基于MSE-PCA的脑电睡眠分期方法研究
针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。...
Saved in:
| Published in | 电子技术应用 Vol. 43; no. 9; pp. 22 - 24 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001
2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0258-7998 |
| DOI | 10.16157/j.issn.0258-7998.172872 |
Cover
| Abstract | 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。 |
|---|---|
| AbstractList | TP391; 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法.以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类.实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性. 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。 |
| Abstract_FL | Aiming at the problem of insufficient accuracy of traditional automatic sleep staging,a new method of automatic sleep staging based on a fusion algorithm,multi-scale entropy(MSE) and principal component analysis(PCA),is proposed.In this work,the data of sleep EEG monitoring and the expert staging of 8 subjects are utilized as samples.Firstly,MSE is used to extract the nonlinear dynamic features from sleep stages.Then this features are replaced by the first two principal component vectors of PCA.The purpose is reduce the data dimension redundancy,as well as retaining the vast majority of EEG non-linear features.After that the new vector are entered into the BPNN classifier to implement the MSE-PCA model of automatic sleep staging.The experimental results show that the accuracy of automatic staging can reach to 87.9% and kappa coefficient is 0.77,which can improve the accuracy and stability of automatic EEG sleep staging system. |
| Author | 刘雪峰 马州生 赵艳阳 余传奇 范文兵 |
| AuthorAffiliation | 郑州大学信息工程学院;河南省经贸学院;河南工业大学电气工程学院 |
| AuthorAffiliation_xml | – name: 郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001 |
| Author_FL | Zhao Yanyang Liu Xuefeng Ma Zhousheng Yu Chuanqi Fan Wenbing |
| Author_FL_xml | – sequence: 1 fullname: Liu Xuefeng – sequence: 2 fullname: Ma Zhousheng – sequence: 3 fullname: Zhao Yanyang – sequence: 4 fullname: Yu Chuanqi – sequence: 5 fullname: Fan Wenbing |
| Author_xml | – sequence: 1 fullname: 刘雪峰 马州生 赵艳阳 余传奇 范文兵 |
| BookMark | eNo9jU1LAlEYhe_CIDP_Q7tWM733470fSxH7AKMg93KduWMjdS2HCFtLtAoCaxGGtmwdBfl70ulnNGC0OYdzeDhng5R83ztCtiiEVFJUO70wzTIfAkMdKGN0SBXTipVI-b9aJ9UsSzsAlALTyMskXEzn3_P7w5NGcFyv5c-jn9FDPv7IX17zyWxxd7ucTJdPX8v3x3w2zt8-N8laYs8yV_3zCmntNlr1_aB5tHdQrzWDSEkZYKyZo6iVizmNpWCRdigSQbkVFiOKzFjuNMYJRNLxBHSHg-0oblBxCRGvkO3V7LX1ifXddq9_NfDFYTu-6WXDIQOqwADIguQrMjrt--5lWrAXg_TcDoZtqQ0ooQ2C0MIgCo1FLFTwX3chZBI |
| ClassificationCodes | TP391 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.16157/j.issn.0258-7998.172872 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | Research on sleep staging method of EEG based on MSE-PCA |
| EndPage | 24 |
| ExternalDocumentID | dzjsyy201709006 68907489504849554857484854 |
| GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (61306106) |
| GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 GROUPED_DOAJ TCJ TGT U1G U5S ~WA 4A8 93N ABJNI PSX |
| ID | FETCH-LOGICAL-c766-5d82e1587ed31d642c8e54f413a4a5c1529a3e85df0c6e3f08b30ab73957360c3 |
| ISSN | 0258-7998 |
| IngestDate | Thu May 29 04:04:54 EDT 2025 Wed Feb 14 09:57:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | 反馈神经网络(BPNN) 主成分分析(PCA) principal component analysis (PCA) multi-scale entropy (MSE) automatic sleep staging back propagation network(BPNN) 脑电信号(EEG) 自动睡眠分期 多尺度熵(MSE) electroencephalogram (EEG) |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c766-5d82e1587ed31d642c8e54f413a4a5c1529a3e85df0c6e3f08b30ab73957360c3 |
| Notes | 11-2305/TN |
| PageCount | 3 |
| ParticipantIDs | wanfang_journals_dzjsyy201709006 chongqing_primary_68907489504849554857484854 |
| PublicationCentury | 2000 |
| PublicationDate | 2017 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – year: 2017 text: 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | 电子技术应用 |
| PublicationTitleAlternate | Application of Electronic Technique |
| PublicationTitle_FL | Application of Electronic Technique |
| PublicationYear | 2017 |
| Publisher | 郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001 |
| Publisher_xml | – name: 郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001 |
| SSID | ssib001102853 ssib017479494 ssib038074684 ssib051374551 ssj0042189 ssib023646353 |
| Score | 2.085974 |
| Snippet | 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为... TP391; 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法.以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结... |
| SourceID | wanfang chongqing |
| SourceType | Aggregation Database Publisher |
| StartPage | 22 |
| SubjectTerms | 自动睡眠分期;脑电信号(EEG);多尺度熵(MSE);主成分分析(PCA);反馈神经网络(BPNN) |
| Title | 基于MSE-PCA的脑电睡眠分期方法研究 |
| URI | http://lib.cqvip.com/qk/90393X/201709/68907489504849554857484854.html https://d.wanfangdata.com.cn/periodical/dzjsyy201709006 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0258-7998 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0042189 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Nb9Mw1JrGBQ6ITzG-1AO-kZLG30enSzUhgZAo0m5VkiadOHSDdYf1PCFOSEiDAxraOHJGILHfw1p-Bu85aRpBEZ8Xy3Gf36fl9-zaz4TckrFERy49LTLhcfB5Xsw092LVV-DuRJwl7pTvfbn2iN9dF-tLy4PaqaWdUdJMxwvvlfyNVaEN7Iq3ZP_AshVSaIA62BdKsDCUv2VjGglqOjS0NOJY6ujew8h70IZvRQ18cxppLE3LtQCQcJVVaouWNrU-YtEAJmkksQUwYkXS0GAlZNS4XgAJGLBiaCjrUW0NuaB2lRofO2qLxygKnLaDPwGLBQYobXWGtqRvNI0MNSG11sEyGvpzEINUbdv9Av2jEovpzEE0MoA8gCwG-yM6aGRzEOARuDOuMhPdAnVV3_wobnm6gYooNHPqq-hCD-BelaJa6ZB1nEJB5tZMVIWIUVnATVgDNkjfBjC0nXIDxyiwAHypBeSCNsfHJMDfiEXwzoTa2TIMqe44LQA_-l8pYmrnhRQr0RwVYxcppBoN0L0YNP9fITUPFgjtKVM8Mz5zt0VWrnJaMXXfGdSisGIb7Af_DvG3cg4e8Tcr_E18ZU0F85imOmnaHz_e3t3FoeMbl5r_VIAbd7W9F7duwDB7HrfiowoQiFff-CgDl_ML3aLFFBeiOkvGIU526-wZP-WRQeT2zk94xVwuG5vDwROIUN2FwWEeDwe12LZ7jpwtF6UNW8ww58nSeOMCOVNLVXqRNE8Oj78cvyjnl-mbva97L6f7H6dv300Pjk6eP5scHE5ef558eDU92p--_3SJdDtRt73mlW-teKmS0hN9HWQtoVXWZ62-5EGqM8FziHBjHosUgnwTs0yLfu6nMmO5rxPmx4n7l59JP2WXyfJwc5hdIY08T5lMWAAgPqzF0tiXeQoLG5OkeOnEXyG3K8F7W0VKnZ7UuEmnjYCAghtY4miBSY614CukUeqmV868273vjHr11yDXyGmsF3un18ny6OlOdgNWE6PkphsJ3wBg3cRn |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMSE-PCA%E7%9A%84%E8%84%91%E7%94%B5%E7%9D%A1%E7%9C%A0%E5%88%86%E6%9C%9F%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8&rft.au=%E5%88%98%E9%9B%AA%E5%B3%B0&rft.au=%E9%A9%AC%E5%B7%9E%E7%94%9F&rft.au=%E8%B5%B5%E8%89%B3%E9%98%B3&rft.au=%E4%BD%99%E4%BC%A0%E5%A5%87&rft.date=2017&rft.pub=%E9%83%91%E5%B7%9E%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E9%83%91%E5%B7%9E%2C450001%25%E6%B2%B3%E5%8D%97%E7%9C%81%E7%BB%8F%E8%B4%B8%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E9%83%91%E5%B7%9E%2C450046%25%E6%B2%B3%E5%8D%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E9%83%91%E5%B7%9E%2C450001&rft.issn=0258-7998&rft.volume=43&rft.issue=9&rft.spage=22&rft.epage=29&rft_id=info:doi/10.16157%2Fj.issn.0258-7998.172872&rft.externalDocID=dzjsyy201709006 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90393X%2F90393X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzjsyy%2Fdzjsyy.jpg |