Improved automated cerebral microbleed (CMB) detection

Background Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of CMBs. Automated methods tuned for sensitivity often have unacceptably high false positive rates requiring extensive human cleanup. Method Assu...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 18; no. S5
Main Authors Mead, Aaron K, Bermudez, Camilo L, Cogswell, Petrice M, Wiste, Heather J., Gebre, Robel K, Vemuri, Prashanthi, Knopman, David S., Petersen, Ronald C., Jack, Clifford R., Graff‐Radford, Jonathan, Gunter, Jeffrey L.
Format Journal Article
LanguageEnglish
Published 01.12.2022
Online AccessGet full text
ISSN1552-5260
1552-5279
DOI10.1002/alz.063351

Cover

Abstract Background Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of CMBs. Automated methods tuned for sensitivity often have unacceptably high false positive rates requiring extensive human cleanup. Method Assume contemporaneous T2*GRE and T1‐weighted images. CMB detection (Figures 1,2) has three steps: 1) Segmentation outputs from the T1‐weighted image are resampled into the T2*GRE image voxel raster; 2) Normalized cross‐correlation of the T2*GRE with a CMB template identifies “candidate CMBs”; 3) a neural network using voxel patches centered on each candidate CMB rejects false positives. Patches presented to the network are 4D and include five contrasts drawn from the T2*GRE, correlation, T1‐weighted, WM probability and CSF probability images. The simple network architecture consists of convolutional blocks followed by dense blocks. The system is trained using images from ADNI, ARIC, MCSA, and the Mayo Clinic ADRC that have been previously visually graded for CMBs (Table in Figure 3). Importantly, we include participants with and without CMBs in our data reflecting the fact that the majority of people (even the elderly) have no CMBs. Data is split 70:10:20 by subject for training, validation, and testing. Various network configurations were evaluated. Result High candidate detection sensitivity can be achieved at the expense of presenting hundreds to thousands of false positive candidates per input image to the rejection network. Our best performing network configuration to date has AUC 0.982 (95% bootstrap CI 0.971 to 0.990 based on the 10% validation subset). Choosing an operating point with 95% sensitivity in the validation set and admits, on average, 0.6 false positive CMB candidates per input T2*GRE image. Sensitivity is hindered by a small number of obvious errors in the ground truth visual assessment. Validation loss tracks training loss with no indication of over‐fitting. Example patches are shown in Figure 4. Conclusion Excessive false positive detection requires significant human correction and effort, preventing automated CMB detection from being widely adopted. We have an automated detection system that is sensitive (95%) and provides excellent false positive rejection (<1 false positive CMB/input image) reducing needed human effort.
AbstractList Background Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of CMBs. Automated methods tuned for sensitivity often have unacceptably high false positive rates requiring extensive human cleanup. Method Assume contemporaneous T2*GRE and T1‐weighted images. CMB detection (Figures 1,2) has three steps: 1) Segmentation outputs from the T1‐weighted image are resampled into the T2*GRE image voxel raster; 2) Normalized cross‐correlation of the T2*GRE with a CMB template identifies “candidate CMBs”; 3) a neural network using voxel patches centered on each candidate CMB rejects false positives. Patches presented to the network are 4D and include five contrasts drawn from the T2*GRE, correlation, T1‐weighted, WM probability and CSF probability images. The simple network architecture consists of convolutional blocks followed by dense blocks. The system is trained using images from ADNI, ARIC, MCSA, and the Mayo Clinic ADRC that have been previously visually graded for CMBs (Table in Figure 3). Importantly, we include participants with and without CMBs in our data reflecting the fact that the majority of people (even the elderly) have no CMBs. Data is split 70:10:20 by subject for training, validation, and testing. Various network configurations were evaluated. Result High candidate detection sensitivity can be achieved at the expense of presenting hundreds to thousands of false positive candidates per input image to the rejection network. Our best performing network configuration to date has AUC 0.982 (95% bootstrap CI 0.971 to 0.990 based on the 10% validation subset). Choosing an operating point with 95% sensitivity in the validation set and admits, on average, 0.6 false positive CMB candidates per input T2*GRE image. Sensitivity is hindered by a small number of obvious errors in the ground truth visual assessment. Validation loss tracks training loss with no indication of over‐fitting. Example patches are shown in Figure 4. Conclusion Excessive false positive detection requires significant human correction and effort, preventing automated CMB detection from being widely adopted. We have an automated detection system that is sensitive (95%) and provides excellent false positive rejection (<1 false positive CMB/input image) reducing needed human effort.
Author Gebre, Robel K
Vemuri, Prashanthi
Petersen, Ronald C.
Graff‐Radford, Jonathan
Wiste, Heather J.
Knopman, David S.
Mead, Aaron K
Jack, Clifford R.
Bermudez, Camilo L
Gunter, Jeffrey L.
Cogswell, Petrice M
Author_xml – sequence: 1
  givenname: Aaron K
  surname: Mead
  fullname: Mead, Aaron K
  organization: Mayo Clinic
– sequence: 2
  givenname: Camilo L
  surname: Bermudez
  fullname: Bermudez, Camilo L
  organization: Mayo Clinic
– sequence: 3
  givenname: Petrice M
  surname: Cogswell
  fullname: Cogswell, Petrice M
  organization: Mayo Clinic
– sequence: 4
  givenname: Heather J.
  surname: Wiste
  fullname: Wiste, Heather J.
  organization: Mayo Clinic
– sequence: 5
  givenname: Robel K
  surname: Gebre
  fullname: Gebre, Robel K
  organization: Mayo Clinic
– sequence: 6
  givenname: Prashanthi
  surname: Vemuri
  fullname: Vemuri, Prashanthi
  organization: Mayo Clinic
– sequence: 7
  givenname: David S.
  surname: Knopman
  fullname: Knopman, David S.
  organization: Mayo Clinic
– sequence: 8
  givenname: Ronald C.
  surname: Petersen
  fullname: Petersen, Ronald C.
  organization: Mayo Clinic
– sequence: 9
  givenname: Clifford R.
  surname: Jack
  fullname: Jack, Clifford R.
  organization: Mayo Clinic
– sequence: 10
  givenname: Jonathan
  surname: Graff‐Radford
  fullname: Graff‐Radford, Jonathan
  organization: Mayo Clinic
– sequence: 11
  givenname: Jeffrey L.
  surname: Gunter
  fullname: Gunter, Jeffrey L.
  email: Gunter.Jeffrey@mayo.edu
  organization: Mayo Clinic
BookMark eNp9j01LxDAQhoOs4O7qxV_QowpdM4lJ0-Na_FioeNmTl5BOJlBpt0talfXXW-ni0dO8DM87zLNgs123I8Yuga-Ac3Hrmu8V11IqOGFzUEqkSmT57C9rfsYWff_O-R03oOZMb9p97D7JJ-5j6Fo3jAkpUhVdk7Q1xq5qaNxdFS_314mngXCou905Ow2u6eniOJds-_iwLZ7T8vVpU6zLFLMMUuNRcKmdp-AzChRAVxwUaomgIZcYhBfOICCEShouJeYIDqvMGBWyXC7ZzXR2_KPvIwW7j3Xr4sECt7_CdhS2k_AIwwR_1Q0d_iHtunw7dn4A7htZjQ
ContentType Journal Article
Copyright 2022 the Alzheimer's Association.
Copyright_xml – notice: 2022 the Alzheimer's Association.
DBID AAYXX
CITATION
DOI 10.1002/alz.063351
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1552-5279
EndPage n/a
ExternalDocumentID 10_1002_alz_063351
ALZ063351
Genre article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AACTN
AAEDT
AAHHS
AAIKJ
AAKOC
AALRI
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCFJ
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ADBBV
ADBTR
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
ADZOD
AEEZP
AEIGN
AEKER
AENEX
AEQDE
AEUYR
AEVXI
AFKRA
AFTJW
AFWVQ
AGHFR
AGUBO
AGWIK
AGYEJ
AITUG
AIURR
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMFUW
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
T5K
TEORI
UKHRP
~G-
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
AEFGJ
AEUPX
AFPUW
AGHNM
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
EFLBG
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
~HD
ID FETCH-LOGICAL-c771-8dc2036adefd7efef16b015c63c16193cf2d2a8c1c1fb38033c9c1acb7885f793
ISSN 1552-5260
IngestDate Wed Oct 01 02:33:20 EDT 2025
Wed Jan 22 16:20:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue S5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c771-8dc2036adefd7efef16b015c63c16193cf2d2a8c1c1fb38033c9c1acb7885f793
PageCount 1
ParticipantIDs crossref_primary_10_1002_alz_063351
wiley_primary_10_1002_alz_063351_ALZ063351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Alzheimer's & dementia
PublicationYear 2022
SSID ssj0040815
Score 2.3487327
Snippet Background Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of...
SourceID crossref
wiley
SourceType Index Database
Publisher
Title Improved automated cerebral microbleed (CMB) detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.063351
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: .~1
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: AKRWK
  dateStart: 20170701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5260
  databaseCode: OVEED
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELXYctnLCgRo-VQkOLBUKY3T2MmxlKIK0eXSRWgvke3YgFRa1KaX_nrGduIEWFbAxYocy1I8LzPP4_EMQkcci0AIGvqMqbbfARvjsyQTfhzAXx5xARZMO_SHv8ngT-fyNrqt4nTN7ZKct8Tyn_dKviJV6AO56luyn5CsmxQ64BnkCy1IGNoPydh6BIAyskU-BeoJT0LO9FHwuPmoI-34GIyTOagdnun9fyZzE3o1qXPS7nh5Lx9MFRU6N1DIjM_wwWnsYQGELpsBWJxj9Ay0-qJwQfe0o2TadK7k3vRuXgZcm6pdWn9UTp65rco3sAS0edmqex8wrkVyFAoz0ptZWxOgJet9tkjMKy1rbayzQG8UuE0Iy8bLFnCnsMhF-yJLthsVvT_OJvS9-mvffUOrmBKCG2j1-qbfPy8tdQfoUGTy6Rbf4NLX4tNq5heEpb6BMQxktIZ-FFsHr2txsI5W5GQDkRIDnsOAV2LAqzDgHQMCfnlO_ptodNEf9QZ-UQvDF5QGfpwJfWLMMqkyKpVUAeFA5AQJBVD2JBQKZ5jF8N8FiodxOwxFIgImOI3jSIEO3kKNyXQifyJP4ZgQrjghlHcESVgYR1k7USpSiaSMbqPD8nvTJ5vxJLW5rXEKq5LaVdlGJ2Yp_jMkdQLY-czgXfS9AtoeauSzhdwH4pfzg0J-zyUOUxQ
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+automated+cerebral+microbleed+%28CMB%29+detection&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Mead%2C+Aaron+K&rft.au=Bermudez%2C+Camilo+L&rft.au=Cogswell%2C+Petrice+M&rft.au=Wiste%2C+Heather+J.&rft.date=2022-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.063351&rft.externalDBID=10.1002%252Falz.063351&rft.externalDocID=ALZ063351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon