Distinct DNA Binding Sites Contribute to the TCF Transcriptional Switch in C. elegans and Drosophila

Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-cate...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 10; no. 2; p. e1004133
Main Authors Bhambhani, Chandan, Ravindranath, Aditi J., Mentink, Remco A., Chang, Mikyung V., Betist, Marco C., Yang, Yaxuan X., Koushika, Sandhya P., Korswagen, Hendrik C., Cadigan, Ken M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1004133

Cover

Abstract Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.
AbstractList Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/β- catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/β-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMGHelper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.
Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.
  Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.
Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.
Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation. The DNA of cells must be correctly “read” so that the proper genes are expressed. Transcription factors are the primary “DNA readers”, and these proteins bind to specific DNA sequences. Using nematodes as a model system, we investigated the rules of DNA binding for a particular transcription factor, called POP-1, which mediates Wnt signaling, an important cell-cell communication pathway. In addition to its known DNA binding site, we found that POP-1 recognizes additional sequences, termed Helper sites, which are essential for activation of Wnt targets. We used this knowledge to discover that Wnt signaling is active in pacemaker cells in the nematode intestine, which control defecation, a rhythmic behavior with parallels to the vertebrate heartbeat. POP-1 has a dual role in regulating Wnt targets, repressing target genes in the absence of signaling and activating them upon signal stimulation. Surprisingly, we found that Helper sites are only required for activation and not repression, and that this is also the case in the fruit fly Drosophila . This work thus reveals an unexpected complexity in POP-1 DNA binding, which is likely to be relevant for its human counterparts, which play important roles in stem cell biology and cancer.
Audience Academic
Author Ravindranath, Aditi J.
Yang, Yaxuan X.
Korswagen, Hendrik C.
Betist, Marco C.
Bhambhani, Chandan
Koushika, Sandhya P.
Chang, Mikyung V.
Cadigan, Ken M.
Mentink, Remco A.
AuthorAffiliation Harvard University, United States of America
2 Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
1 Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
3 Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
AuthorAffiliation_xml – name: 3 Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
– name: 2 Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, The Netherlands
– name: Harvard University, United States of America
– name: 1 Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
Author_xml – sequence: 1
  givenname: Chandan
  surname: Bhambhani
  fullname: Bhambhani, Chandan
– sequence: 2
  givenname: Aditi J.
  surname: Ravindranath
  fullname: Ravindranath, Aditi J.
– sequence: 3
  givenname: Remco A.
  surname: Mentink
  fullname: Mentink, Remco A.
– sequence: 4
  givenname: Mikyung V.
  surname: Chang
  fullname: Chang, Mikyung V.
– sequence: 5
  givenname: Marco C.
  surname: Betist
  fullname: Betist, Marco C.
– sequence: 6
  givenname: Yaxuan X.
  surname: Yang
  fullname: Yang, Yaxuan X.
– sequence: 7
  givenname: Sandhya P.
  surname: Koushika
  fullname: Koushika, Sandhya P.
– sequence: 8
  givenname: Hendrik C.
  surname: Korswagen
  fullname: Korswagen, Hendrik C.
– sequence: 9
  givenname: Ken M.
  surname: Cadigan
  fullname: Cadigan, Ken M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24516405$$D View this record in MEDLINE/PubMed
BookMark eNqVk12LEzEUhgdZcXer_0A0IIhetCaTzEyyF0JtXS0su2CrtyGTZKYp06ROMn78ezO2lY6IKLlIOHnOew6H91wmZ9ZZnSSPEZwgXKBXG9e1VjSTXa3tBEFIEMb3kguUZXhcEEjOTt7nyaX3GwhxRlnxIDlPSYZyArOLRM2ND8bKAOa3U_DGWGVsDZYmaA9mzobWlF3QIDgQ1hqsZtdg1QrrZWt2wbhYHyy_miDXwFgwmwDd6Dp-A2EVmLfOu93aNOJhcr8SjdePDvco-Xj9djV7P765e7eYTW_GsshJGFNRSSgVzpRICwoJg6wotEyp0IUoM8IIRJKmChUVo0TFSFmVFSpIyjAtK4ZHydO97q5xnh8G5DnKYEExLuIZJYs9oZzY8F1rtqL9zp0w_GfAtTUXbTCy0ZyKnJQIU6YwI0yWgqYVS1WulNIZJX2114dqXbnVSuo4LdEMRIc_1qx57b5wzFCe4l7gxUGgdZ877QPfGi910wirXRf7JozF3vOURvTZHq1FbM3YykVF2eN8inOMYIZSFKnJH6h4lN4aGe1TmRgfJLwcJEQm6G-hFp33fLH88B_s7b-zd5-G7PMTdq1FE9beNV1vLz8En5zO-9egj2aOwNUekNF5vtUVlyaIXieOwTQcQd5vztEYvN8cfticmEx-Sz7q_zXtB0bqGqQ
CitedBy_id crossref_primary_10_1093_nar_gkab657
crossref_primary_10_1038_s41467_021_23567_1
crossref_primary_10_1038_s41598_017_11519_z
crossref_primary_10_1093_nar_gku1186
crossref_primary_10_1371_journal_pone_0101945
crossref_primary_10_1534_g3_119_400724
crossref_primary_10_1534_g3_115_017715
crossref_primary_10_1371_journal_pgen_1004591
crossref_primary_10_1371_journal_pgen_1006622
crossref_primary_10_3390_genes11080886
crossref_primary_10_1186_s12861_019_0197_5
crossref_primary_10_1371_journal_pgen_1004509
crossref_primary_10_3390_cancers8080074
crossref_primary_10_1073_pnas_2322066121
crossref_primary_10_1080_23723556_2014_996419
crossref_primary_10_12688_f1000research_11034_1
crossref_primary_10_1371_journal_pbio_2002429
crossref_primary_10_1021_jacs_1c00599
crossref_primary_10_1371_journal_pone_0106309
crossref_primary_10_1002_bies_201700162
crossref_primary_10_1371_journal_pgen_1005585
crossref_primary_10_1242_dev_200984
crossref_primary_10_3390_jdb11030032
crossref_primary_10_3389_fcell_2021_784998
crossref_primary_10_1016_j_ydbio_2015_04_025
crossref_primary_10_1073_pnas_2013239118
Cites_doi 10.1016/j.cell.2008.06.026
10.1242/dev.129.2.443
10.1016/j.ydbio.2009.01.017
10.1242/dev.120.5.1035
10.1242/dev.118.2.427
10.1038/sj.emboj.7601667
10.1016/j.ydbio.2007.11.023
10.1242/dev.126.4.805
10.1242/dev.064733
10.1371/journal.pbio.0050237
10.1093/genetics/159.3.997
10.1006/dbio.2002.0721
10.1111/j.1748-1716.2011.02293.x
10.1242/dev.120.3.621
10.1038/emboj.2011.100
10.1016/S1046-2023(03)00050-1
10.1016/j.cub.2008.10.047
10.1038/nsmb.1938
10.1242/dev.076067
10.1016/j.devcel.2009.07.002
10.1101/gad.1385806
10.1038/emboj.2012.150
10.1128/MCB.02132-06
10.1093/nar/gkg544
10.1016/S0092-8674(04)00203-X
10.1101/gad.981802
10.1101/gad.424607
10.1038/21666
10.1242/dev.120.10.3019
10.1016/j.ydbio.2011.04.012
10.1101/pdb.prot5216
10.1016/0012-1606(77)90158-0
10.1371/journal.pbio.0020352
10.1101/gad.981602
10.1016/j.devcel.2006.04.020
10.1038/26982
10.1101/cshperspect.a007948
10.1016/j.devcel.2009.06.016
10.1016/S0070-2153(10)92008-5
10.1038/nbt1305
10.1093/emboj/20.24.7197
10.1016/j.ydbio.2005.06.022
10.1242/dev.126.1.37
10.1016/S0960-9822(01)00224-X
10.1101/gad.1773109
10.1016/S0896-6273(00)80848-X
10.1016/S0092-8674(00)80784-9
10.1016/j.ydbio.2006.08.029
10.1016/j.ceca.2006.04.009
10.1242/dev.125.18.3667
10.1016/S0092-8674(00)81510-X
10.1016/0012-1606(92)90134-3
10.1126/science.1124856
10.1007/s004270050013
10.1016/S0092-8674(00)81925-X
10.1242/dev.008268
10.1186/gb-2011-12-1-r2
10.1016/j.jsbmb.2004.12.012
10.1128/MCB.06769-11
10.1006/dbio.2001.0397
10.1016/S1097-2765(00)80375-5
10.1038/nature05954
10.1101/gr.131920.111
10.1242/dev.126.20.4557
10.1016/j.ydbio.2008.11.034
10.1016/j.cub.2013.03.049
10.1016/j.tig.2006.08.006
10.1016/0092-8674(95)90100-0
10.1016/0012-1606(81)90284-0
10.1016/j.ydbio.2008.11.025
10.1093/genetics/124.4.855
10.1016/j.cub.2005.12.015
10.1101/cshperspect.a007906
10.1101/cshperspect.a002881
10.1038/sj.emboj.7601153
10.1126/science.275.5307.1784
10.1186/1471-2164-8-27
10.1101/gad.976502
10.1128/MCB.01230-07
10.1016/j.ydbio.2008.10.001
10.1101/gad.1686208
10.1242/dev.046631
10.1038/cr.2011.86
10.1242/jcs.088336
10.1242/dev.091124
10.1101/cshperspect.a008052
10.1016/S0092-8674(00)00105-7
10.1085/jgp.200509355
10.1016/j.ydbio.2009.09.042
10.1073/pnas.1037533100
10.1016/j.cell.2005.10.042
10.1016/S0092-8674(00)81438-5
10.1093/nar/gkn1041
10.1242/dev.128.4.581
10.1038/35020099
10.1016/S0092-8674(00)81924-8
10.1242/dev.127.17.3695
10.1038/sj.onc.1210057
10.1016/j.ydbio.2005.07.008
10.1016/S0092-8674(00)80917-4
10.1101/gad.12.13.1947
10.1016/0012-1606(83)90201-4
10.1073/pnas.0611507104
10.1111/j.1525-142X.2010.00435.x
10.1534/genetics.105.043125
10.1016/B978-0-12-386499-4.00001-X
ContentType Journal Article
Copyright COPYRIGHT 2014 Public Library of Science
2014 Bhambhani et al 2014 Bhambhani et al
2014 Bhambhani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bhambhani C, Ravindranath AJ, Mentink RA, Chang MV, Betist MC, et al. (2014) Distinct DNA Binding Sites Contribute to the TCF Transcriptional Switch in C. elegans and Drosophila. PLoS Genet 10(2): e1004133. doi:10.1371/journal.pgen.1004133
Copyright_xml – notice: COPYRIGHT 2014 Public Library of Science
– notice: 2014 Bhambhani et al 2014 Bhambhani et al
– notice: 2014 Bhambhani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bhambhani C, Ravindranath AJ, Mentink RA, Chang MV, Betist MC, et al. (2014) Distinct DNA Binding Sites Contribute to the TCF Transcriptional Switch in C. elegans and Drosophila. PLoS Genet 10(2): e1004133. doi:10.1371/journal.pgen.1004133
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1004133
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate DNA Site Control of the TCF Transcriptional Switch
EISSN 1553-7404
ExternalDocumentID 1507833737
oai_doaj_org_article_8a64b1389d3949cba82f92d6ddde5849
PMC3916239
A363105121
24516405
10_1371_journal_pgen_1004133
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations India
GeographicLocations_xml – name: India
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM082994
– fundername: NIH HHS
  grantid: P40 OD010440
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QF4
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
PV9
RIG
RZL
WOQ
PMFND
7X8
PJZUB
PPXIY
PQGLB
PUEGO
5PM
-
AAPBV
ABPTK
ADACO
BBAFP
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c764t-8afc0cd35da2780490977ec28ae7ab549401c82d17f984db54bfbf1742938bf93
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Fri Nov 26 17:13:32 EST 2021
Wed Aug 27 01:28:39 EDT 2025
Thu Aug 21 14:10:39 EDT 2025
Fri Sep 05 13:50:33 EDT 2025
Tue Jun 17 21:36:05 EDT 2025
Tue Jun 10 20:35:47 EDT 2025
Fri Jun 27 05:04:23 EDT 2025
Fri Jun 27 05:11:38 EDT 2025
Fri Jun 27 04:17:52 EDT 2025
Thu May 22 20:50:51 EDT 2025
Wed Feb 19 02:29:39 EST 2025
Thu Apr 24 22:59:41 EDT 2025
Tue Jul 01 04:23:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-8afc0cd35da2780490977ec28ae7ab549401c82d17f984db54bfbf1742938bf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: CB AJR MVC HCK KMC. Performed the experiments: CB AJR MVC RAM MCB YXY KMC. Analyzed the data: CB AJR MVC RAM YXY HCK KMC. Contributed reagents/materials/analysis tools: SPK. Wrote the paper: CB KMC.
The authors have declared that no competing interests exist.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1004133
PMID 24516405
PQID 1499150628
PQPubID 23479
ParticipantIDs plos_journals_1507833737
doaj_primary_oai_doaj_org_article_8a64b1389d3949cba82f92d6ddde5849
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3916239
proquest_miscellaneous_1499150628
gale_infotracmisc_A363105121
gale_infotracacademiconefile_A363105121
gale_incontextgauss_ISR_A363105121
gale_incontextgauss_ISN_A363105121
gale_incontextgauss_IOV_A363105121
gale_healthsolutions_A363105121
pubmed_primary_24516405
crossref_citationtrail_10_1371_journal_pgen_1004133
crossref_primary_10_1371_journal_pgen_1004133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2014
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References KM Cadigan (ref70) 1998; 93
R Hunt-Newbury (ref47) 2007; 5
JJ Krupp (ref71) 2005; 170
SY Sokol (ref87) 2011; 21
MA Herman (ref107) 1994; 120
DM Eisenmann (ref81) 1998; 125
R DasGupta (ref54) 1999; 126
MS Halfon (ref5) 2000; 103
N Lam (ref42) 2006; 16
RG Phillips (ref67) 1993; 118
J Riese (ref26) 1997; 88
RS Kamath (ref51) 2003; 30
HC Archbold (ref9) 2012; 204
P Dal Santo (ref58) 1999; 98
P Shetty (ref16) 2005; 285
L Gorrepati (ref86) 2013; 140
DY Coudreuse (ref99) 2006; 312
KM Cadigan (ref12) 2009; 1
S Barolo (ref52) 2006; 25
A Krejci (ref95) 2007; 21
HC Korswagen (ref77) 2000; 406
M van de Wetering (ref37) 1997; 88
FA Atcha (ref39) 2007; 27
A Sosinsky (ref45) 2003; 31
JD McGhee (ref65) 2009; 327
MA Herman (ref82) 2001; 128
MF Maduro (ref15) 2005; 285
JH Thomas (ref57) 1990; 124
KR Siegfried (ref50) 2002; 129
M Harterink (ref98) 2011; 138
JE Gleason (ref63) 2002; 16
V Korinek (ref53) 1997; 275
H Wang (ref60) 2013; 23
M Adamska (ref75) 2010; 12
C Bhambhani (ref104) 2011; 30
Y Arata (ref43) 2006; 11
T Valenta (ref14) 2012; 31
S Barolo (ref1) 2002; 16
L Huang (ref74) 2000; 210
D Calvo (ref29) 2001; 20
JE Kimble (ref44) 1981; 81
SS Blair (ref69) 1992; 152
R Branicky (ref97) 2006; 22
P Polakis (ref10) 2012; 4
MF Maduro (ref20) 2002; 248
JE Sulston (ref101) 1977; 56
CP Hunter (ref79) 1999; 126
T Grigoryan (ref8) 2008; 22
X Yang (ref28) 2000; 127
JI Murray (ref85) 2012; 22
JS Reece-Hoyes (ref78) 2007; 8
KM Cadigan (ref7) 2012; 98
L Schweizer (ref25) 2003; 100
JE Sulston (ref102) 1983; 100
CE Rocheleau (ref34) 1999; 97
D Dupuy (ref48) 2007; 25
SY Huang (ref18) 2007; 134
V Morel (ref4) 2001; 11
BT MacDonald (ref13) 2009; 17
JN Maloof (ref80) 1999; 126
A Baniahmad (ref3) 2005; 93
M Fang (ref90) 2006; 25
S Knirr (ref27) 2001; 238
MD Meneghini (ref33) 1999; 399
HC Korswagen (ref64) 2002; 16
R Lin (ref19) 1995; 83
BT Phillips (ref73) 2007; 104
NP Hoverter (ref41) 2012; 32
H Sawa (ref32) 2012; 101
J Sierra (ref93) 2006; 20
MA Horner (ref83) 1998; 12
JL Green (ref55) 2008; 134
JL Chang (ref89) 2008; 314
MR Lackner (ref100) 1999; 24
BT Phillips (ref30) 2009; 17
MC Sleumer (ref49) 2009; 37
MV Chang (ref40) 2008; 18
ref103
KS Collette (ref106) 2011; 124
ref2
KL Arnett (ref96) 2010; 17
R Branicky (ref105) 2001; 159
DS Parker (ref92) 2008; 28
M Owraghi (ref22) 2010; 340
BM Jackson (ref31) 2012; 4
J Li (ref91) 2007; 26
MV Espelt (ref59) 2005; 126
RS King (ref62) 2009; 328
C-I Wu (ref88) 2012; 139
KM Cadigan (ref11) 2012; 4
T Teramoto (ref56) 2006; 40
J Pilipiuk (ref66) 2009; 327
MF Maduro (ref17) 2007; 301
J Gaudet (ref46) 2004; 2
SE Mango (ref84) 1994; 120
O Hallikas (ref38) 2006; 124
S Mahony (ref94) 2011; 12
TH Shin (ref35) 1999; 4
G Dietzl (ref72) 2007; 448
RL Lin (ref61) 1998; 92
SM Robertson (ref23) 2011; 355
MC Lo (ref36) 2004; 117
S Ghisletti (ref6) 2009; 23
DJ Duffy (ref76) 2010; 137
KT Lin (ref21) 2009; 325
JP Couso (ref68) 1994; 120
RA Cavallo (ref24) 1998; 395
References_xml – volume: 134
  start-page: 646
  year: 2008
  ident: ref55
  article-title: Opposing Wnt pathways orient cell polarity during organogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.026
– volume: 129
  start-page: 443
  year: 2002
  ident: ref50
  article-title: POP-1 controls axis formation during early gonadogenesis in C-elegans
  publication-title: Development
  doi: 10.1242/dev.129.2.443
– volume: 328
  start-page: 234
  year: 2009
  ident: ref62
  article-title: The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2009.01.017
– volume: 120
  start-page: 1035
  year: 1994
  ident: ref107
  article-title: The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions
  publication-title: Development
  doi: 10.1242/dev.120.5.1035
– volume: 118
  start-page: 427
  year: 1993
  ident: ref67
  article-title: wingless expression mediates determination of peripheral nervous system elements in late stages of Drosophila wing disc development
  publication-title: Development
  doi: 10.1242/dev.118.2.427
– volume: 26
  start-page: 2284
  year: 2007
  ident: ref91
  article-title: CBP/p300 are bimodal regulators of Wnt signaling
  publication-title: Embo Journal
  doi: 10.1038/sj.emboj.7601667
– volume: 314
  start-page: 100
  year: 2008
  ident: ref89
  article-title: Spenito and Split ends act redundantly to promote Wingless signaling
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2007.11.023
– volume: 126
  start-page: 805
  year: 1999
  ident: ref79
  article-title: Hox gene expression in a single Caenorhabditis elegans cell is regulated by a caudal homolog and intercellular signals that inhibit Wnt signaling
  publication-title: Development
  doi: 10.1242/dev.126.4.805
– volume: 138
  start-page: 2915
  year: 2011
  ident: ref98
  article-title: Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein
  publication-title: Development
  doi: 10.1242/dev.064733
– volume: 5
  start-page: 1981
  year: 2007
  ident: ref47
  article-title: High-throughput in vivo analysis of gene expression in Caenorhabditis elegans
  publication-title: Plos Biology
  doi: 10.1371/journal.pbio.0050237
– volume: 159
  start-page: 997
  year: 2001
  ident: ref105
  article-title: Phenotypic and suppressor analysis of defecation in clk-1 mutants reveals that reaction to changes in temperature is an active process in Caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1093/genetics/159.3.997
– volume: 248
  start-page: 128
  year: 2002
  ident: ref20
  article-title: Dynamics of a developmental switch: recursive intracellular and intranuclear redistribution of Caenorhabditis elegans POP-1 parallels Wnt-inhibited transcriptional repression
  publication-title: Dev Biol
  doi: 10.1006/dbio.2002.0721
– volume: 204
  start-page: 74
  year: 2012
  ident: ref9
  article-title: How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway
  publication-title: Acta Physiologica
  doi: 10.1111/j.1748-1716.2011.02293.x
– volume: 120
  start-page: 621
  year: 1994
  ident: ref68
  article-title: The wingless signalling pathway and the patterning of the wing margin in Drosophila
  publication-title: Development
  doi: 10.1242/dev.120.3.621
– volume: 30
  start-page: 2031
  year: 2011
  ident: ref104
  article-title: The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of Wingless targets
  publication-title: Embo Journal
  doi: 10.1038/emboj.2011.100
– volume: 30
  start-page: 313
  year: 2003
  ident: ref51
  article-title: Genome-wide RNAi screening in Caenorhabditis elegans
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00050-1
– volume: 18
  start-page: 1877
  year: 2008
  ident: ref40
  article-title: Activation of wingless targets requires bipartite recognition of DNA by TCF
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2008.10.047
– volume: 17
  start-page: 1312
  year: 2010
  ident: ref96
  article-title: Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes
  publication-title: Nature Structural & Molecular Biology
  doi: 10.1038/nsmb.1938
– volume: 139
  start-page: 2118
  year: 2012
  ident: ref88
  article-title: Function of Wnt/β-catenin in counteracting Tcf3 repression through the Tcf3–β-catenin interaction
  publication-title: Development
  doi: 10.1242/dev.076067
– volume: 17
  start-page: 27
  year: 2009
  ident: ref30
  article-title: A New Look at TCF and beta-Catenin through the Lens of a Divergent C-elegans Wnt Pathway
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2009.07.002
– volume: 20
  start-page: 586
  year: 2006
  ident: ref93
  article-title: The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes
  publication-title: Genes & Development
  doi: 10.1101/gad.1385806
– volume: 31
  start-page: 2714
  year: 2012
  ident: ref14
  article-title: The many faces and functions of β-catenin
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.150
– volume: 27
  start-page: 8352
  year: 2007
  ident: ref39
  article-title: A unique DNA binding domain converts T-cell factors into strong Wnt effectors
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02132-06
– volume: 31
  start-page: 3589
  year: 2003
  ident: ref45
  article-title: Target Explorer: an automated tool for the identification of new target genes for a specified set of transcription factors
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkg544
– volume: 117
  start-page: 95
  year: 2004
  ident: ref36
  article-title: Phosphorylation by the beta-catenin/MAPK complex promotes 14-3-3-mediated nuclear export of TCF/POP-1 in signal-responsive cells in C-elegans
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00203-X
– volume: 16
  start-page: 1291
  year: 2002
  ident: ref64
  article-title: The Axin-like protein PRY-1 is a negative regulator of a canonical Wnt pathway in C-elegans
  publication-title: Genes & Development
  doi: 10.1101/gad.981802
– volume: 101
  start-page: 55
  year: 2012
  ident: ref32
  article-title: Control of cell polarity and asymmetric division in C. elegans
  publication-title: Transcriptional Switches during Development
– volume: 21
  start-page: 1322
  year: 2007
  ident: ref95
  article-title: Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers
  publication-title: Genes & Development
  doi: 10.1101/gad.424607
– volume: 399
  start-page: 793
  year: 1999
  ident: ref33
  article-title: MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/21666
– volume: 120
  start-page: 3019
  year: 1994
  ident: ref84
  article-title: The Pha-4 Gene Is Required to Generate the Pharyngeal Primordium of Caenorhabditis-Elegans
  publication-title: Development
  doi: 10.1242/dev.120.10.3019
– volume: 355
  start-page: 115
  year: 2011
  ident: ref23
  article-title: Functional analyses of vertebrate TCF proteins in C. elegans embryos
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2011.04.012
– ident: ref103
  doi: 10.1101/pdb.prot5216
– volume: 56
  start-page: 110
  year: 1977
  ident: ref101
  article-title: Post-embryonic cell lineages of the nematode, Caenorhabditis elegans
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(77)90158-0
– volume: 2
  start-page: e352
  year: 2004
  ident: ref46
  article-title: Whole-genome analysis of temporal gene expression during foregut development
  publication-title: Plos Biology
  doi: 10.1371/journal.pbio.0020352
– volume: 16
  start-page: 1281
  year: 2002
  ident: ref63
  article-title: Activation of Wnt signaling bypasses the requirement for RTK/Ras signaling during C-elegans vulval induction
  publication-title: Genes & Development
  doi: 10.1101/gad.981602
– volume: 11
  start-page: 105
  year: 2006
  ident: ref43
  article-title: Wnt signaling and a Hox protein cooperatively regulate PSA-3/Meis to determine daughter cell fate after asymmetric cell division in C-elegans
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2006.04.020
– volume: 395
  start-page: 604
  year: 1998
  ident: ref24
  article-title: Drosophila Tcf and Groucho interact to repress Wingless signalling activity
  publication-title: Nature
  doi: 10.1038/26982
– volume: 4
  start-page: a007948
  year: 2012
  ident: ref31
  article-title: beta-catenin-dependent Wnt signaling in C. elegans: teaching an old dog a new trick
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a007948
– volume: 17
  start-page: 9
  year: 2009
  ident: ref13
  article-title: Wnt/beta-catenin signaling: components, mechanisms, and diseases
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2009.06.016
– ident: ref2
  doi: 10.1016/S0070-2153(10)92008-5
– volume: 25
  start-page: 663
  year: 2007
  ident: ref48
  article-title: Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt1305
– volume: 20
  start-page: 7197
  year: 2001
  ident: ref29
  article-title: A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis
  publication-title: EMBO J
  doi: 10.1093/emboj/20.24.7197
– volume: 285
  start-page: 510
  year: 2005
  ident: ref15
  article-title: The Wnt effector POP-1 and the PAL-1/Caudal homeoprotein collaborate with SKN-1 to activate C. elegans endoderm development
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2005.06.022
– volume: 126
  start-page: 37
  year: 1999
  ident: ref80
  article-title: A Wnt signaling pathway controls Hox gene expression and neuroblast migration in C-elegans
  publication-title: Development
  doi: 10.1242/dev.126.1.37
– volume: 11
  start-page: 789
  year: 2001
  ident: ref4
  article-title: Transcriptional repression by suppressor of hairless involves the binding of a hairless-dCtBP complex in Drosophila
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00224-X
– volume: 23
  start-page: 681
  year: 2009
  ident: ref6
  article-title: Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways
  publication-title: Genes Dev
  doi: 10.1101/gad.1773109
– volume: 24
  start-page: 335
  year: 1999
  ident: ref100
  article-title: Facilitation of synaptic transmission by EGL-30 G(q)alpha and EGL-8 PLC beta: DAG binding to UNC-13 is required to stimulate acetylcholine release
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80848-X
– volume: 97
  start-page: 717
  year: 1999
  ident: ref34
  article-title: WRM-1 activates the LIT-1 protein kinase to transduce anterior posterior polarity signals in C-elegans
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80784-9
– volume: 301
  start-page: 590
  year: 2007
  ident: ref17
  article-title: Maternal deployment of the embryonic SKN-1→MED-1,2 cell specification pathway in C. elegans
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2006.08.029
– volume: 40
  start-page: 319
  year: 2006
  ident: ref56
  article-title: Intestinal calcium waves coordinate a behavioral motor program in C. elegans
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2006.04.009
– volume: 125
  start-page: 3667
  year: 1998
  ident: ref81
  article-title: The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development
  publication-title: Development
  doi: 10.1242/dev.125.18.3667
– volume: 98
  start-page: 757
  year: 1999
  ident: ref58
  article-title: The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81510-X
– volume: 152
  start-page: 263
  year: 1992
  ident: ref69
  article-title: Shaggy (zeste-white 3) and the formation of supernumerary bristle precursors in the developing wing blade of Drosophila
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(92)90134-3
– volume: 312
  start-page: 921
  year: 2006
  ident: ref99
  article-title: Wnt gradient formation requires retromer function in Wnt-producing cells
  publication-title: Science
  doi: 10.1126/science.1124856
– volume: 210
  start-page: 73
  year: 2000
  ident: ref74
  article-title: Involvement of Tcf/Lef in establishing cell types along the animal-vegetal axis of sea urchins
  publication-title: Dev Genes Evol
  doi: 10.1007/s004270050013
– volume: 88
  start-page: 789
  year: 1997
  ident: ref37
  article-title: Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81925-X
– volume: 134
  start-page: 2685
  year: 2007
  ident: ref18
  article-title: Binary cell fate specification during C-elegans embryogenesis driven by reiterated reciprocal asymmetry of TCF POP-1 and its coactivator beta-catenin SYS-1
  publication-title: Development
  doi: 10.1242/dev.008268
– volume: 12
  start-page: R2
  year: 2011
  ident: ref94
  article-title: Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis
  publication-title: Genome Biology
  doi: 10.1186/gb-2011-12-1-r2
– volume: 93
  start-page: 89
  year: 2005
  ident: ref3
  article-title: Nuclear hormone receptor co-repressors
  publication-title: J Steroid Biochem Mol Biol
  doi: 10.1016/j.jsbmb.2004.12.012
– volume: 32
  start-page: 3648
  year: 2012
  ident: ref41
  article-title: A WNT/p21 circuit directed by the C-clamp, a sequence-specific DNA binding domain in TCFs
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.06769-11
– volume: 238
  start-page: 13
  year: 2001
  ident: ref27
  article-title: Molecular integration of inductive and mesoderm-intrinsic inputs governs even-skipped enhancer activity in a subset of pericardial and dorsal muscle progenitors
  publication-title: Dev Biol
  doi: 10.1006/dbio.2001.0397
– volume: 4
  start-page: 275
  year: 1999
  ident: ref35
  article-title: MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C-elegans
  publication-title: Molecular Cell
  doi: 10.1016/S1097-2765(00)80375-5
– volume: 448
  start-page: 151
  year: 2007
  ident: ref72
  article-title: A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila
  publication-title: Nature
  doi: 10.1038/nature05954
– volume: 22
  start-page: 1282
  year: 2012
  ident: ref85
  article-title: Multidimensional regulation of gene expression in the C. elegans embryo
  publication-title: Genome Research
  doi: 10.1101/gr.131920.111
– volume: 126
  start-page: 4557
  year: 1999
  ident: ref54
  article-title: Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation
  publication-title: Development
  doi: 10.1242/dev.126.20.4557
– volume: 327
  start-page: 551
  year: 2009
  ident: ref65
  article-title: ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2008.11.034
– volume: 23
  start-page: 746
  year: 2013
  ident: ref60
  article-title: Neuropeptide secreted from a pacemaker activates neurons to control a rhythmic behavior
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.03.049
– volume: 22
  start-page: 571
  year: 2006
  ident: ref97
  article-title: What keeps C-elegans regular: the genetics of defecation
  publication-title: Trends in Genetics
  doi: 10.1016/j.tig.2006.08.006
– volume: 83
  start-page: 599
  year: 1995
  ident: ref19
  article-title: pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90100-0
– volume: 81
  start-page: 208
  year: 1981
  ident: ref44
  article-title: On the control of germ cell development in Caenorhabditis elegans
  publication-title: Developmental Biology
  doi: 10.1016/0012-1606(81)90284-0
– volume: 327
  start-page: 34
  year: 2009
  ident: ref66
  article-title: Increased IP3/Ca2+ signaling compensates depletion of LET-413/DLG-1 in C. elegans epithelial junction assembly
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2008.11.025
– volume: 124
  start-page: 855
  year: 1990
  ident: ref57
  article-title: Genetic analysis of defecation in Caenorhabditis elegans
  publication-title: Genetics
  doi: 10.1093/genetics/124.4.855
– volume: 16
  start-page: 287
  year: 2006
  ident: ref42
  article-title: Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C-elegans
  publication-title: Current Biology
  doi: 10.1016/j.cub.2005.12.015
– volume: 4
  start-page: a007906
  year: 2012
  ident: ref11
  article-title: TCF/LEFs and Wnt signaling in the nucleus
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a007906
– volume: 1
  start-page: a002881
  year: 2009
  ident: ref12
  article-title: Wnt signaling from development to disease: insights from model systems
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a002881
– volume: 25
  start-page: 2735
  year: 2006
  ident: ref90
  article-title: C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila
  publication-title: Embo Journal
  doi: 10.1038/sj.emboj.7601153
– volume: 275
  start-page: 1784
  year: 1997
  ident: ref53
  article-title: Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma
  publication-title: Science
  doi: 10.1126/science.275.5307.1784
– volume: 8
  start-page: 27
  year: 2007
  ident: ref78
  article-title: Insight into transcription factor gene duplication from Caenorhabditis elegans promoterome-driven expression patterns
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-27
– volume: 16
  start-page: 1167
  year: 2002
  ident: ref1
  article-title: Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling
  publication-title: Genes Dev
  doi: 10.1101/gad.976502
– volume: 28
  start-page: 1815
  year: 2008
  ident: ref92
  article-title: Wingless signaling induces widespread chromatin remodeling of target loci
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.01230-07
– volume: 325
  start-page: 296
  year: 2009
  ident: ref21
  article-title: Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2008.10.001
– volume: 22
  start-page: 2308
  year: 2008
  ident: ref8
  article-title: Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice
  publication-title: Genes Dev
  doi: 10.1101/gad.1686208
– volume: 137
  start-page: 3057
  year: 2010
  ident: ref76
  article-title: Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration
  publication-title: Development
  doi: 10.1242/dev.046631
– volume: 21
  start-page: 1002
  year: 2011
  ident: ref87
  article-title: Wnt signaling through T-cell factor phosphorylation
  publication-title: Cell Research
  doi: 10.1038/cr.2011.86
– volume: 124
  start-page: 3684
  year: 2011
  ident: ref106
  article-title: Different roles for Aurora B in condensin targeting during mitosis and meiosis
  publication-title: Journal Cell Science
  doi: 10.1242/jcs.088336
– volume: 140
  start-page: 2093
  year: 2013
  ident: ref86
  article-title: C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells
  publication-title: Development
  doi: 10.1242/dev.091124
– volume: 4
  start-page: a008052
  year: 2012
  ident: ref10
  article-title: Wnt signaling in cancer
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a008052
– volume: 103
  start-page: 63
  year: 2000
  ident: ref5
  article-title: Ras Pathway Specificity Is Determined by the Integration of Multiple Signal-Activated and Tissue-Restricted Transcription Factors
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00105-7
– volume: 126
  start-page: 379
  year: 2005
  ident: ref59
  article-title: Oscillatory Ca2+ signaling in the isolated Caenorhabditis elegans intestine: role of the inositol-1,4,5-trisphosphate receptor and phospholipases C beta and gamma
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.200509355
– volume: 340
  start-page: 209
  year: 2010
  ident: ref22
  article-title: Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2009.09.042
– volume: 100
  start-page: 5846
  year: 2003
  ident: ref25
  article-title: Requirement for Pangolin/dTCF in Drosophila Wingless signaling
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1037533100
– volume: 124
  start-page: 47
  year: 2006
  ident: ref38
  article-title: Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.042
– volume: 93
  start-page: 767
  year: 1998
  ident: ref70
  article-title: Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81438-5
– volume: 37
  start-page: 1323
  year: 2009
  ident: ref49
  article-title: Caenorhabditis elegans cisRED: a catalogue of conserved genomic elements
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkn1041
– volume: 128
  start-page: 581
  year: 2001
  ident: ref82
  article-title: C-elegans POP-1/TCF functions in a canonical Wnt pathway that controls cell migration acid in a noncanonical Wnt pathway that controls cell polarity
  publication-title: Development
  doi: 10.1242/dev.128.4.581
– volume: 406
  start-page: 527
  year: 2000
  ident: ref77
  article-title: Distinct beta-catenins mediate adhesion and signalling functions in C-elegans
  publication-title: Nature
  doi: 10.1038/35020099
– volume: 88
  start-page: 777
  year: 1997
  ident: ref26
  article-title: LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81924-8
– volume: 127
  start-page: 3695
  year: 2000
  ident: ref28
  article-title: decapentaplegic is a direct target of dTcf repression in the Drosophila visceral mesoderm
  publication-title: Development
  doi: 10.1242/dev.127.17.3695
– volume: 25
  start-page: 7505
  year: 2006
  ident: ref52
  article-title: Transgenic Wnt/TCF pathway reporters: all you need is Lef?
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210057
– volume: 285
  start-page: 584
  year: 2005
  ident: ref16
  article-title: C-elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2005.07.008
– volume: 92
  start-page: 229
  year: 1998
  ident: ref61
  article-title: POP-1 and anterior-posterior fate decisions in C-elegans embryos
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80917-4
– volume: 12
  start-page: 1947
  year: 1998
  ident: ref83
  article-title: pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans
  publication-title: Genes & Development
  doi: 10.1101/gad.12.13.1947
– volume: 100
  start-page: 64
  year: 1983
  ident: ref102
  article-title: The embryonic cell lineage of the nematode Caenorhabditis elegans
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(83)90201-4
– volume: 104
  start-page: 3231
  year: 2007
  ident: ref73
  article-title: Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0611507104
– volume: 12
  start-page: 494
  year: 2010
  ident: ref75
  article-title: Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica
  publication-title: Evol Dev
  doi: 10.1111/j.1525-142X.2010.00435.x
– volume: 170
  start-page: 1775
  year: 2005
  ident: ref71
  article-title: Identification of genetic loci that interact with cut during Drosophila wing-margin development
  publication-title: Genetics
  doi: 10.1534/genetics.105.043125
– volume: 98
  start-page: 1
  year: 2012
  ident: ref7
  article-title: TCFs and Wnt/β-catenin signaling: more than one way ot throw the switch
  publication-title: Transcriptional Switches during Development
  doi: 10.1016/B978-0-12-386499-4.00001-X
SSID ssj0035897
Score 2.2446675
Snippet Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for...
  Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1004133
SubjectTerms Animals
Binding Sites
Biology
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Deoxyribonucleic acid
DNA
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-ligand interactions
Drosophila
Drosophila - genetics
Drosophila - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Experiments
Gene expression
Gene Expression Regulation
Genetic aspects
Genetic transcription
Genomics
High Mobility Group Proteins - genetics
High Mobility Group Proteins - metabolism
HMG-Box Domains - genetics
Insects
Mutation
Nematodes
Nucleotide Motifs - genetics
Protein Binding
Repressor Proteins - genetics
Repressor Proteins - metabolism
Signal Transduction - genetics
Transcription factors
Wnt Signaling Pathway - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPgi_r7qqVEEn3p3m6Rt8rjuupyCK-id3FtIk_YsLO1y7SL-984kbbmKcPfgaztd2JnJzDdk5htC3tkkzSEtmdjIuYhFwVxsnGKxACA3tyUkHIuF4pdNenouPl8kF9dWfWFPWKAHDoo7liYVOd6mOa6EsrmRrFTMpQ7OJSRPP7oHaWwopkIM5okMa1WShMcZlPX90BzP5se9jY52YCDsEYAozidJyXP3jxF6tts27b_g599dlNfS0voBud_jSboI_-MhuVPUj8jdsGHy92PiVniGa9vR1WZB88rPsFC8MW6p71LHdVcF7RoKQJCeLde0w-Q1hBL45fZXBYalVU2XRxSXVMBrampHV1d-BUK1NU_I-frj2fI07hcrxDZLRRdLU9oT63jiDEMCInUCKLCwTJoiMzlUjFB0WcncPCuVFA6e5GVeQu0C2EDmpeJPyaxu6uKA0KwUFod7VbjQK6TKueEuMUYiNZ-KCB80q23POo7LL7baX6VlUH0ERWm0h-7tEZF4_GoXWDdukP-ARhtlkTPbPwBP0r0n6Zs8KSKv0eQ6DKCOJ18veAoYGIDRPCJvvQTyZtTYmHNp9m2rP339cQuh75vbCH2bCL3vhcoGdGZNPzEBmkfSronk4UQSQoSdvD5ALx5U12qsAiTnGc8i8mbwbI1fYctdXTR7kIFaGOknmYzIs-Dpo34ZrncGqB-RbHIGJgaYvqmrn568HAe9GVfP_4fFXpB7gF9FaKI_JLPual-8BIzY5a98OPgDEZxhbg
  priority: 102
  providerName: Directory of Open Access Journals
Title Distinct DNA Binding Sites Contribute to the TCF Transcriptional Switch in C. elegans and Drosophila
URI https://www.ncbi.nlm.nih.gov/pubmed/24516405
https://www.proquest.com/docview/1499150628
https://pubmed.ncbi.nlm.nih.gov/PMC3916239
https://doaj.org/article/8a64b1389d3949cba82f92d6ddde5849
http://dx.doi.org/10.1371/journal.pgen.1004133
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M48
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELe2Tki8IL4XGMUgJJ5StbETOw8I9WPVQFpB64r6Fjl2slWqktK0gv333DkfImiI8VQpPkfRnX33u9p3P0LeaT-IISwpV8kBd3niGVeZ0HM5ALmBTiHgaEwUz2fB2YJ_XvrLA1JztlYKLG5N7ZBParFd935-v_kIG_6DZW0Qg3pSbwMqx1N_8MvskBxBbPJwnZ_z5lyB-bKkW_F95gre51Ux3d_e0gpWtqd_47k7m3Ve3AZL_7xd-Vu4mj4kDyqcSYflwnhEDpLsMblXMk_ePCFmgns70zs6mQ3paGVrW-gc8GdBsWGVpcFK6C6nABDp5XhKbVCrXQy8ef5jBQanq4yOexTJK2CYqszQydZSI6zW6ilZTE8vx2duRbjgahHwnStVqvvaMN8oDxsThX1Ah4n2pEqEiiGThGRMS88MRBpKbuBJnMYp5DSAGWSchuwZ6WR5lhwTKlKuseg3LA_6EhnGTDHjKyWxZV_oEFZrNtJVN3IkxVhH9ohNQFZSKipCe0SVPRziNrM2ZTeOf8iP0GiNLPbStg_y7VVUbc1IqoDHeF5rGHyYjpX00tAzgQHPD_AMPvU1mjwqC1MbjxANWQDYGADTwCFvrQT208jwws6V2hdF9OnLtzsIzWd3EbpoCb2vhNIcdKZVVUkBmsdmXi3Jk5YkuA7dGj7GVVyrrogwO5CMCSYc8qZe2RHOwqt4WZLvQQZyZGxL6UmHPC9XeqNfD2mfIQVwiGjtgZYB2iPZ6to2NccCcI-FL_7Twi_JfYCwvLxHf0I6u-0-eQUwcRd3yaFYii45Go4moyn8jk5nXy-69k-XrvUKvwAL1mjQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+DNA+Binding+Sites+Contribute+to+the+TCF+Transcriptional+Switch+in+C.+elegans+and+Drosophila&rft.jtitle=PLoS+genetics&rft.au=Bhambhani%2C+Chandan&rft.au=Ravindranath%2C+Aditi+J.&rft.au=Mentink%2C+Remco+A.&rft.au=Chang%2C+Mikyung+V.&rft.date=2014-02-01&rft.issn=1553-7404&rft.eissn=1553-7404&rft.volume=10&rft.issue=2&rft.spage=e1004133&rft_id=info:doi/10.1371%2Fjournal.pgen.1004133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pgen_1004133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon