Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury

We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical epidemiology Vol. 122; no. 2; pp. 95 - 107
Main Authors Gravesteijn, Benjamin Y., Lingsma, Hester F., Nelson, David, Steyerberg, Ewout W., Andreassen, Lasse, Anke, Audny, Audibert, Gérard, Barzó, Pál, Beauvais, Romuald, Bellander, Bo-Michael, Benali, Habib, Beretta, Luigi, Blaabjerg, Morten, Brazinova, Alexandra, Brooker, Joanne, Brorsson, Camilla, Bullinger, Monika, Lozano, Guillermo Carbayo, Chieregato, Arturo, Coburn, Mark, Dawes, Helen, Della Corte, Francesco, Đilvesi, Đula, Esser, Patrick, Martin Fabricius, Erzsébet Ezer, Feigin, Kelly Foks, Valery L., Gagliardo, Pablo, Gantner, Dashiell, Gao, Guoyi, Glocker, Ben, Gravesteijn, Benjamin, Grossi, Francesca, Gruen, Russell L., Helbok, Raimund, Jacobs, Bram, Ji-yao Jiang, Mike Jarrett, Karan, Mladen, Kolias, Angelos G., Kompanje, Erwin, Koraropoulos, Evgenios, Koskinen, Lars-Owe, Laureys, Steven, Legrand, Valerie, Lightfoot, Roger, Lingsma, Hester, Castaño-León, Ana M., Manley, Geoffrey, Maréchal, Hugues, McMahon, Catherine, Menovsky, Tomas, Mulazzi, Davide, Nair, Nandesh, Nieboer, Daan, Nyirádi, József, Oresic, Matej, Ortolano, Fabrizio, Palotie, Aarno, Parizel, Paul M., Pirinen, Matti, Polinder, Suzanne, Posti, Jussi P., Puybasset, Louis, Radoi, Andreea, Rhodes, Jonathan, Richardson, Sylvia, Richter, Sophie, Ripatti, Samuli, Rocka, Saulius, Roe, Cecilie, Rosenlund, Christina, Rossaint, Rolf, Sakowitz, Oliver, Sandor, Janos, Schoechl, Herbert, Schou, Rico Frederik, Schwendenwein, Elisabeth, Sewalt, Charlie, Stamatakis, Emmanuel, Stanworth, Simon, Ao, Braden Te, Tenovuo, Olli, Theadom, Alice, Tibboel, Dick, Vajkoczy, Peter, Vallance, Shirley, van der Naalt, Joukje, van Dijck, Jeroen T.J.M., van Essen, Thomas A., van Heugten, Caroline, Van Praag, Dominique, Vyvere, Thijs Vande, Vespa, Paul M., Voormolen, Daphne, Wang, Kevin K.W., Wiegers, Eveline, Winzeck, Stefan, Wolf, Stefan, Yang, Zhihui, Younsi, Alexander, Zelinkova, Veronika
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2020
Elsevier Limited
Elsevier
Elsevier USA
Subjects
Online AccessGet full text
ISSN0895-4356
1878-5921
1878-5921
DOI10.1016/j.jclinepi.2020.03.005

Cover

More Information
Summary:We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate and severe traumatic brain injury. We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors in the IMPACT-II database (15 studies, n = 11,022). ML algorithms included support vector machines, random forests, gradient boosting machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale <13, n = 1,554). Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified. In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for unfavorable outcomes in the CENTER-TBI study. ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously validated to ensure applicability to new populations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Journal of Clinical Epidemiology
scopus-id:2-s2.0-85082847791
ISSN:0895-4356
1878-5921
1878-5921
DOI:10.1016/j.jclinepi.2020.03.005