A shift-invariant C 1 2 -subdivision algorithm which rotates the lattice

In order to study differential properties of a subdivision surface at a markpoint, it is necessary to parametrise it over a so-called characteristic map defined as the infinite union of $C^k$-parametrised rings. Construction of this map is known when a single step of the subdivision scheme does not...

Full description

Saved in:
Bibliographic Details
Published inComputer aided geometric design Vol. 118; p. 102430
Main Authors Gérot, Cédric, Sabin, Malcolm A.
Format Journal Article
LanguageEnglish
Published Elsevier 01.05.2025
Subjects
Online AccessGet full text
ISSN0167-8396
DOI10.1016/j.cagd.2025.102430

Cover

Abstract In order to study differential properties of a subdivision surface at a markpoint, it is necessary to parametrise it over a so-called characteristic map defined as the infinite union of $C^k$-parametrised rings. Construction of this map is known when a single step of the subdivision scheme does not rotate a regular lattice. Otherwise, two steps are considered as they realign the lattice and its subdivided version. We present a new subdivision scheme which rotates the lattice and nevertheless allows a direct construction of the characteristic map. It is eigenanalysed with techniques introduced in a companion article and proved to define a $C_1^2$-algorithm around a face-centre. This scheme generalises Loop's scheme, allowing the designer to choose between extraordinary vertices or faces in regard to the shape of the mesh,the location of the extraordinary elements, and the aimed limit shape.
AbstractList In order to study differential properties of a subdivision surface at a markpoint, it is necessary to parametrise it over a so-called characteristic map defined as the infinite union of $C^k$-parametrised rings. Construction of this map is known when a single step of the subdivision scheme does not rotate a regular lattice. Otherwise, two steps are considered as they realign the lattice and its subdivided version. We present a new subdivision scheme which rotates the lattice and nevertheless allows a direct construction of the characteristic map. It is eigenanalysed with techniques introduced in a companion article and proved to define a $C_1^2$-algorithm around a face-centre. This scheme generalises Loop's scheme, allowing the designer to choose between extraordinary vertices or faces in regard to the shape of the mesh,the location of the extraordinary elements, and the aimed limit shape.
ArticleNumber 102430
Author Sabin, Malcolm A.
Gérot, Cédric
Author_xml – sequence: 1
  givenname: Cédric
  orcidid: 0000-0001-5653-2055
  surname: Gérot
  fullname: Gérot, Cédric
– sequence: 2
  givenname: Malcolm A.
  surname: Sabin
  fullname: Sabin, Malcolm A.
BackLink https://hal.science/hal-05019041$$DView record in HAL
BookMark eNo9kLtOwzAYhT0UiRZ4ASavDCm-xa7HqgKKVImlu_X71rhKE2SbIt6eRkVMRzq34Vug2TAOAaFHSpaUUPl8XDo4-CUjrL0YTHAyQ_NLoJoV1_IWLUo5EkIY1XKOtmtcuhRrk4Yz5ARDxRtMMcNN-bI-nVNJ44ChP4w51e6Ev7vkOpzHCjUUXLuAe6g1uXCPbiL0JTz86R3av77sN9tm9_H2vlnvGqcUbagH5b3gLQcto1CtaLX2jgjFnFA2rpQXwCF6byPhNlLBJJNEBC2tBUv5HXq63nbQm8-cTpB_zAjJbNc7M3mkJVQTQc9Tl127Lo-l5BD_B5SYCZU5mgmVmVCZKyr-C_P3YDM
Cites_doi 10.1016/S0167-8396(01)00039-5
10.1007/s11155-005-6891-y
10.1145/263834.263851
10.1016/j.cagd.2014.06.002
10.1016/0010-4485(78)90111-2
10.1007/s003659910006
10.1007/s00607-006-0211-1
10.1016/0010-4485(78)90110-0
10.1016/0167-8396(94)00007-F
10.1016/j.cagd.2004.04.003
10.1145/1027411.1027415
10.1016/j.cagd.2004.04.006
10.1111/j.1467-8659.2006.00945.x
10.1137/S0036142996304346
10.1007/978-1-4757-2244-4
10.1016/j.cagd.2024.102391
10.1111/j.1467-8659.2008.01163.x
10.1016/j.cag.2021.10.008
ContentType Journal Article
Copyright Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: Attribution - NonCommercial - NoDerivatives
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.cagd.2025.102430
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
ExternalDocumentID oai:HAL:hal-05019041v1
10_1016_j_cagd_2025_102430
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABAOU
ABBOA
ABDPE
ABFNM
ABFSI
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
E.L
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
ZY4
~G-
~HD
1XC
ID FETCH-LOGICAL-c771-1da7dd4353a96f4754599dc0472c47bf87d4a3afddbf03bf14262604e96bbab13
ISSN 0167-8396
IngestDate Tue Oct 14 20:51:12 EDT 2025
Wed Oct 01 06:30:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Differential analysis
Subdivision
Extraordinary face
Characteristic map
Language English
License Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c771-1da7dd4353a96f4754599dc0472c47bf87d4a3afddbf03bf14262604e96bbab13
ORCID 0000-0001-5653-2055
ParticipantIDs hal_primary_oai_HAL_hal_05019041v1
crossref_primary_10_1016_j_cagd_2025_102430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-00
2025-05
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-00
PublicationDecade 2020
PublicationTitle Computer aided geometric design
PublicationYear 2025
Publisher Elsevier
Publisher_xml – name: Elsevier
References Loop (10.1016/j.cagd.2025.102430_br0150) 1987
Chen (10.1016/j.cagd.2025.102430_br0060) 2014; 31
Sabin (10.1016/j.cagd.2025.102430_br0240) 2003
Umlauf (10.1016/j.cagd.2025.102430_br0250) 2000; 16
Zorin (10.1016/j.cagd.2025.102430_br0280) 1997
Velho (10.1016/j.cagd.2025.102430_br0270) 2001; 18
Peters (10.1016/j.cagd.2025.102430_br0190) 2008; vol. 3
Peters (10.1016/j.cagd.2025.102430_br0200) 2004; 23
Revol (10.1016/j.cagd.2025.102430_br0230) 2005; 11
Augsdörfer (10.1016/j.cagd.2025.102430_br0010) 2006; 25
Peters (10.1016/j.cagd.2025.102430_br0160) 1997; 16
Ginkel (10.1016/j.cagd.2025.102430_br0100) 2007; 79
Prautzsch (10.1016/j.cagd.2025.102430_br0210) 2002
Doo (10.1016/j.cagd.2025.102430_br0080) 1978; 10
Reif (10.1016/j.cagd.2025.102430_br0220) 1995; 12
Kobbelt (10.1016/j.cagd.2025.102430_br0140) 2000
Gérot (10.1016/j.cagd.2025.102430_br0120) 2024; 114
Guennebaud (10.1016/j.cagd.2025.102430_br0110) 2008; 27
Peters (10.1016/j.cagd.2025.102430_br0170) 1998; 35
Barthe (10.1016/j.cagd.2025.102430_br0030) 2004; 21
Umlauf (10.1016/j.cagd.2025.102430_br0260) 2004
Barthe (10.1016/j.cagd.2025.102430_br0020) 2005
Catmull (10.1016/j.cagd.2025.102430_br0050) 1978; 10
Peters (10.1016/j.cagd.2025.102430_br0180) 2004; 21
de Boor (10.1016/j.cagd.2025.102430_br0040) 1993
Eaton (10.1016/j.cagd.2025.102430_br0090)
Karčiauskas (10.1016/j.cagd.2025.102430_br0130) 2022; 102
Cignoni (10.1016/j.cagd.2025.102430_br0070) 2008
References_xml – volume: vol. 3
  year: 2008
  ident: 10.1016/j.cagd.2025.102430_br0190
  article-title: Subdivision Surfaces
– volume: 18
  start-page: 397
  year: 2001
  ident: 10.1016/j.cagd.2025.102430_br0270
  article-title: 4-8 subdivision
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/S0167-8396(01)00039-5
– volume: 11
  start-page: 275
  year: 2005
  ident: 10.1016/j.cagd.2025.102430_br0230
  article-title: Motivations for an arbitrary precision interval arithmetic and the MPFI library
  publication-title: Reliab. Comput.
  doi: 10.1007/s11155-005-6891-y
– start-page: 245
  year: 2005
  ident: 10.1016/j.cagd.2025.102430_br0020
  article-title: Simple computation of the eigencomponents of a subdivision matrix in the Fourier domain
– start-page: 103
  year: 2000
  ident: 10.1016/j.cagd.2025.102430_br0140
  article-title: 3-subdivision
– volume: 16
  start-page: 420
  year: 1997
  ident: 10.1016/j.cagd.2025.102430_br0160
  article-title: The simplest subdivision scheme for smoothing polyhedra
  publication-title: ACM Trans. Graph.
  doi: 10.1145/263834.263851
– volume: 31
  start-page: 475
  year: 2014
  ident: 10.1016/j.cagd.2025.102430_br0060
  article-title: General triangular midpoint subdivision
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2014.06.002
– volume: 10
  start-page: 356
  year: 1978
  ident: 10.1016/j.cagd.2025.102430_br0080
  article-title: Behaviour of recursive division surface near extraordinary points
  publication-title: Comput. Aided Des.
  doi: 10.1016/0010-4485(78)90111-2
– volume: 16
  start-page: 145
  year: 2000
  ident: 10.1016/j.cagd.2025.102430_br0250
  article-title: Analyzing the characteristic map of triangular subdivision schemes
  publication-title: Constr. Approx.
  doi: 10.1007/s003659910006
– volume: 79
  start-page: 353
  year: 2007
  ident: 10.1016/j.cagd.2025.102430_br0100
  article-title: Analyzing a generalized loop subdivision scheme
  publication-title: Computing
  doi: 10.1007/s00607-006-0211-1
– volume: 10
  start-page: 350
  year: 1978
  ident: 10.1016/j.cagd.2025.102430_br0050
  article-title: Recursively generated B-spline surfaces on arbitrary topological meshes
  publication-title: Comput. Aided Des.
  doi: 10.1016/0010-4485(78)90110-0
– year: 1987
  ident: 10.1016/j.cagd.2025.102430_br0150
– ident: 10.1016/j.cagd.2025.102430_br0090
– start-page: 255
  year: 2002
  ident: 10.1016/j.cagd.2025.102430_br0210
  article-title: Chapter 10 - box splines
– volume: 12
  start-page: 153
  year: 1995
  ident: 10.1016/j.cagd.2025.102430_br0220
  article-title: A unified approach to subdivision algorithm near extraordinary vertices
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/0167-8396(94)00007-F
– volume: 21
  start-page: 561
  year: 2004
  ident: 10.1016/j.cagd.2025.102430_br0030
  article-title: Subdivision scheme tuning around extraordinary vertices
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2004.04.003
– volume: 23
  start-page: 980
  year: 2004
  ident: 10.1016/j.cagd.2025.102430_br0200
  article-title: Combining 4- and 3-direction subdivision
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1027411.1027415
– volume: 21
  start-page: 595
  year: 2004
  ident: 10.1016/j.cagd.2025.102430_br0180
  article-title: Shape characterization of subdivision surfaces–basic principles
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2004.04.006
– volume: 25
  start-page: 263
  year: 2006
  ident: 10.1016/j.cagd.2025.102430_br0010
  article-title: Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2006.00945.x
– volume: 35
  start-page: 728
  year: 1998
  ident: 10.1016/j.cagd.2025.102430_br0170
  article-title: Analysis of algorithms generalizing B-spline subdivision
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142996304346
– start-page: 129
  year: 2008
  ident: 10.1016/j.cagd.2025.102430_br0070
  article-title: MeshLab: an open-source mesh processing tool
– year: 1993
  ident: 10.1016/j.cagd.2025.102430_br0040
  article-title: Box Splines
  doi: 10.1007/978-1-4757-2244-4
– start-page: 513
  year: 2004
  ident: 10.1016/j.cagd.2025.102430_br0260
  article-title: A technique for verifying the smoothness of subdivision schemes
– volume: 114
  year: 2024
  ident: 10.1016/j.cagd.2025.102430_br0120
  article-title: Computing properties of subdivision schemes using small real Fourier indexed matrices
  publication-title: Comput. Aided Geom. Des.
  doi: 10.1016/j.cagd.2024.102391
– year: 1997
  ident: 10.1016/j.cagd.2025.102430_br0280
– volume: 27
  start-page: 653
  year: 2008
  ident: 10.1016/j.cagd.2025.102430_br0110
  article-title: Dynamic sampling and rendering of algebraic point set surfaces
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2008.01163.x
– start-page: 353
  year: 2003
  ident: 10.1016/j.cagd.2025.102430_br0240
  article-title: Artifacts in recursive subdivision surfaces
– volume: 102
  start-page: 370
  year: 2022
  ident: 10.1016/j.cagd.2025.102430_br0130
  article-title: An improved refinement rule for multi-sided faces
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2021.10.008
SSID ssj0002196
Score 2.4077072
Snippet In order to study differential properties of a subdivision surface at a markpoint, it is necessary to parametrise it over a so-called characteristic map...
SourceID hal
crossref
SourceType Open Access Repository
Index Database
StartPage 102430
SubjectTerms Computational Geometry
Computer Science
Graphics
Title A shift-invariant C 1 2 -subdivision algorithm which rotates the lattice
URI https://hal.science/hal-05019041
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0167-8396
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002196
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0167-8396
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002196
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0167-8396
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002196
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  issn: 0167-8396
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002196
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0167-8396
  databaseCode: AKRWK
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002196
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbd7aU9lG4fdPtYROlNKFi2bEdHE9qGstlTCnszkiXHXvIoiXcLPfS3dyT5kYQtdHsRlhCD0CePR-OZbxD6ZMqxkiKVFF6dkHJjxlQaLmioeRkLbljiXBezq2T6nX-7jq-HKo4uu6RRo-LXvXkl_4MqjAGuNkv2Acj2QmEAngFfaAFhaP8J44zsqrpsaL2-gysv7BGZEEZCQne3yuZZ7Vys8XKx2dZNtSI_q7qoyHbj7EtncS5l0wW_9XQFbZkHYrkjNVmYzcoW3SqIPoj1-Or_sIMw52r1Pb2ti95lI5WnJ5jJJRy2FclG-x6GMB7i-TqnIyhTMKSSA63Zqk2v95glNgzuVcneO3AD1-2FZWYN49Ew-ZD_-ui71EcLdoFoN7mVkVsZuZdxgh6HoM1tyY7R7yG0B7Rw0nG623W3yVI-ru94HQcGyUnV-dOdfTF_jp61FwOceZTP0COzfoGe7tFFQm_Wc-zuXqJpho_QxxPMcIj30cc9-tihj1v0MQjCLfqv0PzL5_lkStu6GLRIU0aZlqnWYOZGUiQlT8EGFkIXlvaz4Kkqx6nmMpKl1qoMIlUyW3QgCbgRiVJSseg1Ol1v1uYNwpbcR0oBl-pQcS2EjILSCC61MWEhVXCOSLc3-Q_PfpL_HY1z9BG2r59oicun2WVux4LYchZwdsfePkjkO_RkOJHv0WmzvTUfwAps1IWD_A-W91gy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+shift-invariant+C+1+2+-subdivision+algorithm+which+rotates+the+lattice&rft.jtitle=Computer+aided+geometric+design&rft.au=G%C3%A9rot%2C+C%C3%A9dric&rft.au=Sabin%2C+Malcolm+A.&rft.date=2025-05-01&rft.issn=0167-8396&rft.volume=118&rft.spage=102430&rft_id=info:doi/10.1016%2Fj.cagd.2025.102430&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cagd_2025_102430
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8396&client=summon