基于MSE-PCA的脑电睡眠分期方法研究

针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。...

Full description

Saved in:
Bibliographic Details
Published in电子技术应用 Vol. 43; no. 9; pp. 22 - 24
Main Author 刘雪峰 马州生 赵艳阳 余传奇 范文兵
Format Journal Article
LanguageChinese
Published 郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001 2017
Subjects
Online AccessGet full text
ISSN0258-7998
DOI10.16157/j.issn.0258-7998.172872

Cover

Abstract 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。
AbstractList TP391; 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法.以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类.实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性.
针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。
Abstract_FL Aiming at the problem of insufficient accuracy of traditional automatic sleep staging,a new method of automatic sleep staging based on a fusion algorithm,multi-scale entropy(MSE) and principal component analysis(PCA),is proposed.In this work,the data of sleep EEG monitoring and the expert staging of 8 subjects are utilized as samples.Firstly,MSE is used to extract the nonlinear dynamic features from sleep stages.Then this features are replaced by the first two principal component vectors of PCA.The purpose is reduce the data dimension redundancy,as well as retaining the vast majority of EEG non-linear features.After that the new vector are entered into the BPNN classifier to implement the MSE-PCA model of automatic sleep staging.The experimental results show that the accuracy of automatic staging can reach to 87.9% and kappa coefficient is 0.77,which can improve the accuracy and stability of automatic EEG sleep staging system.
Author 刘雪峰 马州生 赵艳阳 余传奇 范文兵
AuthorAffiliation 郑州大学信息工程学院;河南省经贸学院;河南工业大学电气工程学院
AuthorAffiliation_xml – name: 郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001
Author_FL Zhao Yanyang
Liu Xuefeng
Ma Zhousheng
Yu Chuanqi
Fan Wenbing
Author_FL_xml – sequence: 1
  fullname: Liu Xuefeng
– sequence: 2
  fullname: Ma Zhousheng
– sequence: 3
  fullname: Zhao Yanyang
– sequence: 4
  fullname: Yu Chuanqi
– sequence: 5
  fullname: Fan Wenbing
Author_xml – sequence: 1
  fullname: 刘雪峰 马州生 赵艳阳 余传奇 范文兵
BookMark eNo9jU1LAlEYhe_CIDP_Q7tWM733470fSxH7AKMg93KduWMjdS2HCFtLtAoCaxGGtmwdBfl70ulnNGC0OYdzeDhng5R83ztCtiiEVFJUO70wzTIfAkMdKGN0SBXTipVI-b9aJ9UsSzsAlALTyMskXEzn3_P7w5NGcFyv5c-jn9FDPv7IX17zyWxxd7ucTJdPX8v3x3w2zt8-N8laYs8yV_3zCmntNlr1_aB5tHdQrzWDSEkZYKyZo6iVizmNpWCRdigSQbkVFiOKzFjuNMYJRNLxBHSHg-0oblBxCRGvkO3V7LX1ifXddq9_NfDFYTu-6WXDIQOqwADIguQrMjrt--5lWrAXg_TcDoZtqQ0ooQ2C0MIgCo1FLFTwX3chZBI
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16157/j.issn.0258-7998.172872
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Research on sleep staging method of EEG based on MSE-PCA
EndPage 24
ExternalDocumentID dzjsyy201709006
68907489504849554857484854
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61306106)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5S
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c766-5d82e1587ed31d642c8e54f413a4a5c1529a3e85df0c6e3f08b30ab73957360c3
ISSN 0258-7998
IngestDate Thu May 29 04:04:54 EDT 2025
Wed Feb 14 09:57:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords 反馈神经网络(BPNN)
主成分分析(PCA)
principal component analysis (PCA)
multi-scale entropy (MSE)
automatic sleep staging
back propagation network(BPNN)
脑电信号(EEG)
自动睡眠分期
多尺度熵(MSE)
electroencephalogram (EEG)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c766-5d82e1587ed31d642c8e54f413a4a5c1529a3e85df0c6e3f08b30ab73957360c3
Notes 11-2305/TN
PageCount 3
ParticipantIDs wanfang_journals_dzjsyy201709006
chongqing_primary_68907489504849554857484854
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 电子技术应用
PublicationTitleAlternate Application of Electronic Technique
PublicationTitle_FL Application of Electronic Technique
PublicationYear 2017
Publisher 郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001
Publisher_xml – name: 郑州大学信息工程学院,河南郑州,450001%河南省经贸学院,河南郑州,450046%河南工业大学电气工程学院,河南郑州,450001
SSID ssib001102853
ssib017479494
ssib038074684
ssib051374551
ssj0042189
ssib023646353
Score 2.085974
Snippet 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为...
TP391; 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法.以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 22
SubjectTerms 自动睡眠分期;脑电信号(EEG);多尺度熵(MSE);主成分分析(PCA);反馈神经网络(BPNN)
Title 基于MSE-PCA的脑电睡眠分期方法研究
URI http://lib.cqvip.com/qk/90393X/201709/68907489504849554857484854.html
https://d.wanfangdata.com.cn/periodical/dzjsyy201709006
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0258-7998
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0042189
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Nb9Mw1JrGBQ6ITzG-1AO-kZLG30enSzUhgZAo0m5VkiadOHSDdYf1PCFOSEiDAxraOHJGILHfw1p-Bu85aRpBEZ8Xy3Gf36fl9-zaz4TckrFERy49LTLhcfB5Xsw092LVV-DuRJwl7pTvfbn2iN9dF-tLy4PaqaWdUdJMxwvvlfyNVaEN7Iq3ZP_AshVSaIA62BdKsDCUv2VjGglqOjS0NOJY6ujew8h70IZvRQ18cxppLE3LtQCQcJVVaouWNrU-YtEAJmkksQUwYkXS0GAlZNS4XgAJGLBiaCjrUW0NuaB2lRofO2qLxygKnLaDPwGLBQYobXWGtqRvNI0MNSG11sEyGvpzEINUbdv9Av2jEovpzEE0MoA8gCwG-yM6aGRzEOARuDOuMhPdAnVV3_wobnm6gYooNHPqq-hCD-BelaJa6ZB1nEJB5tZMVIWIUVnATVgDNkjfBjC0nXIDxyiwAHypBeSCNsfHJMDfiEXwzoTa2TIMqe44LQA_-l8pYmrnhRQr0RwVYxcppBoN0L0YNP9fITUPFgjtKVM8Mz5zt0VWrnJaMXXfGdSisGIb7Af_DvG3cg4e8Tcr_E18ZU0F85imOmnaHz_e3t3FoeMbl5r_VIAbd7W9F7duwDB7HrfiowoQiFff-CgDl_ML3aLFFBeiOkvGIU526-wZP-WRQeT2zk94xVwuG5vDwROIUN2FwWEeDwe12LZ7jpwtF6UNW8ww58nSeOMCOVNLVXqRNE8Oj78cvyjnl-mbva97L6f7H6dv300Pjk6eP5scHE5ef558eDU92p--_3SJdDtRt73mlW-teKmS0hN9HWQtoVXWZ62-5EGqM8FziHBjHosUgnwTs0yLfu6nMmO5rxPmx4n7l59JP2WXyfJwc5hdIY08T5lMWAAgPqzF0tiXeQoLG5OkeOnEXyG3K8F7W0VKnZ7UuEmnjYCAghtY4miBSY614CukUeqmV868273vjHr11yDXyGmsF3un18ny6OlOdgNWE6PkphsJ3wBg3cRn
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EMSE-PCA%E7%9A%84%E8%84%91%E7%94%B5%E7%9D%A1%E7%9C%A0%E5%88%86%E6%9C%9F%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8&rft.au=%E5%88%98%E9%9B%AA%E5%B3%B0&rft.au=%E9%A9%AC%E5%B7%9E%E7%94%9F&rft.au=%E8%B5%B5%E8%89%B3%E9%98%B3&rft.au=%E4%BD%99%E4%BC%A0%E5%A5%87&rft.date=2017&rft.pub=%E9%83%91%E5%B7%9E%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E9%83%91%E5%B7%9E%2C450001%25%E6%B2%B3%E5%8D%97%E7%9C%81%E7%BB%8F%E8%B4%B8%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E9%83%91%E5%B7%9E%2C450046%25%E6%B2%B3%E5%8D%97%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8D%97%E9%83%91%E5%B7%9E%2C450001&rft.issn=0258-7998&rft.volume=43&rft.issue=9&rft.spage=22&rft.epage=29&rft_id=info:doi/10.16157%2Fj.issn.0258-7998.172872&rft.externalDocID=dzjsyy201709006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90393X%2F90393X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzjsyy%2Fdzjsyy.jpg