Bulk brain tissue cell type deconvolution with bias correction for single‐nuclei RNA‐seq
Background Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease pathogenesis. Despite being designed for single‐cell RNA‐sequencing (scRNA‐seq) data, MuSiC deconvolution algorithm can use single‐nuclei RNA‐sequenc...
Saved in:
| Published in | Alzheimer's & dementia Vol. 18; no. S3 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2022
|
| Online Access | Get full text |
| ISSN | 1552-5260 1552-5279 |
| DOI | 10.1002/alz.065942 |
Cover
| Abstract | Background
Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease pathogenesis. Despite being designed for single‐cell RNA‐sequencing (scRNA‐seq) data, MuSiC deconvolution algorithm can use single‐nuclei RNA‐sequencing (snRNA‐seq) data generated from brain tissue to estimate cell type proportions in bulk brain RNA‐sequencing data but does not fully compensate for sequencing differences between bulk and snRNA‐seq data. We modified MuSiC's gene weighing scheme to compensate for this sequencing bias.
Methods
MuSiC calculates gene weight each iteration using the residual from the previous iteration, gene variation among subjects, and other factors. We calculated the RNA capture rate difference between genes in single‐nuclei and bulk sequencing data and reduced MuSiC’s weight for genes with strong differences. We compared the accuracy of deconvoluted data from MuSiC and our modified algorithm (mMuSiC) by simulating bulk data with seven brain cell types and calculating the concordance correlation coefficient (CCC) between true and estimated cell type percentages. The accuracy of the original and modified deconvolution algorithms was also assessed using human brain dorsolateral prefrontal cortex (DLPFC) bulk RNA‐seq data sets from ROSMAP with subject‐matched immunohistochemistry (IHC) measurements for 69 samples and bulk RNA‐seq from the Framingham Heart Study/Boston University Alzheimer Disease Research Center with subject‐matched microglial (IBA1+) cell density measurements for 163 samples from the same brain region.
Results
mMuSiC improves the concordance correlation coefficients (CCC) between estimated and true cell fractions in our four simulations for each cell type with a p‐value of 0.014. This improvement is especially pronounced for both inhibitory and excitatory neurons, with an average CCC of 0.45 for mMuSiC and 0.22 for MuSiC. In human brain DLPFC bulk RNA‐seq data, our method also improves the CCC between cell fraction estimates and IHC measurements for each cell type tested in ROSMAP, with mMuSiC averaging 0.14 and MuSiC averaging 0.10. The correlation between microglia cell fraction estimates and IBA1+ cell density measurements is also improved in mMuSiC (R=0.33, p=1.5e‐5) over MuSiC (R=0.12, p=0.11).
Conclusion
mMuSiC improves cell fraction estimates of bulk brain RNAseq datain studies using snRNA‐seq. This is particularly useful for brain research where snRNA‐seq is unavailable. |
|---|---|
| AbstractList | Background
Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease pathogenesis. Despite being designed for single‐cell RNA‐sequencing (scRNA‐seq) data, MuSiC deconvolution algorithm can use single‐nuclei RNA‐sequencing (snRNA‐seq) data generated from brain tissue to estimate cell type proportions in bulk brain RNA‐sequencing data but does not fully compensate for sequencing differences between bulk and snRNA‐seq data. We modified MuSiC's gene weighing scheme to compensate for this sequencing bias.
Methods
MuSiC calculates gene weight each iteration using the residual from the previous iteration, gene variation among subjects, and other factors. We calculated the RNA capture rate difference between genes in single‐nuclei and bulk sequencing data and reduced MuSiC’s weight for genes with strong differences. We compared the accuracy of deconvoluted data from MuSiC and our modified algorithm (mMuSiC) by simulating bulk data with seven brain cell types and calculating the concordance correlation coefficient (CCC) between true and estimated cell type percentages. The accuracy of the original and modified deconvolution algorithms was also assessed using human brain dorsolateral prefrontal cortex (DLPFC) bulk RNA‐seq data sets from ROSMAP with subject‐matched immunohistochemistry (IHC) measurements for 69 samples and bulk RNA‐seq from the Framingham Heart Study/Boston University Alzheimer Disease Research Center with subject‐matched microglial (IBA1+) cell density measurements for 163 samples from the same brain region.
Results
mMuSiC improves the concordance correlation coefficients (CCC) between estimated and true cell fractions in our four simulations for each cell type with a p‐value of 0.014. This improvement is especially pronounced for both inhibitory and excitatory neurons, with an average CCC of 0.45 for mMuSiC and 0.22 for MuSiC. In human brain DLPFC bulk RNA‐seq data, our method also improves the CCC between cell fraction estimates and IHC measurements for each cell type tested in ROSMAP, with mMuSiC averaging 0.14 and MuSiC averaging 0.10. The correlation between microglia cell fraction estimates and IBA1+ cell density measurements is also improved in mMuSiC (R=0.33, p=1.5e‐5) over MuSiC (R=0.12, p=0.11).
Conclusion
mMuSiC improves cell fraction estimates of bulk brain RNAseq datain studies using snRNA‐seq. This is particularly useful for brain research where snRNA‐seq is unavailable. |
| Author | O'Neill, Nicholas K Stein, Thor D. Hu, Junming Zhang, Xiaoling Farrer, Lindsay A. |
| Author_xml | – sequence: 1 givenname: Nicholas K surname: O'Neill fullname: O'Neill, Nicholas K email: nkoneill@bu.edu organization: Boston University School of Medicine – sequence: 2 givenname: Junming surname: Hu fullname: Hu, Junming organization: Boston University School of Medicine – sequence: 3 givenname: Thor D. surname: Stein fullname: Stein, Thor D. organization: Boston University School of Medicine – sequence: 4 givenname: Xiaoling surname: Zhang fullname: Zhang, Xiaoling organization: Boston University School of Public Health – sequence: 5 givenname: Lindsay A. surname: Farrer fullname: Farrer, Lindsay A. organization: Boston University School of Public Health |
| BookMark | eNp9kM1KAzEQx4Mo2FYvPkHOwtZJNtmPYy1-QVGQnkRYsumsRmNSk11LPfkIPqNP4mqLR08z8-c3A_Mbkl3nHRJyxGDMAPiJsu9jyGQp-A4ZMCl5Inle7v71GeyTYYxPAAIKJgfk_rSzz7QOyjjamhg7pBqtpe16iXSB2rs3b7vWeEdXpn2ktVGRah8C6t-w8YFG4x4sfn18uk5bNPT2etIPEV8PyF6jbMTDbR2R-fnZfHqZzG4urqaTWaLznCe1lkUphczSvNHlAgqlRI6KcwUiKzjmXEKdIjKFsGAaIEWhmwxLUav-OZ6OyPHmrA4-xoBNtQzmRYV1xaD60VL1WqqNlh5mG3hlLK7_IavJ7G678w2xymmW |
| ContentType | Journal Article |
| Copyright | 2022 the Alzheimer's Association. |
| Copyright_xml | – notice: 2022 the Alzheimer's Association. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/alz.065942 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1552-5279 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_alz_065942 ALZ065942 |
| Genre | article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AACTN AAEDT AAHHS AAIKJ AAKOC AALRI AANLZ AAOAW AAXLA AAXUO AAYCA ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCFJ ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACXQS ADBBV ADBTR ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN ADZOD AEEZP AEIGN AEKER AENEX AEQDE AEUYR AEVXI AFKRA AFTJW AFWVQ AGHFR AGUBO AGWIK AGYEJ AITUG AIURR AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMFUW AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PIMPY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ T5K TEORI UKHRP ~G- AAMMB AAYWO AAYXX ACVFH ADCNI AEFGJ AEUPX AFPUW AGHNM AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION EFLBG PHGZM PHGZT PJZUB PPXIY ~HD |
| ID | FETCH-LOGICAL-c772-bc589545637fc9d08aa47ea22a04682e7250b3ee1ae0d1c003e4cf6e94ba27923 |
| ISSN | 1552-5260 |
| IngestDate | Thu Oct 16 04:41:49 EDT 2025 Wed Jan 22 16:20:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c772-bc589545637fc9d08aa47ea22a04682e7250b3ee1ae0d1c003e4cf6e94ba27923 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1002_alz_065942 wiley_primary_10_1002_alz_065942_ALZ065942 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Alzheimer's & dementia |
| PublicationYear | 2022 |
| SSID | ssj0040815 |
| Score | 2.3478186 |
| Snippet | Background
Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| Title | Bulk brain tissue cell type deconvolution with bias correction for single‐nuclei RNA‐seq |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.065942 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: .~1 dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: AKRWK dateStart: 20170701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: OVEED dateStart: 20150101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK98IFsQLE8lhZghNRSuo4TXLsskUVgkVCBVUIKbIdZzcihEfbPfTEgR_Ab-SXMONJ05QFxHKJUtdK25lP8-r4G8YeGqFCVaTKT8A3-bKQcFeEhS-FHSkTqKBwM5ZenIymr-WzeTTv9b51upZWSz0w69-eK_kfrcIa6BVPyV5Cs-1DYQHuQb9wBQ3D9Z90fLSq3nsahzx4SydAD-vwVFbNMdM9bz6eyq26VAvP4DgO03YYYqmgsm3LQ430xqX36mTcLi3s524EO67WZ7Z0M1fihQNO7iqMZWvfsX8Ga8tVgzTMnhfbcup0RadB6g8br0ltxURmMDuDL3U8uFDPnpcKxwuddqsUQnQ6PhrDGmHSS7MDBra7RsNkfrHG5ItbT3XB0BNxrKrWA_xjmAi6dtm0213Rn_cR8e_zt_TeFbYnwDcEfbb38s1kcrzx6BLCpsjx7ja_oaW5FY-3T94JbLqJjotUZtfZtSbF4GPCyz7r2foGe4dY4Q4rnLDCESscscJ3sMIRKxyxwrdY4YAVTlj58fU7oYQDSuAF4OMmmz2dzJ5M_Wayhm8gm_K1iZIUQ-cwLkyaB4lSMrZKCBXIUSJsDHGxDq0dKhvkQwOG30pTjGwqtXKEk7dYv_5Y29uMC62kFcrKIlEyjY1OIEPPI5MOZS60DQ_Yg41Usk_En5IRU7bIQHYZye6APXIC-8uWrFXTnctsvsuubuF4j_WXX1b2PoSRS33YaPkntERweg |
| linkProvider | Ovid |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bulk+brain+tissue+cell+type+deconvolution+with+bias+correction+for+single%E2%80%90nuclei+RNA%E2%80%90seq&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=O%27Neill%2C+Nicholas+K&rft.au=Hu%2C+Junming&rft.au=Stein%2C+Thor+D.&rft.au=Zhang%2C+Xiaoling&rft.date=2022-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.065942&rft.externalDBID=10.1002%252Falz.065942&rft.externalDocID=ALZ065942 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |