Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis
Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test...
        Saved in:
      
    
          | Published in | PLoS medicine Vol. 15; no. 9; p. e1002654 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        21.09.2018
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1549-1676 1549-1277 1549-1676  | 
| DOI | 10.1371/journal.pmed.1002654 | 
Cover
| Abstract | Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D.
In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry.
Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management. | 
    
|---|---|
| AbstractList | Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. Methods and findings In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Conclusion Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management. Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management. Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. Methods and findings In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), “lipodystrophy-like” fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Conclusion Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management. Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D.BACKGROUNDType 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D.In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry.METHODS AND FINDINGSIn an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry.Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.CONCLUSIONOur approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management. Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management. BackgroundType 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D.Methods and findingsIn an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry.ConclusionOur approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management. Using a clustering Bayesian approach applied to GWAS, Jose Florez and colleagues identify traits and loci associated with type 2 diabetes that may be used to classify patients.  | 
    
| Audience | Academic | 
    
| Author | Flannick, Jason Cole, Joanne B. Boehnke, Michael Mercader, Josep M. Glaser, Benjamin Atzmon, Gil Gaulton, Kyle von Grotthuss, Marcin Chiou, Joshua Udler, Miriam S. Bonàs-Guarch, Sílvia Kim, Jaegil Florez, Jose C. Laakso, Markku Getz, Gad  | 
    
| AuthorAffiliation | 1 Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America 5 Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain 12 Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America 4 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America 13 Department of Genetics, Boston Children’s Hospital, Boston, Massachusetts, United States of America 9 Faculty of Natural Sciences, University of Haifa, Haifa, Israel 7 Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America 2 Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America 10 Department of Medicine; Albert Einstein College of Medicine, Bronx, New York, United  | 
    
| AuthorAffiliation_xml | – name: University of Cambridge, UNITED KINGDOM – name: 9 Faculty of Natural Sciences, University of Haifa, Haifa, Israel – name: 10 Department of Medicine; Albert Einstein College of Medicine, Bronx, New York, United States of America – name: 4 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America – name: 11 Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, United States of America – name: 2 Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America – name: 8 Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland – name: 12 Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel – name: 13 Department of Genetics, Boston Children’s Hospital, Boston, Massachusetts, United States of America – name: 7 Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America – name: 1 Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America – name: 6 Department of Pediatrics, University of California San Diego, San Diego, California, United States of America – name: 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America – name: 5 Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain  | 
    
| Author_xml | – sequence: 1 givenname: Miriam S. orcidid: 0000-0003-3824-9162 surname: Udler fullname: Udler, Miriam S. – sequence: 2 givenname: Jaegil surname: Kim fullname: Kim, Jaegil – sequence: 3 givenname: Marcin surname: von Grotthuss fullname: von Grotthuss, Marcin – sequence: 4 givenname: Sílvia surname: Bonàs-Guarch fullname: Bonàs-Guarch, Sílvia – sequence: 5 givenname: Joanne B. orcidid: 0000-0001-9520-2788 surname: Cole fullname: Cole, Joanne B. – sequence: 6 givenname: Joshua orcidid: 0000-0002-4618-0647 surname: Chiou fullname: Chiou, Joshua – sequence: 7 givenname: Michael surname: Boehnke fullname: Boehnke, Michael – sequence: 8 givenname: Markku surname: Laakso fullname: Laakso, Markku – sequence: 9 givenname: Gil surname: Atzmon fullname: Atzmon, Gil – sequence: 10 givenname: Benjamin surname: Glaser fullname: Glaser, Benjamin – sequence: 11 givenname: Josep M. orcidid: 0000-0001-8494-3660 surname: Mercader fullname: Mercader, Josep M. – sequence: 12 givenname: Kyle surname: Gaulton fullname: Gaulton, Kyle – sequence: 13 givenname: Jason surname: Flannick fullname: Flannick, Jason – sequence: 14 givenname: Gad surname: Getz fullname: Getz, Gad – sequence: 15 givenname: Jose C. orcidid: 0000-0002-1730-9325 surname: Florez fullname: Florez, Jose C.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30240442$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVk9tu1DAQhiNURA_wBggsISG42MVOHCfpBVJVcahUUQkKt9bEcXZdOfY24wD7Ajw3zu626lYrUZKLRONv_hnP4TDZc97pJHnO6JRlBXt35YfegZ0uOt1MGaWpyPmj5IDlvJowUYi9O__7ySHiVWQqWtEnyX5GU045Tw-SP5fLhSYpaQzUOmgkM-10MIpYrwwxrvV91Cf1knSDDWYSejCBAGI8hmC8Q7LwxgUSfNRADahJp9UcnMEOCbiG4FCHGASPyQlB3wai7IBB98bN4jnYJRp8mjxuwaJ-tvkeJd8_frg8_Tw5v_h0dnpyPlGF4GHCVdWIushS1eQFz7lSrFKqZcBrIZhQdcsYhbIUjJaQ5ZmGJq1KToUqmorRPDtKXq51F9aj3JQQZZrmacpFWtJInK2JxsOVXPSmg34pPRi5Mvh-JqGPBbJa5ryleV6ITGWal20NZcZ5DQXTrBQlK6JWvtYa3AKWv8DaW0FG5djFmxTk2EW56WL0e7_JcqijXWkXy263ktk-cWYuZ_6nFCynXGRR4M1GoPfXg8YgO4NKWwtO-yHel8WHi7wcY726h-6uyoaaQbz4OBYxrhpF5cmqBKLKRq3JDmqcqJhknN7WRPMWP93Bx7fRnVE7Hd5uOUQm6N9hBgOiPPv29T_YLw9nL35ss6_vsHMNNszR22G1DNvgi7tdvG3fzfJF4HgNqN4j9rqVyoTVUo1bZv81I_ye84NG6y_qzVYO | 
    
| CitedBy_id | crossref_primary_10_1210_clinem_dgaa628 crossref_primary_10_1371_journal_pmed_1003132 crossref_primary_10_1016_j_metabol_2019_153974 crossref_primary_10_1210_clinem_dgab838 crossref_primary_10_3389_fendo_2022_1120555 crossref_primary_10_1177_1932296819894295 crossref_primary_10_1016_j_lansea_2023_100182 crossref_primary_10_1016_j_molmet_2020_101015 crossref_primary_10_2147_DMSO_S390752 crossref_primary_10_1146_annurev_genom_120319_095026 crossref_primary_10_1038_s41598_023_46910_6 crossref_primary_10_1016_j_eclinm_2019_07_007 crossref_primary_10_1016_S2213_8587_23_00159_6 crossref_primary_10_1016_j_ajhg_2024_05_018 crossref_primary_10_1371_journal_pgen_1008009 crossref_primary_10_1007_s40618_024_02512_1 crossref_primary_10_1007_s00125_024_06099_3 crossref_primary_10_1210_clinem_dgab391 crossref_primary_10_1007_s11892_020_01330_y crossref_primary_10_1111_dme_15226 crossref_primary_10_1007_s11892_019_1169_7 crossref_primary_10_1038_s41574_021_00475_4 crossref_primary_10_1186_s12933_023_01923_3 crossref_primary_10_2337_db21_0804 crossref_primary_10_1007_s40619_022_01146_w crossref_primary_10_1155_2023_6955723 crossref_primary_10_3389_fmed_2025_1555077 crossref_primary_10_1161_CIRCRESAHA_119_316065 crossref_primary_10_1093_ije_dyaa062 crossref_primary_10_1093_jbmrpl_ziae003 crossref_primary_10_1007_s11892_019_1173_y crossref_primary_10_1093_hmg_ddad194 crossref_primary_10_1038_s41467_025_56695_z crossref_primary_10_12677_ACM_2024_141019 crossref_primary_10_1152_physrev_00015_2022 crossref_primary_10_1093_bioinformatics_btaa778 crossref_primary_10_3389_fnut_2024_1376098 crossref_primary_10_1007_s00125_020_05246_w crossref_primary_10_1371_journal_pcbi_1008915 crossref_primary_10_1371_journal_pone_0278759 crossref_primary_10_1038_s41591_024_03317_8 crossref_primary_10_1186_s13073_022_01036_8 crossref_primary_10_1007_s11892_020_01340_w crossref_primary_10_1038_s41467_022_30931_2 crossref_primary_10_1016_j_numecd_2023_12_026 crossref_primary_10_1016_j_jacc_2021_03_346 crossref_primary_10_1038_s41591_023_02502_5 crossref_primary_10_1007_s12650_022_00898_9 crossref_primary_10_1002_oby_24137 crossref_primary_10_1016_j_cmet_2022_09_013 crossref_primary_10_1016_j_jcjd_2021_09_126 crossref_primary_10_2337_db20_0602 crossref_primary_10_2337_dc21_1395 crossref_primary_10_1016_S2213_8587_23_00086_4 crossref_primary_10_1210_clinem_dgae680 crossref_primary_10_1016_j_metabol_2022_155240 crossref_primary_10_1136_bmjdrc_2021_002298 crossref_primary_10_1177_20552076231203879 crossref_primary_10_1007_s00125_020_05211_7 crossref_primary_10_2174_0929867329666220802090446 crossref_primary_10_1038_s42255_024_01140_6 crossref_primary_10_1016_j_dsx_2023_102936 crossref_primary_10_1097_NT_0000000000000360 crossref_primary_10_2337_db23_0699 crossref_primary_10_1038_s42255_022_00731_5 crossref_primary_10_1016_j_ecoenv_2024_116948 crossref_primary_10_2337_db23_0575 crossref_primary_10_1111_cge_13772 crossref_primary_10_2337_dci20_0022 crossref_primary_10_1038_s41598_024_59747_4 crossref_primary_10_1161_CIR_0000000000001077 crossref_primary_10_3389_fendo_2022_860274 crossref_primary_10_3390_cells9010246 crossref_primary_10_1016_j_medntd_2023_100253 crossref_primary_10_1038_s41467_020_20585_3 crossref_primary_10_1186_s13073_020_00797_4 crossref_primary_10_1016_j_tig_2021_07_005 crossref_primary_10_1212_WNL_0000000000011555 crossref_primary_10_1111_dme_14982 crossref_primary_10_1016_j_heliyon_2024_e32063 crossref_primary_10_1007_s00592_023_02230_9 crossref_primary_10_1080_13102818_2019_1664321 crossref_primary_10_2337_dci21_0051 crossref_primary_10_2337_db23_0447 crossref_primary_10_1038_s41574_020_0325_0 crossref_primary_10_1161_CIRCGEN_121_003583 crossref_primary_10_1158_1055_9965_EPI_20_1245 crossref_primary_10_1002_alz_13069 crossref_primary_10_1016_j_tig_2020_09_009 crossref_primary_10_1038_s41588_021_00852_9 crossref_primary_10_1038_s41588_024_01782_y crossref_primary_10_2337_dbi20_0034 crossref_primary_10_3389_fendo_2021_802114 crossref_primary_10_1007_s00125_024_06097_5 crossref_primary_10_1016_j_hsr_2024_100190 crossref_primary_10_1007_s00125_020_05181_w crossref_primary_10_1038_s41591_020_01208_2 crossref_primary_10_12688_wellcomeopenres_16251_1 crossref_primary_10_1016_j_ajhg_2023_10_002 crossref_primary_10_2337_dc21_2048 crossref_primary_10_4093_jkd_2023_24_4_210 crossref_primary_10_1186_s13073_023_01255_7 crossref_primary_10_3390_jcm14030678 crossref_primary_10_1007_s40265_022_01774_4 crossref_primary_10_2337_db18_0203 crossref_primary_10_1016_j_tem_2020_05_007 crossref_primary_10_1007_s00125_021_05625_x crossref_primary_10_1055_a_2304_8090 crossref_primary_10_1007_s00125_019_4909_y crossref_primary_10_2139_ssrn_4093571 crossref_primary_10_1007_s00125_021_05575_4 crossref_primary_10_1038_s41467_020_18581_8 crossref_primary_10_1002_gepi_22440 crossref_primary_10_1371_journal_pmed_1003972 crossref_primary_10_1038_s41586_024_07019_6 crossref_primary_10_1093_jnci_djae349 crossref_primary_10_1038_s41598_024_55313_0 crossref_primary_10_1007_s11910_020_01085_9 crossref_primary_10_1016_j_cmet_2023_09_013 crossref_primary_10_1016_j_diabres_2024_111817 crossref_primary_10_1136_bmjdrc_2020_001550 crossref_primary_10_7554_eLife_82674 crossref_primary_10_1210_clinem_dgaa962 crossref_primary_10_1210_er_2019_00088 crossref_primary_10_1016_j_lana_2024_100732 crossref_primary_10_1093_aje_kwad080 crossref_primary_10_1371_journal_pmed_1003989 crossref_primary_10_1007_s10462_024_11020_w crossref_primary_10_1016_j_banm_2020_03_007 crossref_primary_10_3389_fgene_2022_871260 crossref_primary_10_1007_s00125_019_4823_3 crossref_primary_10_47134_ppm_v1i1_107 crossref_primary_10_1007_s00125_022_05848_6 crossref_primary_10_1007_s13300_024_01667_7 crossref_primary_10_1111_age_12799 crossref_primary_10_1371_journal_pmed_1003981 crossref_primary_10_1007_s11428_020_00698_5 crossref_primary_10_1038_s41591_024_02865_3 crossref_primary_10_1016_j_ajhg_2020_10_009 crossref_primary_10_1210_clinem_dgae516 crossref_primary_10_1038_s41591_022_01790_7 crossref_primary_10_1016_j_cell_2019_02_024 crossref_primary_10_1210_js_2019_00065 crossref_primary_10_1038_s41591_024_03284_0 crossref_primary_10_1016_S2213_2600_21_00510_5 crossref_primary_10_1155_2023_8883199 crossref_primary_10_1210_endrev_bnab021 crossref_primary_10_1016_S2213_8587_24_00339_5 crossref_primary_10_1007_s10142_022_00881_5 crossref_primary_10_1038_s41586_019_1879_7 crossref_primary_10_1210_clinem_dgad664 crossref_primary_10_1530_EJE_22_0020 crossref_primary_10_2337_dbi20_0004 crossref_primary_10_1007_s00125_022_05741_2 crossref_primary_10_1016_j_omtn_2020_03_011 crossref_primary_10_2337_dbi20_0001 crossref_primary_10_3390_ijms24076047 crossref_primary_10_1016_j_xgen_2023_100346 crossref_primary_10_1093_ije_dyz040 crossref_primary_10_1016_j_ecl_2020_07_007 crossref_primary_10_1038_s41588_021_00948_2 crossref_primary_10_1007_s11428_023_01006_7 crossref_primary_10_2337_dc20_2372 crossref_primary_10_1038_s43856_023_00360_3 crossref_primary_10_1146_annurev_nutr_082018_124258 crossref_primary_10_1038_s41588_022_01269_8 crossref_primary_10_1038_s41588_024_01933_1 crossref_primary_10_1055_a_1877_9587 crossref_primary_10_1371_journal_pone_0304036 crossref_primary_10_26508_lsa_202000825 crossref_primary_10_1210_endrev_bnac021 crossref_primary_10_1136_bmjdrc_2024_004493 crossref_primary_10_1111_bph_16355 crossref_primary_10_1371_journal_pgen_1009975 crossref_primary_10_1111_fcp_12851 crossref_primary_10_1038_s41576_020_0268_2 crossref_primary_10_1038_s41591_019_0727_5 crossref_primary_10_1038_s41366_023_01369_3 crossref_primary_10_1111_1753_0407_13260 crossref_primary_10_1016_j_jdiacomp_2021_107915 crossref_primary_10_1038_s41576_022_00519_z crossref_primary_10_1016_j_ajhg_2023_09_015 crossref_primary_10_1016_j_diabres_2021_109188 crossref_primary_10_1038_s41439_021_00156_8 crossref_primary_10_2337_dc21_0464 crossref_primary_10_1016_j_isci_2024_109815 crossref_primary_10_1038_s41581_020_0278_5 crossref_primary_10_1210_clinem_dgab545 crossref_primary_10_1016_S2213_8587_23_00384_4 crossref_primary_10_1038_s41467_025_57452_y crossref_primary_10_1038_s41591_022_01791_6 crossref_primary_10_1038_s41574_019_0308_1 crossref_primary_10_1002_dmrr_3295 crossref_primary_10_1007_s00125_020_05292_4 crossref_primary_10_1007_s13205_023_03575_2 crossref_primary_10_1016_j_diabet_2022_101409 crossref_primary_10_2337_db23_0761 crossref_primary_10_1093_advances_nmab040 crossref_primary_10_1016_j_jpeds_2022_05_044 crossref_primary_10_1210_clinem_dgac632 crossref_primary_10_1210_jc_2019_01104 crossref_primary_10_1007_s00125_022_05721_6 crossref_primary_10_1038_s41591_020_1116_9 crossref_primary_10_1007_s11892_020_01297_w crossref_primary_10_2337_db21_0777 crossref_primary_10_1007_s00125_025_06403_9 crossref_primary_10_1038_s41575_019_0212_0 crossref_primary_10_1016_j_bbe_2023_12_004 crossref_primary_10_1111_eci_13890 crossref_primary_10_1007_s11892_024_01533_7 crossref_primary_10_1210_clinem_dgae844 crossref_primary_10_1016_S2213_8587_23_00165_1 crossref_primary_10_4239_wjd_v12_i10_1778 crossref_primary_10_1007_s13300_021_01065_3 crossref_primary_10_1007_s00125_022_05732_3 crossref_primary_10_1111_evj_14128 crossref_primary_10_1136_bmjdrc_2020_001869 crossref_primary_10_1016_j_ecl_2021_05_011 crossref_primary_10_1038_s41588_023_01346_6 crossref_primary_10_1371_journal_pgen_1009713 crossref_primary_10_1016_j_jmb_2019_12_038 crossref_primary_10_1038_s41586_019_1797_8 crossref_primary_10_2139_ssrn_4169813 crossref_primary_10_2337_dc20_2700 crossref_primary_10_1016_j_trsl_2022_03_008 crossref_primary_10_3389_fendo_2024_1293292 crossref_primary_10_1515_ijb_2019_0108 crossref_primary_10_1210_endocr_bqaa017 crossref_primary_10_1038_s41574_023_00898_1 crossref_primary_10_1016_j_ajhg_2023_01_002 crossref_primary_10_1038_s41588_019_0550_4 crossref_primary_10_1007_s00125_023_05922_7 crossref_primary_10_1007_s00125_024_06309_y crossref_primary_10_1016_j_metop_2024_100287 crossref_primary_10_1186_s40478_021_01176_9 crossref_primary_10_1016_j_isci_2020_101566 crossref_primary_10_1038_s42255_023_00970_0 crossref_primary_10_1111_pin_13458 crossref_primary_10_1038_s41467_019_11456_7 crossref_primary_10_1080_23808993_2021_1970526 crossref_primary_10_1016_j_ajhg_2020_03_011 crossref_primary_10_3233_JAD_231252 crossref_primary_10_1007_s00125_020_05228_y crossref_primary_10_1007_s11428_020_00665_0 crossref_primary_10_1038_s41588_022_01261_2 crossref_primary_10_1002_dmrr_3192 crossref_primary_10_1002_gepi_22582 crossref_primary_10_1007_s40200_021_00894_0 crossref_primary_10_1007_s11892_019_1137_2 crossref_primary_10_1016_j_xcrm_2021_100477 crossref_primary_10_12688_wellcomeopenres_16097_3 crossref_primary_10_1016_j_diabres_2019_107915 crossref_primary_10_1016_S2213_8587_21_00287_4 crossref_primary_10_12688_wellcomeopenres_16097_2 crossref_primary_10_3389_fphys_2019_00107 crossref_primary_10_1016_j_ajhg_2022_04_003 crossref_primary_10_1007_s00125_020_05245_x crossref_primary_10_1186_s13098_022_00883_0 crossref_primary_10_1038_s42255_023_00770_6 crossref_primary_10_1186_s12864_022_08654_x crossref_primary_10_1038_s41573_021_00337_8 crossref_primary_10_1002_ctm2_70076 crossref_primary_10_1186_s12916_024_03256_8 crossref_primary_10_1007_s00125_021_05567_4 crossref_primary_10_2337_dci19_0068 crossref_primary_10_1371_journal_pmed_1003209 crossref_primary_10_1210_clinem_dgad257 crossref_primary_10_1007_s00125_021_05639_5 crossref_primary_10_1016_j_coph_2020_10_020 crossref_primary_10_1038_s41574_023_00836_1 crossref_primary_10_1016_j_cmet_2023_03_001 crossref_primary_10_2337_db22_0954 crossref_primary_10_1016_j_arcmed_2024_103128 crossref_primary_10_1002_art_42246 crossref_primary_10_1038_s41588_023_01522_8 crossref_primary_10_1007_s00125_021_05386_7 crossref_primary_10_1007_s11892_019_1230_6 crossref_primary_10_1007_s13340_024_00783_w crossref_primary_10_1016_j_ajhg_2022_12_017 crossref_primary_10_4093_jkd_2022_23_2_77 crossref_primary_10_1016_j_envpol_2023_122541 crossref_primary_10_1016_j_molmet_2021_101209 crossref_primary_10_1055_a_1214_5618 crossref_primary_10_1038_s41588_022_01090_3 crossref_primary_10_1002_jgc4_1744 crossref_primary_10_1007_s00125_022_05769_4 crossref_primary_10_1038_s41467_022_34754_z crossref_primary_10_1038_s42255_023_00943_3 crossref_primary_10_1371_journal_pmed_1003219 crossref_primary_10_1016_j_cmet_2023_03_018 crossref_primary_10_1007_s11657_021_00970_1 crossref_primary_10_1002_cpt_1484 crossref_primary_10_1016_S2213_8587_19_30087_7 crossref_primary_10_1007_s12223_020_00789_2 crossref_primary_10_1093_eurheartj_ehae746 crossref_primary_10_21518_2079_701X_2022_16_10_46_56 crossref_primary_10_1016_j_metabol_2023_155514 crossref_primary_10_1016_j_jbi_2024_104650 crossref_primary_10_1038_s41467_024_55761_2 crossref_primary_10_1016_j_ebiom_2025_105609 crossref_primary_10_1016_j_cell_2021_02_012 crossref_primary_10_1016_j_cell_2024_10_045 crossref_primary_10_1002_pdi_2419 crossref_primary_10_1016_S2213_8587_23_00232_2 crossref_primary_10_1007_s10637_021_01148_9 crossref_primary_10_1042_BCJ20230321 crossref_primary_10_1007_s00125_023_05887_7 crossref_primary_10_1017_pcm_2023_12 crossref_primary_10_1038_s41591_021_01418_2 crossref_primary_10_1101_gr_268482_120 crossref_primary_10_1080_02648725_2023_2199238 crossref_primary_10_1007_s11892_022_01485_w crossref_primary_10_3389_fendo_2021_681356 crossref_primary_10_1007_s11428_023_01013_8 crossref_primary_10_1146_annurev_med_050219_034524 crossref_primary_10_1210_clinem_dgaa435 crossref_primary_10_1016_j_dsx_2023_102850 crossref_primary_10_1111_joim_13330 crossref_primary_10_1038_s42255_023_00807_w crossref_primary_10_2337_db20_0772 crossref_primary_10_3389_fendo_2021_694893 crossref_primary_10_1093_hmg_ddad093  | 
    
| Cites_doi | 10.1109/TPAMI.2012.240 10.1038/ng.3300 10.3390/jpm6010005 10.1038/nmeth.1906 10.2337/db16-0962 10.1093/hmg/ddv264 10.1128/MCB.25.9.3752-3762.2005 10.1038/ng.520 10.1038/nature10405 10.1371/journal.pgen.1004235 10.1038/ng.521 10.1093/hmg/ddu510 10.1371/journal.pgen.1002607 10.1086/519024 10.2337/db11-0415 10.1038/ng.3097 10.2337/db16-0199 10.1073/pnas.1621192114 10.1126/scitranslmed.aaa9364 10.1161/CIRCGENETICS.112.964619 10.1038/ng.3437 10.1038/ng.3557 10.1038/nature19806 10.1038/ng.2901 10.1194/jlr.M052456 10.1038/nature18642 10.1038/s41467-017-02380-9 10.1371/journal.pgen.1002193 10.2337/db11-1516 10.1016/j.cell.2017.09.007 10.1038/ng.2383 10.1038/nature14177 10.2337/db15-1671 10.1212/WNL.0000000000002528 10.1093/jamia/ocv034 10.1371/journal.pone.0018743 10.1038/ncomms9866 10.1073/pnas.1323785111 10.1097/MOL.0000000000000155 10.2337/db14-0318 10.1371/journal.pgen.1001324 10.1007/s11892-017-0957-1 10.1074/jbc.M116.719955 10.1038/nmeth.2307 10.2337/diabetes.50.3.681 10.2337/db08-1607 10.1038/nature15393 10.1002/hep.27242 10.1038/ng.3643 10.1038/ng.3656 10.1002/bies.201100015 10.1371/journal.pone.0162388 10.1038/ng.3738 10.1038/ng.2274 10.1161/CIRCGENETICS.113.000208 10.1038/ng.2610 10.1038/ncomms10494 10.1038/nature14962 10.1038/s41588-018-0084-1 10.1038/ng.2500 10.2337/db13-0949 10.1038/ncomms10495 10.1016/j.bbrc.2008.03.091 10.1038/nature14132 10.1038/ng.784 10.1016/j.ajhg.2017.01.011 10.2337/db10-0502 10.1038/ncomms10023  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Udler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Udler et al 2018 Udler et al  | 
    
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Udler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Udler et al 2018 Udler et al  | 
    
| CorporateAuthor | Christopher D. Anderson on behalf of METASTROKE and the ISGC | 
    
| CorporateAuthor_xml | – name: Christopher D. Anderson on behalf of METASTROKE and the ISGC | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7TK 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA CZK  | 
    
| DOI | 10.1371/journal.pmed.1002654 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals PLoS Medicine  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| DocumentTitleAlternate | Clustering analysis of T2D loci-trait associations points to disease mechanisms and subtypes | 
    
| EISSN | 1549-1676 | 
    
| ExternalDocumentID | 2252246280 oai_doaj_org_article_54f055763c3e48fba8344ba71e186817 10.1371/journal.pmed.1002654 PMC6150463 A557636934 30240442 10_1371_journal_pmed_1002654  | 
    
| Genre | Journal Article Research Support, N.I.H., Extramural  | 
    
| GeographicLocations | New York Israel California United States--US Massachusetts Spain  | 
    
| GeographicLocations_xml | – name: Israel – name: New York – name: Spain – name: California – name: United States--US – name: Massachusetts  | 
    
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: L30 DK106874 – fundername: NIDDK NIH HHS grantid: P30 DK020572 – fundername: NIDDK NIH HHS grantid: K23 DK114551 – fundername: NIDDK NIH HHS grantid: R01 DK062370 – fundername: NINDS NIH HHS grantid: K23 NS086873 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: NIDDK NIH HHS grantid: R56 DK062370 – fundername: NIDDK NIH HHS grantid: T32 DK007028 – fundername: NIDDK NIH HHS grantid: K24 DK110550 – fundername: Medical Research Council grantid: MC_QA137853 – fundername: ; grantid: 1K23DK114551-01 – fundername: ; grantid: DK062370 – fundername: ; grantid: 1K23NS086873-04  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAUCC AAWOE AAWTL AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BCNDV BENPR BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR IOF IOV IPO ISN ISR ITC KQ8 M1P M48 MK0 O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M ADXHL ALIPV CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7TK 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADTOC UNPAY AAPBV ABPTK BCGST CZK ICW M~E  | 
    
| ID | FETCH-LOGICAL-c764t-4c9d6b732cd57454cc19ccf1a4b6616cbf110a886108a353ead298406c7d91053 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1549-1676 1549-1277  | 
    
| IngestDate | Sun Aug 06 00:45:55 EDT 2023 Fri Oct 03 12:47:25 EDT 2025 Sun Oct 26 04:05:07 EDT 2025 Tue Sep 30 16:27:44 EDT 2025 Thu Sep 04 17:06:54 EDT 2025 Tue Oct 07 06:46:44 EDT 2025 Mon Oct 20 22:02:17 EDT 2025 Thu Jun 12 23:45:22 EDT 2025 Mon Oct 20 16:08:39 EDT 2025 Thu Oct 16 15:26:44 EDT 2025 Thu Oct 16 13:53:51 EDT 2025 Thu Oct 16 15:17:56 EDT 2025 Thu May 22 21:19:58 EDT 2025 Mon Jul 21 06:08:07 EDT 2025 Wed Oct 01 03:57:42 EDT 2025 Thu Apr 24 22:55:56 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c764t-4c9d6b732cd57454cc19ccf1a4b6616cbf110a886108a353ead298406c7d91053 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist.  | 
    
| ORCID | 0000-0001-9520-2788 0000-0001-8494-3660 0000-0002-1730-9325 0000-0003-3824-9162 0000-0002-4618-0647  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2252246280?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 30240442 | 
    
| PQID | 2252246280 | 
    
| PQPubID | 1436338 | 
    
| ParticipantIDs | plos_journals_2252246280 doaj_primary_oai_doaj_org_article_54f055763c3e48fba8344ba71e186817 unpaywall_primary_10_1371_journal_pmed_1002654 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6150463 proquest_miscellaneous_2111146584 proquest_journals_2252246280 gale_infotracmisc_A557636934 gale_infotracgeneralonefile_A557636934 gale_infotracacademiconefile_A557636934 gale_incontextgauss_ISR_A557636934 gale_incontextgauss_ISN_A557636934 gale_incontextgauss_IOV_A557636934 gale_healthsolutions_A557636934 pubmed_primary_30240442 crossref_citationtrail_10_1371_journal_pmed_1002654 crossref_primary_10_1371_journal_pmed_1002654  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20180921 | 
    
| PublicationDateYYYYMMDD | 2018-09-21 | 
    
| PublicationDate_xml | – month: 9 year: 2018 text: 20180921 day: 21  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PLoS medicine | 
    
| PublicationTitleAlternate | PLoS Med | 
    
| PublicationYear | 2018 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | AR Wood (ref26) 2014; 46 AE Locke (ref24) 2015; 518 C Genomes Project (ref56) 2015; 526 E Ahlqvist (ref4) 2018 A Bonnefond (ref60) 2017; 17 (ref2) 2018; 41 H Yaghootkar (ref64) 2016; 65 H Mahdessian (ref66) 2014; 111 EK Speliotes (ref65) 2011; 7 C Pattaro (ref42) 2016; 7 S Yu (ref54) 2015; 22 VY Tan (ref12) 2013; 35 I Surakka (ref32) 2015; 47 N Soranzo (ref21) 2010; 59 AH Rosengren (ref61) 2012; 61 A Varshney (ref46) 2017; 114 J Wakefield (ref44) 2007; 81 RJ van der Valk (ref28) 2015; 24 KL Mohlke (ref5) 2015; 24 I Prokopenko (ref19) 2014; 10 UK Consortium (ref57) 2015; 526 J Kim (ref13) 2016; 48 S Das (ref50) 2016; 48 C Fuchsberger (ref48) 2016; 536 I Blech (ref52) 2011; 6 M den Hoed (ref31) 2013; 45 RN Lemaitre (ref36) 2011; 7 Z Dastani (ref34) 2012; 8 T Hishida (ref73) 2008; 370 JW Smoller (ref53) 2016; 6 Z Pappalardo (ref63) 2017; 66 AK Manning (ref17) 2012; 44 O Delaneau (ref55) 2013; 10 RA Scott (ref6) 2017 AS Dimas (ref11) 2014; 63 A Raimondo (ref69) 2015; 26 H Schunkert (ref41) 2011; 43 J Dupuis (ref23) 2010; 42 ref1 JH Wu (ref38) 2013; 6 RJ Strawbridge (ref20) 2011; 60 A Mahajan (ref9) 2018; 50 SV Eastwood (ref59) 2016; 11 GA Walford (ref18) 2016; 65 J Kozlitina (ref67) 2014; 46 E Smagris (ref68) 2016; 291 A Stancakova (ref47) 2009; 58 AY Chu (ref29) 2017; 49 JA Kushner (ref72) 2005; 25 AP Morris (ref16) 2012; 44 W Guan (ref37) 2014; 7 E Smagris (ref70) 2015; 61 A Kottgen (ref35) 2013; 45 H Yaghootkar (ref10) 2014; 63 GB Ehret (ref43) 2011; 478 J Ernst (ref45) 2012; 9 Y Lu (ref30) 2016; 7 MA Permutt (ref51) 2001; 50 AG Robertson (ref15) 2017; 171 KJ Gaulton (ref8) 2015; 47 RN Lemaitre (ref39) 2015; 56 R Malik (ref40) 2016; 86 S McCarthy (ref49) 2016; 48 A Mahajan (ref74) 2018 R Saxena (ref22) 2010; 42 C Bycroft (ref58) 2017 ME Arntfield (ref71) 2011; 33 D Shungin (ref25) 2015; 518 S Kasar (ref14) 2015; 6 M Horikoshi (ref27) 2016; 538 GR Carrat (ref62) 2017; 100 S Bonas-Guarch (ref7) 2018; 9 L Li (ref3) 2015; 7 TO Kilpelainen (ref33) 2016; 7  | 
    
| References_xml | – ident: ref1 – volume: 35 start-page: 1592 issue: 7 year: 2013 ident: ref12 article-title: Automatic relevance determination in nonnegative matrix factorization with the beta-divergence publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.240 – volume: 47 start-page: 589 issue: 6 year: 2015 ident: ref32 article-title: The impact of low-frequency and rare variants on lipid levels publication-title: Nat Genet doi: 10.1038/ng.3300 – year: 2018 ident: ref4 article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables publication-title: Lancet Diabetes Endocrinol – volume: 6 issue: 1 year: 2016 ident: ref53 article-title: An eMERGE Clinical Center at Partners Personalized Medicine publication-title: J Pers Med doi: 10.3390/jpm6010005 – volume: 9 start-page: 215 issue: 3 year: 2012 ident: ref45 article-title: ChromHMM: automating chromatin-state discovery and characterization publication-title: Nat Methods doi: 10.1038/nmeth.1906 – year: 2017 ident: ref58 article-title: Genome-wide genetic data on ~500,000 UK Biobank participants publication-title: bioRxiv – volume: 66 start-page: 1703 issue: 6 year: 2017 ident: ref63 article-title: A Whole-Genome RNA Interference Screen Reveals a Role for Spry2 in Insulin Transcription and the Unfolded Protein Response publication-title: Diabetes doi: 10.2337/db16-0962 – volume: 24 start-page: R85 issue: R1 year: 2015 ident: ref5 article-title: Recent advances in understanding the genetic architecture of type 2 diabetes publication-title: Hum Mol Genet doi: 10.1093/hmg/ddv264 – volume: 25 start-page: 3752 issue: 9 year: 2005 ident: ref72 article-title: Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth publication-title: Mol Cell Biol doi: 10.1128/MCB.25.9.3752-3762.2005 – volume: 42 start-page: 105 issue: 2 year: 2010 ident: ref23 article-title: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk publication-title: Nat Genet doi: 10.1038/ng.520 – volume: 478 start-page: 103 issue: 7367 year: 2011 ident: ref43 article-title: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk publication-title: Nature doi: 10.1038/nature10405 – volume: 10 start-page: e1004235 issue: 4 year: 2014 ident: ref19 article-title: A central role for GRB10 in regulation of islet function in man publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004235 – volume: 42 start-page: 142 issue: 2 year: 2010 ident: ref22 article-title: Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge publication-title: Nat Genet doi: 10.1038/ng.521 – year: 2018 ident: ref74 article-title: Fine-mapping of an expanded set of type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps publication-title: bioRxiv – volume: 24 start-page: 1155 issue: 4 year: 2015 ident: ref28 article-title: A novel common variant in DCST2 is associated with length in early life and height in adulthood publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu510 – volume: 8 start-page: e1002607 issue: 3 year: 2012 ident: ref34 article-title: Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002607 – volume: 81 start-page: 208 issue: 2 year: 2007 ident: ref44 article-title: A Bayesian measure of the probability of false discovery in genetic epidemiology studies publication-title: Am J Hum Genet doi: 10.1086/519024 – volume: 60 start-page: 2624 issue: 10 year: 2011 ident: ref20 article-title: Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes publication-title: Diabetes doi: 10.2337/db11-0415 – volume: 46 start-page: 1173 issue: 11 year: 2014 ident: ref26 article-title: Defining the role of common variation in the genomic and biological architecture of adult human height publication-title: Nat Genet doi: 10.1038/ng.3097 – volume: 65 start-page: 3200 issue: 10 year: 2016 ident: ref18 article-title: Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci publication-title: Diabetes doi: 10.2337/db16-0199 – volume: 114 start-page: 2301 issue: 9 year: 2017 ident: ref46 article-title: Genetic regulatory signatures underlying islet gene expression and type 2 diabetes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1621192114 – volume: 7 start-page: 311ra174 issue: 311 year: 2015 ident: ref3 article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa9364 – volume: 6 start-page: 171 issue: 2 year: 2013 ident: ref38 article-title: Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium publication-title: Circulation Cardiovascular genetics doi: 10.1161/CIRCGENETICS.112.964619 – volume: 47 start-page: 1415 issue: 12 year: 2015 ident: ref8 article-title: Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci publication-title: Nat Genet doi: 10.1038/ng.3437 – volume: 48 start-page: 600 issue: 6 year: 2016 ident: ref13 article-title: Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors publication-title: Nat Genet doi: 10.1038/ng.3557 – volume: 538 start-page: 248 issue: 7624 year: 2016 ident: ref27 article-title: Genome-wide associations for birth weight and correlations with adult disease publication-title: Nature doi: 10.1038/nature19806 – volume: 46 start-page: 352 issue: 4 year: 2014 ident: ref67 article-title: Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease publication-title: Nat Genet doi: 10.1038/ng.2901 – volume: 56 start-page: 176 issue: 1 year: 2015 ident: ref39 article-title: Genetic loci associated with circulating levels of very long-chain saturated fatty acids publication-title: J Lipid Res doi: 10.1194/jlr.M052456 – volume: 536 start-page: 41 issue: 7614 year: 2016 ident: ref48 article-title: The genetic architecture of type 2 diabetes publication-title: Nature doi: 10.1038/nature18642 – volume: 9 start-page: 321 issue: 1 year: 2018 ident: ref7 article-title: Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes publication-title: Nat Commun doi: 10.1038/s41467-017-02380-9 – volume: 7 start-page: e1002193 issue: 7 year: 2011 ident: ref36 article-title: Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002193 – volume: 61 start-page: 1726 issue: 7 year: 2012 ident: ref61 article-title: Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes publication-title: Diabetes doi: 10.2337/db11-1516 – volume: 171 start-page: 540 issue: 3 year: 2017 ident: ref15 article-title: Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer publication-title: Cell doi: 10.1016/j.cell.2017.09.007 – volume: 44 start-page: 981 issue: 9 year: 2012 ident: ref16 article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes publication-title: Nat Genet doi: 10.1038/ng.2383 – volume: 41 start-page: S13 issue: Suppl 1 year: 2018 ident: ref2 article-title: 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018 publication-title: Diabetes Care – volume: 518 start-page: 197 issue: 7538 year: 2015 ident: ref24 article-title: Genetic studies of body mass index yield new insights for obesity biology publication-title: Nature doi: 10.1038/nature14177 – volume: 65 start-page: 2448 issue: 8 year: 2016 ident: ref64 article-title: Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease publication-title: Diabetes doi: 10.2337/db15-1671 – volume: 86 start-page: 1217 issue: 13 year: 2016 ident: ref40 article-title: Low-frequency and common genetic variation in ischemic stroke: The METASTROKE collaboration publication-title: Neurology doi: 10.1212/WNL.0000000000002528 – volume: 22 start-page: 993 issue: 5 year: 2015 ident: ref54 article-title: Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocv034 – volume: 6 start-page: e18743 issue: 4 year: 2011 ident: ref52 article-title: Predicting diabetic nephropathy using a multifactorial genetic model publication-title: PLoS ONE doi: 10.1371/journal.pone.0018743 – volume: 6 start-page: 8866 year: 2015 ident: ref14 article-title: Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution publication-title: Nat Commun doi: 10.1038/ncomms9866 – volume: 111 start-page: 8913 issue: 24 year: 2014 ident: ref66 article-title: TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1323785111 – volume: 26 start-page: 88 issue: 2 year: 2015 ident: ref69 article-title: Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism publication-title: Curr Opin Lipidol doi: 10.1097/MOL.0000000000000155 – volume: 63 start-page: 4369 issue: 12 year: 2014 ident: ref10 article-title: Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes publication-title: Diabetes doi: 10.2337/db14-0318 – volume: 7 start-page: e1001324 issue: 3 year: 2011 ident: ref65 article-title: Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001324 – volume: 17 start-page: 122 issue: 12 year: 2017 ident: ref60 article-title: Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go? publication-title: Current Diabetes Reports doi: 10.1007/s11892-017-0957-1 – volume: 291 start-page: 10659 issue: 20 year: 2016 ident: ref68 article-title: Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins publication-title: J Biol Chem doi: 10.1074/jbc.M116.719955 – volume: 10 start-page: 5 issue: 1 year: 2013 ident: ref55 article-title: Improved whole-chromosome phasing for disease and population genetic studies publication-title: Nat Methods doi: 10.1038/nmeth.2307 – volume: 50 start-page: 681 issue: 3 year: 2001 ident: ref51 article-title: A genome scan for type 2 diabetes susceptibility loci in a genetically isolated population publication-title: Diabetes doi: 10.2337/diabetes.50.3.681 – volume: 58 start-page: 1212 issue: 5 year: 2009 ident: ref47 article-title: Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men publication-title: Diabetes doi: 10.2337/db08-1607 – volume: 526 start-page: 68 issue: 7571 year: 2015 ident: ref56 article-title: A global reference for human genetic variation publication-title: Nature doi: 10.1038/nature15393 – volume: 61 start-page: 108 issue: 1 year: 2015 ident: ref70 article-title: Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis publication-title: Hepatology doi: 10.1002/hep.27242 – volume: 48 start-page: 1279 issue: 10 year: 2016 ident: ref49 article-title: A reference panel of 64,976 haplotypes for genotype imputation publication-title: Nat Genet doi: 10.1038/ng.3643 – volume: 48 start-page: 1284 issue: 10 year: 2016 ident: ref50 article-title: Next-generation genotype imputation service and methods publication-title: Nat Genet doi: 10.1038/ng.3656 – volume: 33 start-page: 582 issue: 8 year: 2011 ident: ref71 article-title: beta-Cell evolution: How the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship publication-title: Bioessays doi: 10.1002/bies.201100015 – volume: 11 start-page: e0162388 issue: 9 year: 2016 ident: ref59 article-title: Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank publication-title: PLoS ONE doi: 10.1371/journal.pone.0162388 – volume: 49 start-page: 125 issue: 1 year: 2017 ident: ref29 article-title: Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation publication-title: Nat Genet doi: 10.1038/ng.3738 – volume: 44 start-page: 659 issue: 6 year: 2012 ident: ref17 article-title: A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance publication-title: Nat Genet doi: 10.1038/ng.2274 – volume: 7 start-page: 321 issue: 3 year: 2014 ident: ref37 article-title: Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium publication-title: Circulation Cardiovascular genetics doi: 10.1161/CIRCGENETICS.113.000208 – volume: 45 start-page: 621 issue: 6 year: 2013 ident: ref31 article-title: Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders publication-title: Nat Genet doi: 10.1038/ng.2610 – volume: 7 start-page: 10494 year: 2016 ident: ref33 article-title: Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels publication-title: Nat Commun doi: 10.1038/ncomms10494 – volume: 526 start-page: 82 issue: 7571 year: 2015 ident: ref57 article-title: The UK10K project identifies rare variants in health and disease publication-title: Nature doi: 10.1038/nature14962 – volume: 50 start-page: 559 issue: 4 year: 2018 ident: ref9 article-title: Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes publication-title: Nat Genet doi: 10.1038/s41588-018-0084-1 – volume: 45 start-page: 145 issue: 2 year: 2013 ident: ref35 article-title: Genome-wide association analyses identify 18 new loci associated with serum urate concentrations publication-title: Nat Genet doi: 10.1038/ng.2500 – volume: 63 start-page: 2158 issue: 6 year: 2014 ident: ref11 article-title: Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity publication-title: Diabetes doi: 10.2337/db13-0949 – year: 2017 ident: ref6 article-title: An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans publication-title: Diabetes – volume: 7 start-page: 10495 year: 2016 ident: ref30 article-title: New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk publication-title: Nat Commun doi: 10.1038/ncomms10495 – volume: 370 start-page: 289 issue: 2 year: 2008 ident: ref73 article-title: Crucial roles of D-type cyclins in the early stage of adipocyte differentiation publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2008.03.091 – volume: 518 start-page: 187 issue: 7538 year: 2015 ident: ref25 article-title: New genetic loci link adipose and insulin biology to body fat distribution publication-title: Nature doi: 10.1038/nature14132 – volume: 43 start-page: 333 issue: 4 year: 2011 ident: ref41 article-title: Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease publication-title: Nat Genet doi: 10.1038/ng.784 – volume: 100 start-page: 238 issue: 2 year: 2017 ident: ref62 article-title: Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2017.01.011 – volume: 59 start-page: 3229 issue: 12 year: 2010 ident: ref21 article-title: Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways publication-title: Diabetes doi: 10.2337/db10-0502 – volume: 7 start-page: 10023 year: 2016 ident: ref42 article-title: Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function publication-title: Nat Commun doi: 10.1038/ncomms10023  | 
    
| SSID | ssj0029090 | 
    
| Score | 2.6797206 | 
    
| Snippet | Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve... Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may... Using a clustering Bayesian approach applied to GWAS, Jose Florez and colleagues identify traits and loci associated with type 2 diabetes that may be used to... BackgroundType 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may... Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may...  | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e1002654 | 
    
| SubjectTerms | Adiponectin Algorithms Analysis Bayes Theorem Bayesian analysis Beta cells Biological markers Biology and Life Sciences Biomarkers Blood pressure Body mass Body mass index Care and treatment Cholesterol Cluster Analysis Cohort Studies Coronary artery Coronary artery disease Cross-Sectional Studies Databases, Genetic Development and progression Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - classification Diabetes Mellitus, Type 2 - genetics Diabetics Female Founder Effect Gene loci Genetic analysis Genetic aspects Genetic diversity Genetic Loci Genetic Markers Genetic Predisposition to Disease Genetic variance Genetics Genome-wide association studies Genome-Wide Association Study Genomes Heart diseases Heterogeneity High density lipoprotein Hospitals Humans Insulin Insulin - deficiency Insulin - genetics Insulin resistance Insulin Resistance - genetics Lipid metabolism Lipodystrophy Liver diseases Male Management Medical treatment Medicine Medicine and Health Sciences Metabolic disorders Metabolic syndrome Metabolism Multigene Family Patient care Patients Pediatrics Phenotype Phenotypes Prospective Studies Risk Factors Supervision Treatment outcome Triglycerides Type 2 diabetes  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQHoALonw1sIBBCE5pN7Fjx9wWRFWQWiSgqLfIcZx2pW2yIomq_gF-NzOONzRipe6B6_olq3jGnmd75pmQN9FMpTxJy5AxmYe8lDZUQpVhalJrFS-iWGCB89GxODzhX06T02tXfWFOWC8P3HfcfsJLlIkSzDDL0zLXeDFErmVkUeg9cnXks1StF1N-qaVmbncF9cfCKJbSF80xGe17G-2tINo4AVKR8FFQctr9www9WS3rZhP9_DeL8k5XrfTVpV4ur4Wog_vknueWdN5_0w65ZasH5PaRPz1_SH7jopPGdL3fSsF5sIaRQkBb0F5C1RY0v6IuzTDE6yNaqv8asKGrelG1tK2pP9ihFxZLhxfNRUN1VdCmy3FTt3lP57SBGZ6aZYdSDBAgob3XP3lETg4-_fh4GPp7GEIjBW9DblQhcsliUySSJ9yYSBlTRprnEN2FyUvgEDpNgYmlmiUMnDMGD5gJIwtgIwl7TCZVXdldQgsjyggoC7wXtf7itCiA4itlmAYqYWYBYWtDZMaLlOPHLjN38iZhsdL3ZYbmy7z5AhIOT616kY4b8B_QxgMWJbbdD-B4mXe87CbHC8hL9JCsr1cdJops7h4SisHfvHYIlNmoMI_nTHdNk33--nML0PfjbUDfRqB3HlTW0GdG-wIL6HnU-Boh346QZ73C-SbgdASEqceMmndxdKz7uMkgOKBAYZyCIafrEbO5-dXQjC_FTL_K1h1gMIZz5MUBedIPsMFODAX5OI8DIkdDb2TIcUu1OHea6XjvARcsIHvDIN3KVZ7-D1d5Ru4Cz3ZpRnE0JZP2V2efA5dt8xdu2voDhZyZ4A priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bjtMwELWWIgEviPsGChiElqdUTezECRJCBbFakLpIQNG-RY6TlErZJNskgv4A382M4wYiCvS1PnYVz4xnfJkzhDxzpmHAvSCzGROxzTOR2qEfZnaggjQNeeK4PiY4z0_9kwV_f-adHZDtRbuZwHrn1g7rSS3W-eT7xeYVGPxLXbVBONtOkwr8h6YU9T1-VF3YWFoKr2BNnY1L5DK4rxDrO8x5f9XghlN9EINUZbbjCmHy6_428MB_aZr_fjEfVXlZ74pU_3xwebUtKrn5JvP8N292fINcN2EonXV6c5McpMUtcmVuLtpvkx-4P6Uu3R7NUtAzTHek4PtWtGNbTRMab6h-kWhjpYmGyl-yrmlVroqGNiU1d0D0PMUs41V9XlNZJLRuYzz_rV_QGa3BGVCVt8jaAL4U2juqlDtkcfz285sT25RssJXweWNzFSZ-LJirEk9wjyvlhEpljuQxBAK-ijMIN2QQQNAWSOYx0GMXlGXqK5FA4OKxu2RUlEV6SGii_MyB6AbGRVpAN0gS2A2EoWISog41tQjbCiJShs8cPzaP9CWdgH1NN5cRii8y4rOI3feqOj6P_-Bfo4x7LLJx6x_K9TIyxh15PEMqM58plvIgiyUWL4mlcFIsRuAIizxGDYm61NZ-TYlmupMfMvibpxqBjBwFPvlZyrauo3cfvuwB-nS6D-jjAPTcgLIS5kxJk4sBM490YAPk0QC57MjQdwHHAyCsUmrQfIjWsZ3jOgI_glyGbgCCHG8tZnfzk74ZB8VHgUVatoBBd88xhLbIvc7Aejkx5O7j3LWIGJjeQJDDlmL1VdOrY4kE7jOLTHoj3UtV7v_7Ox6QaxBs67dGrjMmo2bdpg8hoG3iR3pB-gm6bJ-P priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEv_IYFChiExlO6JnbshLeCmAbSCgKKtqfIcZJR0aUVSYTGKxJ_N3eOEwgUUR54i-LPTnI-2-f47jtCHnnjKORBmLuMycTluczcSES5G-owyyKeer7AAOfDqTiY8ZdHwdEWSdpYGCtB2CMulqU5yceL9px5z4pzD0mLmiPUkcek11YbrQBpWEVFwHcN7RD-HqswCukc2RYB2OsDsj2bvp4cGyJVjrkATHrG5lpIYePr_tRqb_0yNP_dZD7AV11nqf7ucHmhLlbq7LNaLH5azfYvk6-tHBonlo-jukpG-ssvFJH_V1BXyCVrDNNJ08pVspUV18j5Q9v6dfINd8nUp-0PYgrajkGXFFbgOW04X7OUJmfU-EW6mO-iouqHxpV0tYTn0WpJ7UkUPc0w1nlenpZUFSkt6wTfq3xCJ7SEJYnqRY3cEbCiQ3lD2HKDzPafv3t24NrEEa6Wglcu11EqEsl8nQaSB1xrL9I69xRPwBwROsnB6FFhCKZjqFjAYDT5oLJjoWUK5lPAbpJBsSyyHUJTLXIPbCxoF8kJ_TBNYU8SRZopsH302CGsVYdYW1Z1_NhFbI4KJeyuGlnGKPHYStwhbldr1bCK_AX_FDWtwyInuLkB_R7bro4DniOhmmCaZTzME4UpVBIlvQxTInjSIfdRT-MmwLab2eKJqSQiBo95aBDIC1Kg49GJqssyfvHq_Qagt9NNQG96oMcWlC9BZlrZiBCQPKptD7nbQ540lOzrgMMeEOZK3SvewVHSyriMYTVDRkU_hI4ctuN2ffGDrhgbRdfEIlvWgEGjg6Mh75BbzTDv-okhgyDnvkNkbwLodWS_pJh_MCTvmKiBC-aQUTdVbKQqt_-1wh1yETYBxgfK94ZkUH2qs7tgaFfJPTtTfgdDa9Xs priority: 102 providerName: Unpaywall  | 
    
| Title | Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30240442 https://www.proquest.com/docview/2252246280 https://www.proquest.com/docview/2111146584 https://pubmed.ncbi.nlm.nih.gov/PMC6150463 https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1002654&type=printable https://doaj.org/article/54f055763c3e48fba8344ba71e186817 http://dx.doi.org/10.1371/journal.pmed.1002654  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: KQ8 dateStart: 20041001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: ABDBF dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: RPM dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: 7X7 dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1549-1676 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: BENPR dateStart: 20041001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1549-1676 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0029090 issn: 1549-1277 databaseCode: M48 dateStart: 20041001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VgJeEN8rjGIQgqdsTezECRJCHdo0QC1jUFSeIsdJSqUuKUsitH-Av5s7x8mIqGAveajPqeL7tH33O0Ke26PA566fWoyJyOKpSKzAC1LLV36SBDy2HQ8LnCdT73jG38_d-RaZNrUwmFbZ2ERtqONc4Rn5PsgdYp85_ujN-oeFXaPwdrVpoSFNa4X4tYYY2yZ9B5GxeqR_cDg9OW23YMFIn7ogLpllO0KYYjom7H3Du701eCENTOq5vOOsNKZ_a7l761VebApL_86uvF5la3nxU65Wf7iuo1vkpok56bgWkttkK8nukGsTc6t-l_zCzSh1aHMOS0GosLaRgqNb0hpaNYlpdEF1-qGFbSVKKi8ZW9B1vsxKWubUXPjQswRLipfFWUFlFtOiivCwt3hFx7QAy0_VqkKIBnCcMF7jotwjs6PDL2-PLdOfwVLC46XFVRB7kWCOil3BXa6UHSiV2pJH4PU9FaUQW0jfhwjNl8xlILQOSMbIUyKGKMVl90kvy7Nkh9BYeakNoQy8FzEAHT-OIfQPAsUkhBhqNCCsYUSoDHg5fuwq1DdyAjYx9VqGyL7QsG9ArHbWugbv-A_9AfK4pUXobf1Dfr4IjSaHLk8Rt8xjiiXcTyOJnUoiKewEOw_YYkCeoISEdR1ra0DCsZ7kBQz-5pmmQPiNDPN7FrIqivDdx69XIPo8vQrRaYfopSFKc1gzJU3hBaw8Yn91KF90KBc18vkmwt0OIZgk1RneQe1o1rgIL5UXZjYas3n4aTuML8UMwCzJK6BB384xXh6QB7WCtXxiCNTHuTMgoqN6HUZ2R7Lld42ljv0QuMcGZK9V0iuJysN_f8cjcgMia51Y5Ni7pFeeV8ljiF7LaEi2xVwMjWEa6jMgeH745MNzwuHZn01Pxt9-A-yNniA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTmK8IL5XGMwgPp6yNbETJ0gT6mBTy9aCxjbtLThOUip1SVkSTf0H-LP427hLnIyICvay1_qcyr7zfdh3vyPkldnzXG67scGYCAwei8jwHC82XOVGkcdD03KwwHk0dgYn_NOZfbZCftW1MJhWWevEUlGHqcI78m2QO8Q-s9ze-_kPA7tG4etq3UJD6tYK4U4JMaYLOw6ixSWEcNnO8CPw-7Vl7e8dfxgYusuAoYTDc4MrL3QCwSwV2oLbXCnTUyo2JQ_AdjkqiMFCStcFP8OVzGaw9Rasr-coEYKtxa4RYAJWOeMeBH-ru3vjL0dNyOf1ylsexEEzTEsIXbzHhLmtZWVrDlavBEJ1bN4yjmUPgcZSdOazNFvmBv-dzblWJHO5uJSz2R-mcv8uuaN9XNqvhPIeWYmS--TWSL_iPyA_MfilFq3vfSkIMdZSUjCsU1pBuUYhDRa0THc0sI1FTuWVIGV0nk6TnOYp1Q9M9DzCEuZpdp5RmYQ0KwK8XM7e0T7NwNJQNSsQEgIMNYxXOCwPycmNcOoR6SRpEq0TGionNsF1gu8i5qDlhiGEGp6nmASXRvW6hNWM8JUGS8fFzvzyBVBA0FTtpY_s8zX7usRoZs0rsJD_0O8ijxtahPouf0gvJr7WHL7NY8RJc5hiEXfjQGJnlEAKM8JOB6bokk2UEL-qm20Ult8vJzkeg795WVIg3EeC-UQTWWSZP_x8eg2ir-PrEB21iN5qojiFPVNSF3rAziPWWIvyTYtyUiGtLyPcaBGCClSt4XU8HfUeZ_6VsoCZ9YlZPvyiGcaPYsZhEqUF0KAvwdE_75LH1QFr-MQQGJBzq0tE6-i1GNkeSabfS-x27L_AHdYlW80hvZaoPPn3OjbJ2uB4dOgfDscHT8lt8OrLpCbL3CCd_KKInoHnnAfPtXqi5NtNa8TfdjzUuw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIg1eEPcFBjOIy1PWJnbiBAmhwqhWxgqCDfUtJI5TKnVJWBJN_QP8KH4d5-RWIiroy17r41T2udo-5zuEPDUGrsMtJ9IZE4HOI6F013Yj3ZGOUi4PDdPGAufjiX14yt9PrekW-dXUwmBaZWMTS0MdJhLvyPsgd4h9ZjqDflSnRXw6GL1Of-jYQQpfWpt2GpWIHKnlBRzfslfjA-D1M9McvTt5e6jXHQZ0KWye61y6oR0IZsrQEtziUhqulJHh8wD8li2DCLyj7zgQYzg-sxhsuwlrG9hShOBnsWMEmP8rgjEX0wnFdHXYcwfl_Q4ioOmGKURdtseE0a-lZD8Ff1dCoNoW77jFsntA6yN66SLJ1gXAf-dxXi3i1F9e-IvFH05ydINcr6NbOqzE8SbZUvEtsn1cv9_fJj_x2EtN2tz4UhBfrKKk4FLntAJxVSENlrRMdNSxgUVO_ZUIZTRN5nFO84TWT0v0TGHx8jw7y6gfhzQrArxWzl7SIc3Ax1C5KBAMAlw0jFcILHfI6aXw6S7pxUmsdggNpR0ZEDTBdxFt0HTCEA4ZriuZD8GMHGiENYzwZA2TjotdeOXbn4DjUrWXHrLPq9mnEb2dlVYwIf-hf4M8bmkR5Lv8ITmfebXN8CweIUKazSRT3IkCH3uiBL4wFPY4MIRG9lBCvKpitjVV3rCcZLsM_uZJSYFAHzGqzMwvsswbf_y6AdGXySZEnztEL2qiKIE9k35d4gE7jyhjHcrnHcpZhbG-jnC3QwjGT3aGd1A7mj3OvJWZgJmNxqwfftwO40cx1zBWSQE0GEVwjMw1cq9SsJZPDCEBOTc1Ijqq12FkdySefy9R27HzAreZRvZbJd1IVO7_ex17ZBvsoPdhPDl6QK5BOF9mM5nGLunl54V6CCFzHjwqbRMl3y7bGP4Gm2LSVQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEv_IYFChiExlO6JnbshLeCmAbSCgKKtqfIcZJR0aUVSYTGKxJ_N3eOEwgUUR54i-LPTnI-2-f47jtCHnnjKORBmLuMycTluczcSES5G-owyyKeer7AAOfDqTiY8ZdHwdEWSdpYGCtB2CMulqU5yceL9px5z4pzD0mLmiPUkcek11YbrQBpWEVFwHcN7RD-HqswCukc2RYB2OsDsj2bvp4cGyJVjrkATHrG5lpIYePr_tRqb_0yNP_dZD7AV11nqf7ucHmhLlbq7LNaLH5azfYvk6-tHBonlo-jukpG-ssvFJH_V1BXyCVrDNNJ08pVspUV18j5Q9v6dfINd8nUp-0PYgrajkGXFFbgOW04X7OUJmfU-EW6mO-iouqHxpV0tYTn0WpJ7UkUPc0w1nlenpZUFSkt6wTfq3xCJ7SEJYnqRY3cEbCiQ3lD2HKDzPafv3t24NrEEa6Wglcu11EqEsl8nQaSB1xrL9I69xRPwBwROsnB6FFhCKZjqFjAYDT5oLJjoWUK5lPAbpJBsSyyHUJTLXIPbCxoF8kJ_TBNYU8SRZopsH302CGsVYdYW1Z1_NhFbI4KJeyuGlnGKPHYStwhbldr1bCK_AX_FDWtwyInuLkB_R7bro4DniOhmmCaZTzME4UpVBIlvQxTInjSIfdRT-MmwLab2eKJqSQiBo95aBDIC1Kg49GJqssyfvHq_Qagt9NNQG96oMcWlC9BZlrZiBCQPKptD7nbQ540lOzrgMMeEOZK3SvewVHSyriMYTVDRkU_hI4ctuN2ffGDrhgbRdfEIlvWgEGjg6Mh75BbzTDv-okhgyDnvkNkbwLodWS_pJh_MCTvmKiBC-aQUTdVbKQqt_-1wh1yETYBxgfK94ZkUH2qs7tgaFfJPTtTfgdDa9Xs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+2+diabetes+genetic+loci+informed+by+multi-trait+associations+point+to+disease+mechanisms+and+subtypes%3A+A+soft+clustering+analysis&rft.jtitle=PLoS+medicine&rft.au=Udler%2C+Miriam+S&rft.au=Kim%2C+Jaegil&rft.au=Marcin+von+Grotthuss&rft.au=Cole%2C+Joanne+B&rft.date=2018-09-21&rft.pub=Public+Library+of+Science&rft.issn=1549-1277&rft.eissn=1549-1676&rft.volume=15&rft.issue=9&rft.spage=e1002654&rft_id=info:doi/10.1371%2Fjournal.pmed.1002654&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-1676&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-1676&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-1676&client=summon |