary_10_1038_s41467_024_53837_7 crossref_primary_10_1177_00368504221147173 crossref_primary_10_3389_fcell_2022_818453 crossref_primary_10_3389_fncel_2022_995084 crossref_primary_10_1002_cbin_11804 crossref_primary_10_3389_fendo_2023_1277866 crossref_primary_10_1038_s41420_023_01721_6 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_1016_j_foodchem_2023_137926 crossref_primary_10_1016_j_molcel_2023_03_005 crossref_primary_10_1111_cns_14596 crossref_primary_10_3389_fonc_2022_834681 crossref_primary_10_1007_s13238_021_00823_0 crossref_primary_10_1007_s10495_022_01795_0 crossref_primary_10_1038_s41589_023_01541_w crossref_primary_10_3389_fphar_2021_656756 crossref_primary_10_1016_j_plipres_2022_101207 crossref_primary_10_1212_WNL_0000000000207730 crossref_primary_10_3390_genes13061094 crossref_primary_10_1089_ars_2023_0278 crossref_primary_10_1038_s41575_021_00486_6 crossref_primary_10_3389_fcell_2025_1522873 |
Cites_doi | 10.1007/s13197-011-0251-1 10.1038/nchembio.2239 10.1006/abbi.1997.0134 10.1021/acschembio.5b00245 10.1016/j.cell.2019.03.032 10.1038/srep28932 10.1002/1873-3468.12743 10.1016/j.cmet.2014.01.002 10.1084/jem.20140857 10.1194/jlr.M800468-JLR200 10.1186/s12944-018-0685-9 10.1038/s41589-020-0472-6 10.1038/s41586-019-1707-0 10.1126/science.aay1436 10.1016/j.cell.2017.06.010 10.1073/pnas.1821022116 10.1038/s41467-019-09277-9 10.1016/j.cell.2017.09.021 10.1038/nature23007 10.1038/nature24297 10.1038/nchembio.2079 10.1038/s41589-020-0501-5 10.1161/CIRCULATIONAHA.117.029468 10.1101/pdb.prot090803 10.1016/j.bbadis.2012.05.008 10.1038/s41586-019-1705-2 10.1126/science.aac7041 10.1093/nar/gky1131 10.1042/bst0320147 10.1016/0006-8993(95)00931-F 10.1101/pdb.prot090811 10.1371/journal.pbio.2005970 10.1016/S0891-5849(02)00848-1 10.1007/s13238-017-0423-5 10.1021/acschembio.5b00466 10.1046/j.1471-4159.2000.0750991.x 10.1016/j.cell.2013.12.010 10.1007/s00418-018-1722-5 10.1002/ijc.2910450306 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Sep 24, 2020 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Sep 24, 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-020-2732-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Complete (ProQuest Database) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Psychology Database Research Library (ProQuest Database) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 608 |
ExternalDocumentID | PMC8051864 A636365654 32939090 10_1038_s41586_020_2732_8 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U01 CA217848 – fundername: NCI NIH HHS grantid: R35 CA220487 – fundername: NCI NIH HHS grantid: K99 CA248610 – fundername: NIDDK NIH HHS grantid: P30 DK040561 – fundername: NCI NIH HHS grantid: P01 CA080111 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC J5H L-9 LGEZI LOTEE M0L MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 AGSTI PUEGO 5PM |
ID | FETCH-LOGICAL-c775t-9190fa35375a703206367bb15defc438c3dbcd076d6fb55c8efdb8fc1d0de253 |
IEDL.DBID | BENPR |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 17:37:33 EDT 2025 Fri Sep 05 14:04:42 EDT 2025 Fri Jul 25 08:59:12 EDT 2025 Tue Jun 17 21:20:00 EDT 2025 Thu Jun 12 23:33:18 EDT 2025 Tue Jun 10 15:31:30 EDT 2025 Tue Jun 10 20:37:02 EDT 2025 Fri Jun 27 03:54:50 EDT 2025 Fri Jun 27 05:05:00 EDT 2025 Wed Feb 19 02:28:44 EST 2025 Thu Apr 24 23:02:30 EDT 2025 Tue Jul 01 02:32:14 EDT 2025 Fri Feb 21 02:37:50 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7826 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c775t-9190fa35375a703206367bb15defc438c3dbcd076d6fb55c8efdb8fc1d0de253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Y.Z., W.S.H., and E.L.R. conceived the project, performed the experiments and analyzed data. E.T.G., V.V.P., S.P., B.F., J.F., H.K. assisted the experiments and interpreted data. A.A.D. and C.B.C. performed metabolomics profiling. W.W. and J.K.E. performed chemical synthesis. N.B. prepared the plasmalogen nanoparticles with input from P.T.H.. P.M. and L.B. assisted the cardiomyocyte experiments and data interpretation. J.K.E. performed the DPPH assay. F.R. assisted animal experiments. V.D. and P.A.C. developed GeLiNEA and assisted computational analysis. Y.Z., W.S.H., S.L.S. and R.A.W. wrote the manuscript with input from all authors. These authors contributed equally to this work. Author contributions |
ORCID | 0000-0002-9835-192X 0000-0003-4633-5546 0000-0001-8198-6067 0000-0003-1371-2288 0000-0001-6696-4564 0000-0002-1800-5112 0000-0002-0895-3557 0000-0001-8452-8512 0000-0003-1922-7558 0000-0001-8259-9245 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8051864 |
PMID | 32939090 |
PQID | 2755620633 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051864 proquest_miscellaneous_2443881035 proquest_journals_2755620633 gale_infotracmisc_A636365654 gale_infotracgeneralonefile_A636365654 gale_infotraccpiq_636365654 gale_infotracacademiconefile_A636365654 gale_incontextgauss_ISR_A636365654 gale_incontextgauss_ATWCN_A636365654 pubmed_primary_32939090 crossref_citationtrail_10_1038_s41586_020_2732_8 crossref_primary_10_1038_s41586_020_2732_8 springer_journals_10_1038_s41586_020_2732_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-24 |
PublicationDateYYYYMMDD | 2020-09-24 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | McQuin (CR39) 2018; 16 Doll (CR8) 2017; 13 Braverman, Moser (CR18) 2012; 1822 Szklarczyk (CR9) 2019; 47 Shimada (CR33) 2016; 12 Yang (CR6) 2014; 156 Encinas (CR28) 2000; 75 Messias, Mecatti, Priolli, de Oliveira Carvalho (CR19) 2018; 17 CR32 Rashba-Step (CR21) 1997; 343 Fang (CR27) 2019; 116 Ginsberg, Rafique, Xuereb, Rapoport, Gershfeld (CR30) 1995; 698 Tsherniak (CR25) 2017; 170 Dean, Lodhi (CR12) 2018; 9 Viswanathan (CR4) 2017; 547 Lodhi, Semenkovich (CR11) 2014; 19 Alim (CR26) 2019; 177 Zou (CR14) 2020; 16 Piano (CR13) 2015; 10 Matsushita (CR2) 2015; 212 Wang, Lander, Sabatini (CR37) 2016; 2016 Wang (CR35) 2015; 350 Stockwell (CR1) 2017; 171 Wang, Lander, Sabatini (CR36) 2016; 2016 Gallego-García (CR24) 2019; 366 Engelmann (CR29) 2004; 32 Doll (CR22) 2019; 575 Eaton (CR7) 2020; 16 Kedare, Singh (CR40) 2011; 48 Hangauer (CR5) 2017; 551 Bersuker (CR23) 2019; 575 Schilder (CR31) 1990; 45 Yuki, Shindou, Hishikawa, Shimizu (CR20) 2009; 50 Dixon (CR16) 2015; 10 Zou (CR3) 2019; 10 Honsho, Fujiki (CR17) 2017; 591 Saito (CR15) 2016; 6 Islinger, Voelkl, Fahimi, Schrader (CR10) 2018; 150 Paynter (CR34) 2018; 137 Drummen, van Liebergen, den Kamp, Post (CR38) 2002; 33 K Bersuker (2732_CR23) 2019; 575 2732_CR32 M Encinas (2732_CR28) 2000; 75 NP Paynter (2732_CR34) 2018; 137 JK Eaton (2732_CR7) 2020; 16 SB Kedare (2732_CR40) 2011; 48 S Doll (2732_CR8) 2017; 13 V Piano (2732_CR13) 2015; 10 T Wang (2732_CR37) 2016; 2016 K Yuki (2732_CR20) 2009; 50 A Tsherniak (2732_CR25) 2017; 170 K Shimada (2732_CR33) 2016; 12 Y Zou (2732_CR3) 2019; 10 WS Yang (2732_CR6) 2014; 156 K Saito (2732_CR15) 2016; 6 T Wang (2732_CR36) 2016; 2016 D Szklarczyk (2732_CR9) 2019; 47 JM Dean (2732_CR12) 2018; 9 I Alim (2732_CR26) 2019; 177 MJ Hangauer (2732_CR5) 2017; 551 A Gallego-García (2732_CR24) 2019; 366 S Doll (2732_CR22) 2019; 575 IJ Lodhi (2732_CR11) 2014; 19 Y Zou (2732_CR14) 2020; 16 X Fang (2732_CR27) 2019; 116 BR Stockwell (2732_CR1) 2017; 171 J Rashba-Step (2732_CR21) 1997; 343 VS Viswanathan (2732_CR4) 2017; 547 M Matsushita (2732_CR2) 2015; 212 SJ Dixon (2732_CR16) 2015; 10 GPC Drummen (2732_CR38) 2002; 33 B Engelmann (2732_CR29) 2004; 32 MCF Messias (2732_CR19) 2018; 17 L Ginsberg (2732_CR30) 1995; 698 C McQuin (2732_CR39) 2018; 16 M Honsho (2732_CR17) 2017; 591 M Islinger (2732_CR10) 2018; 150 T Wang (2732_CR35) 2015; 350 NE Braverman (2732_CR18) 2012; 1822 RJ Schilder (2732_CR31) 1990; 45 33235217 - Signal Transduct Target Ther. 2020 Nov 24;5(1):273 33149249 - Cell Res. 2020 Dec;30(12):1061-1062 |
References_xml | – volume: 48 start-page: 412 year: 2011 end-page: 422 ident: CR40 article-title: Genesis and development of DPPH method of antioxidant assay publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-011-0251-1 – volume: 13 start-page: 91 year: 2017 end-page: 98 ident: CR8 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 343 start-page: 44 year: 1997 end-page: 54 ident: CR21 article-title: Phospholipid peroxidation induces cytosolic phospholipase A2 activity: membrane effects versus enzyme phosphorylation publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.0134 – volume: 10 start-page: 1604 year: 2015 end-page: 1609 ident: CR16 article-title: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00245 – volume: 177 start-page: 1262 year: 2019 end-page: 1279 ident: CR26 article-title: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke publication-title: Cell doi: 10.1016/j.cell.2019.03.032 – volume: 6 year: 2016 ident: CR15 article-title: Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma publication-title: Sci. Rep. doi: 10.1038/srep28932 – volume: 591 start-page: 2720 year: 2017 end-page: 2729 ident: CR17 article-title: Plasmalogen homeostasis – regulation of plasmalogen biosynthesis and its physiological consequence in mammals publication-title: FEBS Lett. doi: 10.1002/1873-3468.12743 – volume: 19 start-page: 380 year: 2014 end-page: 392 ident: CR11 article-title: Peroxisomes: a nexus for lipid metabolism and cellular signaling publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.01.002 – volume: 212 start-page: 555 year: 2015 end-page: 568 ident: CR2 article-title: T cell lipid peroxidation induces ferroptosis and prevents immunity to infection publication-title: J. Exp. Med. doi: 10.1084/jem.20140857 – volume: 50 start-page: 860 year: 2009 end-page: 869 ident: CR20 article-title: Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis publication-title: J. Lipid Res. doi: 10.1194/jlr.M800468-JLR200 – volume: 17 start-page: 41 year: 2018 ident: CR19 article-title: Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer publication-title: Lipids Health Dis. doi: 10.1186/s12944-018-0685-9 – volume: 16 start-page: 302 year: 2020 end-page: 309 ident: CR14 article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0472-6 – volume: 575 start-page: 693 year: 2019 end-page: 698 ident: CR22 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 366 start-page: 128 year: 2019 end-page: 132 ident: CR24 article-title: A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis publication-title: Science doi: 10.1126/science.aay1436 – volume: 170 start-page: 564 year: 2017 end-page: 576 ident: CR25 article-title: Defining a cancer dependency map publication-title: Cell doi: 10.1016/j.cell.2017.06.010 – volume: 116 start-page: 2672 year: 2019 end-page: 2680 ident: CR27 article-title: Ferroptosis as a target for protection against cardiomyopathy publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821022116 – volume: 10 year: 2019 ident: CR3 article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis publication-title: Nat. Commun. doi: 10.1038/s41467-019-09277-9 – volume: 171 start-page: 273 year: 2017 end-page: 285 ident: CR1 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 547 start-page: 453 year: 2017 end-page: 457 ident: CR4 article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway publication-title: Nature doi: 10.1038/nature23007 – volume: 551 start-page: 247 year: 2017 end-page: 250 ident: CR5 article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition publication-title: Nature doi: 10.1038/nature24297 – volume: 12 start-page: 497 year: 2016 end-page: 503 ident: CR33 article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2079 – volume: 16 start-page: 497 year: 2020 end-page: 506 ident: CR7 article-title: Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0501-5 – volume: 137 start-page: 841 year: 2018 end-page: 853 ident: CR34 article-title: Metabolic predictors of incident coronary heart disease in women publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.029468 – volume: 2016 start-page: pdb.prot090803 year: 2016 ident: CR36 article-title: Single guide RNA library design and construction publication-title: Cold Spring Harb. Protoc doi: 10.1101/pdb.prot090803 – volume: 1822 start-page: 1442 year: 2012 end-page: 1452 ident: CR18 article-title: Functions of plasmalogen lipids in health and disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2012.05.008 – volume: 575 start-page: 688 year: 2019 end-page: 692 ident: CR23 article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 350 start-page: 1096 year: 2015 end-page: 1101 ident: CR35 article-title: Identification and characterization of essential genes in the human genome publication-title: Science doi: 10.1126/science.aac7041 – volume: 47 start-page: D607 year: 2019 end-page: D613 ident: CR9 article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1131 – volume: 32 start-page: 147 year: 2004 end-page: 150 ident: CR29 article-title: Plasmalogens: targets for oxidants and major lipophilic antioxidants publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0320147 – volume: 698 start-page: 223 year: 1995 end-page: 226 ident: CR30 article-title: Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain publication-title: Brain Res. doi: 10.1016/0006-8993(95)00931-F – volume: 2016 start-page: pdb.prot090811 year: 2016 ident: CR37 article-title: Viral packaging and cell culture for CRISPR-based screens publication-title: Cold Spring Harb. Protoc doi: 10.1101/pdb.prot090811 – volume: 16 start-page: e2005970 year: 2018 ident: CR39 article-title: CellProfiler 3.0: next-generation image processing for biology publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005970 – volume: 33 start-page: 473 year: 2002 end-page: 490 ident: CR38 article-title: C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(02)00848-1 – ident: CR32 – volume: 9 start-page: 196 year: 2018 end-page: 206 ident: CR12 article-title: Structural and functional roles of ether lipids publication-title: Protein Cell doi: 10.1007/s13238-017-0423-5 – volume: 10 start-page: 2589 year: 2015 end-page: 2597 ident: CR13 article-title: Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00466 – volume: 75 start-page: 991 year: 2000 end-page: 1003 ident: CR28 article-title: Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2000.0750991.x – volume: 156 start-page: 317 year: 2014 end-page: 331 ident: CR6 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 150 start-page: 443 year: 2018 end-page: 471 ident: CR10 article-title: The peroxisome: an update on mysteries 2.0 publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-018-1722-5 – volume: 45 start-page: 416 year: 1990 end-page: 422 ident: CR31 article-title: Metallothionein gene expression and resistance to cisplatin in human ovarian cancer publication-title: Int. J. Cancer doi: 10.1002/ijc.2910450306 – volume: 156 start-page: 317 year: 2014 ident: 2732_CR6 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 19 start-page: 380 year: 2014 ident: 2732_CR11 publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.01.002 – volume: 551 start-page: 247 year: 2017 ident: 2732_CR5 publication-title: Nature doi: 10.1038/nature24297 – volume: 116 start-page: 2672 year: 2019 ident: 2732_CR27 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821022116 – volume: 2016 start-page: pdb.prot090803 year: 2016 ident: 2732_CR36 publication-title: Cold Spring Harb. Protoc doi: 10.1101/pdb.prot090803 – volume: 12 start-page: 497 year: 2016 ident: 2732_CR33 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2079 – volume: 16 start-page: e2005970 year: 2018 ident: 2732_CR39 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2005970 – volume: 575 start-page: 693 year: 2019 ident: 2732_CR22 publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 16 start-page: 497 year: 2020 ident: 2732_CR7 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0501-5 – volume: 698 start-page: 223 year: 1995 ident: 2732_CR30 publication-title: Brain Res. doi: 10.1016/0006-8993(95)00931-F – volume: 150 start-page: 443 year: 2018 ident: 2732_CR10 publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-018-1722-5 – volume: 16 start-page: 302 year: 2020 ident: 2732_CR14 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0472-6 – volume: 10 start-page: 1604 year: 2015 ident: 2732_CR16 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00245 – volume: 366 start-page: 128 year: 2019 ident: 2732_CR24 publication-title: Science doi: 10.1126/science.aay1436 – volume: 45 start-page: 416 year: 1990 ident: 2732_CR31 publication-title: Int. J. Cancer doi: 10.1002/ijc.2910450306 – volume: 575 start-page: 688 year: 2019 ident: 2732_CR23 publication-title: Nature doi: 10.1038/s41586-019-1705-2 – volume: 47 start-page: D607 year: 2019 ident: 2732_CR9 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1131 – volume: 2016 start-page: pdb.prot090811 year: 2016 ident: 2732_CR37 publication-title: Cold Spring Harb. Protoc doi: 10.1101/pdb.prot090811 – volume: 48 start-page: 412 year: 2011 ident: 2732_CR40 publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-011-0251-1 – volume: 170 start-page: 564 year: 2017 ident: 2732_CR25 publication-title: Cell doi: 10.1016/j.cell.2017.06.010 – volume: 75 start-page: 991 year: 2000 ident: 2732_CR28 publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2000.0750991.x – volume: 17 start-page: 41 year: 2018 ident: 2732_CR19 publication-title: Lipids Health Dis. doi: 10.1186/s12944-018-0685-9 – volume: 32 start-page: 147 year: 2004 ident: 2732_CR29 publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0320147 – volume: 33 start-page: 473 year: 2002 ident: 2732_CR38 publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(02)00848-1 – volume: 591 start-page: 2720 year: 2017 ident: 2732_CR17 publication-title: FEBS Lett. doi: 10.1002/1873-3468.12743 – volume: 350 start-page: 1096 year: 2015 ident: 2732_CR35 publication-title: Science doi: 10.1126/science.aac7041 – volume: 212 start-page: 555 year: 2015 ident: 2732_CR2 publication-title: J. Exp. Med. doi: 10.1084/jem.20140857 – volume: 137 start-page: 841 year: 2018 ident: 2732_CR34 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.029468 – volume: 171 start-page: 273 year: 2017 ident: 2732_CR1 publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 343 start-page: 44 year: 1997 ident: 2732_CR21 publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.0134 – volume: 9 start-page: 196 year: 2018 ident: 2732_CR12 publication-title: Protein Cell doi: 10.1007/s13238-017-0423-5 – volume: 50 start-page: 860 year: 2009 ident: 2732_CR20 publication-title: J. Lipid Res. doi: 10.1194/jlr.M800468-JLR200 – ident: 2732_CR32 – volume: 10 year: 2019 ident: 2732_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09277-9 – volume: 13 start-page: 91 year: 2017 ident: 2732_CR8 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 177 start-page: 1262 year: 2019 ident: 2732_CR26 publication-title: Cell doi: 10.1016/j.cell.2019.03.032 – volume: 1822 start-page: 1442 year: 2012 ident: 2732_CR18 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2012.05.008 – volume: 547 start-page: 453 year: 2017 ident: 2732_CR4 publication-title: Nature doi: 10.1038/nature23007 – volume: 10 start-page: 2589 year: 2015 ident: 2732_CR13 publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.5b00466 – volume: 6 year: 2016 ident: 2732_CR15 publication-title: Sci. Rep. doi: 10.1038/srep28932 – reference: 33235217 - Signal Transduct Target Ther. 2020 Nov 24;5(1):273 – reference: 33149249 - Cell Res. 2020 Dec;30(12):1061-1062 |
SSID | ssj0005174 |
Score | 2.7217216 |
Snippet | Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in... Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in... Ferroptosis--an iron-dependent, non-apoptotic cell death process--is involved in various degenerative diseases and represents a targetable susceptibility in... Ferroptosis, an iron-dependent, non-apoptotic cell death program, is involved in various degenerative diseases and represents a targetable vulnerability in... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 603 |
SubjectTerms | 13 14 14/34 45 45/41 45/91 631/45/608 631/67/2327 631/80/642/2013 631/80/82 631/92/287/1194 64 64/60 82/58 Analysis Animals Apoptosis Biosynthesis Cancer Cardiomyocytes Cell death Cell Differentiation Cell Line CRISPR CRISPR-Cas Systems - genetics Enzymes Ether lipids Ethers - chemistry Ethers - metabolism Female Ferroptosis Gene Editing Genes Genetic susceptibility Genomes Glycerol Humanities and Social Sciences Humans Influence Kidney Neoplasms - metabolism Kidney Neoplasms - pathology Lipid Peroxidation Lipids Male Mice multidisciplinary Myocytes, Cardiac - cytology Myocytes, Cardiac - metabolism Nanoparticles Neurons - cytology Neurons - metabolism Organelles Ovarian cancer Ovarian carcinoma Ovarian Neoplasms - metabolism Ovarian Neoplasms - pathology Ovaries Peroxidation Peroxisomes Peroxisomes - genetics Peroxisomes - metabolism Phospholipids Phospholipids - chemistry Phospholipids - metabolism Plasticity Properties Renal cell carcinoma Science Science (multidisciplinary) Substrates Susceptibility Therapeutic applications |
Title | Plasticity of ether lipids promotes ferroptosis susceptibility and evasion |
URI | https://link.springer.com/article/10.1038/s41586-020-2732-8 https://www.ncbi.nlm.nih.gov/pubmed/32939090 https://www.proquest.com/docview/2755620633 https://www.proquest.com/docview/2443881035 https://pubmed.ncbi.nlm.nih.gov/PMC8051864 |
Volume | 585 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_ahMFextp9ee2CN8o-MXUiy1IexkhKs64PoXQZy5uwJbkLFNuNkkH_-50UO6lD1xe_3DlIus_4froDOMKQo1jEw0BGmQ4iFcdB2qNpkCQYraKIYVRz3T7H8dmv6HxKpzswru_CWFhl7ROdo1aFtN_Ij3uMYqjGgEq-lTeBnRplq6v1CI2kGq2gvroWY7vQRpdMwxa0h6fji8sN6GOrL3Nd5yT82GAo4xaQG9rrKugmGpFq21_fCVjbYMqtiqoLVKOn8KTKMP3BSiX2YEfn-_DIIT2l2Ye9ypqN_7FqOf3pGZxfYBJt8dWLW7_IfHcJ2L-elTNl_NIB9pA_0_N5US4KMzO-WRqHh3HQ2ls_yZWv_yb2y9tzmIxOJydnQTVlIZCM0QV6u36YJYQSRhNmx6nHJGZp2qVKZzIiXBKVShWyWMVZSqnkOlMpz2RXhUr3KHkBrbzI9SvwZcY05ot4yDyJbOaTYureC3Wk-1Lj3xgPwvpAhaw6kNtBGNfCVcIJFysZCJSBsDIQ3IPP61fKVfuNh5iPrJSEbWuRW9zMVbI0Rgwmv0_GYoDbIpi80siDd_ex_fh52WD6UDFlBa5RJtVtBdypbZjV4DxocMpydiPuUN83qFcryd73M4cNRrRy2STXqicqL2PExiY8eLsm2zctci7XxRJ5IpQhxwOjHrxcaer6JAnmev2wH3rAGjq8ZrC9x5uUfPbH9SDnVsoxLutLre2bZf1XQK8f3sQBPO5Z83M1v0NoLeZL_QZTvkXagV02ZfjkJ137HH3vQHswGg7HncrC_wGvHlQp |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdQ0bS9TIN9ZbDNm9i3IkLiJO4DmjoGaoFViHUab1ZiO6wSSkLdbuoft_9td27SkorxxrMvke2z73f2_XxHyBZAjooZ91zJMu0yFUVu6oepmySAVozFgGo222c_6v5gh2fh2Qr5W7-FQVplbROtoVaFxDvybT8OAaoBUIPP5aWLVaMwulqX0Eiq0gpq16YYqx52HOnpHzjCmd3eV9D3G98_2B_sdd2qyoAr4zgcw25ve1kShEEcJjGWE4-CKE7TnVDpTLKAy0ClUsFxX0VZGoaS60ylPJM7ylPax6IRgACrDO9PWmT1y37_5HTBMVlKA12HVQO-bQA5OfJ_PXwdA1apAYzL8HAFH5e5m0sBXIuLBw_I_cqhpZ3ZClwjKzpfJ3cssVSadbJWGQ9D31cZrj88JIcn4LMjnXs8pUVG7ZtjejEsh8rQ0vIDQT7To1FRjgszNNRMjKXfWCbvlCa5ovp3ghd9j8jgNqb7MWnlRa6fEiqzWIN7CpPME4aOVgonBd_TTLelhlOTQ7x6QoWsEp5j3Y0LYQPvARczHQjQgUAdCO6Qj_NPylm2j5uEt1BLArNo5EjTOU8mxojO4OdeX3RgWAH4yiFzyOvrxHrfTxtC7yqhrIA-yqR6HAEjxfxcDcmNhqQsh5fiSuvbRuv5TLPX_WazIQhGRTab66UnKqNmxGILOuTVvBm_RKJerosJyDDQIYcJCx3yZLZS5zMZgGvZ9tqeQ-LGGp4LYKrzZks-_GVTnnPUcgTd-lSv9kW3_qugZzcP4iW52x18OxbHvf7RBrnn41a04cZN0hqPJvo5eJvj9EW1pykRt2xF_gGjw41- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviI2vsAEBjW9FzRIndh8QqjaqdUPVBEX0zUpsZ1SakqxuQf3T-O-4c5J2qcbe9nyXyPad786-n-8I2QOXoxjlvidppj2q4thLgyj1kgS8FaUMvJqt9jmMj37Q43E03iB_m7cwCKtsbKI11KqQeEfeCVgErhocatjJaljE6WH_c3nhYQcpzLQ27TQqFTnRiz9wfDOfBocg69dB0P8yOjjy6g4DnmQsmsFO7_pZEkYhixKGrcTjMGZpuh8pnUkachmqVCo46qs4S6NIcp2plGdyX_lKB9gwAqz_LRZSil0j2Jit0CVrBaCbhGrIOwZ8Jkfkr4_vYsAetVziumO45BnXUZtrqVvrEfv3yb06lHV7le5tkQ2db5PbFlIqzTbZqs2Gcd_Vta3fPyDHpxCtI5B7tnCLzLWvjd3zSTlRxi0tMhD4Mz2dFuWsMBPjmrmxwBuL4V24Sa5c_TvBK76HZHQTi_2IbOZFrp8QV2ZMQ2AKi8wTiiFWCmeEwNdUd6WG85JD_GZBhaxLnWPHjXNhU-4hF5UMBMhAoAwEd8iH5SdlVefjOuY9lJLA-hk5auJZMjdG9EY_D4aiB9MKIUqOqENeXcU2-P6txfS2ZsoKGKNM6mcRMFOszNXi3GlxynJyIS5R37SoZ5Vkr_rNbosRzIlskxvVE7U5M2K1-RzycknGLxGil-tiDjwUZMhhwSKHPK40dbmSIQSVXb_rO4S1dHjJgEXO25R88ssWO-co5RiG9bHR9tWw_iugp9dP4gW5A7ZDfB0MT3bI3QB3os0z7pLN2XSun0GYOUuf2w3tEnHDBuQfvUWLGg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+of+ether+lipids+promotes+ferroptosis+susceptibility+and+evasion&rft.jtitle=Nature+%28London%29&rft.au=Zou%2C+Yilong&rft.au=Henry%2C+Whitney+S&rft.au=Ricq%2C+Emily+L&rft.au=Graham%2C+Emily+T&rft.date=2020-09-24&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=585&rft.issue=7826&rft.spage=603&rft_id=info:doi/10.1038%2Fs41586-020-2732-8&rft.externalDocID=A636365654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |