Bulk brain tissue cell type deconvolution with bias correction for single‐nuclei RNA‐seq

Background Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease pathogenesis. Despite being designed for single‐cell RNA‐sequencing (scRNA‐seq) data, MuSiC deconvolution algorithm can use single‐nuclei RNA‐sequenc...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 18; no. S3
Main Authors O'Neill, Nicholas K, Hu, Junming, Stein, Thor D., Zhang, Xiaoling, Farrer, Lindsay A.
Format Journal Article
LanguageEnglish
Published 01.12.2022
Online AccessGet full text
ISSN1552-5260
1552-5279
DOI10.1002/alz.065942

Cover

Abstract Background Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease pathogenesis. Despite being designed for single‐cell RNA‐sequencing (scRNA‐seq) data, MuSiC deconvolution algorithm can use single‐nuclei RNA‐sequencing (snRNA‐seq) data generated from brain tissue to estimate cell type proportions in bulk brain RNA‐sequencing data but does not fully compensate for sequencing differences between bulk and snRNA‐seq data. We modified MuSiC's gene weighing scheme to compensate for this sequencing bias. Methods MuSiC calculates gene weight each iteration using the residual from the previous iteration, gene variation among subjects, and other factors. We calculated the RNA capture rate difference between genes in single‐nuclei and bulk sequencing data and reduced MuSiC’s weight for genes with strong differences. We compared the accuracy of deconvoluted data from MuSiC and our modified algorithm (mMuSiC) by simulating bulk data with seven brain cell types and calculating the concordance correlation coefficient (CCC) between true and estimated cell type percentages. The accuracy of the original and modified deconvolution algorithms was also assessed using human brain dorsolateral prefrontal cortex (DLPFC) bulk RNA‐seq data sets from ROSMAP with subject‐matched immunohistochemistry (IHC) measurements for 69 samples and bulk RNA‐seq from the Framingham Heart Study/Boston University Alzheimer Disease Research Center with subject‐matched microglial (IBA1+) cell density measurements for 163 samples from the same brain region. Results mMuSiC improves the concordance correlation coefficients (CCC) between estimated and true cell fractions in our four simulations for each cell type with a p‐value of 0.014. This improvement is especially pronounced for both inhibitory and excitatory neurons, with an average CCC of 0.45 for mMuSiC and 0.22 for MuSiC. In human brain DLPFC bulk RNA‐seq data, our method also improves the CCC between cell fraction estimates and IHC measurements for each cell type tested in ROSMAP, with mMuSiC averaging 0.14 and MuSiC averaging 0.10. The correlation between microglia cell fraction estimates and IBA1+ cell density measurements is also improved in mMuSiC (R=0.33, p=1.5e‐5) over MuSiC (R=0.12, p=0.11). Conclusion mMuSiC improves cell fraction estimates of bulk brain RNAseq datain studies using snRNA‐seq. This is particularly useful for brain research where snRNA‐seq is unavailable.
AbstractList Background Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease pathogenesis. Despite being designed for single‐cell RNA‐sequencing (scRNA‐seq) data, MuSiC deconvolution algorithm can use single‐nuclei RNA‐sequencing (snRNA‐seq) data generated from brain tissue to estimate cell type proportions in bulk brain RNA‐sequencing data but does not fully compensate for sequencing differences between bulk and snRNA‐seq data. We modified MuSiC's gene weighing scheme to compensate for this sequencing bias. Methods MuSiC calculates gene weight each iteration using the residual from the previous iteration, gene variation among subjects, and other factors. We calculated the RNA capture rate difference between genes in single‐nuclei and bulk sequencing data and reduced MuSiC’s weight for genes with strong differences. We compared the accuracy of deconvoluted data from MuSiC and our modified algorithm (mMuSiC) by simulating bulk data with seven brain cell types and calculating the concordance correlation coefficient (CCC) between true and estimated cell type percentages. The accuracy of the original and modified deconvolution algorithms was also assessed using human brain dorsolateral prefrontal cortex (DLPFC) bulk RNA‐seq data sets from ROSMAP with subject‐matched immunohistochemistry (IHC) measurements for 69 samples and bulk RNA‐seq from the Framingham Heart Study/Boston University Alzheimer Disease Research Center with subject‐matched microglial (IBA1+) cell density measurements for 163 samples from the same brain region. Results mMuSiC improves the concordance correlation coefficients (CCC) between estimated and true cell fractions in our four simulations for each cell type with a p‐value of 0.014. This improvement is especially pronounced for both inhibitory and excitatory neurons, with an average CCC of 0.45 for mMuSiC and 0.22 for MuSiC. In human brain DLPFC bulk RNA‐seq data, our method also improves the CCC between cell fraction estimates and IHC measurements for each cell type tested in ROSMAP, with mMuSiC averaging 0.14 and MuSiC averaging 0.10. The correlation between microglia cell fraction estimates and IBA1+ cell density measurements is also improved in mMuSiC (R=0.33, p=1.5e‐5) over MuSiC (R=0.12, p=0.11). Conclusion mMuSiC improves cell fraction estimates of bulk brain RNAseq datain studies using snRNA‐seq. This is particularly useful for brain research where snRNA‐seq is unavailable.
Author O'Neill, Nicholas K
Stein, Thor D.
Hu, Junming
Zhang, Xiaoling
Farrer, Lindsay A.
Author_xml – sequence: 1
  givenname: Nicholas K
  surname: O'Neill
  fullname: O'Neill, Nicholas K
  email: nkoneill@bu.edu
  organization: Boston University School of Medicine
– sequence: 2
  givenname: Junming
  surname: Hu
  fullname: Hu, Junming
  organization: Boston University School of Medicine
– sequence: 3
  givenname: Thor D.
  surname: Stein
  fullname: Stein, Thor D.
  organization: Boston University School of Medicine
– sequence: 4
  givenname: Xiaoling
  surname: Zhang
  fullname: Zhang, Xiaoling
  organization: Boston University School of Public Health
– sequence: 5
  givenname: Lindsay A.
  surname: Farrer
  fullname: Farrer, Lindsay A.
  organization: Boston University School of Public Health
BookMark eNp9kM1KAzEQx4Mo2FYvPkHOwtZJNtmPYy1-QVGQnkRYsumsRmNSk11LPfkIPqNP4mqLR08z8-c3A_Mbkl3nHRJyxGDMAPiJsu9jyGQp-A4ZMCl5Inle7v71GeyTYYxPAAIKJgfk_rSzz7QOyjjamhg7pBqtpe16iXSB2rs3b7vWeEdXpn2ktVGRah8C6t-w8YFG4x4sfn18uk5bNPT2etIPEV8PyF6jbMTDbR2R-fnZfHqZzG4urqaTWaLznCe1lkUphczSvNHlAgqlRI6KcwUiKzjmXEKdIjKFsGAaIEWhmwxLUav-OZ6OyPHmrA4-xoBNtQzmRYV1xaD60VL1WqqNlh5mG3hlLK7_IavJ7G678w2xymmW
ContentType Journal Article
Copyright 2022 the Alzheimer's Association.
Copyright_xml – notice: 2022 the Alzheimer's Association.
DBID AAYXX
CITATION
DOI 10.1002/alz.065942
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1552-5279
EndPage n/a
ExternalDocumentID 10_1002_alz_065942
ALZ065942
Genre article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AACTN
AAEDT
AAHHS
AAIKJ
AAKOC
AALRI
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCFJ
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ADBBV
ADBTR
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
ADZOD
AEEZP
AEIGN
AEKER
AENEX
AEQDE
AEUYR
AEVXI
AFKRA
AFTJW
AFWVQ
AGHFR
AGUBO
AGWIK
AGYEJ
AITUG
AIURR
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMFUW
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
T5K
TEORI
UKHRP
~G-
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
AEFGJ
AEUPX
AFPUW
AGHNM
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
EFLBG
PHGZM
PHGZT
PJZUB
PPXIY
~HD
ID FETCH-LOGICAL-c772-bc589545637fc9d08aa47ea22a04682e7250b3ee1ae0d1c003e4cf6e94ba27923
ISSN 1552-5260
IngestDate Thu Oct 16 04:41:49 EDT 2025
Wed Jan 22 16:20:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue S3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c772-bc589545637fc9d08aa47ea22a04682e7250b3ee1ae0d1c003e4cf6e94ba27923
PageCount 1
ParticipantIDs crossref_primary_10_1002_alz_065942
wiley_primary_10_1002_alz_065942_ALZ065942
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Alzheimer's & dementia
PublicationYear 2022
SSID ssj0040815
Score 2.3478186
Snippet Background Quantifying cell type percentages from bulk brain RNA‐sequencing enables researchers to better understand the components underlying disease...
SourceID crossref
wiley
SourceType Index Database
Publisher
Title Bulk brain tissue cell type deconvolution with bias correction for single‐nuclei RNA‐seq
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.065942
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: .~1
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: AKRWK
  dateStart: 20170701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: OVEED
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK98IFsQLE8lhZghNRSuo4TXLsskUVgkVCBVUIKbIdZzcihEfbPfTEgR_Ab-SXMONJ05QFxHKJUtdK25lP8-r4G8YeGqFCVaTKT8A3-bKQcFeEhS-FHSkTqKBwM5ZenIymr-WzeTTv9b51upZWSz0w69-eK_kfrcIa6BVPyV5Cs-1DYQHuQb9wBQ3D9Z90fLSq3nsahzx4SydAD-vwVFbNMdM9bz6eyq26VAvP4DgO03YYYqmgsm3LQ430xqX36mTcLi3s524EO67WZ7Z0M1fihQNO7iqMZWvfsX8Ga8tVgzTMnhfbcup0RadB6g8br0ltxURmMDuDL3U8uFDPnpcKxwuddqsUQnQ6PhrDGmHSS7MDBra7RsNkfrHG5ItbT3XB0BNxrKrWA_xjmAi6dtm0213Rn_cR8e_zt_TeFbYnwDcEfbb38s1kcrzx6BLCpsjx7ja_oaW5FY-3T94JbLqJjotUZtfZtSbF4GPCyz7r2foGe4dY4Q4rnLDCESscscJ3sMIRKxyxwrdY4YAVTlj58fU7oYQDSuAF4OMmmz2dzJ5M_Wayhm8gm_K1iZIUQ-cwLkyaB4lSMrZKCBXIUSJsDHGxDq0dKhvkQwOG30pTjGwqtXKEk7dYv_5Y29uMC62kFcrKIlEyjY1OIEPPI5MOZS60DQ_Yg41Usk_En5IRU7bIQHYZye6APXIC-8uWrFXTnctsvsuubuF4j_WXX1b2PoSRS33YaPkntERweg
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bulk+brain+tissue+cell+type+deconvolution+with+bias+correction+for+single%E2%80%90nuclei+RNA%E2%80%90seq&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=O%27Neill%2C+Nicholas+K&rft.au=Hu%2C+Junming&rft.au=Stein%2C+Thor+D.&rft.au=Zhang%2C+Xiaoling&rft.date=2022-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.065942&rft.externalDBID=10.1002%252Falz.065942&rft.externalDocID=ALZ065942
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon