Plasticity of ether lipids promotes ferroptosis susceptibility and evasion

Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers 1 . The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during c...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 585; no. 7826; pp. 603 - 608
Main Authors Zou, Yilong, Henry, Whitney S., Ricq, Emily L., Graham, Emily T., Phadnis, Vaishnavi V., Maretich, Pema, Paradkar, Sateja, Boehnke, Natalie, Deik, Amy A., Reinhardt, Ferenc, Eaton, John K., Ferguson, Bryan, Wang, Wenyu, Fairman, Joshua, Keys, Heather R., Dančík, Vlado, Clish, Clary B., Clemons, Paul A., Hammond, Paula T., Boyer, Laurie A., Weinberg, Robert A., Schreiber, Stuart L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.09.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-020-2732-8

Cover

Abstract Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers 1 . The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions 2 – 5 . However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR–Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome–ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. The cellular organelles peroxisomes contribute to the sensitivity of cells to ferroptosis by synthesizing polyunsaturated ether phospholipids, and changes in the abundances of these lipids are associated with altered sensitivity to ferroptosis during cell-state transitions.
AbstractList Ferroptosis--an iron-dependent, non-apoptotic cell death process--is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers.sup.1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions.sup.2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.
Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.
Ferroptosis, an iron-dependent, non-apoptotic cell death program, is involved in various degenerative diseases and represents a targetable vulnerability in certain cancers 1 . The ferroptosis-susceptible cell state can either preexist in cells arising from certain lineages or be acquired during cell-state transitions 2 – 5 . Precisely how ferroptosis susceptibility is dynamically regulated remains poorly understood. Using genome-wide CRISPR/Cas9 suppressor screens, we identify the peroxisome organelle as a critical contributor to ferroptosis sensitivity in human renal and ovarian carcinoma cells. By lipidomic profiling, we show that peroxisomes contribute to ferroptosis through the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), an understudied lipid class that provides substrates for lipid peroxidation, resulting in turn in induction of ferroptosis. Moreover, carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo , a state associated with extensive PUFA-ePL downregulation. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including normal neurons and cardiomyocytes. Together, our work reveals important roles for the peroxisome–ether phospholipid axis in driving ferroptosis susceptibility and evasion, highlights PUFA-ePL as a distinct functional lipid group that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases involving ferroptosis.
Ferroptosis--an iron-dependent, non-apoptotic cell death process--is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers.sup.1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions.sup.2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. The cellular organelles peroxisomes contribute to the sensitivity of cells to ferroptosis by synthesizing polyunsaturated ether phospholipids, and changes in the abundances of these lipids are associated with altered sensitivity to ferroptosis during cell-state transitions.
Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers1. The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions2-5. However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CR1SPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation ofPUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.
Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers . The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions . However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR-Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome-ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis.
Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in certain cancers 1 . The ferroptosis-susceptible cell state can either pre-exist in cells that arise from certain lineages or be acquired during cell-state transitions 2 – 5 . However, precisely how susceptibility to ferroptosis is dynamically regulated remains poorly understood. Here we use genome-wide CRISPR–Cas9 suppressor screens to identify the oxidative organelles peroxisomes as critical contributors to ferroptosis sensitivity in human renal and ovarian carcinoma cells. Using lipidomic profiling we show that peroxisomes contribute to ferroptosis by synthesizing polyunsaturated ether phospholipids (PUFA-ePLs), which act as substrates for lipid peroxidation that, in turn, results in the induction of ferroptosis. Carcinoma cells that are initially sensitive to ferroptosis can switch to a ferroptosis-resistant state in vivo in mice, which is associated with extensive downregulation of PUFA-ePLs. We further find that the pro-ferroptotic role of PUFA-ePLs can be extended beyond neoplastic cells to other cell types, including neurons and cardiomyocytes. Together, our work reveals roles for the peroxisome–ether-phospholipid axis in driving susceptibility to and evasion from ferroptosis, highlights PUFA-ePL as a distinct functional lipid class that is dynamically regulated during cell-state transitions, and suggests multiple regulatory nodes for therapeutic interventions in diseases that involve ferroptosis. The cellular organelles peroxisomes contribute to the sensitivity of cells to ferroptosis by synthesizing polyunsaturated ether phospholipids, and changes in the abundances of these lipids are associated with altered sensitivity to ferroptosis during cell-state transitions.
Audience Academic
Author Fairman, Joshua
Eaton, John K.
Reinhardt, Ferenc
Clish, Clary B.
Boyer, Laurie A.
Ricq, Emily L.
Graham, Emily T.
Dančík, Vlado
Hammond, Paula T.
Weinberg, Robert A.
Wang, Wenyu
Henry, Whitney S.
Paradkar, Sateja
Deik, Amy A.
Ferguson, Bryan
Phadnis, Vaishnavi V.
Boehnke, Natalie
Zou, Yilong
Maretich, Pema
Schreiber, Stuart L.
Clemons, Paul A.
Keys, Heather R.
AuthorAffiliation 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A
4 Department of Biology, MIT, MA 02142, U.S.A
6 Department of Chemical Engineering, MIT, MA 02142, U.S.A
3 Whitehead Institute for Biomedical Research, MIT, MA 02142, U.S.A
5 Koch Institute for Integrative Cancer Research, MIT, MA 02142, U.S.A
7 Department of Biological Engineering, MIT, MA 02142, U.S.A
1 Broad Institute, Cambridge, MA 02142, U.S.A
AuthorAffiliation_xml – name: 3 Whitehead Institute for Biomedical Research, MIT, MA 02142, U.S.A
– name: 7 Department of Biological Engineering, MIT, MA 02142, U.S.A
– name: 4 Department of Biology, MIT, MA 02142, U.S.A
– name: 1 Broad Institute, Cambridge, MA 02142, U.S.A
– name: 6 Department of Chemical Engineering, MIT, MA 02142, U.S.A
– name: 2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A
– name: 5 Koch Institute for Integrative Cancer Research, MIT, MA 02142, U.S.A
Author_xml – sequence: 1
  givenname: Yilong
  orcidid: 0000-0001-8198-6067
  surname: Zou
  fullname: Zou, Yilong
  email: yzou@broadinstitute.org
  organization: Broad Institute, Department of Chemistry and Chemical Biology, Harvard University
– sequence: 2
  givenname: Whitney S.
  surname: Henry
  fullname: Henry, Whitney S.
  organization: Whitehead Institute for Biomedical Research
– sequence: 3
  givenname: Emily L.
  surname: Ricq
  fullname: Ricq, Emily L.
  organization: Broad Institute, Department of Chemistry and Chemical Biology, Harvard University
– sequence: 4
  givenname: Emily T.
  orcidid: 0000-0001-6696-4564
  surname: Graham
  fullname: Graham, Emily T.
  organization: Broad Institute
– sequence: 5
  givenname: Vaishnavi V.
  orcidid: 0000-0001-8452-8512
  surname: Phadnis
  fullname: Phadnis, Vaishnavi V.
  organization: Whitehead Institute for Biomedical Research
– sequence: 6
  givenname: Pema
  surname: Maretich
  fullname: Maretich, Pema
  organization: Department of Biology, MIT
– sequence: 7
  givenname: Sateja
  surname: Paradkar
  fullname: Paradkar, Sateja
  organization: Whitehead Institute for Biomedical Research
– sequence: 8
  givenname: Natalie
  surname: Boehnke
  fullname: Boehnke, Natalie
  organization: Koch Institute for Integrative Cancer Research, MIT
– sequence: 9
  givenname: Amy A.
  surname: Deik
  fullname: Deik, Amy A.
  organization: Broad Institute
– sequence: 10
  givenname: Ferenc
  surname: Reinhardt
  fullname: Reinhardt, Ferenc
  organization: Whitehead Institute for Biomedical Research
– sequence: 11
  givenname: John K.
  orcidid: 0000-0003-4633-5546
  surname: Eaton
  fullname: Eaton, John K.
  organization: Broad Institute
– sequence: 12
  givenname: Bryan
  surname: Ferguson
  fullname: Ferguson, Bryan
  organization: Broad Institute
– sequence: 13
  givenname: Wenyu
  surname: Wang
  fullname: Wang, Wenyu
  organization: Broad Institute
– sequence: 14
  givenname: Joshua
  surname: Fairman
  fullname: Fairman, Joshua
  organization: Whitehead Institute for Biomedical Research
– sequence: 15
  givenname: Heather R.
  orcidid: 0000-0003-1371-2288
  surname: Keys
  fullname: Keys, Heather R.
  organization: Whitehead Institute for Biomedical Research
– sequence: 16
  givenname: Vlado
  surname: Dančík
  fullname: Dančík, Vlado
  organization: Broad Institute
– sequence: 17
  givenname: Clary B.
  orcidid: 0000-0001-8259-9245
  surname: Clish
  fullname: Clish, Clary B.
  organization: Broad Institute
– sequence: 18
  givenname: Paul A.
  orcidid: 0000-0002-1800-5112
  surname: Clemons
  fullname: Clemons, Paul A.
  organization: Broad Institute
– sequence: 19
  givenname: Paula T.
  orcidid: 0000-0002-9835-192X
  surname: Hammond
  fullname: Hammond, Paula T.
  organization: Koch Institute for Integrative Cancer Research, MIT, Department of Chemical Engineering, MIT
– sequence: 20
  givenname: Laurie A.
  surname: Boyer
  fullname: Boyer, Laurie A.
  organization: Department of Biology, MIT, Department of Biological Engineering, MIT
– sequence: 21
  givenname: Robert A.
  orcidid: 0000-0002-0895-3557
  surname: Weinberg
  fullname: Weinberg, Robert A.
  email: weinberg@wi.mit.edu
  organization: Whitehead Institute for Biomedical Research
– sequence: 22
  givenname: Stuart L.
  orcidid: 0000-0003-1922-7558
  surname: Schreiber
  fullname: Schreiber, Stuart L.
  email: stuart_schreiber@harvard.edu
  organization: Broad Institute, Department of Chemistry and Chemical Biology, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32939090$$D View this record in MEDLINE/PubMed
BookMark eNp9kltv1DAQhS1URC_wA3hBEbyAUIoTx5d9qbRacSmqAMFKPFqOPdm6ytqp7VT03-NoW9qttsgPkezvnJnJnEO057wDhF5W-LjCRHyITUUFK3GNy5qTuhRP0EHVcFY2TPA9dIBxLUosCNtHhzFeYIxpxZtnaJ_UMzLDM3yAvv7oVUxW23Rd-K6AdA6h6O1gTSyG4Nc-QSw6CMEPyUcbizhGDUOyre0njXKmgCsVrXfP0dNO9RFe3HyP0PLTx-XiS3n2_fPpYn5Was5pKmfVDHeKUMKp4pjUmBHG27aiBjrdEKGJabXBnBnWtZRqAZ1pRacrgw3UlByhk43tMLZrMBpcCqqXQ7BrFa6lV1Zuvzh7Llf-Soo8vWBNNnh7YxD85QgxybXNM_W9cuDHKOsmdyHyD55qvXmAXvgxuDydrDmlbGqe3FEr1YO0rvO5rp5M5TwPRxhldCpb7qBW4CA3mffa2Xy9xb_ewevBXsr70PEOKB8Da6t3ur7bEmQmwZ-0UmOM8vTXz232_ePsfPl78W2bfnV_L_8Wcpu1DPANoIOPMUAnc-pUysnJPdteVlhOqZabVMucajmlWoqsrB4ob83_p6k3mphZt4Jwt7rHRX8BTyYF6g
CitedBy_id crossref_primary_10_1038_s42255_022_00645_2
crossref_primary_10_1007_s40820_024_01399_0
crossref_primary_10_1016_j_greeac_2024_100128
crossref_primary_10_4103_NRR_NRR_D_24_00025
crossref_primary_10_1111_jcmm_18076
crossref_primary_10_1021_acsnano_0c00764
crossref_primary_10_1039_D3BM00189J
crossref_primary_10_1021_acsami_2c11130
crossref_primary_10_3389_fcell_2024_1372330
crossref_primary_10_1002_biof_1916
crossref_primary_10_3389_fonc_2023_1131473
crossref_primary_10_1016_j_yjmcc_2022_10_004
crossref_primary_10_1002_1878_0261_13649
crossref_primary_10_1007_s00210_021_02178_z
crossref_primary_10_1016_j_isci_2024_109774
crossref_primary_10_71051_jnlm_1595473
crossref_primary_10_1038_s41467_022_34096_w
crossref_primary_10_3389_fgene_2023_1275154
crossref_primary_10_1038_s41580_024_00703_5
crossref_primary_10_1038_s41589_024_01612_6
crossref_primary_10_1186_s13046_024_03047_2
crossref_primary_10_1038_s41556_024_01377_z
crossref_primary_10_1042_BCJ20240445
crossref_primary_10_3389_fphar_2024_1288255
crossref_primary_10_1016_j_redox_2024_103480
crossref_primary_10_1002_anie_202300379
crossref_primary_10_1016_j_jgg_2021_10_003
crossref_primary_10_12677_acm_2024_1461896
crossref_primary_10_1038_s41418_021_00883_z
crossref_primary_10_1111_febs_16244
crossref_primary_10_1016_j_cbd_2024_101215
crossref_primary_10_1038_s41467_023_37237_x
crossref_primary_10_3389_fmolb_2022_892957
crossref_primary_10_1016_j_celrep_2022_111231
crossref_primary_10_3389_fmolb_2022_1102158
crossref_primary_10_1016_j_xpro_2023_102762
crossref_primary_10_1016_j_reth_2024_02_007
crossref_primary_10_3389_fendo_2020_628079
crossref_primary_10_1016_j_molmet_2024_101913
crossref_primary_10_1038_s41586_022_05443_0
crossref_primary_10_1021_jacs_1c05813
crossref_primary_10_1038_s42003_024_07180_8
crossref_primary_10_3389_fendo_2024_1390013
crossref_primary_10_1016_j_ejphar_2023_175497
crossref_primary_10_1038_s41598_023_31712_7
crossref_primary_10_3389_fimmu_2021_783362
crossref_primary_10_1055_s_0043_1773796
crossref_primary_10_1155_2022_7686956
crossref_primary_10_1016_j_ceca_2023_102703
crossref_primary_10_1038_s41586_023_06878_9
crossref_primary_10_3390_cells12081128
crossref_primary_10_1016_j_arr_2023_102077
crossref_primary_10_3390_antiox12061218
crossref_primary_10_1038_s41556_025_01610_3
crossref_primary_10_14348_molcells_2023_0005
crossref_primary_10_1016_j_molmed_2024_08_007
crossref_primary_10_3390_ijms252212463
crossref_primary_10_1016_j_apsb_2022_04_017
crossref_primary_10_1016_j_bbrc_2022_04_061
crossref_primary_10_1038_s41556_024_01398_8
crossref_primary_10_1016_j_chemosphere_2023_137853
crossref_primary_10_1016_j_jbc_2021_101470
crossref_primary_10_1016_j_phrs_2023_106645
crossref_primary_10_1097_MOL_0000000000000820
crossref_primary_10_1016_j_molcel_2022_05_028
crossref_primary_10_3724_abbs_2023120
crossref_primary_10_1002_smll_202310342
crossref_primary_10_1016_j_ejmech_2022_115015
crossref_primary_10_1080_21655979_2021_2017627
crossref_primary_10_1016_j_freeradbiomed_2024_05_045
crossref_primary_10_1016_j_molmet_2022_101577
crossref_primary_10_1021_acsnano_3c01369
crossref_primary_10_1016_j_trecan_2021_04_005
crossref_primary_10_1093_nar_gkab419
crossref_primary_10_1155_2022_3846217
crossref_primary_10_1111_febs_16059
crossref_primary_10_1038_s41420_024_02141_w
crossref_primary_10_26508_lsa_202101287
crossref_primary_10_1038_s41419_023_06333_7
crossref_primary_10_1089_ars_2023_0340
crossref_primary_10_3390_nu14112303
crossref_primary_10_1016_j_heliyon_2023_e19801
crossref_primary_10_1038_s41589_023_01255_z
crossref_primary_10_1016_j_intimp_2024_112433
crossref_primary_10_3389_fonc_2023_1098357
crossref_primary_10_1002_anie_202307838
crossref_primary_10_1002_alz_12538
crossref_primary_10_3389_fcell_2022_884689
crossref_primary_10_1016_j_ijbiomac_2024_135147
crossref_primary_10_3390_antiox13030298
crossref_primary_10_1016_j_chembiol_2022_08_002
crossref_primary_10_1158_1078_0432_CCR_22_0296
crossref_primary_10_1016_j_cej_2022_135311
crossref_primary_10_1016_j_jprot_2024_105144
crossref_primary_10_1021_acschembio_2c00209
crossref_primary_10_1039_D3CS00001J
crossref_primary_10_1038_s41467_022_35707_2
crossref_primary_10_1098_rsob_240291
crossref_primary_10_1016_j_cbi_2024_111368
crossref_primary_10_15690_vramn4917
crossref_primary_10_1080_15548627_2023_2259732
crossref_primary_10_31083_j_rcm2510360
crossref_primary_10_1016_j_tcb_2021_02_005
crossref_primary_10_1016_j_biomaterials_2023_122395
crossref_primary_10_1071_CH22176
crossref_primary_10_1186_s12935_021_02166_6
crossref_primary_10_3389_fonc_2022_746030
crossref_primary_10_3390_biomedicines12030541
crossref_primary_10_2174_1389201024666230823091144
crossref_primary_10_3390_livers4040043
crossref_primary_10_1016_j_drup_2025_101224
crossref_primary_10_1016_j_jlr_2024_100544
crossref_primary_10_3389_fonc_2022_923915
crossref_primary_10_1038_s41401_024_01378_6
crossref_primary_10_1016_j_cell_2023_03_003
crossref_primary_10_1007_s12072_022_10459_9
crossref_primary_10_3389_fcell_2022_864716
crossref_primary_10_1051_medsci_2021108
crossref_primary_10_3390_metabo11010041
crossref_primary_10_1002_advs_202404073
crossref_primary_10_3390_antiox11020192
crossref_primary_10_1016_j_lfs_2021_119958
crossref_primary_10_1186_s12951_025_03117_3
crossref_primary_10_3390_biology13110949
crossref_primary_10_3389_fphar_2024_1374722
crossref_primary_10_1016_j_jbc_2022_101617
crossref_primary_10_1080_1061186X_2021_1971237
crossref_primary_10_1038_s41418_022_01099_5
crossref_primary_10_1002_adhm_202404215
crossref_primary_10_1016_j_cell_2022_06_003
crossref_primary_10_1155_2022_5361241
crossref_primary_10_1096_fj_202201848R
crossref_primary_10_1016_j_eng_2023_04_012
crossref_primary_10_1016_j_chembiol_2021_11_001
crossref_primary_10_1016_j_cell_2023_01_020
crossref_primary_10_3389_fnut_2022_1094273
crossref_primary_10_3390_ijms241713560
crossref_primary_10_1016_j_jpba_2024_116399
crossref_primary_10_3390_cells14020108
crossref_primary_10_1016_j_jhep_2024_05_034
crossref_primary_10_1016_j_tem_2021_08_005
crossref_primary_10_3390_metabo11020070
crossref_primary_10_1021_acsami_3c00297
crossref_primary_10_1097_CM9_0000000000002642
crossref_primary_10_1155_2023_3400147
crossref_primary_10_1186_s10020_024_00797_9
crossref_primary_10_1016_j_molcel_2021_12_001
crossref_primary_10_3389_fimmu_2022_877634
crossref_primary_10_4196_kjpp_2024_28_3_183
crossref_primary_10_1038_s41467_023_44412_7
crossref_primary_10_3390_microorganisms9051067
crossref_primary_10_1016_j_freeradbiomed_2022_02_015
crossref_primary_10_1152_physrev_00031_2024
crossref_primary_10_1016_j_ccell_2022_10_009
crossref_primary_10_3390_molecules28176328
crossref_primary_10_1038_s41422_020_00434_0
crossref_primary_10_3389_fcell_2024_1423869
crossref_primary_10_3390_biom14111461
crossref_primary_10_1080_1061186X_2022_2071909
crossref_primary_10_1016_j_brainresbull_2024_110991
crossref_primary_10_1038_s41418_021_00859_z
crossref_primary_10_1007_s13238_021_00841_y
crossref_primary_10_1016_j_chembiol_2024_09_008
crossref_primary_10_1186_s12885_022_09972_9
crossref_primary_10_1016_j_envint_2025_109367
crossref_primary_10_1038_s41556_023_01136_6
crossref_primary_10_1038_s41467_024_46776_w
crossref_primary_10_1016_j_scib_2022_12_030
crossref_primary_10_1038_s12276_023_01077_y
crossref_primary_10_1038_s41593_022_01221_3
crossref_primary_10_1016_j_amjms_2023_04_024
crossref_primary_10_1016_j_immuni_2024_03_019
crossref_primary_10_1016_j_biochi_2023_09_004
crossref_primary_10_1016_j_pbi_2023_102499
crossref_primary_10_1002_cac2_12250
crossref_primary_10_1038_s41467_023_37593_8
crossref_primary_10_1016_j_phymed_2024_156034
crossref_primary_10_1080_10715762_2021_1876856
crossref_primary_10_1007_s10753_024_02000_x
crossref_primary_10_1016_j_ijbiomac_2024_136776
crossref_primary_10_3390_biomedicines13020265
crossref_primary_10_1002_ange_202307838
crossref_primary_10_3390_cancers14194690
crossref_primary_10_2147_JAA_S416276
crossref_primary_10_1016_j_bbcan_2024_189258
crossref_primary_10_1039_D1FO03833H
crossref_primary_10_1136_jitc_2021_003430
crossref_primary_10_15212_bioi_2020_0039
crossref_primary_10_1007_s11684_024_1082_6
crossref_primary_10_3389_fcell_2021_701788
crossref_primary_10_1152_ajpcell_00148_2022
crossref_primary_10_3389_fonc_2023_1181134
crossref_primary_10_1089_ars_2022_0048
crossref_primary_10_1016_j_brainresbull_2024_110897
crossref_primary_10_1038_s41392_020_00404_3
crossref_primary_10_1007_s00018_023_04907_4
crossref_primary_10_1002_ange_202300379
crossref_primary_10_1080_14728222_2021_2011206
crossref_primary_10_1016_j_nantod_2023_101865
crossref_primary_10_1186_s40170_020_00237_2
crossref_primary_10_3389_fphar_2023_1095366
crossref_primary_10_3389_fcell_2023_1179245
crossref_primary_10_1016_j_apsb_2024_04_020
crossref_primary_10_3390_metabo12090866
crossref_primary_10_1007_s10565_024_09853_w
crossref_primary_10_3390_cells10020447
crossref_primary_10_1016_j_chembiol_2022_06_004
crossref_primary_10_1038_s41598_024_55050_4
crossref_primary_10_1146_annurev_biochem_052521_033527
crossref_primary_10_1021_jasms_3c00083
crossref_primary_10_1021_acs_analchem_3c02693
crossref_primary_10_1021_acs_chemrev_4c00546
crossref_primary_10_1007_s10495_023_01851_3
crossref_primary_10_1016_j_expneurol_2024_115031
crossref_primary_10_1038_s41467_023_37924_9
crossref_primary_10_1038_s41392_020_00428_9
crossref_primary_10_1016_j_foodchem_2025_143185
crossref_primary_10_1155_2021_3658196
crossref_primary_10_1016_j_jbc_2024_107259
crossref_primary_10_1038_s41418_022_01096_8
crossref_primary_10_3389_fcell_2021_675617
crossref_primary_10_1158_2159_8290_CD_21_0558
crossref_primary_10_2217_nnm_2023_0206
crossref_primary_10_3390_biom13121696
crossref_primary_10_1016_j_jhazmat_2021_128159
crossref_primary_10_1016_j_jid_2024_11_007
crossref_primary_10_1093_mtomcs_mfad019
crossref_primary_10_1016_j_cell_2024_10_047
crossref_primary_10_3390_cells13231969
crossref_primary_10_1186_s12964_024_01862_w
crossref_primary_10_1016_j_bcp_2021_114584
crossref_primary_10_1016_j_biochi_2023_08_012
crossref_primary_10_3389_fcell_2022_951116
crossref_primary_10_1021_acs_jmedchem_3c01652
crossref_primary_10_1016_j_jgg_2023_03_005
crossref_primary_10_3390_cells10051163
crossref_primary_10_1016_j_autrev_2024_103640
crossref_primary_10_1038_s41556_024_01464_1
crossref_primary_10_1016_j_cej_2024_150126
crossref_primary_10_1016_j_biomaterials_2023_122442
crossref_primary_10_1039_D4SC02129K
crossref_primary_10_1016_j_biopha_2024_116356
crossref_primary_10_1016_j_jpha_2024_03_001
crossref_primary_10_1186_s12943_024_02132_6
crossref_primary_10_1021_jasms_3c00181
crossref_primary_10_1371_journal_ppat_1009927
crossref_primary_10_3390_metabo11020125
crossref_primary_10_3390_metabo11020124
crossref_primary_10_1016_j_bbamcr_2022_119330
crossref_primary_10_1186_s12967_024_06059_w
crossref_primary_10_32948_auo_2022_12_09
crossref_primary_10_1038_s41467_021_22336_4
crossref_primary_10_1016_j_jhazmat_2024_134356
crossref_primary_10_1038_s41419_024_06939_5
crossref_primary_10_1016_j_cell_2023_01_010
crossref_primary_10_1021_acsnano_0c10240
crossref_primary_10_3389_fonc_2022_977348
crossref_primary_10_1038_s41420_022_01212_0
crossref_primary_10_1038_s41467_024_51489_1
crossref_primary_10_1155_2022_8808677
crossref_primary_10_1002_adbi_202100396
crossref_primary_10_1016_j_bbrc_2020_12_066
crossref_primary_10_3389_fonc_2022_870721
crossref_primary_10_1016_j_ejphar_2025_177344
crossref_primary_10_1038_s41420_022_01127_w
crossref_primary_10_1016_j_lfs_2022_120868
crossref_primary_10_1016_j_mitoco_2024_11_002
crossref_primary_10_3389_fcell_2022_946393
crossref_primary_10_1038_s41418_020_00728_1
crossref_primary_10_1158_0008_5472_CAN_21_0567
crossref_primary_10_3389_fphar_2022_1093244
crossref_primary_10_3390_data8070119
crossref_primary_10_1038_s41420_024_02007_1
crossref_primary_10_1016_j_jare_2025_01_026
crossref_primary_10_18632_aging_204176
crossref_primary_10_1016_j_jgg_2021_05_003
crossref_primary_10_1038_s41422_020_00441_1
crossref_primary_10_1016_j_jlr_2022_100223
crossref_primary_10_17816_RCF567780
crossref_primary_10_1016_j_chembiol_2022_11_003
crossref_primary_10_1038_s41589_022_01253_7
crossref_primary_10_1002_cac2_12319
crossref_primary_10_1016_j_freeradbiomed_2022_03_002
crossref_primary_10_1038_s41418_021_00769_0
crossref_primary_10_1038_s41467_023_41462_9
crossref_primary_10_1016_j_chemosphere_2025_144245
crossref_primary_10_1038_s41420_024_02127_8
crossref_primary_10_2147_JIR_S506760
crossref_primary_10_3390_biology14010012
crossref_primary_10_1111_acel_13968
crossref_primary_10_1155_2021_2178281
crossref_primary_10_1016_j_molcel_2023_11_040
crossref_primary_10_1371_journal_pgen_1010436
crossref_primary_10_1038_s41420_024_01863_1
crossref_primary_10_3389_fmed_2021_644053
crossref_primary_10_3389_fimmu_2022_972753
crossref_primary_10_3390_antiox11030501
crossref_primary_10_1101_cshperspect_a041409
crossref_primary_10_1002_advs_202206798
crossref_primary_10_3389_fendo_2024_1431652
crossref_primary_10_1007_s11684_023_0992_z
crossref_primary_10_1152_physrev_00051_2021
crossref_primary_10_1021_acs_biomac_4c00260
crossref_primary_10_1016_j_talanta_2023_124628
crossref_primary_10_3892_ol_2024_14576
crossref_primary_10_1186_s12943_024_01999_9
crossref_primary_10_1172_jci_insight_163403
crossref_primary_10_1016_j_jep_2023_116551
crossref_primary_10_1080_10715762_2023_2244155
crossref_primary_10_1002_advs_202204006
crossref_primary_10_3389_fmolb_2022_915457
crossref_primary_10_3389_fimmu_2023_1327852
crossref_primary_10_1161_ATVBAHA_122_318161
crossref_primary_10_1038_s41419_024_06937_7
crossref_primary_10_2147_IJN_S372947
crossref_primary_10_1016_j_foodchem_2025_143481
crossref_primary_10_26599_NR_2025_94907314
crossref_primary_10_3390_ijms252011185
crossref_primary_10_1038_s41392_024_02088_5
crossref_primary_10_1002_advs_202300517
crossref_primary_10_1002_cbf_3985
crossref_primary_10_2147_IJGM_S401225
crossref_primary_10_3390_membranes11110838
crossref_primary_10_3389_fphar_2023_1330910
crossref_primary_10_1007_s00011_022_01672_1
crossref_primary_10_1002_advs_202300402
crossref_primary_10_1038_s41571_020_00462_0
crossref_primary_10_18632_aging_205460
crossref_primary_10_34133_research_0037
crossref_primary_10_1038_s41416_023_02557_8
crossref_primary_10_1016_j_jconrel_2022_05_022
crossref_primary_10_1016_j_biopha_2023_116112
crossref_primary_10_3389_fcell_2021_698679
crossref_primary_10_1021_acssensors_4c02484
crossref_primary_10_1016_j_bbrc_2024_150683
crossref_primary_10_1038_s41419_022_05070_7
crossref_primary_10_1016_j_cmet_2024_01_006
crossref_primary_10_1016_j_trac_2023_117327
crossref_primary_10_3389_fphar_2021_773909
crossref_primary_10_2147_BCTT_S475199
crossref_primary_10_3390_metabo11090597
crossref_primary_10_1016_j_cbpa_2021_05_013
crossref_primary_10_15252_emmm_202114764
crossref_primary_10_1016_j_mito_2024_101974
crossref_primary_10_1016_j_biocel_2021_106094
crossref_primary_10_1016_j_celrep_2023_113023
crossref_primary_10_1002_advs_202306298
crossref_primary_10_1016_j_ejmech_2022_114861
crossref_primary_10_1159_000530882
crossref_primary_10_1038_s41392_024_01769_5
crossref_primary_10_1016_j_plipres_2023_101234
crossref_primary_10_1038_s41467_024_52978_z
crossref_primary_10_1016_j_foodchem_2023_138174
crossref_primary_10_1016_j_freeradbiomed_2022_11_003
crossref_primary_10_1016_j_cmet_2020_10_011
crossref_primary_10_3748_wjg_v29_i16_2433
crossref_primary_10_1097_MPA_0000000000002426
crossref_primary_10_1186_s12944_021_01615_5
crossref_primary_10_1080_23723556_2021_1933871
crossref_primary_10_1111_tra_12905
crossref_primary_10_3389_fendo_2024_1414289
crossref_primary_10_1080_15548627_2022_2059170
crossref_primary_10_1002_adfm_202300689
crossref_primary_10_1038_s41573_023_00749_8
crossref_primary_10_1016_j_canlet_2024_216811
crossref_primary_10_1038_s41568_022_00459_0
crossref_primary_10_1002_cbic_202400211
crossref_primary_10_3389_fcell_2021_699304
crossref_primary_10_1111_cod_14711
crossref_primary_10_3389_fphar_2025_1536375
crossref_primary_10_1016_j_jacbts_2022_12_001
crossref_primary_10_1186_s13046_023_02920_w
crossref_primary_10_1038_s41467_024_55785_8
crossref_primary_10_1038_s41467_025_56711_2
crossref_primary_10_1155_2022_7449941
crossref_primary_10_1083_jcb_202105043
crossref_primary_10_1155_2021_8854790
crossref_primary_10_1038_s41598_022_14690_0
crossref_primary_10_1007_s12013_023_01134_3
crossref_primary_10_1093_pnasnexus_pgae216
crossref_primary_10_1021_acs_analchem_4c03260
crossref_primary_10_3390_cells11142134
crossref_primary_10_1016_j_cmet_2023_06_014
crossref_primary_10_1021_jacsau_2c00681
crossref_primary_10_3389_fcell_2021_646890
crossref_primary_10_1038_s41420_023_01645_1
crossref_primary_10_1186_s13062_023_00416_3
crossref_primary_10_3390_cells12050804
crossref_primary_10_7554_eLife_82210
crossref_primary_10_1038_s41556_024_01360_8
crossref_primary_10_1038_s41589_021_00772_z
crossref_primary_10_3389_fonc_2023_1308869
crossref_primary_10_1016_j_expneurol_2023_114538
crossref_primary_10_3390_ijms24109092
crossref_primary_10_1016_j_tips_2023_07_007
crossref_primary_10_1016_j_tcb_2023_05_003
crossref_primary_10_1186_s12951_024_02842_5
crossref_primary_10_1016_j_heliyon_2024_e28942
crossref_primary_10_1042_BST20230550
crossref_primary_10_1002_smll_202106568
crossref_primary_10_1039_D3BM01894F
crossref_primary_10_1038_s41419_023_06045_y
crossref_primary_10_3389_fcell_2022_829029
crossref_primary_10_1016_j_aca_2024_343337
crossref_primary_10_1016_j_critrevonc_2023_103964
crossref_primary_10_1002_smll_202207825
crossref_primary_10_1016_j_aquaculture_2021_736760
crossref_primary_10_1021_acscentsci_3c00052
crossref_primary_10_2174_1574887117666220819094528
crossref_primary_10_1016_j_pharmthera_2021_107827
crossref_primary_10_1007_s00109_025_02528_x
crossref_primary_10_1016_j_cmet_2024_07_008
crossref_primary_10_1016_j_jcmgh_2023_03_001
crossref_primary_10_1038_s41418_024_01348_9
crossref_primary_10_1016_j_jneuroim_2024_578444
crossref_primary_10_1186_s13062_024_00458_1
crossref_primary_10_1016_j_bbalip_2021_159067
crossref_primary_10_1016_j_biomaterials_2025_123135
crossref_primary_10_1038_s41419_024_06681_y
crossref_primary_10_1016_j_gene_2023_147515
crossref_primary_10_1038_s12276_024_01167_5
crossref_primary_10_3390_cancers13040794
crossref_primary_10_1146_annurev_nutr_062320_114541
crossref_primary_10_1084_jem_20210518
crossref_primary_10_1016_j_tem_2021_04_012
crossref_primary_10_1016_j_molcel_2022_03_022
crossref_primary_10_1038_s41419_025_07330_8
crossref_primary_10_1016_j_trecan_2024_01_002
crossref_primary_10_1021_acsabm_2c00199
crossref_primary_10_3389_fgene_2022_906291
crossref_primary_10_1038_s41420_024_02037_9
crossref_primary_10_2147_JIR_S358470
crossref_primary_10_3390_cells11213508
crossref_primary_10_3390_membranes13090764
crossref_primary_10_1016_j_ceb_2023_102210
crossref_primary_10_1002_mco2_70010
crossref_primary_10_1016_j_ajps_2023_100829
crossref_primary_10_3389_fimmu_2023_1294317
crossref_primary_10_3390_ijms222212603
crossref_primary_10_1007_s10495_022_01785_2
crossref_primary_10_1155_2022_6084589
crossref_primary_10_1002_cbin_11705
crossref_primary_10_1016_j_cmet_2022_11_014
crossref_primary_10_1186_s12885_024_11943_1
crossref_primary_10_1038_s41556_024_01425_8
crossref_primary_10_1016_j_ceb_2023_102203
crossref_primary_10_1038_s41419_022_05447_8
crossref_primary_10_1186_s12943_024_02172_y
crossref_primary_10_1021_acschembio_4c00229
crossref_primary_10_1186_s11658_024_00544_2
crossref_primary_10_1038_s41420_023_01746_x
crossref_primary_10_3389_fimmu_2022_925290
crossref_primary_10_3390_cells10092462
crossref_primary_10_1186_s12951_024_02942_2
crossref_primary_10_1002_cac2_12519
crossref_primary_10_1016_j_tcb_2023_04_005
crossref_primary_10_1007_s00467_024_06595_z
crossref_primary_10_1016_j_chembiol_2023_10_011
crossref_primary_10_1038_s41589_022_01249_3
crossref_primary_10_2174_1570180819666220610102444
crossref_primary_10_1016_j_jcmgh_2023_04_006
crossref_primary_10_1016_j_xinn_2022_100360
crossref_primary_10_1016_j_chembiol_2023_10_012
crossref_primary_10_1681_ASN_2021101293
crossref_primary_10_3389_fbioe_2024_1426477
crossref_primary_10_1016_j_bbadis_2023_166788
crossref_primary_10_1038_s42255_023_00879_8
crossref_primary_10_1016_j_biopha_2023_115415
crossref_primary_10_1016_j_envpol_2023_122211
crossref_primary_10_1038_s43018_023_00702_z
crossref_primary_10_1097_HEP_0000000000000390
crossref_primary_10_3390_cancers14174099
crossref_primary_10_1016_j_ejphar_2024_176839
crossref_primary_10_1080_10715762_2024_2423691
crossref_primary_10_1039_D3FO03955B
crossref_primary_10_3389_fimmu_2023_1188365
crossref_primary_10_1038_s41467_024_53837_7
crossref_primary_10_1177_00368504221147173
crossref_primary_10_3389_fcell_2022_818453
crossref_primary_10_3389_fncel_2022_995084
crossref_primary_10_1002_cbin_11804
crossref_primary_10_3389_fendo_2023_1277866
crossref_primary_10_1038_s41420_023_01721_6
crossref_primary_10_1186_s43556_023_00142_2
crossref_primary_10_1016_j_foodchem_2023_137926
crossref_primary_10_1016_j_molcel_2023_03_005
crossref_primary_10_1111_cns_14596
crossref_primary_10_3389_fonc_2022_834681
crossref_primary_10_1007_s13238_021_00823_0
crossref_primary_10_1007_s10495_022_01795_0
crossref_primary_10_1038_s41589_023_01541_w
crossref_primary_10_3389_fphar_2021_656756
crossref_primary_10_1016_j_plipres_2022_101207
crossref_primary_10_1212_WNL_0000000000207730
crossref_primary_10_3390_genes13061094
crossref_primary_10_1089_ars_2023_0278
crossref_primary_10_1038_s41575_021_00486_6
crossref_primary_10_3389_fcell_2025_1522873
Cites_doi 10.1007/s13197-011-0251-1
10.1038/nchembio.2239
10.1006/abbi.1997.0134
10.1021/acschembio.5b00245
10.1016/j.cell.2019.03.032
10.1038/srep28932
10.1002/1873-3468.12743
10.1016/j.cmet.2014.01.002
10.1084/jem.20140857
10.1194/jlr.M800468-JLR200
10.1186/s12944-018-0685-9
10.1038/s41589-020-0472-6
10.1038/s41586-019-1707-0
10.1126/science.aay1436
10.1016/j.cell.2017.06.010
10.1073/pnas.1821022116
10.1038/s41467-019-09277-9
10.1016/j.cell.2017.09.021
10.1038/nature23007
10.1038/nature24297
10.1038/nchembio.2079
10.1038/s41589-020-0501-5
10.1161/CIRCULATIONAHA.117.029468
10.1101/pdb.prot090803
10.1016/j.bbadis.2012.05.008
10.1038/s41586-019-1705-2
10.1126/science.aac7041
10.1093/nar/gky1131
10.1042/bst0320147
10.1016/0006-8993(95)00931-F
10.1101/pdb.prot090811
10.1371/journal.pbio.2005970
10.1016/S0891-5849(02)00848-1
10.1007/s13238-017-0423-5
10.1021/acschembio.5b00466
10.1046/j.1471-4159.2000.0750991.x
10.1016/j.cell.2013.12.010
10.1007/s00418-018-1722-5
10.1002/ijc.2910450306
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Sep 24, 2020
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Sep 24, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-020-2732-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
Research Library (ProQuest Database)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic




Agricultural Science Database
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 608
ExternalDocumentID PMC8051864
A636365654
32939090
10_1038_s41586_020_2732_8
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA217848
– fundername: NCI NIH HHS
  grantid: R35 CA220487
– fundername: NCI NIH HHS
  grantid: K99 CA248610
– fundername: NIDDK NIH HHS
  grantid: P30 DK040561
– fundername: NCI NIH HHS
  grantid: P01 CA080111
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
J5H
L-9
LGEZI
LOTEE
M0L
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
AGSTI
PUEGO
5PM
ID FETCH-LOGICAL-c775t-9190fa35375a703206367bb15defc438c3dbcd076d6fb55c8efdb8fc1d0de253
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 17:37:33 EDT 2025
Fri Sep 05 14:04:42 EDT 2025
Fri Jul 25 08:59:12 EDT 2025
Tue Jun 17 21:20:00 EDT 2025
Thu Jun 12 23:33:18 EDT 2025
Tue Jun 10 15:31:30 EDT 2025
Tue Jun 10 20:37:02 EDT 2025
Fri Jun 27 03:54:50 EDT 2025
Fri Jun 27 05:05:00 EDT 2025
Wed Feb 19 02:28:44 EST 2025
Thu Apr 24 23:02:30 EDT 2025
Tue Jul 01 02:32:14 EDT 2025
Fri Feb 21 02:37:50 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7826
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c775t-9190fa35375a703206367bb15defc438c3dbcd076d6fb55c8efdb8fc1d0de253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Y.Z., W.S.H., and E.L.R. conceived the project, performed the experiments and analyzed data. E.T.G., V.V.P., S.P., B.F., J.F., H.K. assisted the experiments and interpreted data. A.A.D. and C.B.C. performed metabolomics profiling. W.W. and J.K.E. performed chemical synthesis. N.B. prepared the plasmalogen nanoparticles with input from P.T.H.. P.M. and L.B. assisted the cardiomyocyte experiments and data interpretation. J.K.E. performed the DPPH assay. F.R. assisted animal experiments. V.D. and P.A.C. developed GeLiNEA and assisted computational analysis. Y.Z., W.S.H., S.L.S. and R.A.W. wrote the manuscript with input from all authors.
These authors contributed equally to this work.
Author contributions
ORCID 0000-0002-9835-192X
0000-0003-4633-5546
0000-0001-8198-6067
0000-0003-1371-2288
0000-0001-6696-4564
0000-0002-1800-5112
0000-0002-0895-3557
0000-0001-8452-8512
0000-0003-1922-7558
0000-0001-8259-9245
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8051864
PMID 32939090
PQID 2755620633
PQPubID 40569
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051864
proquest_miscellaneous_2443881035
proquest_journals_2755620633
gale_infotracmisc_A636365654
gale_infotracgeneralonefile_A636365654
gale_infotraccpiq_636365654
gale_infotracacademiconefile_A636365654
gale_incontextgauss_ISR_A636365654
gale_incontextgauss_ATWCN_A636365654
pubmed_primary_32939090
crossref_citationtrail_10_1038_s41586_020_2732_8
crossref_primary_10_1038_s41586_020_2732_8
springer_journals_10_1038_s41586_020_2732_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-24
PublicationDateYYYYMMDD 2020-09-24
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References McQuin (CR39) 2018; 16
Doll (CR8) 2017; 13
Braverman, Moser (CR18) 2012; 1822
Szklarczyk (CR9) 2019; 47
Shimada (CR33) 2016; 12
Yang (CR6) 2014; 156
Encinas (CR28) 2000; 75
Messias, Mecatti, Priolli, de Oliveira Carvalho (CR19) 2018; 17
CR32
Rashba-Step (CR21) 1997; 343
Fang (CR27) 2019; 116
Ginsberg, Rafique, Xuereb, Rapoport, Gershfeld (CR30) 1995; 698
Tsherniak (CR25) 2017; 170
Dean, Lodhi (CR12) 2018; 9
Viswanathan (CR4) 2017; 547
Lodhi, Semenkovich (CR11) 2014; 19
Alim (CR26) 2019; 177
Zou (CR14) 2020; 16
Piano (CR13) 2015; 10
Matsushita (CR2) 2015; 212
Wang, Lander, Sabatini (CR37) 2016; 2016
Wang (CR35) 2015; 350
Stockwell (CR1) 2017; 171
Wang, Lander, Sabatini (CR36) 2016; 2016
Gallego-García (CR24) 2019; 366
Engelmann (CR29) 2004; 32
Doll (CR22) 2019; 575
Eaton (CR7) 2020; 16
Kedare, Singh (CR40) 2011; 48
Hangauer (CR5) 2017; 551
Bersuker (CR23) 2019; 575
Schilder (CR31) 1990; 45
Yuki, Shindou, Hishikawa, Shimizu (CR20) 2009; 50
Dixon (CR16) 2015; 10
Zou (CR3) 2019; 10
Honsho, Fujiki (CR17) 2017; 591
Saito (CR15) 2016; 6
Islinger, Voelkl, Fahimi, Schrader (CR10) 2018; 150
Paynter (CR34) 2018; 137
Drummen, van Liebergen, den Kamp, Post (CR38) 2002; 33
K Bersuker (2732_CR23) 2019; 575
2732_CR32
M Encinas (2732_CR28) 2000; 75
NP Paynter (2732_CR34) 2018; 137
JK Eaton (2732_CR7) 2020; 16
SB Kedare (2732_CR40) 2011; 48
S Doll (2732_CR8) 2017; 13
V Piano (2732_CR13) 2015; 10
T Wang (2732_CR37) 2016; 2016
K Yuki (2732_CR20) 2009; 50
A Tsherniak (2732_CR25) 2017; 170
K Shimada (2732_CR33) 2016; 12
Y Zou (2732_CR3) 2019; 10
WS Yang (2732_CR6) 2014; 156
K Saito (2732_CR15) 2016; 6
T Wang (2732_CR36) 2016; 2016
D Szklarczyk (2732_CR9) 2019; 47
JM Dean (2732_CR12) 2018; 9
I Alim (2732_CR26) 2019; 177
MJ Hangauer (2732_CR5) 2017; 551
A Gallego-García (2732_CR24) 2019; 366
S Doll (2732_CR22) 2019; 575
IJ Lodhi (2732_CR11) 2014; 19
Y Zou (2732_CR14) 2020; 16
X Fang (2732_CR27) 2019; 116
BR Stockwell (2732_CR1) 2017; 171
J Rashba-Step (2732_CR21) 1997; 343
VS Viswanathan (2732_CR4) 2017; 547
M Matsushita (2732_CR2) 2015; 212
SJ Dixon (2732_CR16) 2015; 10
GPC Drummen (2732_CR38) 2002; 33
B Engelmann (2732_CR29) 2004; 32
MCF Messias (2732_CR19) 2018; 17
L Ginsberg (2732_CR30) 1995; 698
C McQuin (2732_CR39) 2018; 16
M Honsho (2732_CR17) 2017; 591
M Islinger (2732_CR10) 2018; 150
T Wang (2732_CR35) 2015; 350
NE Braverman (2732_CR18) 2012; 1822
RJ Schilder (2732_CR31) 1990; 45
33235217 - Signal Transduct Target Ther. 2020 Nov 24;5(1):273
33149249 - Cell Res. 2020 Dec;30(12):1061-1062
References_xml – volume: 48
  start-page: 412
  year: 2011
  end-page: 422
  ident: CR40
  article-title: Genesis and development of DPPH method of antioxidant assay
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-011-0251-1
– volume: 13
  start-page: 91
  year: 2017
  end-page: 98
  ident: CR8
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 343
  start-page: 44
  year: 1997
  end-page: 54
  ident: CR21
  article-title: Phospholipid peroxidation induces cytosolic phospholipase A2 activity: membrane effects versus enzyme phosphorylation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.0134
– volume: 10
  start-page: 1604
  year: 2015
  end-page: 1609
  ident: CR16
  article-title: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00245
– volume: 177
  start-page: 1262
  year: 2019
  end-page: 1279
  ident: CR26
  article-title: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.032
– volume: 6
  year: 2016
  ident: CR15
  article-title: Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma
  publication-title: Sci. Rep.
  doi: 10.1038/srep28932
– volume: 591
  start-page: 2720
  year: 2017
  end-page: 2729
  ident: CR17
  article-title: Plasmalogen homeostasis – regulation of plasmalogen biosynthesis and its physiological consequence in mammals
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12743
– volume: 19
  start-page: 380
  year: 2014
  end-page: 392
  ident: CR11
  article-title: Peroxisomes: a nexus for lipid metabolism and cellular signaling
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.01.002
– volume: 212
  start-page: 555
  year: 2015
  end-page: 568
  ident: CR2
  article-title: T cell lipid peroxidation induces ferroptosis and prevents immunity to infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20140857
– volume: 50
  start-page: 860
  year: 2009
  end-page: 869
  ident: CR20
  article-title: Characterization of mouse lysophosphatidic acid acyltransferase 3: an enzyme with dual functions in the testis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M800468-JLR200
– volume: 17
  start-page: 41
  year: 2018
  ident: CR19
  article-title: Plasmalogen lipids: functional mechanism and their involvement in gastrointestinal cancer
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-018-0685-9
– volume: 16
  start-page: 302
  year: 2020
  end-page: 309
  ident: CR14
  article-title: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0472-6
– volume: 575
  start-page: 693
  year: 2019
  end-page: 698
  ident: CR22
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor
  publication-title: Nature
  doi: 10.1038/s41586-019-1707-0
– volume: 366
  start-page: 128
  year: 2019
  end-page: 132
  ident: CR24
  article-title: A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis
  publication-title: Science
  doi: 10.1126/science.aay1436
– volume: 170
  start-page: 564
  year: 2017
  end-page: 576
  ident: CR25
  article-title: Defining a cancer dependency map
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.010
– volume: 116
  start-page: 2672
  year: 2019
  end-page: 2680
  ident: CR27
  article-title: Ferroptosis as a target for protection against cardiomyopathy
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1821022116
– volume: 10
  year: 2019
  ident: CR3
  article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09277-9
– volume: 171
  start-page: 273
  year: 2017
  end-page: 285
  ident: CR1
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 547
  start-page: 453
  year: 2017
  end-page: 457
  ident: CR4
  article-title: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway
  publication-title: Nature
  doi: 10.1038/nature23007
– volume: 551
  start-page: 247
  year: 2017
  end-page: 250
  ident: CR5
  article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
  publication-title: Nature
  doi: 10.1038/nature24297
– volume: 12
  start-page: 497
  year: 2016
  end-page: 503
  ident: CR33
  article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2079
– volume: 16
  start-page: 497
  year: 2020
  end-page: 506
  ident: CR7
  article-title: Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0501-5
– volume: 137
  start-page: 841
  year: 2018
  end-page: 853
  ident: CR34
  article-title: Metabolic predictors of incident coronary heart disease in women
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.029468
– volume: 2016
  start-page: pdb.prot090803
  year: 2016
  ident: CR36
  article-title: Single guide RNA library design and construction
  publication-title: Cold Spring Harb. Protoc
  doi: 10.1101/pdb.prot090803
– volume: 1822
  start-page: 1442
  year: 2012
  end-page: 1452
  ident: CR18
  article-title: Functions of plasmalogen lipids in health and disease
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2012.05.008
– volume: 575
  start-page: 688
  year: 2019
  end-page: 692
  ident: CR23
  article-title: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
  publication-title: Nature
  doi: 10.1038/s41586-019-1705-2
– volume: 350
  start-page: 1096
  year: 2015
  end-page: 1101
  ident: CR35
  article-title: Identification and characterization of essential genes in the human genome
  publication-title: Science
  doi: 10.1126/science.aac7041
– volume: 47
  start-page: D607
  year: 2019
  end-page: D613
  ident: CR9
  article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 32
  start-page: 147
  year: 2004
  end-page: 150
  ident: CR29
  article-title: Plasmalogens: targets for oxidants and major lipophilic antioxidants
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0320147
– volume: 698
  start-page: 223
  year: 1995
  end-page: 226
  ident: CR30
  article-title: Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)00931-F
– volume: 2016
  start-page: pdb.prot090811
  year: 2016
  ident: CR37
  article-title: Viral packaging and cell culture for CRISPR-based screens
  publication-title: Cold Spring Harb. Protoc
  doi: 10.1101/pdb.prot090811
– volume: 16
  start-page: e2005970
  year: 2018
  ident: CR39
  article-title: CellProfiler 3.0: next-generation image processing for biology
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005970
– volume: 33
  start-page: 473
  year: 2002
  end-page: 490
  ident: CR38
  article-title: C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(02)00848-1
– ident: CR32
– volume: 9
  start-page: 196
  year: 2018
  end-page: 206
  ident: CR12
  article-title: Structural and functional roles of ether lipids
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0423-5
– volume: 10
  start-page: 2589
  year: 2015
  end-page: 2597
  ident: CR13
  article-title: Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00466
– volume: 75
  start-page: 991
  year: 2000
  end-page: 1003
  ident: CR28
  article-title: Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2000.0750991.x
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  ident: CR6
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 150
  start-page: 443
  year: 2018
  end-page: 471
  ident: CR10
  article-title: The peroxisome: an update on mysteries 2.0
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-018-1722-5
– volume: 45
  start-page: 416
  year: 1990
  end-page: 422
  ident: CR31
  article-title: Metallothionein gene expression and resistance to cisplatin in human ovarian cancer
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910450306
– volume: 156
  start-page: 317
  year: 2014
  ident: 2732_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 19
  start-page: 380
  year: 2014
  ident: 2732_CR11
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.01.002
– volume: 551
  start-page: 247
  year: 2017
  ident: 2732_CR5
  publication-title: Nature
  doi: 10.1038/nature24297
– volume: 116
  start-page: 2672
  year: 2019
  ident: 2732_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1821022116
– volume: 2016
  start-page: pdb.prot090803
  year: 2016
  ident: 2732_CR36
  publication-title: Cold Spring Harb. Protoc
  doi: 10.1101/pdb.prot090803
– volume: 12
  start-page: 497
  year: 2016
  ident: 2732_CR33
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2079
– volume: 16
  start-page: e2005970
  year: 2018
  ident: 2732_CR39
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005970
– volume: 575
  start-page: 693
  year: 2019
  ident: 2732_CR22
  publication-title: Nature
  doi: 10.1038/s41586-019-1707-0
– volume: 16
  start-page: 497
  year: 2020
  ident: 2732_CR7
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0501-5
– volume: 698
  start-page: 223
  year: 1995
  ident: 2732_CR30
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)00931-F
– volume: 150
  start-page: 443
  year: 2018
  ident: 2732_CR10
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-018-1722-5
– volume: 16
  start-page: 302
  year: 2020
  ident: 2732_CR14
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0472-6
– volume: 10
  start-page: 1604
  year: 2015
  ident: 2732_CR16
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00245
– volume: 366
  start-page: 128
  year: 2019
  ident: 2732_CR24
  publication-title: Science
  doi: 10.1126/science.aay1436
– volume: 45
  start-page: 416
  year: 1990
  ident: 2732_CR31
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910450306
– volume: 575
  start-page: 688
  year: 2019
  ident: 2732_CR23
  publication-title: Nature
  doi: 10.1038/s41586-019-1705-2
– volume: 47
  start-page: D607
  year: 2019
  ident: 2732_CR9
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 2016
  start-page: pdb.prot090811
  year: 2016
  ident: 2732_CR37
  publication-title: Cold Spring Harb. Protoc
  doi: 10.1101/pdb.prot090811
– volume: 48
  start-page: 412
  year: 2011
  ident: 2732_CR40
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-011-0251-1
– volume: 170
  start-page: 564
  year: 2017
  ident: 2732_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.010
– volume: 75
  start-page: 991
  year: 2000
  ident: 2732_CR28
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2000.0750991.x
– volume: 17
  start-page: 41
  year: 2018
  ident: 2732_CR19
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-018-0685-9
– volume: 32
  start-page: 147
  year: 2004
  ident: 2732_CR29
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0320147
– volume: 33
  start-page: 473
  year: 2002
  ident: 2732_CR38
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(02)00848-1
– volume: 591
  start-page: 2720
  year: 2017
  ident: 2732_CR17
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12743
– volume: 350
  start-page: 1096
  year: 2015
  ident: 2732_CR35
  publication-title: Science
  doi: 10.1126/science.aac7041
– volume: 212
  start-page: 555
  year: 2015
  ident: 2732_CR2
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20140857
– volume: 137
  start-page: 841
  year: 2018
  ident: 2732_CR34
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.029468
– volume: 171
  start-page: 273
  year: 2017
  ident: 2732_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 343
  start-page: 44
  year: 1997
  ident: 2732_CR21
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.0134
– volume: 9
  start-page: 196
  year: 2018
  ident: 2732_CR12
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0423-5
– volume: 50
  start-page: 860
  year: 2009
  ident: 2732_CR20
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M800468-JLR200
– ident: 2732_CR32
– volume: 10
  year: 2019
  ident: 2732_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09277-9
– volume: 13
  start-page: 91
  year: 2017
  ident: 2732_CR8
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 177
  start-page: 1262
  year: 2019
  ident: 2732_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.032
– volume: 1822
  start-page: 1442
  year: 2012
  ident: 2732_CR18
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2012.05.008
– volume: 547
  start-page: 453
  year: 2017
  ident: 2732_CR4
  publication-title: Nature
  doi: 10.1038/nature23007
– volume: 10
  start-page: 2589
  year: 2015
  ident: 2732_CR13
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00466
– volume: 6
  year: 2016
  ident: 2732_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/srep28932
– reference: 33235217 - Signal Transduct Target Ther. 2020 Nov 24;5(1):273
– reference: 33149249 - Cell Res. 2020 Dec;30(12):1061-1062
SSID ssj0005174
Score 2.7217216
Snippet Ferroptosis—an iron-dependent, non-apoptotic cell death process—is involved in various degenerative diseases and represents a targetable susceptibility in...
Ferroptosis-an iron-dependent, non-apoptotic cell death process-is involved in various degenerative diseases and represents a targetable susceptibility in...
Ferroptosis--an iron-dependent, non-apoptotic cell death process--is involved in various degenerative diseases and represents a targetable susceptibility in...
Ferroptosis, an iron-dependent, non-apoptotic cell death program, is involved in various degenerative diseases and represents a targetable vulnerability in...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 603
SubjectTerms 13
14
14/34
45
45/41
45/91
631/45/608
631/67/2327
631/80/642/2013
631/80/82
631/92/287/1194
64
64/60
82/58
Analysis
Animals
Apoptosis
Biosynthesis
Cancer
Cardiomyocytes
Cell death
Cell Differentiation
Cell Line
CRISPR
CRISPR-Cas Systems - genetics
Enzymes
Ether lipids
Ethers - chemistry
Ethers - metabolism
Female
Ferroptosis
Gene Editing
Genes
Genetic susceptibility
Genomes
Glycerol
Humanities and Social Sciences
Humans
Influence
Kidney Neoplasms - metabolism
Kidney Neoplasms - pathology
Lipid Peroxidation
Lipids
Male
Mice
multidisciplinary
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Nanoparticles
Neurons - cytology
Neurons - metabolism
Organelles
Ovarian cancer
Ovarian carcinoma
Ovarian Neoplasms - metabolism
Ovarian Neoplasms - pathology
Ovaries
Peroxidation
Peroxisomes
Peroxisomes - genetics
Peroxisomes - metabolism
Phospholipids
Phospholipids - chemistry
Phospholipids - metabolism
Plasticity
Properties
Renal cell carcinoma
Science
Science (multidisciplinary)
Substrates
Susceptibility
Therapeutic applications
Title Plasticity of ether lipids promotes ferroptosis susceptibility and evasion
URI https://link.springer.com/article/10.1038/s41586-020-2732-8
https://www.ncbi.nlm.nih.gov/pubmed/32939090
https://www.proquest.com/docview/2755620633
https://www.proquest.com/docview/2443881035
https://pubmed.ncbi.nlm.nih.gov/PMC8051864
Volume 585
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_ahMFextp9ee2CN8o-MXUiy1IexkhKs64PoXQZy5uwJbkLFNuNkkH_-50UO6lD1xe_3DlIus_4froDOMKQo1jEw0BGmQ4iFcdB2qNpkCQYraKIYVRz3T7H8dmv6HxKpzswru_CWFhl7ROdo1aFtN_Ij3uMYqjGgEq-lTeBnRplq6v1CI2kGq2gvroWY7vQRpdMwxa0h6fji8sN6GOrL3Nd5yT82GAo4xaQG9rrKugmGpFq21_fCVjbYMqtiqoLVKOn8KTKMP3BSiX2YEfn-_DIIT2l2Ye9ypqN_7FqOf3pGZxfYBJt8dWLW7_IfHcJ2L-elTNl_NIB9pA_0_N5US4KMzO-WRqHh3HQ2ls_yZWv_yb2y9tzmIxOJydnQTVlIZCM0QV6u36YJYQSRhNmx6nHJGZp2qVKZzIiXBKVShWyWMVZSqnkOlMpz2RXhUr3KHkBrbzI9SvwZcY05ot4yDyJbOaTYureC3Wk-1Lj3xgPwvpAhaw6kNtBGNfCVcIJFysZCJSBsDIQ3IPP61fKVfuNh5iPrJSEbWuRW9zMVbI0Rgwmv0_GYoDbIpi80siDd_ex_fh52WD6UDFlBa5RJtVtBdypbZjV4DxocMpydiPuUN83qFcryd73M4cNRrRy2STXqicqL2PExiY8eLsm2zctci7XxRJ5IpQhxwOjHrxcaer6JAnmev2wH3rAGjq8ZrC9x5uUfPbH9SDnVsoxLutLre2bZf1XQK8f3sQBPO5Z83M1v0NoLeZL_QZTvkXagV02ZfjkJ137HH3vQHswGg7HncrC_wGvHlQp
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELdQ0bS9TIN9ZbDNm9i3IkLiJO4DmjoGaoFViHUab1ZiO6wSSkLdbuoft_9td27SkorxxrMvke2z73f2_XxHyBZAjooZ91zJMu0yFUVu6oepmySAVozFgGo222c_6v5gh2fh2Qr5W7-FQVplbROtoVaFxDvybT8OAaoBUIPP5aWLVaMwulqX0Eiq0gpq16YYqx52HOnpHzjCmd3eV9D3G98_2B_sdd2qyoAr4zgcw25ve1kShEEcJjGWE4-CKE7TnVDpTLKAy0ClUsFxX0VZGoaS60ylPJM7ylPax6IRgACrDO9PWmT1y37_5HTBMVlKA12HVQO-bQA5OfJ_PXwdA1apAYzL8HAFH5e5m0sBXIuLBw_I_cqhpZ3ZClwjKzpfJ3cssVSadbJWGQ9D31cZrj88JIcn4LMjnXs8pUVG7ZtjejEsh8rQ0vIDQT7To1FRjgszNNRMjKXfWCbvlCa5ovp3ghd9j8jgNqb7MWnlRa6fEiqzWIN7CpPME4aOVgonBd_TTLelhlOTQ7x6QoWsEp5j3Y0LYQPvARczHQjQgUAdCO6Qj_NPylm2j5uEt1BLArNo5EjTOU8mxojO4OdeX3RgWAH4yiFzyOvrxHrfTxtC7yqhrIA-yqR6HAEjxfxcDcmNhqQsh5fiSuvbRuv5TLPX_WazIQhGRTab66UnKqNmxGILOuTVvBm_RKJerosJyDDQIYcJCx3yZLZS5zMZgGvZ9tqeQ-LGGp4LYKrzZks-_GVTnnPUcgTd-lSv9kW3_qugZzcP4iW52x18OxbHvf7RBrnn41a04cZN0hqPJvo5eJvj9EW1pykRt2xF_gGjw41-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIRAviI2vsAEBjW9FzRIndh8QqjaqdUPVBEX0zUpsZ1SakqxuQf3T-O-4c5J2qcbe9nyXyPad786-n-8I2QOXoxjlvidppj2q4thLgyj1kgS8FaUMvJqt9jmMj37Q43E03iB_m7cwCKtsbKI11KqQeEfeCVgErhocatjJaljE6WH_c3nhYQcpzLQ27TQqFTnRiz9wfDOfBocg69dB0P8yOjjy6g4DnmQsmsFO7_pZEkYhixKGrcTjMGZpuh8pnUkachmqVCo46qs4S6NIcp2plGdyX_lKB9gwAqz_LRZSil0j2Jit0CVrBaCbhGrIOwZ8Jkfkr4_vYsAetVziumO45BnXUZtrqVvrEfv3yb06lHV7le5tkQ2db5PbFlIqzTbZqs2Gcd_Vta3fPyDHpxCtI5B7tnCLzLWvjd3zSTlRxi0tMhD4Mz2dFuWsMBPjmrmxwBuL4V24Sa5c_TvBK76HZHQTi_2IbOZFrp8QV2ZMQ2AKi8wTiiFWCmeEwNdUd6WG85JD_GZBhaxLnWPHjXNhU-4hF5UMBMhAoAwEd8iH5SdlVefjOuY9lJLA-hk5auJZMjdG9EY_D4aiB9MKIUqOqENeXcU2-P6txfS2ZsoKGKNM6mcRMFOszNXi3GlxynJyIS5R37SoZ5Vkr_rNbosRzIlskxvVE7U5M2K1-RzycknGLxGil-tiDjwUZMhhwSKHPK40dbmSIQSVXb_rO4S1dHjJgEXO25R88ssWO-co5RiG9bHR9tWw_iugp9dP4gW5A7ZDfB0MT3bI3QB3os0z7pLN2XSun0GYOUuf2w3tEnHDBuQfvUWLGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasticity+of+ether+lipids+promotes+ferroptosis+susceptibility+and+evasion&rft.jtitle=Nature+%28London%29&rft.au=Zou%2C+Yilong&rft.au=Henry%2C+Whitney+S&rft.au=Ricq%2C+Emily+L&rft.au=Graham%2C+Emily+T&rft.date=2020-09-24&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=585&rft.issue=7826&rft.spage=603&rft_id=info:doi/10.1038%2Fs41586-020-2732-8&rft.externalDocID=A636365654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon