Improved automated cerebral microbleed (CMB) detection
Background Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of CMBs. Automated methods tuned for sensitivity often have unacceptably high false positive rates requiring extensive human cleanup. Method Assu...
Saved in:
Published in | Alzheimer's & dementia Vol. 18; no. S5 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2022
|
Online Access | Get full text |
ISSN | 1552-5260 1552-5279 |
DOI | 10.1002/alz.063351 |
Cover
Abstract | Background
Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of CMBs. Automated methods tuned for sensitivity often have unacceptably high false positive rates requiring extensive human cleanup.
Method
Assume contemporaneous T2*GRE and T1‐weighted images. CMB detection (Figures 1,2) has three steps: 1) Segmentation outputs from the T1‐weighted image are resampled into the T2*GRE image voxel raster; 2) Normalized cross‐correlation of the T2*GRE with a CMB template identifies “candidate CMBs”; 3) a neural network using voxel patches centered on each candidate CMB rejects false positives. Patches presented to the network are 4D and include five contrasts drawn from the T2*GRE, correlation, T1‐weighted, WM probability and CSF probability images. The simple network architecture consists of convolutional blocks followed by dense blocks. The system is trained using images from ADNI, ARIC, MCSA, and the Mayo Clinic ADRC that have been previously visually graded for CMBs (Table in Figure 3). Importantly, we include participants with and without CMBs in our data reflecting the fact that the majority of people (even the elderly) have no CMBs. Data is split 70:10:20 by subject for training, validation, and testing. Various network configurations were evaluated.
Result
High candidate detection sensitivity can be achieved at the expense of presenting hundreds to thousands of false positive candidates per input image to the rejection network. Our best performing network configuration to date has AUC 0.982 (95% bootstrap CI 0.971 to 0.990 based on the 10% validation subset). Choosing an operating point with 95% sensitivity in the validation set and admits, on average, 0.6 false positive CMB candidates per input T2*GRE image. Sensitivity is hindered by a small number of obvious errors in the ground truth visual assessment. Validation loss tracks training loss with no indication of over‐fitting. Example patches are shown in Figure 4.
Conclusion
Excessive false positive detection requires significant human correction and effort, preventing automated CMB detection from being widely adopted. We have an automated detection system that is sensitive (95%) and provides excellent false positive rejection (<1 false positive CMB/input image) reducing needed human effort. |
---|---|
AbstractList | Background
Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of CMBs. Automated methods tuned for sensitivity often have unacceptably high false positive rates requiring extensive human cleanup.
Method
Assume contemporaneous T2*GRE and T1‐weighted images. CMB detection (Figures 1,2) has three steps: 1) Segmentation outputs from the T1‐weighted image are resampled into the T2*GRE image voxel raster; 2) Normalized cross‐correlation of the T2*GRE with a CMB template identifies “candidate CMBs”; 3) a neural network using voxel patches centered on each candidate CMB rejects false positives. Patches presented to the network are 4D and include five contrasts drawn from the T2*GRE, correlation, T1‐weighted, WM probability and CSF probability images. The simple network architecture consists of convolutional blocks followed by dense blocks. The system is trained using images from ADNI, ARIC, MCSA, and the Mayo Clinic ADRC that have been previously visually graded for CMBs (Table in Figure 3). Importantly, we include participants with and without CMBs in our data reflecting the fact that the majority of people (even the elderly) have no CMBs. Data is split 70:10:20 by subject for training, validation, and testing. Various network configurations were evaluated.
Result
High candidate detection sensitivity can be achieved at the expense of presenting hundreds to thousands of false positive candidates per input image to the rejection network. Our best performing network configuration to date has AUC 0.982 (95% bootstrap CI 0.971 to 0.990 based on the 10% validation subset). Choosing an operating point with 95% sensitivity in the validation set and admits, on average, 0.6 false positive CMB candidates per input T2*GRE image. Sensitivity is hindered by a small number of obvious errors in the ground truth visual assessment. Validation loss tracks training loss with no indication of over‐fitting. Example patches are shown in Figure 4.
Conclusion
Excessive false positive detection requires significant human correction and effort, preventing automated CMB detection from being widely adopted. We have an automated detection system that is sensitive (95%) and provides excellent false positive rejection (<1 false positive CMB/input image) reducing needed human effort. |
Author | Gebre, Robel K Vemuri, Prashanthi Petersen, Ronald C. Graff‐Radford, Jonathan Wiste, Heather J. Knopman, David S. Mead, Aaron K Jack, Clifford R. Bermudez, Camilo L Gunter, Jeffrey L. Cogswell, Petrice M |
Author_xml | – sequence: 1 givenname: Aaron K surname: Mead fullname: Mead, Aaron K organization: Mayo Clinic – sequence: 2 givenname: Camilo L surname: Bermudez fullname: Bermudez, Camilo L organization: Mayo Clinic – sequence: 3 givenname: Petrice M surname: Cogswell fullname: Cogswell, Petrice M organization: Mayo Clinic – sequence: 4 givenname: Heather J. surname: Wiste fullname: Wiste, Heather J. organization: Mayo Clinic – sequence: 5 givenname: Robel K surname: Gebre fullname: Gebre, Robel K organization: Mayo Clinic – sequence: 6 givenname: Prashanthi surname: Vemuri fullname: Vemuri, Prashanthi organization: Mayo Clinic – sequence: 7 givenname: David S. surname: Knopman fullname: Knopman, David S. organization: Mayo Clinic – sequence: 8 givenname: Ronald C. surname: Petersen fullname: Petersen, Ronald C. organization: Mayo Clinic – sequence: 9 givenname: Clifford R. surname: Jack fullname: Jack, Clifford R. organization: Mayo Clinic – sequence: 10 givenname: Jonathan surname: Graff‐Radford fullname: Graff‐Radford, Jonathan organization: Mayo Clinic – sequence: 11 givenname: Jeffrey L. surname: Gunter fullname: Gunter, Jeffrey L. email: Gunter.Jeffrey@mayo.edu organization: Mayo Clinic |
BookMark | eNp9j01LxDAQhoOs4O7qxV_QowpdM4lJ0-Na_FioeNmTl5BOJlBpt0talfXXW-ni0dO8DM87zLNgs123I8Yuga-Ac3Hrmu8V11IqOGFzUEqkSmT57C9rfsYWff_O-R03oOZMb9p97D7JJ-5j6Fo3jAkpUhVdk7Q1xq5qaNxdFS_314mngXCou905Ow2u6eniOJds-_iwLZ7T8vVpU6zLFLMMUuNRcKmdp-AzChRAVxwUaomgIZcYhBfOICCEShouJeYIDqvMGBWyXC7ZzXR2_KPvIwW7j3Xr4sECt7_CdhS2k_AIwwR_1Q0d_iHtunw7dn4A7htZjQ |
ContentType | Journal Article |
Copyright | 2022 the Alzheimer's Association. |
Copyright_xml | – notice: 2022 the Alzheimer's Association. |
DBID | AAYXX CITATION |
DOI | 10.1002/alz.063351 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1552-5279 |
EndPage | n/a |
ExternalDocumentID | 10_1002_alz_063351 ALZ063351 |
Genre | article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AACTN AAEDT AAHHS AAIKJ AAKOC AALRI AANLZ AAOAW AAXLA AAXUO AAYCA ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCFJ ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACXQS ADBBV ADBTR ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN ADZOD AEEZP AEIGN AEKER AENEX AEQDE AEUYR AEVXI AFKRA AFTJW AFWVQ AGHFR AGUBO AGWIK AGYEJ AITUG AIURR AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMFUW AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PIMPY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ T5K TEORI UKHRP ~G- AAMMB AAYWO AAYXX ACVFH ADCNI AEFGJ AEUPX AFPUW AGHNM AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION EFLBG PHGZM PHGZT PJZUB PPXIY PUEGO ~HD |
ID | FETCH-LOGICAL-c771-8dc2036adefd7efef16b015c63c16193cf2d2a8c1c1fb38033c9c1acb7885f793 |
ISSN | 1552-5260 |
IngestDate | Wed Oct 01 02:33:20 EDT 2025 Wed Jan 22 16:20:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c771-8dc2036adefd7efef16b015c63c16193cf2d2a8c1c1fb38033c9c1acb7885f793 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1002_alz_063351 wiley_primary_10_1002_alz_063351_ALZ063351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Alzheimer's & dementia |
PublicationYear | 2022 |
SSID | ssj0040815 |
Score | 2.3487327 |
Snippet | Background
Cerebral Microbleeds (CMBs) are tracked in anti‐amyloid drug safety monitoring. T2*GRE or SWI MRI images are visually assessed for the presence of... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
Title | Improved automated cerebral microbleed (CMB) detection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.063351 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: .~1 dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: AKRWK dateStart: 20170701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5260 databaseCode: OVEED dateStart: 20150101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwELXYctnLCgRo-VQkOLBUKY3T2MmxlKIK0eXSRWgvke3YgFRa1KaX_nrGduIEWFbAxYocy1I8LzPP4_EMQkcci0AIGvqMqbbfARvjsyQTfhzAXx5xARZMO_SHv8ngT-fyNrqt4nTN7ZKct8Tyn_dKviJV6AO56luyn5CsmxQ64BnkCy1IGNoPydh6BIAyskU-BeoJT0LO9FHwuPmoI-34GIyTOagdnun9fyZzE3o1qXPS7nh5Lx9MFRU6N1DIjM_wwWnsYQGELpsBWJxj9Ay0-qJwQfe0o2TadK7k3vRuXgZcm6pdWn9UTp65rco3sAS0edmqex8wrkVyFAoz0ptZWxOgJet9tkjMKy1rbayzQG8UuE0Iy8bLFnCnsMhF-yJLthsVvT_OJvS9-mvffUOrmBKCG2j1-qbfPy8tdQfoUGTy6Rbf4NLX4tNq5heEpb6BMQxktIZ-FFsHr2txsI5W5GQDkRIDnsOAV2LAqzDgHQMCfnlO_ptodNEf9QZ-UQvDF5QGfpwJfWLMMqkyKpVUAeFA5AQJBVD2JBQKZ5jF8N8FiodxOwxFIgImOI3jSIEO3kKNyXQifyJP4ZgQrjghlHcESVgYR1k7USpSiaSMbqPD8nvTJ5vxJLW5rXEKq5LaVdlGJ2Yp_jMkdQLY-czgXfS9AtoeauSzhdwH4pfzg0J-zyUOUxQ |
linkProvider | Ovid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+automated+cerebral+microbleed+%28CMB%29+detection&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Mead%2C+Aaron+K&rft.au=Bermudez%2C+Camilo+L&rft.au=Cogswell%2C+Petrice+M&rft.au=Wiste%2C+Heather+J.&rft.date=2022-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=18&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Falz.063351&rft.externalDBID=10.1002%252Falz.063351&rft.externalDocID=ALZ063351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |