Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis

Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test...

Full description

Saved in:
Bibliographic Details
Published inPLoS medicine Vol. 15; no. 9; p. e1002654
Main Authors Udler, Miriam S., Kim, Jaegil, von Grotthuss, Marcin, Bonàs-Guarch, Sílvia, Cole, Joanne B., Chiou, Joshua, Boehnke, Michael, Laakso, Markku, Atzmon, Gil, Glaser, Benjamin, Mercader, Josep M., Gaulton, Kyle, Flannick, Jason, Getz, Gad, Florez, Jose C.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 21.09.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1549-1676
1549-1277
1549-1676
DOI10.1371/journal.pmed.1002654

Cover

Abstract Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.
AbstractList Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. Methods and findings In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Conclusion Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.
Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.
Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. Methods and findings In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), “lipodystrophy-like” fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Conclusion Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.
Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D.BACKGROUNDType 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D.In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry.METHODS AND FINDINGSIn an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry.Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.CONCLUSIONOur approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.
Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D. In an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry. Our approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.
BackgroundType 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper, we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four separate subsets of individuals with T2D.Methods and findingsIn an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization (bNMF) clustering to genome-wide association study (GWAS) results for 94 independent T2D genetic variants and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta cell function, differing from each other by high versus low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity mediated (high body mass index [BMI] and waist circumference [WC]), "lipodystrophy-like" fat distribution (low BMI, adiponectin, and high-density lipoprotein [HDL] cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster genetic risk scores were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease (CAD), and stroke. We evaluated the potential for clinical impact of these clusters in four studies containing individuals with T2D (Metabolic Syndrome in Men Study [METSIM], N = 487; Ashkenazi, N = 509; Partners Biobank, N = 2,065; UK Biobank [UKBB], N = 14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with approximately 30% of all individuals assigned to just one cluster top decile. Limitations of this study include that the genetic variants used in the cluster analysis were restricted to those associated with T2D in populations of European ancestry.ConclusionOur approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports the use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.
Using a clustering Bayesian approach applied to GWAS, Jose Florez and colleagues identify traits and loci associated with type 2 diabetes that may be used to classify patients.
Audience Academic
Author Flannick, Jason
Cole, Joanne B.
Boehnke, Michael
Mercader, Josep M.
Glaser, Benjamin
Atzmon, Gil
Gaulton, Kyle
von Grotthuss, Marcin
Chiou, Joshua
Udler, Miriam S.
Bonàs-Guarch, Sílvia
Kim, Jaegil
Florez, Jose C.
Laakso, Markku
Getz, Gad
AuthorAffiliation 1 Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
5 Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain
12 Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
4 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
13 Department of Genetics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
9 Faculty of Natural Sciences, University of Haifa, Haifa, Israel
7 Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
2 Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
10 Department of Medicine; Albert Einstein College of Medicine, Bronx, New York, United
AuthorAffiliation_xml – name: University of Cambridge, UNITED KINGDOM
– name: 9 Faculty of Natural Sciences, University of Haifa, Haifa, Israel
– name: 10 Department of Medicine; Albert Einstein College of Medicine, Bronx, New York, United States of America
– name: 4 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
– name: 11 Department of Genetics, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
– name: 2 Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
– name: 8 Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
– name: 12 Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
– name: 13 Department of Genetics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
– name: 7 Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
– name: 1 Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
– name: 6 Department of Pediatrics, University of California San Diego, San Diego, California, United States of America
– name: 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
– name: 5 Barcelona Supercomputing Center (BSC), Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona, Spain
Author_xml – sequence: 1
  givenname: Miriam S.
  orcidid: 0000-0003-3824-9162
  surname: Udler
  fullname: Udler, Miriam S.
– sequence: 2
  givenname: Jaegil
  surname: Kim
  fullname: Kim, Jaegil
– sequence: 3
  givenname: Marcin
  surname: von Grotthuss
  fullname: von Grotthuss, Marcin
– sequence: 4
  givenname: Sílvia
  surname: Bonàs-Guarch
  fullname: Bonàs-Guarch, Sílvia
– sequence: 5
  givenname: Joanne B.
  orcidid: 0000-0001-9520-2788
  surname: Cole
  fullname: Cole, Joanne B.
– sequence: 6
  givenname: Joshua
  orcidid: 0000-0002-4618-0647
  surname: Chiou
  fullname: Chiou, Joshua
– sequence: 7
  givenname: Michael
  surname: Boehnke
  fullname: Boehnke, Michael
– sequence: 8
  givenname: Markku
  surname: Laakso
  fullname: Laakso, Markku
– sequence: 9
  givenname: Gil
  surname: Atzmon
  fullname: Atzmon, Gil
– sequence: 10
  givenname: Benjamin
  surname: Glaser
  fullname: Glaser, Benjamin
– sequence: 11
  givenname: Josep M.
  orcidid: 0000-0001-8494-3660
  surname: Mercader
  fullname: Mercader, Josep M.
– sequence: 12
  givenname: Kyle
  surname: Gaulton
  fullname: Gaulton, Kyle
– sequence: 13
  givenname: Jason
  surname: Flannick
  fullname: Flannick, Jason
– sequence: 14
  givenname: Gad
  surname: Getz
  fullname: Getz, Gad
– sequence: 15
  givenname: Jose C.
  orcidid: 0000-0002-1730-9325
  surname: Florez
  fullname: Florez, Jose C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30240442$$D View this record in MEDLINE/PubMed
BookMark eNqVk9tu1DAQhiNURA_wBggsISG42MVOHCfpBVJVcahUUQkKt9bEcXZdOfY24wD7Ajw3zu626lYrUZKLRONv_hnP4TDZc97pJHnO6JRlBXt35YfegZ0uOt1MGaWpyPmj5IDlvJowUYi9O__7ySHiVWQqWtEnyX5GU045Tw-SP5fLhSYpaQzUOmgkM-10MIpYrwwxrvV91Cf1knSDDWYSejCBAGI8hmC8Q7LwxgUSfNRADahJp9UcnMEOCbiG4FCHGASPyQlB3wai7IBB98bN4jnYJRp8mjxuwaJ-tvkeJd8_frg8_Tw5v_h0dnpyPlGF4GHCVdWIushS1eQFz7lSrFKqZcBrIZhQdcsYhbIUjJaQ5ZmGJq1KToUqmorRPDtKXq51F9aj3JQQZZrmacpFWtJInK2JxsOVXPSmg34pPRi5Mvh-JqGPBbJa5ryleV6ITGWal20NZcZ5DQXTrBQlK6JWvtYa3AKWv8DaW0FG5djFmxTk2EW56WL0e7_JcqijXWkXy263ktk-cWYuZ_6nFCynXGRR4M1GoPfXg8YgO4NKWwtO-yHel8WHi7wcY726h-6uyoaaQbz4OBYxrhpF5cmqBKLKRq3JDmqcqJhknN7WRPMWP93Bx7fRnVE7Hd5uOUQm6N9hBgOiPPv29T_YLw9nL35ss6_vsHMNNszR22G1DNvgi7tdvG3fzfJF4HgNqN4j9rqVyoTVUo1bZv81I_ye84NG6y_qzVYO
CitedBy_id crossref_primary_10_1210_clinem_dgaa628
crossref_primary_10_1371_journal_pmed_1003132
crossref_primary_10_1016_j_metabol_2019_153974
crossref_primary_10_1210_clinem_dgab838
crossref_primary_10_3389_fendo_2022_1120555
crossref_primary_10_1177_1932296819894295
crossref_primary_10_1016_j_lansea_2023_100182
crossref_primary_10_1016_j_molmet_2020_101015
crossref_primary_10_2147_DMSO_S390752
crossref_primary_10_1146_annurev_genom_120319_095026
crossref_primary_10_1038_s41598_023_46910_6
crossref_primary_10_1016_j_eclinm_2019_07_007
crossref_primary_10_1016_S2213_8587_23_00159_6
crossref_primary_10_1016_j_ajhg_2024_05_018
crossref_primary_10_1371_journal_pgen_1008009
crossref_primary_10_1007_s40618_024_02512_1
crossref_primary_10_1007_s00125_024_06099_3
crossref_primary_10_1210_clinem_dgab391
crossref_primary_10_1007_s11892_020_01330_y
crossref_primary_10_1111_dme_15226
crossref_primary_10_1007_s11892_019_1169_7
crossref_primary_10_1038_s41574_021_00475_4
crossref_primary_10_1186_s12933_023_01923_3
crossref_primary_10_2337_db21_0804
crossref_primary_10_1007_s40619_022_01146_w
crossref_primary_10_1155_2023_6955723
crossref_primary_10_3389_fmed_2025_1555077
crossref_primary_10_1161_CIRCRESAHA_119_316065
crossref_primary_10_1093_ije_dyaa062
crossref_primary_10_1093_jbmrpl_ziae003
crossref_primary_10_1007_s11892_019_1173_y
crossref_primary_10_1093_hmg_ddad194
crossref_primary_10_1038_s41467_025_56695_z
crossref_primary_10_12677_ACM_2024_141019
crossref_primary_10_1152_physrev_00015_2022
crossref_primary_10_1093_bioinformatics_btaa778
crossref_primary_10_3389_fnut_2024_1376098
crossref_primary_10_1007_s00125_020_05246_w
crossref_primary_10_1371_journal_pcbi_1008915
crossref_primary_10_1371_journal_pone_0278759
crossref_primary_10_1038_s41591_024_03317_8
crossref_primary_10_1186_s13073_022_01036_8
crossref_primary_10_1007_s11892_020_01340_w
crossref_primary_10_1038_s41467_022_30931_2
crossref_primary_10_1016_j_numecd_2023_12_026
crossref_primary_10_1016_j_jacc_2021_03_346
crossref_primary_10_1038_s41591_023_02502_5
crossref_primary_10_1007_s12650_022_00898_9
crossref_primary_10_1002_oby_24137
crossref_primary_10_1016_j_cmet_2022_09_013
crossref_primary_10_1016_j_jcjd_2021_09_126
crossref_primary_10_2337_db20_0602
crossref_primary_10_2337_dc21_1395
crossref_primary_10_1016_S2213_8587_23_00086_4
crossref_primary_10_1210_clinem_dgae680
crossref_primary_10_1016_j_metabol_2022_155240
crossref_primary_10_1136_bmjdrc_2021_002298
crossref_primary_10_1177_20552076231203879
crossref_primary_10_1007_s00125_020_05211_7
crossref_primary_10_2174_0929867329666220802090446
crossref_primary_10_1038_s42255_024_01140_6
crossref_primary_10_1016_j_dsx_2023_102936
crossref_primary_10_1097_NT_0000000000000360
crossref_primary_10_2337_db23_0699
crossref_primary_10_1038_s42255_022_00731_5
crossref_primary_10_1016_j_ecoenv_2024_116948
crossref_primary_10_2337_db23_0575
crossref_primary_10_1111_cge_13772
crossref_primary_10_2337_dci20_0022
crossref_primary_10_1038_s41598_024_59747_4
crossref_primary_10_1161_CIR_0000000000001077
crossref_primary_10_3389_fendo_2022_860274
crossref_primary_10_3390_cells9010246
crossref_primary_10_1016_j_medntd_2023_100253
crossref_primary_10_1038_s41467_020_20585_3
crossref_primary_10_1186_s13073_020_00797_4
crossref_primary_10_1016_j_tig_2021_07_005
crossref_primary_10_1212_WNL_0000000000011555
crossref_primary_10_1111_dme_14982
crossref_primary_10_1016_j_heliyon_2024_e32063
crossref_primary_10_1007_s00592_023_02230_9
crossref_primary_10_1080_13102818_2019_1664321
crossref_primary_10_2337_dci21_0051
crossref_primary_10_2337_db23_0447
crossref_primary_10_1038_s41574_020_0325_0
crossref_primary_10_1161_CIRCGEN_121_003583
crossref_primary_10_1158_1055_9965_EPI_20_1245
crossref_primary_10_1002_alz_13069
crossref_primary_10_1016_j_tig_2020_09_009
crossref_primary_10_1038_s41588_021_00852_9
crossref_primary_10_1038_s41588_024_01782_y
crossref_primary_10_2337_dbi20_0034
crossref_primary_10_3389_fendo_2021_802114
crossref_primary_10_1007_s00125_024_06097_5
crossref_primary_10_1016_j_hsr_2024_100190
crossref_primary_10_1007_s00125_020_05181_w
crossref_primary_10_1038_s41591_020_01208_2
crossref_primary_10_12688_wellcomeopenres_16251_1
crossref_primary_10_1016_j_ajhg_2023_10_002
crossref_primary_10_2337_dc21_2048
crossref_primary_10_4093_jkd_2023_24_4_210
crossref_primary_10_1186_s13073_023_01255_7
crossref_primary_10_3390_jcm14030678
crossref_primary_10_1007_s40265_022_01774_4
crossref_primary_10_2337_db18_0203
crossref_primary_10_1016_j_tem_2020_05_007
crossref_primary_10_1007_s00125_021_05625_x
crossref_primary_10_1055_a_2304_8090
crossref_primary_10_1007_s00125_019_4909_y
crossref_primary_10_2139_ssrn_4093571
crossref_primary_10_1007_s00125_021_05575_4
crossref_primary_10_1038_s41467_020_18581_8
crossref_primary_10_1002_gepi_22440
crossref_primary_10_1371_journal_pmed_1003972
crossref_primary_10_1038_s41586_024_07019_6
crossref_primary_10_1093_jnci_djae349
crossref_primary_10_1038_s41598_024_55313_0
crossref_primary_10_1007_s11910_020_01085_9
crossref_primary_10_1016_j_cmet_2023_09_013
crossref_primary_10_1016_j_diabres_2024_111817
crossref_primary_10_1136_bmjdrc_2020_001550
crossref_primary_10_7554_eLife_82674
crossref_primary_10_1210_clinem_dgaa962
crossref_primary_10_1210_er_2019_00088
crossref_primary_10_1016_j_lana_2024_100732
crossref_primary_10_1093_aje_kwad080
crossref_primary_10_1371_journal_pmed_1003989
crossref_primary_10_1007_s10462_024_11020_w
crossref_primary_10_1016_j_banm_2020_03_007
crossref_primary_10_3389_fgene_2022_871260
crossref_primary_10_1007_s00125_019_4823_3
crossref_primary_10_47134_ppm_v1i1_107
crossref_primary_10_1007_s00125_022_05848_6
crossref_primary_10_1007_s13300_024_01667_7
crossref_primary_10_1111_age_12799
crossref_primary_10_1371_journal_pmed_1003981
crossref_primary_10_1007_s11428_020_00698_5
crossref_primary_10_1038_s41591_024_02865_3
crossref_primary_10_1016_j_ajhg_2020_10_009
crossref_primary_10_1210_clinem_dgae516
crossref_primary_10_1038_s41591_022_01790_7
crossref_primary_10_1016_j_cell_2019_02_024
crossref_primary_10_1210_js_2019_00065
crossref_primary_10_1038_s41591_024_03284_0
crossref_primary_10_1016_S2213_2600_21_00510_5
crossref_primary_10_1155_2023_8883199
crossref_primary_10_1210_endrev_bnab021
crossref_primary_10_1016_S2213_8587_24_00339_5
crossref_primary_10_1007_s10142_022_00881_5
crossref_primary_10_1038_s41586_019_1879_7
crossref_primary_10_1210_clinem_dgad664
crossref_primary_10_1530_EJE_22_0020
crossref_primary_10_2337_dbi20_0004
crossref_primary_10_1007_s00125_022_05741_2
crossref_primary_10_1016_j_omtn_2020_03_011
crossref_primary_10_2337_dbi20_0001
crossref_primary_10_3390_ijms24076047
crossref_primary_10_1016_j_xgen_2023_100346
crossref_primary_10_1093_ije_dyz040
crossref_primary_10_1016_j_ecl_2020_07_007
crossref_primary_10_1038_s41588_021_00948_2
crossref_primary_10_1007_s11428_023_01006_7
crossref_primary_10_2337_dc20_2372
crossref_primary_10_1038_s43856_023_00360_3
crossref_primary_10_1146_annurev_nutr_082018_124258
crossref_primary_10_1038_s41588_022_01269_8
crossref_primary_10_1038_s41588_024_01933_1
crossref_primary_10_1055_a_1877_9587
crossref_primary_10_1371_journal_pone_0304036
crossref_primary_10_26508_lsa_202000825
crossref_primary_10_1210_endrev_bnac021
crossref_primary_10_1136_bmjdrc_2024_004493
crossref_primary_10_1111_bph_16355
crossref_primary_10_1371_journal_pgen_1009975
crossref_primary_10_1111_fcp_12851
crossref_primary_10_1038_s41576_020_0268_2
crossref_primary_10_1038_s41591_019_0727_5
crossref_primary_10_1038_s41366_023_01369_3
crossref_primary_10_1111_1753_0407_13260
crossref_primary_10_1016_j_jdiacomp_2021_107915
crossref_primary_10_1038_s41576_022_00519_z
crossref_primary_10_1016_j_ajhg_2023_09_015
crossref_primary_10_1016_j_diabres_2021_109188
crossref_primary_10_1038_s41439_021_00156_8
crossref_primary_10_2337_dc21_0464
crossref_primary_10_1016_j_isci_2024_109815
crossref_primary_10_1038_s41581_020_0278_5
crossref_primary_10_1210_clinem_dgab545
crossref_primary_10_1016_S2213_8587_23_00384_4
crossref_primary_10_1038_s41467_025_57452_y
crossref_primary_10_1038_s41591_022_01791_6
crossref_primary_10_1038_s41574_019_0308_1
crossref_primary_10_1002_dmrr_3295
crossref_primary_10_1007_s00125_020_05292_4
crossref_primary_10_1007_s13205_023_03575_2
crossref_primary_10_1016_j_diabet_2022_101409
crossref_primary_10_2337_db23_0761
crossref_primary_10_1093_advances_nmab040
crossref_primary_10_1016_j_jpeds_2022_05_044
crossref_primary_10_1210_clinem_dgac632
crossref_primary_10_1210_jc_2019_01104
crossref_primary_10_1007_s00125_022_05721_6
crossref_primary_10_1038_s41591_020_1116_9
crossref_primary_10_1007_s11892_020_01297_w
crossref_primary_10_2337_db21_0777
crossref_primary_10_1007_s00125_025_06403_9
crossref_primary_10_1038_s41575_019_0212_0
crossref_primary_10_1016_j_bbe_2023_12_004
crossref_primary_10_1111_eci_13890
crossref_primary_10_1007_s11892_024_01533_7
crossref_primary_10_1210_clinem_dgae844
crossref_primary_10_1016_S2213_8587_23_00165_1
crossref_primary_10_4239_wjd_v12_i10_1778
crossref_primary_10_1007_s13300_021_01065_3
crossref_primary_10_1007_s00125_022_05732_3
crossref_primary_10_1111_evj_14128
crossref_primary_10_1136_bmjdrc_2020_001869
crossref_primary_10_1016_j_ecl_2021_05_011
crossref_primary_10_1038_s41588_023_01346_6
crossref_primary_10_1371_journal_pgen_1009713
crossref_primary_10_1016_j_jmb_2019_12_038
crossref_primary_10_1038_s41586_019_1797_8
crossref_primary_10_2139_ssrn_4169813
crossref_primary_10_2337_dc20_2700
crossref_primary_10_1016_j_trsl_2022_03_008
crossref_primary_10_3389_fendo_2024_1293292
crossref_primary_10_1515_ijb_2019_0108
crossref_primary_10_1210_endocr_bqaa017
crossref_primary_10_1038_s41574_023_00898_1
crossref_primary_10_1016_j_ajhg_2023_01_002
crossref_primary_10_1038_s41588_019_0550_4
crossref_primary_10_1007_s00125_023_05922_7
crossref_primary_10_1007_s00125_024_06309_y
crossref_primary_10_1016_j_metop_2024_100287
crossref_primary_10_1186_s40478_021_01176_9
crossref_primary_10_1016_j_isci_2020_101566
crossref_primary_10_1038_s42255_023_00970_0
crossref_primary_10_1111_pin_13458
crossref_primary_10_1038_s41467_019_11456_7
crossref_primary_10_1080_23808993_2021_1970526
crossref_primary_10_1016_j_ajhg_2020_03_011
crossref_primary_10_3233_JAD_231252
crossref_primary_10_1007_s00125_020_05228_y
crossref_primary_10_1007_s11428_020_00665_0
crossref_primary_10_1038_s41588_022_01261_2
crossref_primary_10_1002_dmrr_3192
crossref_primary_10_1002_gepi_22582
crossref_primary_10_1007_s40200_021_00894_0
crossref_primary_10_1007_s11892_019_1137_2
crossref_primary_10_1016_j_xcrm_2021_100477
crossref_primary_10_12688_wellcomeopenres_16097_3
crossref_primary_10_1016_j_diabres_2019_107915
crossref_primary_10_1016_S2213_8587_21_00287_4
crossref_primary_10_12688_wellcomeopenres_16097_2
crossref_primary_10_3389_fphys_2019_00107
crossref_primary_10_1016_j_ajhg_2022_04_003
crossref_primary_10_1007_s00125_020_05245_x
crossref_primary_10_1186_s13098_022_00883_0
crossref_primary_10_1038_s42255_023_00770_6
crossref_primary_10_1186_s12864_022_08654_x
crossref_primary_10_1038_s41573_021_00337_8
crossref_primary_10_1002_ctm2_70076
crossref_primary_10_1186_s12916_024_03256_8
crossref_primary_10_1007_s00125_021_05567_4
crossref_primary_10_2337_dci19_0068
crossref_primary_10_1371_journal_pmed_1003209
crossref_primary_10_1210_clinem_dgad257
crossref_primary_10_1007_s00125_021_05639_5
crossref_primary_10_1016_j_coph_2020_10_020
crossref_primary_10_1038_s41574_023_00836_1
crossref_primary_10_1016_j_cmet_2023_03_001
crossref_primary_10_2337_db22_0954
crossref_primary_10_1016_j_arcmed_2024_103128
crossref_primary_10_1002_art_42246
crossref_primary_10_1038_s41588_023_01522_8
crossref_primary_10_1007_s00125_021_05386_7
crossref_primary_10_1007_s11892_019_1230_6
crossref_primary_10_1007_s13340_024_00783_w
crossref_primary_10_1016_j_ajhg_2022_12_017
crossref_primary_10_4093_jkd_2022_23_2_77
crossref_primary_10_1016_j_envpol_2023_122541
crossref_primary_10_1016_j_molmet_2021_101209
crossref_primary_10_1055_a_1214_5618
crossref_primary_10_1038_s41588_022_01090_3
crossref_primary_10_1002_jgc4_1744
crossref_primary_10_1007_s00125_022_05769_4
crossref_primary_10_1038_s41467_022_34754_z
crossref_primary_10_1038_s42255_023_00943_3
crossref_primary_10_1371_journal_pmed_1003219
crossref_primary_10_1016_j_cmet_2023_03_018
crossref_primary_10_1007_s11657_021_00970_1
crossref_primary_10_1002_cpt_1484
crossref_primary_10_1016_S2213_8587_19_30087_7
crossref_primary_10_1007_s12223_020_00789_2
crossref_primary_10_1093_eurheartj_ehae746
crossref_primary_10_21518_2079_701X_2022_16_10_46_56
crossref_primary_10_1016_j_metabol_2023_155514
crossref_primary_10_1016_j_jbi_2024_104650
crossref_primary_10_1038_s41467_024_55761_2
crossref_primary_10_1016_j_ebiom_2025_105609
crossref_primary_10_1016_j_cell_2021_02_012
crossref_primary_10_1016_j_cell_2024_10_045
crossref_primary_10_1002_pdi_2419
crossref_primary_10_1016_S2213_8587_23_00232_2
crossref_primary_10_1007_s10637_021_01148_9
crossref_primary_10_1042_BCJ20230321
crossref_primary_10_1007_s00125_023_05887_7
crossref_primary_10_1017_pcm_2023_12
crossref_primary_10_1038_s41591_021_01418_2
crossref_primary_10_1101_gr_268482_120
crossref_primary_10_1080_02648725_2023_2199238
crossref_primary_10_1007_s11892_022_01485_w
crossref_primary_10_3389_fendo_2021_681356
crossref_primary_10_1007_s11428_023_01013_8
crossref_primary_10_1146_annurev_med_050219_034524
crossref_primary_10_1210_clinem_dgaa435
crossref_primary_10_1016_j_dsx_2023_102850
crossref_primary_10_1111_joim_13330
crossref_primary_10_1038_s42255_023_00807_w
crossref_primary_10_2337_db20_0772
crossref_primary_10_3389_fendo_2021_694893
crossref_primary_10_1093_hmg_ddad093
Cites_doi 10.1109/TPAMI.2012.240
10.1038/ng.3300
10.3390/jpm6010005
10.1038/nmeth.1906
10.2337/db16-0962
10.1093/hmg/ddv264
10.1128/MCB.25.9.3752-3762.2005
10.1038/ng.520
10.1038/nature10405
10.1371/journal.pgen.1004235
10.1038/ng.521
10.1093/hmg/ddu510
10.1371/journal.pgen.1002607
10.1086/519024
10.2337/db11-0415
10.1038/ng.3097
10.2337/db16-0199
10.1073/pnas.1621192114
10.1126/scitranslmed.aaa9364
10.1161/CIRCGENETICS.112.964619
10.1038/ng.3437
10.1038/ng.3557
10.1038/nature19806
10.1038/ng.2901
10.1194/jlr.M052456
10.1038/nature18642
10.1038/s41467-017-02380-9
10.1371/journal.pgen.1002193
10.2337/db11-1516
10.1016/j.cell.2017.09.007
10.1038/ng.2383
10.1038/nature14177
10.2337/db15-1671
10.1212/WNL.0000000000002528
10.1093/jamia/ocv034
10.1371/journal.pone.0018743
10.1038/ncomms9866
10.1073/pnas.1323785111
10.1097/MOL.0000000000000155
10.2337/db14-0318
10.1371/journal.pgen.1001324
10.1007/s11892-017-0957-1
10.1074/jbc.M116.719955
10.1038/nmeth.2307
10.2337/diabetes.50.3.681
10.2337/db08-1607
10.1038/nature15393
10.1002/hep.27242
10.1038/ng.3643
10.1038/ng.3656
10.1002/bies.201100015
10.1371/journal.pone.0162388
10.1038/ng.3738
10.1038/ng.2274
10.1161/CIRCGENETICS.113.000208
10.1038/ng.2610
10.1038/ncomms10494
10.1038/nature14962
10.1038/s41588-018-0084-1
10.1038/ng.2500
10.2337/db13-0949
10.1038/ncomms10495
10.1016/j.bbrc.2008.03.091
10.1038/nature14132
10.1038/ng.784
10.1016/j.ajhg.2017.01.011
10.2337/db10-0502
10.1038/ncomms10023
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Udler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Udler et al 2018 Udler et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Udler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Udler et al 2018 Udler et al
CorporateAuthor Christopher D. Anderson on behalf of METASTROKE and the ISGC
CorporateAuthor_xml – name: Christopher D. Anderson on behalf of METASTROKE and the ISGC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
3V.
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
CZK
DOI 10.1371/journal.pmed.1002654
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
PLoS Medicine
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList





Publicly Available Content Database

MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Clustering analysis of T2D loci-trait associations points to disease mechanisms and subtypes
EISSN 1549-1676
ExternalDocumentID 2252246280
oai_doaj_org_article_54f055763c3e48fba8344ba71e186817
10.1371/journal.pmed.1002654
PMC6150463
A557636934
30240442
10_1371_journal_pmed_1002654
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations New York
Israel
California
United States--US
Massachusetts
Spain
GeographicLocations_xml – name: Israel
– name: New York
– name: Spain
– name: California
– name: United States--US
– name: Massachusetts
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: L30 DK106874
– fundername: NIDDK NIH HHS
  grantid: P30 DK020572
– fundername: NIDDK NIH HHS
  grantid: K23 DK114551
– fundername: NIDDK NIH HHS
  grantid: R01 DK062370
– fundername: NINDS NIH HHS
  grantid: K23 NS086873
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: NIDDK NIH HHS
  grantid: R56 DK062370
– fundername: NIDDK NIH HHS
  grantid: T32 DK007028
– fundername: NIDDK NIH HHS
  grantid: K24 DK110550
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: ;
  grantid: 1K23DK114551-01
– fundername: ;
  grantid: DK062370
– fundername: ;
  grantid: 1K23NS086873-04
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
IHW
INH
INR
IOF
IOV
IPO
ISN
ISR
ITC
KQ8
M1P
M48
MK0
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
ADXHL
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
BCGST
CZK
ICW
M~E
ID FETCH-LOGICAL-c764t-4c9d6b732cd57454cc19ccf1a4b6616cbf110a886108a353ead298406c7d91053
IEDL.DBID BENPR
ISSN 1549-1676
1549-1277
IngestDate Sun Aug 06 00:45:55 EDT 2023
Fri Oct 03 12:47:25 EDT 2025
Sun Oct 26 04:05:07 EDT 2025
Tue Sep 30 16:27:44 EDT 2025
Thu Sep 04 17:06:54 EDT 2025
Tue Oct 07 06:46:44 EDT 2025
Mon Oct 20 22:02:17 EDT 2025
Thu Jun 12 23:45:22 EDT 2025
Mon Oct 20 16:08:39 EDT 2025
Thu Oct 16 15:26:44 EDT 2025
Thu Oct 16 13:53:51 EDT 2025
Thu Oct 16 15:17:56 EDT 2025
Thu May 22 21:19:58 EDT 2025
Mon Jul 21 06:08:07 EDT 2025
Wed Oct 01 03:57:42 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c764t-4c9d6b732cd57454cc19ccf1a4b6616cbf110a886108a353ead298406c7d91053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-9520-2788
0000-0001-8494-3660
0000-0002-1730-9325
0000-0003-3824-9162
0000-0002-4618-0647
OpenAccessLink https://www.proquest.com/docview/2252246280?pq-origsite=%requestingapplication%&accountid=15518
PMID 30240442
PQID 2252246280
PQPubID 1436338
ParticipantIDs plos_journals_2252246280
doaj_primary_oai_doaj_org_article_54f055763c3e48fba8344ba71e186817
unpaywall_primary_10_1371_journal_pmed_1002654
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6150463
proquest_miscellaneous_2111146584
proquest_journals_2252246280
gale_infotracmisc_A557636934
gale_infotracgeneralonefile_A557636934
gale_infotracacademiconefile_A557636934
gale_incontextgauss_ISR_A557636934
gale_incontextgauss_ISN_A557636934
gale_incontextgauss_IOV_A557636934
gale_healthsolutions_A557636934
pubmed_primary_30240442
crossref_citationtrail_10_1371_journal_pmed_1002654
crossref_primary_10_1371_journal_pmed_1002654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180921
PublicationDateYYYYMMDD 2018-09-21
PublicationDate_xml – month: 9
  year: 2018
  text: 20180921
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS medicine
PublicationTitleAlternate PLoS Med
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References AR Wood (ref26) 2014; 46
AE Locke (ref24) 2015; 518
C Genomes Project (ref56) 2015; 526
E Ahlqvist (ref4) 2018
A Bonnefond (ref60) 2017; 17
(ref2) 2018; 41
H Yaghootkar (ref64) 2016; 65
H Mahdessian (ref66) 2014; 111
EK Speliotes (ref65) 2011; 7
C Pattaro (ref42) 2016; 7
S Yu (ref54) 2015; 22
VY Tan (ref12) 2013; 35
I Surakka (ref32) 2015; 47
N Soranzo (ref21) 2010; 59
AH Rosengren (ref61) 2012; 61
A Varshney (ref46) 2017; 114
J Wakefield (ref44) 2007; 81
RJ van der Valk (ref28) 2015; 24
KL Mohlke (ref5) 2015; 24
I Prokopenko (ref19) 2014; 10
UK Consortium (ref57) 2015; 526
J Kim (ref13) 2016; 48
S Das (ref50) 2016; 48
C Fuchsberger (ref48) 2016; 536
I Blech (ref52) 2011; 6
M den Hoed (ref31) 2013; 45
RN Lemaitre (ref36) 2011; 7
Z Dastani (ref34) 2012; 8
T Hishida (ref73) 2008; 370
JW Smoller (ref53) 2016; 6
Z Pappalardo (ref63) 2017; 66
AK Manning (ref17) 2012; 44
O Delaneau (ref55) 2013; 10
RA Scott (ref6) 2017
AS Dimas (ref11) 2014; 63
A Raimondo (ref69) 2015; 26
H Schunkert (ref41) 2011; 43
J Dupuis (ref23) 2010; 42
ref1
JH Wu (ref38) 2013; 6
RJ Strawbridge (ref20) 2011; 60
A Mahajan (ref9) 2018; 50
SV Eastwood (ref59) 2016; 11
GA Walford (ref18) 2016; 65
J Kozlitina (ref67) 2014; 46
E Smagris (ref68) 2016; 291
A Stancakova (ref47) 2009; 58
AY Chu (ref29) 2017; 49
JA Kushner (ref72) 2005; 25
AP Morris (ref16) 2012; 44
W Guan (ref37) 2014; 7
E Smagris (ref70) 2015; 61
A Kottgen (ref35) 2013; 45
H Yaghootkar (ref10) 2014; 63
GB Ehret (ref43) 2011; 478
J Ernst (ref45) 2012; 9
Y Lu (ref30) 2016; 7
MA Permutt (ref51) 2001; 50
AG Robertson (ref15) 2017; 171
KJ Gaulton (ref8) 2015; 47
RN Lemaitre (ref39) 2015; 56
R Malik (ref40) 2016; 86
S McCarthy (ref49) 2016; 48
A Mahajan (ref74) 2018
R Saxena (ref22) 2010; 42
C Bycroft (ref58) 2017
ME Arntfield (ref71) 2011; 33
D Shungin (ref25) 2015; 518
S Kasar (ref14) 2015; 6
M Horikoshi (ref27) 2016; 538
GR Carrat (ref62) 2017; 100
S Bonas-Guarch (ref7) 2018; 9
L Li (ref3) 2015; 7
TO Kilpelainen (ref33) 2016; 7
References_xml – ident: ref1
– volume: 35
  start-page: 1592
  issue: 7
  year: 2013
  ident: ref12
  article-title: Automatic relevance determination in nonnegative matrix factorization with the beta-divergence
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.240
– volume: 47
  start-page: 589
  issue: 6
  year: 2015
  ident: ref32
  article-title: The impact of low-frequency and rare variants on lipid levels
  publication-title: Nat Genet
  doi: 10.1038/ng.3300
– year: 2018
  ident: ref4
  article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
  publication-title: Lancet Diabetes Endocrinol
– volume: 6
  issue: 1
  year: 2016
  ident: ref53
  article-title: An eMERGE Clinical Center at Partners Personalized Medicine
  publication-title: J Pers Med
  doi: 10.3390/jpm6010005
– volume: 9
  start-page: 215
  issue: 3
  year: 2012
  ident: ref45
  article-title: ChromHMM: automating chromatin-state discovery and characterization
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1906
– year: 2017
  ident: ref58
  article-title: Genome-wide genetic data on ~500,000 UK Biobank participants
  publication-title: bioRxiv
– volume: 66
  start-page: 1703
  issue: 6
  year: 2017
  ident: ref63
  article-title: A Whole-Genome RNA Interference Screen Reveals a Role for Spry2 in Insulin Transcription and the Unfolded Protein Response
  publication-title: Diabetes
  doi: 10.2337/db16-0962
– volume: 24
  start-page: R85
  issue: R1
  year: 2015
  ident: ref5
  article-title: Recent advances in understanding the genetic architecture of type 2 diabetes
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddv264
– volume: 25
  start-page: 3752
  issue: 9
  year: 2005
  ident: ref72
  article-title: Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.9.3752-3762.2005
– volume: 42
  start-page: 105
  issue: 2
  year: 2010
  ident: ref23
  article-title: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk
  publication-title: Nat Genet
  doi: 10.1038/ng.520
– volume: 478
  start-page: 103
  issue: 7367
  year: 2011
  ident: ref43
  article-title: Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
  publication-title: Nature
  doi: 10.1038/nature10405
– volume: 10
  start-page: e1004235
  issue: 4
  year: 2014
  ident: ref19
  article-title: A central role for GRB10 in regulation of islet function in man
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004235
– volume: 42
  start-page: 142
  issue: 2
  year: 2010
  ident: ref22
  article-title: Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  publication-title: Nat Genet
  doi: 10.1038/ng.521
– year: 2018
  ident: ref74
  article-title: Fine-mapping of an expanded set of type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
  publication-title: bioRxiv
– volume: 24
  start-page: 1155
  issue: 4
  year: 2015
  ident: ref28
  article-title: A novel common variant in DCST2 is associated with length in early life and height in adulthood
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddu510
– volume: 8
  start-page: e1002607
  issue: 3
  year: 2012
  ident: ref34
  article-title: Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002607
– volume: 81
  start-page: 208
  issue: 2
  year: 2007
  ident: ref44
  article-title: A Bayesian measure of the probability of false discovery in genetic epidemiology studies
  publication-title: Am J Hum Genet
  doi: 10.1086/519024
– volume: 60
  start-page: 2624
  issue: 10
  year: 2011
  ident: ref20
  article-title: Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db11-0415
– volume: 46
  start-page: 1173
  issue: 11
  year: 2014
  ident: ref26
  article-title: Defining the role of common variation in the genomic and biological architecture of adult human height
  publication-title: Nat Genet
  doi: 10.1038/ng.3097
– volume: 65
  start-page: 3200
  issue: 10
  year: 2016
  ident: ref18
  article-title: Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci
  publication-title: Diabetes
  doi: 10.2337/db16-0199
– volume: 114
  start-page: 2301
  issue: 9
  year: 2017
  ident: ref46
  article-title: Genetic regulatory signatures underlying islet gene expression and type 2 diabetes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1621192114
– volume: 7
  start-page: 311ra174
  issue: 311
  year: 2015
  ident: ref3
  article-title: Identification of type 2 diabetes subgroups through topological analysis of patient similarity
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa9364
– volume: 6
  start-page: 171
  issue: 2
  year: 2013
  ident: ref38
  article-title: Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium
  publication-title: Circulation Cardiovascular genetics
  doi: 10.1161/CIRCGENETICS.112.964619
– volume: 47
  start-page: 1415
  issue: 12
  year: 2015
  ident: ref8
  article-title: Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci
  publication-title: Nat Genet
  doi: 10.1038/ng.3437
– volume: 48
  start-page: 600
  issue: 6
  year: 2016
  ident: ref13
  article-title: Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors
  publication-title: Nat Genet
  doi: 10.1038/ng.3557
– volume: 538
  start-page: 248
  issue: 7624
  year: 2016
  ident: ref27
  article-title: Genome-wide associations for birth weight and correlations with adult disease
  publication-title: Nature
  doi: 10.1038/nature19806
– volume: 46
  start-page: 352
  issue: 4
  year: 2014
  ident: ref67
  article-title: Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease
  publication-title: Nat Genet
  doi: 10.1038/ng.2901
– volume: 56
  start-page: 176
  issue: 1
  year: 2015
  ident: ref39
  article-title: Genetic loci associated with circulating levels of very long-chain saturated fatty acids
  publication-title: J Lipid Res
  doi: 10.1194/jlr.M052456
– volume: 536
  start-page: 41
  issue: 7614
  year: 2016
  ident: ref48
  article-title: The genetic architecture of type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature18642
– volume: 9
  start-page: 321
  issue: 1
  year: 2018
  ident: ref7
  article-title: Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02380-9
– volume: 7
  start-page: e1002193
  issue: 7
  year: 2011
  ident: ref36
  article-title: Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002193
– volume: 61
  start-page: 1726
  issue: 7
  year: 2012
  ident: ref61
  article-title: Reduced Insulin Exocytosis in Human Pancreatic β-Cells With Gene Variants Linked to Type 2 Diabetes
  publication-title: Diabetes
  doi: 10.2337/db11-1516
– volume: 171
  start-page: 540
  issue: 3
  year: 2017
  ident: ref15
  article-title: Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.007
– volume: 44
  start-page: 981
  issue: 9
  year: 2012
  ident: ref16
  article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng.2383
– volume: 41
  start-page: S13
  issue: Suppl 1
  year: 2018
  ident: ref2
  article-title: 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018
  publication-title: Diabetes Care
– volume: 518
  start-page: 197
  issue: 7538
  year: 2015
  ident: ref24
  article-title: Genetic studies of body mass index yield new insights for obesity biology
  publication-title: Nature
  doi: 10.1038/nature14177
– volume: 65
  start-page: 2448
  issue: 8
  year: 2016
  ident: ref64
  article-title: Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease
  publication-title: Diabetes
  doi: 10.2337/db15-1671
– volume: 86
  start-page: 1217
  issue: 13
  year: 2016
  ident: ref40
  article-title: Low-frequency and common genetic variation in ischemic stroke: The METASTROKE collaboration
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002528
– volume: 22
  start-page: 993
  issue: 5
  year: 2015
  ident: ref54
  article-title: Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocv034
– volume: 6
  start-page: e18743
  issue: 4
  year: 2011
  ident: ref52
  article-title: Predicting diabetic nephropathy using a multifactorial genetic model
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018743
– volume: 6
  start-page: 8866
  year: 2015
  ident: ref14
  article-title: Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution
  publication-title: Nat Commun
  doi: 10.1038/ncomms9866
– volume: 111
  start-page: 8913
  issue: 24
  year: 2014
  ident: ref66
  article-title: TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1323785111
– volume: 26
  start-page: 88
  issue: 2
  year: 2015
  ident: ref69
  article-title: Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism
  publication-title: Curr Opin Lipidol
  doi: 10.1097/MOL.0000000000000155
– volume: 63
  start-page: 4369
  issue: 12
  year: 2014
  ident: ref10
  article-title: Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db14-0318
– volume: 7
  start-page: e1001324
  issue: 3
  year: 2011
  ident: ref65
  article-title: Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001324
– volume: 17
  start-page: 122
  issue: 12
  year: 2017
  ident: ref60
  article-title: Disentangling the Role of Melatonin and its Receptor MTNR1B in Type 2 Diabetes: Still a Long Way to Go?
  publication-title: Current Diabetes Reports
  doi: 10.1007/s11892-017-0957-1
– volume: 291
  start-page: 10659
  issue: 20
  year: 2016
  ident: ref68
  article-title: Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.719955
– volume: 10
  start-page: 5
  issue: 1
  year: 2013
  ident: ref55
  article-title: Improved whole-chromosome phasing for disease and population genetic studies
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2307
– volume: 50
  start-page: 681
  issue: 3
  year: 2001
  ident: ref51
  article-title: A genome scan for type 2 diabetes susceptibility loci in a genetically isolated population
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.3.681
– volume: 58
  start-page: 1212
  issue: 5
  year: 2009
  ident: ref47
  article-title: Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6,414 Finnish men
  publication-title: Diabetes
  doi: 10.2337/db08-1607
– volume: 526
  start-page: 68
  issue: 7571
  year: 2015
  ident: ref56
  article-title: A global reference for human genetic variation
  publication-title: Nature
  doi: 10.1038/nature15393
– volume: 61
  start-page: 108
  issue: 1
  year: 2015
  ident: ref70
  article-title: Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis
  publication-title: Hepatology
  doi: 10.1002/hep.27242
– volume: 48
  start-page: 1279
  issue: 10
  year: 2016
  ident: ref49
  article-title: A reference panel of 64,976 haplotypes for genotype imputation
  publication-title: Nat Genet
  doi: 10.1038/ng.3643
– volume: 48
  start-page: 1284
  issue: 10
  year: 2016
  ident: ref50
  article-title: Next-generation genotype imputation service and methods
  publication-title: Nat Genet
  doi: 10.1038/ng.3656
– volume: 33
  start-page: 582
  issue: 8
  year: 2011
  ident: ref71
  article-title: beta-Cell evolution: How the pancreas borrowed from the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may reflect their evolutionary relationship
  publication-title: Bioessays
  doi: 10.1002/bies.201100015
– volume: 11
  start-page: e0162388
  issue: 9
  year: 2016
  ident: ref59
  article-title: Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0162388
– volume: 49
  start-page: 125
  issue: 1
  year: 2017
  ident: ref29
  article-title: Multiethnic genome-wide meta-analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation
  publication-title: Nat Genet
  doi: 10.1038/ng.3738
– volume: 44
  start-page: 659
  issue: 6
  year: 2012
  ident: ref17
  article-title: A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance
  publication-title: Nat Genet
  doi: 10.1038/ng.2274
– volume: 7
  start-page: 321
  issue: 3
  year: 2014
  ident: ref37
  article-title: Genome-wide association study of plasma N6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium
  publication-title: Circulation Cardiovascular genetics
  doi: 10.1161/CIRCGENETICS.113.000208
– volume: 45
  start-page: 621
  issue: 6
  year: 2013
  ident: ref31
  article-title: Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders
  publication-title: Nat Genet
  doi: 10.1038/ng.2610
– volume: 7
  start-page: 10494
  year: 2016
  ident: ref33
  article-title: Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  publication-title: Nat Commun
  doi: 10.1038/ncomms10494
– volume: 526
  start-page: 82
  issue: 7571
  year: 2015
  ident: ref57
  article-title: The UK10K project identifies rare variants in health and disease
  publication-title: Nature
  doi: 10.1038/nature14962
– volume: 50
  start-page: 559
  issue: 4
  year: 2018
  ident: ref9
  article-title: Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0084-1
– volume: 45
  start-page: 145
  issue: 2
  year: 2013
  ident: ref35
  article-title: Genome-wide association analyses identify 18 new loci associated with serum urate concentrations
  publication-title: Nat Genet
  doi: 10.1038/ng.2500
– volume: 63
  start-page: 2158
  issue: 6
  year: 2014
  ident: ref11
  article-title: Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity
  publication-title: Diabetes
  doi: 10.2337/db13-0949
– year: 2017
  ident: ref6
  article-title: An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans
  publication-title: Diabetes
– volume: 7
  start-page: 10495
  year: 2016
  ident: ref30
  article-title: New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  publication-title: Nat Commun
  doi: 10.1038/ncomms10495
– volume: 370
  start-page: 289
  issue: 2
  year: 2008
  ident: ref73
  article-title: Crucial roles of D-type cyclins in the early stage of adipocyte differentiation
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2008.03.091
– volume: 518
  start-page: 187
  issue: 7538
  year: 2015
  ident: ref25
  article-title: New genetic loci link adipose and insulin biology to body fat distribution
  publication-title: Nature
  doi: 10.1038/nature14132
– volume: 43
  start-page: 333
  issue: 4
  year: 2011
  ident: ref41
  article-title: Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  publication-title: Nat Genet
  doi: 10.1038/ng.784
– volume: 100
  start-page: 238
  issue: 2
  year: 2017
  ident: ref62
  article-title: Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.01.011
– volume: 59
  start-page: 3229
  issue: 12
  year: 2010
  ident: ref21
  article-title: Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways
  publication-title: Diabetes
  doi: 10.2337/db10-0502
– volume: 7
  start-page: 10023
  year: 2016
  ident: ref42
  article-title: Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  publication-title: Nat Commun
  doi: 10.1038/ncomms10023
SSID ssj0029090
Score 2.6797206
Snippet Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may improve...
Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may...
Using a clustering Bayesian approach applied to GWAS, Jose Florez and colleagues identify traits and loci associated with type 2 diabetes that may be used to...
BackgroundType 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may...
Background Type 2 diabetes (T2D) is a heterogeneous disease for which (1) disease-causing pathways are incompletely understood and (2) subclassification may...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1002654
SubjectTerms Adiponectin
Algorithms
Analysis
Bayes Theorem
Bayesian analysis
Beta cells
Biological markers
Biology and Life Sciences
Biomarkers
Blood pressure
Body mass
Body mass index
Care and treatment
Cholesterol
Cluster Analysis
Cohort Studies
Coronary artery
Coronary artery disease
Cross-Sectional Studies
Databases, Genetic
Development and progression
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - classification
Diabetes Mellitus, Type 2 - genetics
Diabetics
Female
Founder Effect
Gene loci
Genetic analysis
Genetic aspects
Genetic diversity
Genetic Loci
Genetic Markers
Genetic Predisposition to Disease
Genetic variance
Genetics
Genome-wide association studies
Genome-Wide Association Study
Genomes
Heart diseases
Heterogeneity
High density lipoprotein
Hospitals
Humans
Insulin
Insulin - deficiency
Insulin - genetics
Insulin resistance
Insulin Resistance - genetics
Lipid metabolism
Lipodystrophy
Liver diseases
Male
Management
Medical treatment
Medicine
Medicine and Health Sciences
Metabolic disorders
Metabolic syndrome
Metabolism
Multigene Family
Patient care
Patients
Pediatrics
Phenotype
Phenotypes
Prospective Studies
Risk Factors
Supervision
Treatment outcome
Triglycerides
Type 2 diabetes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQHoALonw1sIBBCE5pN7Fjx9wWRFWQWiSgqLfIcZx2pW2yIomq_gF-NzOONzRipe6B6_olq3jGnmd75pmQN9FMpTxJy5AxmYe8lDZUQpVhalJrFS-iWGCB89GxODzhX06T02tXfWFOWC8P3HfcfsJLlIkSzDDL0zLXeDFErmVkUeg9cnXks1StF1N-qaVmbncF9cfCKJbSF80xGe17G-2tINo4AVKR8FFQctr9www9WS3rZhP9_DeL8k5XrfTVpV4ur4Wog_vknueWdN5_0w65ZasH5PaRPz1_SH7jopPGdL3fSsF5sIaRQkBb0F5C1RY0v6IuzTDE6yNaqv8asKGrelG1tK2pP9ihFxZLhxfNRUN1VdCmy3FTt3lP57SBGZ6aZYdSDBAgob3XP3lETg4-_fh4GPp7GEIjBW9DblQhcsliUySSJ9yYSBlTRprnEN2FyUvgEDpNgYmlmiUMnDMGD5gJIwtgIwl7TCZVXdldQgsjyggoC7wXtf7itCiA4itlmAYqYWYBYWtDZMaLlOPHLjN38iZhsdL3ZYbmy7z5AhIOT616kY4b8B_QxgMWJbbdD-B4mXe87CbHC8hL9JCsr1cdJops7h4SisHfvHYIlNmoMI_nTHdNk33--nML0PfjbUDfRqB3HlTW0GdG-wIL6HnU-Boh346QZ73C-SbgdASEqceMmndxdKz7uMkgOKBAYZyCIafrEbO5-dXQjC_FTL_K1h1gMIZz5MUBedIPsMFODAX5OI8DIkdDb2TIcUu1OHea6XjvARcsIHvDIN3KVZ7-D1d5Ru4Cz3ZpRnE0JZP2V2efA5dt8xdu2voDhZyZ4A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bjtMwELWWIgEviPsGChiElqdUTezECRJCBbFakLpIQNG-RY6TlErZJNskgv4A382M4wYiCvS1PnYVz4xnfJkzhDxzpmHAvSCzGROxzTOR2qEfZnaggjQNeeK4PiY4z0_9kwV_f-adHZDtRbuZwHrn1g7rSS3W-eT7xeYVGPxLXbVBONtOkwr8h6YU9T1-VF3YWFoKr2BNnY1L5DK4rxDrO8x5f9XghlN9EINUZbbjCmHy6_428MB_aZr_fjEfVXlZ74pU_3xwebUtKrn5JvP8N292fINcN2EonXV6c5McpMUtcmVuLtpvkx-4P6Uu3R7NUtAzTHek4PtWtGNbTRMab6h-kWhjpYmGyl-yrmlVroqGNiU1d0D0PMUs41V9XlNZJLRuYzz_rV_QGa3BGVCVt8jaAL4U2juqlDtkcfz285sT25RssJXweWNzFSZ-LJirEk9wjyvlhEpljuQxBAK-ijMIN2QQQNAWSOYx0GMXlGXqK5FA4OKxu2RUlEV6SGii_MyB6AbGRVpAN0gS2A2EoWISog41tQjbCiJShs8cPzaP9CWdgH1NN5cRii8y4rOI3feqOj6P_-Bfo4x7LLJx6x_K9TIyxh15PEMqM58plvIgiyUWL4mlcFIsRuAIizxGDYm61NZ-TYlmupMfMvibpxqBjBwFPvlZyrauo3cfvuwB-nS6D-jjAPTcgLIS5kxJk4sBM490YAPk0QC57MjQdwHHAyCsUmrQfIjWsZ3jOgI_glyGbgCCHG8tZnfzk74ZB8VHgUVatoBBd88xhLbIvc7Aejkx5O7j3LWIGJjeQJDDlmL1VdOrY4kE7jOLTHoj3UtV7v_7Ox6QaxBs67dGrjMmo2bdpg8hoG3iR3pB-gm6bJ-P
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEv_IYFChiExlO6JnbshLeCmAbSCgKKtqfIcZJR0aUVSYTGKxJ_N3eOEwgUUR54i-LPTnI-2-f47jtCHnnjKORBmLuMycTluczcSES5G-owyyKeer7AAOfDqTiY8ZdHwdEWSdpYGCtB2CMulqU5yceL9px5z4pzD0mLmiPUkcek11YbrQBpWEVFwHcN7RD-HqswCukc2RYB2OsDsj2bvp4cGyJVjrkATHrG5lpIYePr_tRqb_0yNP_dZD7AV11nqf7ucHmhLlbq7LNaLH5azfYvk6-tHBonlo-jukpG-ssvFJH_V1BXyCVrDNNJ08pVspUV18j5Q9v6dfINd8nUp-0PYgrajkGXFFbgOW04X7OUJmfU-EW6mO-iouqHxpV0tYTn0WpJ7UkUPc0w1nlenpZUFSkt6wTfq3xCJ7SEJYnqRY3cEbCiQ3lD2HKDzPafv3t24NrEEa6Wglcu11EqEsl8nQaSB1xrL9I69xRPwBwROsnB6FFhCKZjqFjAYDT5oLJjoWUK5lPAbpJBsSyyHUJTLXIPbCxoF8kJ_TBNYU8SRZopsH302CGsVYdYW1Z1_NhFbI4KJeyuGlnGKPHYStwhbldr1bCK_AX_FDWtwyInuLkB_R7bro4DniOhmmCaZTzME4UpVBIlvQxTInjSIfdRT-MmwLab2eKJqSQiBo95aBDIC1Kg49GJqssyfvHq_Qagt9NNQG96oMcWlC9BZlrZiBCQPKptD7nbQ540lOzrgMMeEOZK3SvewVHSyriMYTVDRkU_hI4ctuN2ffGDrhgbRdfEIlvWgEGjg6Mh75BbzTDv-okhgyDnvkNkbwLodWS_pJh_MCTvmKiBC-aQUTdVbKQqt_-1wh1yETYBxgfK94ZkUH2qs7tgaFfJPTtTfgdDa9Xs
  priority: 102
  providerName: Unpaywall
Title Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/30240442
https://www.proquest.com/docview/2252246280
https://www.proquest.com/docview/2111146584
https://pubmed.ncbi.nlm.nih.gov/PMC6150463
https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1002654&type=printable
https://doaj.org/article/54f055763c3e48fba8344ba71e186817
http://dx.doi.org/10.1371/journal.pmed.1002654
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: KQ8
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: ABDBF
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: RPM
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: 7X7
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1549-1676
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: BENPR
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1549-1676
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0029090
  issn: 1549-1277
  databaseCode: M48
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VgJeEN8rjGIQgqdsTezECRJCHdo0QC1jUFSeIsdJSqUuKUsitH-Av5s7x8mIqGAveajPqeL7tH33O0Ke26PA566fWoyJyOKpSKzAC1LLV36SBDy2HQ8LnCdT73jG38_d-RaZNrUwmFbZ2ERtqONc4Rn5PsgdYp85_ujN-oeFXaPwdrVpoSFNa4X4tYYY2yZ9B5GxeqR_cDg9OW23YMFIn7ogLpllO0KYYjom7H3Du701eCENTOq5vOOsNKZ_a7l761VebApL_86uvF5la3nxU65Wf7iuo1vkpok56bgWkttkK8nukGsTc6t-l_zCzSh1aHMOS0GosLaRgqNb0hpaNYlpdEF1-qGFbSVKKi8ZW9B1vsxKWubUXPjQswRLipfFWUFlFtOiivCwt3hFx7QAy0_VqkKIBnCcMF7jotwjs6PDL2-PLdOfwVLC46XFVRB7kWCOil3BXa6UHSiV2pJH4PU9FaUQW0jfhwjNl8xlILQOSMbIUyKGKMVl90kvy7Nkh9BYeakNoQy8FzEAHT-OIfQPAsUkhBhqNCCsYUSoDHg5fuwq1DdyAjYx9VqGyL7QsG9ArHbWugbv-A_9AfK4pUXobf1Dfr4IjSaHLk8Rt8xjiiXcTyOJnUoiKewEOw_YYkCeoISEdR1ra0DCsZ7kBQz-5pmmQPiNDPN7FrIqivDdx69XIPo8vQrRaYfopSFKc1gzJU3hBaw8Yn91KF90KBc18vkmwt0OIZgk1RneQe1o1rgIL5UXZjYas3n4aTuML8UMwCzJK6BB384xXh6QB7WCtXxiCNTHuTMgoqN6HUZ2R7Lld42ljv0QuMcGZK9V0iuJysN_f8cjcgMia51Y5Ni7pFeeV8ljiF7LaEi2xVwMjWEa6jMgeH745MNzwuHZn01Pxt9-A-yNniA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTmK8IL5XGMwgPp6yNbETJ0gT6mBTy9aCxjbtLThOUip1SVkSTf0H-LP427hLnIyICvay1_qcyr7zfdh3vyPkldnzXG67scGYCAwei8jwHC82XOVGkcdD03KwwHk0dgYn_NOZfbZCftW1MJhWWevEUlGHqcI78m2QO8Q-s9ze-_kPA7tG4etq3UJD6tYK4U4JMaYLOw6ixSWEcNnO8CPw-7Vl7e8dfxgYusuAoYTDc4MrL3QCwSwV2oLbXCnTUyo2JQ_AdjkqiMFCStcFP8OVzGaw9Rasr-coEYKtxa4RYAJWOeMeBH-ru3vjL0dNyOf1ylsexEEzTEsIXbzHhLmtZWVrDlavBEJ1bN4yjmUPgcZSdOazNFvmBv-dzblWJHO5uJSz2R-mcv8uuaN9XNqvhPIeWYmS--TWSL_iPyA_MfilFq3vfSkIMdZSUjCsU1pBuUYhDRa0THc0sI1FTuWVIGV0nk6TnOYp1Q9M9DzCEuZpdp5RmYQ0KwK8XM7e0T7NwNJQNSsQEgIMNYxXOCwPycmNcOoR6SRpEq0TGionNsF1gu8i5qDlhiGEGp6nmASXRvW6hNWM8JUGS8fFzvzyBVBA0FTtpY_s8zX7usRoZs0rsJD_0O8ijxtahPouf0gvJr7WHL7NY8RJc5hiEXfjQGJnlEAKM8JOB6bokk2UEL-qm20Ult8vJzkeg795WVIg3EeC-UQTWWSZP_x8eg2ir-PrEB21iN5qojiFPVNSF3rAziPWWIvyTYtyUiGtLyPcaBGCClSt4XU8HfUeZ_6VsoCZ9YlZPvyiGcaPYsZhEqUF0KAvwdE_75LH1QFr-MQQGJBzq0tE6-i1GNkeSabfS-x27L_AHdYlW80hvZaoPPn3OjbJ2uB4dOgfDscHT8lt8OrLpCbL3CCd_KKInoHnnAfPtXqi5NtNa8TfdjzUuw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIg1eEPcFBjOIy1PWJnbiBAmhwqhWxgqCDfUtJI5TKnVJWBJN_QP8KH4d5-RWIiroy17r41T2udo-5zuEPDUGrsMtJ9IZE4HOI6F013Yj3ZGOUi4PDdPGAufjiX14yt9PrekW-dXUwmBaZWMTS0MdJhLvyPsgd4h9ZjqDflSnRXw6GL1Of-jYQQpfWpt2GpWIHKnlBRzfslfjA-D1M9McvTt5e6jXHQZ0KWye61y6oR0IZsrQEtziUhqulJHh8wD8li2DCLyj7zgQYzg-sxhsuwlrG9hShOBnsWMEmP8rgjEX0wnFdHXYcwfl_Q4ioOmGKURdtseE0a-lZD8Ff1dCoNoW77jFsntA6yN66SLJ1gXAf-dxXi3i1F9e-IvFH05ydINcr6NbOqzE8SbZUvEtsn1cv9_fJj_x2EtN2tz4UhBfrKKk4FLntAJxVSENlrRMdNSxgUVO_ZUIZTRN5nFO84TWT0v0TGHx8jw7y6gfhzQrArxWzl7SIc3Ax1C5KBAMAlw0jFcILHfI6aXw6S7pxUmsdggNpR0ZEDTBdxFt0HTCEA4ZriuZD8GMHGiENYzwZA2TjotdeOXbn4DjUrWXHrLPq9mnEb2dlVYwIf-hf4M8bmkR5Lv8ITmfebXN8CweIUKazSRT3IkCH3uiBL4wFPY4MIRG9lBCvKpitjVV3rCcZLsM_uZJSYFAHzGqzMwvsswbf_y6AdGXySZEnztEL2qiKIE9k35d4gE7jyhjHcrnHcpZhbG-jnC3QwjGT3aGd1A7mj3OvJWZgJmNxqwfftwO40cx1zBWSQE0GEVwjMw1cq9SsJZPDCEBOTc1Ijqq12FkdySefy9R27HzAreZRvZbJd1IVO7_ex17ZBvsoPdhPDl6QK5BOF9mM5nGLunl54V6CCFzHjwqbRMl3y7bGP4Gm2LSVQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwEv_IYFChiExlO6JnbshLeCmAbSCgKKtqfIcZJR0aUVSYTGKxJ_N3eOEwgUUR54i-LPTnI-2-f47jtCHnnjKORBmLuMycTluczcSES5G-owyyKeer7AAOfDqTiY8ZdHwdEWSdpYGCtB2CMulqU5yceL9px5z4pzD0mLmiPUkcek11YbrQBpWEVFwHcN7RD-HqswCukc2RYB2OsDsj2bvp4cGyJVjrkATHrG5lpIYePr_tRqb_0yNP_dZD7AV11nqf7ucHmhLlbq7LNaLH5azfYvk6-tHBonlo-jukpG-ssvFJH_V1BXyCVrDNNJ08pVspUV18j5Q9v6dfINd8nUp-0PYgrajkGXFFbgOW04X7OUJmfU-EW6mO-iouqHxpV0tYTn0WpJ7UkUPc0w1nlenpZUFSkt6wTfq3xCJ7SEJYnqRY3cEbCiQ3lD2HKDzPafv3t24NrEEa6Wglcu11EqEsl8nQaSB1xrL9I69xRPwBwROsnB6FFhCKZjqFjAYDT5oLJjoWUK5lPAbpJBsSyyHUJTLXIPbCxoF8kJ_TBNYU8SRZopsH302CGsVYdYW1Z1_NhFbI4KJeyuGlnGKPHYStwhbldr1bCK_AX_FDWtwyInuLkB_R7bro4DniOhmmCaZTzME4UpVBIlvQxTInjSIfdRT-MmwLab2eKJqSQiBo95aBDIC1Kg49GJqssyfvHq_Qagt9NNQG96oMcWlC9BZlrZiBCQPKptD7nbQ540lOzrgMMeEOZK3SvewVHSyriMYTVDRkU_hI4ctuN2ffGDrhgbRdfEIlvWgEGjg6Mh75BbzTDv-okhgyDnvkNkbwLodWS_pJh_MCTvmKiBC-aQUTdVbKQqt_-1wh1yETYBxgfK94ZkUH2qs7tgaFfJPTtTfgdDa9Xs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+2+diabetes+genetic+loci+informed+by+multi-trait+associations+point+to+disease+mechanisms+and+subtypes%3A+A+soft+clustering+analysis&rft.jtitle=PLoS+medicine&rft.au=Udler%2C+Miriam+S&rft.au=Kim%2C+Jaegil&rft.au=Marcin+von+Grotthuss&rft.au=Cole%2C+Joanne+B&rft.date=2018-09-21&rft.pub=Public+Library+of+Science&rft.issn=1549-1277&rft.eissn=1549-1676&rft.volume=15&rft.issue=9&rft.spage=e1002654&rft_id=info:doi/10.1371%2Fjournal.pmed.1002654&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-1676&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-1676&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-1676&client=summon