Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets

Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons a...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 4; no. 2; p. e1000001
Main Authors Barberan-Soler, Sergio, Zahler, Alan M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.02.2008
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7404
1553-7390
1553-7404
DOI10.1371/journal.pgen.1000001

Cover

Abstract Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.
AbstractList Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabdiiis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (~18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.
  Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (~18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation. Alternative splicing is a mechanism for generating more than one messenger RNA from a given gene. The alternative transcripts can encode different proteins that share some regions in common but have modified functions, thus increasing the number of proteins encoded by the genome. Alternative splicing can also lead to the production of mRNA isoforms that are then subject to degradation by the nonsense-mediated decay pathway, thus providing a mechanism to down-regulate gene expression without decreasing transcription. Examples of cell type-specific, hormone-responsive, and developmentally-regulated alternative splicing have been described. We decided to measure the extent of developmentally regulated alternative splicing in the nematode model organism Caenorhabditis elegans. We developed a DNA microarray that can measure the alternative splicing of 352 cassette exons simultaneously and used it to probe alternative splicing in RNA extracted from embryos, the four larval stages, and adults. We show that 18% of the alternatively spliced genes tested show >4-fold changes in alternative splicing during development. In addition, we show that one of the most regulated genes is itself a splicing factor, providing support for a model in which a cascade of alternative splicing regulation occurs during development.
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabdiiis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (~18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation. doi:10.1371/journaLpgen.1000001
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.
Audience Academic
Author Barberan-Soler, Sergio
Zahler, Alan M.
AuthorAffiliation 2 Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
Huntsman Cancer Institute, United States of America
1 Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
AuthorAffiliation_xml – name: 1 Department of MCD Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
– name: 2 Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, California, United States of America
– name: Huntsman Cancer Institute, United States of America
Author_xml – sequence: 1
  givenname: Sergio
  surname: Barberan-Soler
  fullname: Barberan-Soler, Sergio
– sequence: 2
  givenname: Alan M.
  surname: Zahler
  fullname: Zahler, Alan M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18454200$$D View this record in MEDLINE/PubMed
BookMark eNqVk29r2zAQxs3oWNts32BshkFhL5JJluQ_fTEI6boFygpt2FshyydHQbE8y87Wbz-5cdd4DNZZGIvz73l0vjufBkeVrSAIXmM0wyTBHza2ayphZnUJ1Qyj_sLPghPMGJkmFNGjg_1xcOrcBiHC0ix5ERzjlDIaIXQSFHPTgvdp9Q7C29poqasyvIGyMz5mq_Cia_rIYhaCgVJULryAHRhbb6Fqzx8ll0K2tnGhcA9qKMKVaEpo3cvguRLGwavhOQlWl59Wiy_Tq-vPy8X8aiqTOGqnOQamCCoUMOQ3WUZUkRYJRkJSlbCcgopprlQcSSFwnrO0QDFRoHw5EibJJHi7t62NdXyoj-OYYEJTjCPiieWeKKzY8LrRW9HccSs0vw_YpuSiabU0wCVJaZopRgiJKIoS4Q9PJSrijBaK-vQmAdt7dVUt7n4IY34bYsT7Fj2kwPsW8aFFXvdxyLLLt1BIX8ZGmFEy4zeVXvPS7ngUxYxFkTc4Gwwa-70D1_KtdhKMERXYzvE4w0l_e_DdHiyF_yBdKev9ZA_zeYQignFGe2r2F8qvArZa-plT2sdHgvcjgWda-NmWonOOL29v_oP9-nT2-tuYPTtg1yBMu3bWdP3IujH45rDajy0a_gAPnO8B2VjnGlBc6vZ-9H0ZtPlXL-kf4ieNwC8AYS3e
CitedBy_id crossref_primary_10_1016_j_ceb_2009_02_007
crossref_primary_10_1016_j_molcel_2014_05_004
crossref_primary_10_1093_nar_gkq767
crossref_primary_10_1093_nar_gkr932
crossref_primary_10_1371_journal_pone_0005800
crossref_primary_10_1371_journal_pgen_1000525
crossref_primary_10_1101_gr_267328_120
crossref_primary_10_1534_genetics_116_192310
crossref_primary_10_1101_gr_082503_108
crossref_primary_10_1093_nar_gkaa248
crossref_primary_10_1104_pp_109_138180
crossref_primary_10_1186_s12864_018_5263_z
crossref_primary_10_1002_wrna_1428
crossref_primary_10_1002_humu_23050
crossref_primary_10_26508_lsa_202000825
crossref_primary_10_1534_genetics_110_119677
crossref_primary_10_1261_rna_2603911
crossref_primary_10_1093_molbev_msv002
crossref_primary_10_1101_gr_186783_114
crossref_primary_10_15252_embj_2020106434
crossref_primary_10_1007_s11010_011_0875_5
crossref_primary_10_1101_gr_141424_112
crossref_primary_10_1111_j_1365_2583_2011_01092_x
crossref_primary_10_1186_gb_2009_10_9_r101
crossref_primary_10_1101_gr_114645_110
crossref_primary_10_1093_gbe_evr134
crossref_primary_10_1002_dvdy_23918
crossref_primary_10_1038_cr_2010_64
crossref_primary_10_1038_nsmb_1814
crossref_primary_10_1101_gr_170100_113
crossref_primary_10_1016_j_molcel_2009_01_025
crossref_primary_10_1016_j_molcel_2008_09_004
crossref_primary_10_1016_j_tree_2012_02_005
crossref_primary_10_1093_molbev_msn181
crossref_primary_10_1016_j_semcancer_2012_04_003
crossref_primary_10_1101_gr_133587_111
crossref_primary_10_1002_bies_080092
crossref_primary_10_1038_s41467_017_00370_5
crossref_primary_10_7554_eLife_08954
crossref_primary_10_1007_s10495_013_0931_6
crossref_primary_10_1534_genetics_108_096743
crossref_primary_10_1038_s41598_017_03180_3
crossref_primary_10_1016_j_jmb_2021_166922
crossref_primary_10_1073_pnas_1007336107
crossref_primary_10_1093_nar_gkp1086
crossref_primary_10_1261_rna_1711109
crossref_primary_10_1093_molbev_msad091
crossref_primary_10_1155_2013_636050
Cites_doi 10.1128/MCB.19.9.5943
10.1016/S1097-2765(00)00059-9
10.1093/bioinformatics/bti022
10.1093/genetics/123.2.301
10.1016/S1097-2765(03)00502-1
10.1126/science.1090100
10.1371/journal.pgen.0020180
10.1126/science.282.5396.2012
10.1016/j.ymeth.2005.09.007
10.1126/science.6494891
10.1083/jcb.123.1.255
10.1002/dvdy.20865
10.1101/gad.1525507
10.1101/gad.417707
10.1074/jbc.M104070200
10.1016/0092-8674(89)90426-1
10.1093/emboj/19.7.1625
10.1186/gb-2003-4-10-r66
10.1002/j.1460-2075.1995.tb00108.x
10.1016/S0960-9822(01)00589-9
10.1093/nar/gkl924
10.1016/S0968-0004(98)01208-0
10.1111/j.1365-313X.2006.03020.x
10.1016/S0960-9822(01)00052-5
10.2202/1544-6115.1027
10.1186/gb-2001-2-8-research0029
10.1371/journal.pcbi.0020086
10.1093/bioinformatics/bti1053
10.1038/27579
10.1093/nar/gki858
10.1074/jbc.M203633200
10.2144/mar03dudoit
10.1016/S0301-0082(01)00007-7
10.1126/science.1101312
10.1101/gad.913001
10.1016/S0168-9525(01)02479-9
10.1158/0008-5472.CAN-05-2593
10.1073/pnas.98.1.218
10.1196/annals.1296.010
10.1016/S0960-9822(03)00532-3
10.1093/molbev/msm023
10.1016/j.yexcr.2004.04.043
10.1093/nar/gkl488
10.1016/0012-1606(83)90201-4
10.1371/journal.pbio.0000045
10.1016/S1534-5807(02)00128-4
10.1093/genetics/153.1.117
10.1093/bioinformatics/btg086
10.1016/S0167-4781(97)00209-1
10.1073/pnas.0136770100
10.1126/science.1069415
10.1101/gr.2094104
10.1128/MCB.19.1.69
10.1073/pnas.95.25.14863
10.1038/nature03353
10.1074/jbc.M102861200
10.1101/gad.7.10.1885
10.1038/35888
10.1073/pnas.94.18.9782
10.1038/nrg995
10.1126/science.290.5492.809
10.1016/S1046-2023(03)00155-5
10.1093/emboj/21.4.845
10.1016/j.cell.2006.06.023
ContentType Journal Article
Copyright COPYRIGHT 2008 Public Library of Science
Barberan-Soler and Zahler. 2008
2008 Barberan-Soler and Zahler. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Barberan-Soler S, Zahler AM (2008) Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets. PLoS Genet 4(2): e1000001. doi:10.1371/journal.pgen.1000001
Copyright_xml – notice: COPYRIGHT 2008 Public Library of Science
– notice: Barberan-Soler and Zahler. 2008
– notice: 2008 Barberan-Soler and Zahler. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Barberan-Soler S, Zahler AM (2008) Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets. PLoS Genet 4(2): e1000001. doi:10.1371/journal.pgen.1000001
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pgen.1000001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList




MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate AS Regulation During C. elegans Development
EISSN 1553-7404
ExternalDocumentID 1313481123
oai_doaj_org_article_c38489f533324027aef68c0d694df45f
10.1371/journal.pgen.1000001
PMC2265522
A202311947
18454200
10_1371_journal_pgen_1000001
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM061646
– fundername: NIGMS NIH HHS
  grantid: R01-GM61646
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
QN7
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ACCTH
ADTOC
AFFHD
BBTPI
PV9
QF4
RZL
UNPAY
WOQ
3V.
AAPBV
ABPTK
M~E
ID FETCH-LOGICAL-c762t-b1e5f30dfe505f3993fd8d710ac4f75b4ef64bff62caa1bb58d063fef37175c3
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:35 EDT 2023
Tue Oct 14 18:19:21 EDT 2025
Wed Oct 29 12:05:53 EDT 2025
Tue Sep 30 16:21:01 EDT 2025
Wed Oct 01 14:29:55 EDT 2025
Mon Oct 20 22:53:00 EDT 2025
Mon Oct 20 16:59:42 EDT 2025
Thu Oct 16 16:16:02 EDT 2025
Thu Oct 16 16:13:23 EDT 2025
Thu Oct 16 16:28:47 EDT 2025
Thu May 22 21:24:38 EDT 2025
Thu Apr 03 07:06:23 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Wed Oct 01 01:54:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c762t-b1e5f30dfe505f3993fd8d710ac4f75b4ef64bff62caa1bb58d063fef37175c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: SBS AZ. Performed the experiments: SBS. Analyzed the data: SBS AZ. Wrote the paper: SBS AZ.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1000001
PMID 18454200
PQID 69176917
PQPubID 23479
ParticipantIDs plos_journals_1313481123
doaj_primary_oai_doaj_org_article_c38489f533324027aef68c0d694df45f
unpaywall_primary_10_1371_journal_pgen_1000001
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2265522
proquest_miscellaneous_69176917
gale_infotracmisc_A202311947
gale_infotracacademiconefile_A202311947
gale_incontextgauss_ISR_A202311947
gale_incontextgauss_ISN_A202311947
gale_incontextgauss_IOV_A202311947
gale_healthsolutions_A202311947
pubmed_primary_18454200
crossref_citationtrail_10_1371_journal_pgen_1000001
crossref_primary_10_1371_journal_pgen_1000001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2008
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References E Nagy (ref29) 1998; 23
JZ Ni (ref25) 2007; 21
H Ge (ref10) 2006; 235
JL Kabat (ref32) 2006; 2
MC Wollerton (ref42) 2004; 13
BA Sosnowski (ref59) 1989; 58
H Zhang (ref57) 1996; 2
JM Johnson (ref3) 2003; 302
AG Davies (ref48) 1999; 153
L Timmons (ref67) 1998; 395
MB Eisen (ref69) 1998; 95
V Vinciotti (ref35) 2005; 21
E Kim (ref4) 2007; 35
G Ratsch (ref34) 2005; 21
A Magen (ref39) 2005; 33
MH Sibley (ref16) 1993; 123
M Pick (ref5) 2004; 1018
S Dudoit (ref64) 2003
LF Lareau (ref26) 2007
A Yamashita (ref40) 2001; 15
B Sonnichsen (ref22) 2005; 434
S Hutchison (ref43) 2002; 277
(ref13) 1998; 282
D Longman (ref20) 2000; 19
LD Stein (ref47) 2003; 1
X Wang (ref60) 2003; 19
M Caputi (ref45) 2001; 276
SG Palusa (ref6) 2007; 49
V Ambros (ref11) 1984; 226
JL Rukov (ref17) 2007; 24
K Srinivasan (ref62) 2005; 37
C Dominguez (ref44) 2006; 34
BJ Blencowe (ref9) 2006; 126
MH Lee (ref15) 1998; 1396
GK Smyth (ref65) 2004; 3
D Longman (ref30) 2007; 21
C Li (ref36) 2006; 66
C Van Buskirk (ref51) 2002; 2
JH Kinnaird (ref21) 2004; 298
V Giguere (ref37) 1999; 20
J Castle (ref61) 2003; 4
MF Page (ref41) 1999; 19
M Jiang (ref50) 2001; 98
M Caputi (ref54) 2002; 21
R Pulak (ref23) 1993; 7
D Kampa (ref2) 2004; 14
J Hodgkin (ref24) 1989; 123
GG Leparc (ref33) 2007
GK Smyth (ref66) 2003; 31
MM Metzstein (ref31) 2006; 2
MY Chou (ref52) 1999; 19
ref68
D Longman (ref19) 2001; 11
V Reinke (ref63) 2000; 6
JM Maglich (ref38) 2001; 2
S Jacquenet (ref53) 2001; 276
SE Mango (ref56) 2001; 17
AA Hill (ref58) 2000; 290
TA Clark (ref8) 2002; 296
V Stolc (ref18) 2004; 306
PJ Grabowski (ref7) 2001; 65
M Morrison (ref27) 1997; 94
BP Lewis (ref1) 2003; 100
I Maeda (ref49) 2001; 11
PM Loria (ref46) 2003; 13
JE Sulston (ref14) 1983; 100
GR Screaton (ref55) 1995; 14
A Fire (ref12) 1998; 391
T Blumenthal (ref28) 2003; 4
9275202 - Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9782-5
9804418 - Nature. 1998 Oct 29;395(6705):854
9540836 - Biochim Biophys Acta. 1998 Mar 9;1396(2):207-14
2583479 - Genetics. 1989 Oct;123(2):301-13
16885237 - Nucleic Acids Res. 2006;34(13):3634-45
11231151 - Curr Biol. 2001 Feb 6;11(3):171-6
17272679 - Mol Biol Evol. 2007 Apr;24(4):909-17
11532213 - Genome Biol. 2001;2(8):RESEARCH0029
17452356 - Nucleic Acids Res. 2007;35(10):3192-202
11747818 - Curr Biol. 2001 Dec 11;11(24):1923-33
7691828 - J Cell Biol. 1993 Oct;123(1):255-64
15961480 - Bioinformatics. 2005 Jun;21 Suppl 1:i369-77
14731397 - Mol Cell. 2004 Jan 16;13(1):91-100
12724288 - Bioinformatics. 2003 May 1;19(7):796-802
14993201 - Genome Res. 2004 Mar;14(3):331-42
11847131 - EMBO J. 2002 Feb 15;21(4):845-55
16839192 - PLoS Comput Biol. 2006 Jul 14;2(7):e86
10747030 - EMBO J. 2000 Apr 3;19(7):1625-37
14519201 - Genome Biol. 2003;4(10):R66
2503251 - Cell. 1989 Aug 11;58(3):449-59
16779860 - Dev Dyn. 2006 Aug;235(8):2009-17
9644970 - Trends Biochem Sci. 1998 Jun;23(6):198-9
15374872 - Bioinformatics. 2005 Feb 15;21(4):492-501
11571276 - J Biol Chem. 2001 Nov 23;276(47):43850-9
11052945 - Science. 2000 Oct 27;290(5492):809-12
16192573 - Nucleic Acids Res. 2005;33(17):5574-82
14684825 - Science. 2003 Dec 19;302(5653):2141-4
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
15240356 - Ann N Y Acad Sci. 2004 Jun;1018:85-98
16314264 - Methods. 2005 Dec;37(4):345-59
15499012 - Science. 2004 Oct 22;306(5696):655-60
9858532 - Mol Cell Biol. 1999 Jan;19(1):69-77
6494891 - Science. 1984 Oct 26;226(4673):409-16
10471705 - Genetics. 1999 Sep;153(1):117-34
7556075 - EMBO J. 1995 Sep 1;14(17):4336-49
17369403 - Genes Dev. 2007 Mar 15;21(6):708-18
10454541 - Mol Cell Biol. 1999 Sep;19(9):5943-51
11544179 - Genes Dev. 2001 Sep 1;15(17):2215-28
9486653 - Nature. 1998 Feb 19;391(6669):806-11
12560808 - Nat Rev Genet. 2003 Feb;4(2):112-20
11879639 - Dev Cell. 2002 Mar;2(3):343-53
15791247 - Nature. 2005 Mar 24;434(7032):462-9
15265690 - Exp Cell Res. 2004 Aug 15;298(2):418-30
11988574 - Science. 2002 May 3;296(5569):907-10
9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
9851916 - Science. 1998 Dec 11;282(5396):2012-8
10529899 - Endocr Rev. 1999 Oct;20(5):689-725
8634918 - RNA. 1996 Apr;2(4):380-8
11526107 - J Biol Chem. 2001 Nov 2;276(44):40464-75
17319848 - Plant J. 2007 Mar;49(6):1091-107
12664684 - Biotechniques. 2003 Mar;Suppl:45-51
11134517 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):218-23
16839875 - Cell. 2006 Jul 14;126(1):37-47
11030340 - Mol Cell. 2000 Sep;6(3):605-16
6684600 - Dev Biol. 1983 Nov;100(1):64-119
17437990 - Genes Dev. 2007 May 1;21(9):1075-85
12502788 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92
8104846 - Genes Dev. 1993 Oct;7(10):1885-97
12060656 - J Biol Chem. 2002 Aug 16;277(33):29745-52
17196039 - PLoS Genet. 2006 Dec 29;2(12):e180
11672865 - Trends Genet. 2001 Nov;17(11):646-53
16488998 - Cancer Res. 2006 Feb 15;66(4):1990-9
11473790 - Prog Neurobiol. 2001 Oct;65(3):289-308
12906792 - Curr Biol. 2003 Aug 5;13(15):1317-23
14624247 - PLoS Biol. 2003 Nov;1(2):E45
17361132 - Nature. 2007 Apr 19;446(7138):926-9
14597310 - Methods. 2003 Dec;31(4):265-73
17158149 - Nucleic Acids Res. 2007;35(1):125-31
References_xml – volume: 19
  start-page: 5943
  year: 1999
  ident: ref41
  article-title: SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.19.9.5943
– volume: 6
  start-page: 605
  year: 2000
  ident: ref63
  article-title: A global profile of germline gene expression in C. elegans.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)00059-9
– volume: 21
  start-page: 492
  year: 2005
  ident: ref35
  article-title: An experimental evaluation of a loop versus a reference design for two-channel microarrays.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti022
– volume: 123
  start-page: 301
  year: 1989
  ident: ref24
  article-title: A new kind of informational suppression in the nematode Caenorhabditis elegans.
  publication-title: Genetics
  doi: 10.1093/genetics/123.2.301
– volume: 13
  start-page: 91
  year: 2004
  ident: ref42
  article-title: Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay.
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(03)00502-1
– volume: 302
  start-page: 2141
  year: 2003
  ident: ref3
  article-title: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays.
  publication-title: Science
  doi: 10.1126/science.1090100
– volume: 2
  start-page: e180
  year: 2006
  ident: ref31
  article-title: Functions of the nonsense-mediated mRNA decay pathway in Drosophila development.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020180
– volume: 282
  start-page: 2012
  year: 1998
  ident: ref13
  article-title: Genome sequence of the nematode C. elegans: a platform for investigating biology.
  publication-title: Science
  doi: 10.1126/science.282.5396.2012
– volume: 37
  start-page: 345
  year: 2005
  ident: ref62
  article-title: Detection and measurement of alternative splicing using splicing-sensitive microarrays.
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.09.007
– volume: 226
  start-page: 409
  year: 1984
  ident: ref11
  article-title: Heterochronic mutants of the nematode Caenorhabditis elegans.
  publication-title: Science
  doi: 10.1126/science.6494891
– volume: 123
  start-page: 255
  year: 1993
  ident: ref16
  article-title: Genetic identification, sequence, and alternative splicing of the Caenorhabditis elegans alpha 2(IV) collagen gene.
  publication-title: J Cell Biol
  doi: 10.1083/jcb.123.1.255
– volume: 235
  start-page: 2009
  year: 2006
  ident: ref10
  article-title: Toward a global picture of development: lessons from genome-scale analysis in Caenorhabditis elegans embryonic development.
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.20865
– volume: 21
  start-page: 708
  year: 2007
  ident: ref25
  article-title: Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay.
  publication-title: Genes Dev
  doi: 10.1101/gad.1525507
– volume: 21
  start-page: 1075
  year: 2007
  ident: ref30
  article-title: Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway.
  publication-title: Genes Dev
  doi: 10.1101/gad.417707
– volume: 276
  start-page: 40464
  year: 2001
  ident: ref53
  article-title: A second exon splicing silencer within human immunodeficiency virus type 1 tat exon 2 represses splicing of Tat mRNA and binds protein hnRNP H.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M104070200
– year: 2007
  ident: ref26
  article-title: Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements.
  publication-title: Nature
– volume: 58
  start-page: 449
  year: 1989
  ident: ref59
  article-title: Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage.
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90426-1
– volume: 19
  start-page: 1625
  year: 2000
  ident: ref20
  article-title: Functional characterization of SR and SR-related genes in Caenorhabditis elegans.
  publication-title: Embo J
  doi: 10.1093/emboj/19.7.1625
– volume: 4
  start-page: R66
  year: 2003
  ident: ref61
  article-title: Optimization of oligonucleotide arrays and RNA amplification protocols for analysis of transcript structure and alternative splicing.
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-10-r66
– volume: 14
  start-page: 4336
  year: 1995
  ident: ref55
  article-title: Identification and characterization of three members of the human SR family of pre-mRNA splicing factors.
  publication-title: Embo J
  doi: 10.1002/j.1460-2075.1995.tb00108.x
– volume: 11
  start-page: 1923
  year: 2001
  ident: ref19
  article-title: Multiple interactions between SRm160 and SR family proteins in enhancer-dependent splicing and development of C. elegans.
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00589-9
– volume: 35
  start-page: 125
  year: 2007
  ident: ref4
  article-title: Different levels of alternative splicing among eukaryotes.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl924
– volume: 23
  start-page: 198
  year: 1998
  ident: ref29
  article-title: A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance.
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(98)01208-0
– volume: 49
  start-page: 1091
  year: 2007
  ident: ref6
  article-title: Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses.
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.03020.x
– volume: 11
  start-page: 171
  year: 2001
  ident: ref49
  article-title: Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi.
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00052-5
– volume: 3
  start-page: Article3
  year: 2004
  ident: ref65
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1027
– volume: 2
  start-page: RESEARCH0029
  year: 2001
  ident: ref38
  article-title: Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes.
  publication-title: Genome Biol
  doi: 10.1186/gb-2001-2-8-research0029
– volume: 2
  start-page: e86
  year: 2006
  ident: ref32
  article-title: Intronic alternative splicing regulators identified by comparative genomics in nematodes.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0020086
– volume: 21
  start-page: i369
  year: 2005
  ident: ref34
  article-title: RASE: recognition of alternatively spliced exons in C.elegans.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1053
– volume: 395
  start-page: 854
  year: 1998
  ident: ref67
  article-title: Specific interference by ingested dsRNA.
  publication-title: Nature
  doi: 10.1038/27579
– volume: 33
  start-page: 5574
  year: 2005
  ident: ref39
  article-title: The importance of being divisible by three in alternative splicing.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki858
– volume: 277
  start-page: 29745
  year: 2002
  ident: ref43
  article-title: Distinct sets of adjacent heterogeneous nuclear ribonucleoprotein (hnRNP) A1/A2 binding sites control 5′ splice site selection in the hnRNP A1 mRNA precursor.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M203633200
– start-page: 45
  year: 2003
  ident: ref64
  article-title: Open source software for the analysis of microarray data.
  publication-title: Biotechniques
  doi: 10.2144/mar03dudoit
– ident: ref68
– volume: 65
  start-page: 289
  year: 2001
  ident: ref7
  article-title: Alternative RNA splicing in the nervous system.
  publication-title: Prog Neurobiol
  doi: 10.1016/S0301-0082(01)00007-7
– volume: 306
  start-page: 655
  year: 2004
  ident: ref18
  article-title: A gene expression map for the euchromatic genome of Drosophila melanogaster.
  publication-title: Science
  doi: 10.1126/science.1101312
– volume: 15
  start-page: 2215
  year: 2001
  ident: ref40
  article-title: Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay.
  publication-title: Genes Dev
  doi: 10.1101/gad.913001
– volume: 17
  start-page: 646
  year: 2001
  ident: ref56
  article-title: Stop making nonSense: the C. elegans smg genes.
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(01)02479-9
– volume: 66
  start-page: 1990
  year: 2006
  ident: ref36
  article-title: Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-2593
– volume: 98
  start-page: 218
  year: 2001
  ident: ref50
  article-title: Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.98.1.218
– volume: 1018
  start-page: 85
  year: 2004
  ident: ref5
  article-title: From brain to blood: alternative splicing evidence for the cholinergic basis of Mammalian stress responses.
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1296.010
– volume: 13
  start-page: 1317
  year: 2003
  ident: ref46
  article-title: Two neuronal, nuclear-localized RNA binding proteins involved in synaptic transmission.
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(03)00532-3
– volume: 24
  start-page: 909
  year: 2007
  ident: ref17
  article-title: High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm023
– volume: 298
  start-page: 418
  year: 2004
  ident: ref21
  article-title: HRP-2, a heterogeneous nuclear ribonucleoprotein, is essential for embryogenesis and oogenesis in Caenorhabditis elegans.
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2004.04.043
– volume: 34
  start-page: 3634
  year: 2006
  ident: ref44
  article-title: NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA: a novel mode of RNA recognition.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl488
– volume: 100
  start-page: 64
  year: 1983
  ident: ref14
  article-title: The embryonic cell lineage of the nematode Caenorhabditis elegans.
  publication-title: Dev Biol
  doi: 10.1016/0012-1606(83)90201-4
– volume: 1
  start-page: E45
  year: 2003
  ident: ref47
  article-title: The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0000045
– volume: 2
  start-page: 343
  year: 2002
  ident: ref51
  article-title: Half pint regulates alternative splice site selection in Drosophila.
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(02)00128-4
– volume: 153
  start-page: 117
  year: 1999
  ident: ref48
  article-title: Functional overlap between the mec-8 gene and five sym genes in Caenorhabditis elegans.
  publication-title: Genetics
  doi: 10.1093/genetics/153.1.117
– volume: 19
  start-page: 796
  year: 2003
  ident: ref60
  article-title: Selection of oligonucleotide probes for protein coding sequences.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg086
– volume: 1396
  start-page: 207
  year: 1998
  ident: ref15
  article-title: Alternative splicing in the Caenorhabditis elegans DNA topoisomerase I gene.
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0167-4781(97)00209-1
– volume: 100
  start-page: 189
  year: 2003
  ident: ref1
  article-title: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0136770100
– volume: 296
  start-page: 907
  year: 2002
  ident: ref8
  article-title: Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays.
  publication-title: Science
  doi: 10.1126/science.1069415
– volume: 20
  start-page: 689
  year: 1999
  ident: ref37
  article-title: Orphan nuclear receptors: from gene to function.
  publication-title: Endocr Rev
– volume: 14
  start-page: 331
  year: 2004
  ident: ref2
  article-title: Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22.
  publication-title: Genome Res
  doi: 10.1101/gr.2094104
– volume: 19
  start-page: 69
  year: 1999
  ident: ref52
  article-title: hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.19.1.69
– volume: 95
  start-page: 14863
  year: 1998
  ident: ref69
  article-title: Cluster analysis and display of genome-wide expression patterns.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.25.14863
– volume: 434
  start-page: 462
  year: 2005
  ident: ref22
  article-title: Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans.
  publication-title: Nature
  doi: 10.1038/nature03353
– volume: 276
  start-page: 43850
  year: 2001
  ident: ref45
  article-title: Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H′/F/2H9 family.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M102861200
– volume: 7
  start-page: 1885
  year: 1993
  ident: ref23
  article-title: mRNA surveillance by the Caenorhabditis elegans smg genes.
  publication-title: Genes Dev
  doi: 10.1101/gad.7.10.1885
– volume: 391
  start-page: 806
  year: 1998
  ident: ref12
  article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
  publication-title: Nature
  doi: 10.1038/35888
– volume: 94
  start-page: 9782
  year: 1997
  ident: ref27
  article-title: smg mutants affect the expression of alternatively spliced SR protein mRNAs in Caenorhabditis elegans.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.18.9782
– volume: 4
  start-page: 112
  year: 2003
  ident: ref28
  article-title: Caenorhabditis elegans operons: form and function.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg995
– volume: 290
  start-page: 809
  year: 2000
  ident: ref58
  article-title: Genomic analysis of gene expression in C. elegans.
  publication-title: Science
  doi: 10.1126/science.290.5492.809
– volume: 31
  start-page: 265
  year: 2003
  ident: ref66
  article-title: Normalization of cDNA microarray data.
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00155-5
– volume: 21
  start-page: 845
  year: 2002
  ident: ref54
  article-title: SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D.
  publication-title: Embo J
  doi: 10.1093/emboj/21.4.845
– volume: 2
  start-page: 380
  year: 1996
  ident: ref57
  article-title: Functional analysis of an intron 3′ splice site in Caenorhabditis elegans.
  publication-title: Rna
– volume: 126
  start-page: 37
  year: 2006
  ident: ref9
  article-title: Alternative splicing: new insights from global analyses.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.023
– year: 2007
  ident: ref33
  article-title: Non-EST-based prediction of novel alternatively spliced cassette exons with cell signaling function in Caenorhabditis elegans and human.
  publication-title: Nucleic Acids Res
– reference: 12060656 - J Biol Chem. 2002 Aug 16;277(33):29745-52
– reference: 16192573 - Nucleic Acids Res. 2005;33(17):5574-82
– reference: 9644970 - Trends Biochem Sci. 1998 Jun;23(6):198-9
– reference: 17319848 - Plant J. 2007 Mar;49(6):1091-107
– reference: 17452356 - Nucleic Acids Res. 2007;35(10):3192-202
– reference: 12502788 - Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92
– reference: 17361132 - Nature. 2007 Apr 19;446(7138):926-9
– reference: 11847131 - EMBO J. 2002 Feb 15;21(4):845-55
– reference: 2503251 - Cell. 1989 Aug 11;58(3):449-59
– reference: 14519201 - Genome Biol. 2003;4(10):R66
– reference: 17196039 - PLoS Genet. 2006 Dec 29;2(12):e180
– reference: 12560808 - Nat Rev Genet. 2003 Feb;4(2):112-20
– reference: 11231151 - Curr Biol. 2001 Feb 6;11(3):171-6
– reference: 9486653 - Nature. 1998 Feb 19;391(6669):806-11
– reference: 14597310 - Methods. 2003 Dec;31(4):265-73
– reference: 7691828 - J Cell Biol. 1993 Oct;123(1):255-64
– reference: 9540836 - Biochim Biophys Acta. 1998 Mar 9;1396(2):207-14
– reference: 11544179 - Genes Dev. 2001 Sep 1;15(17):2215-28
– reference: 8634918 - RNA. 1996 Apr;2(4):380-8
– reference: 10471705 - Genetics. 1999 Sep;153(1):117-34
– reference: 12906792 - Curr Biol. 2003 Aug 5;13(15):1317-23
– reference: 11532213 - Genome Biol. 2001;2(8):RESEARCH0029
– reference: 15265690 - Exp Cell Res. 2004 Aug 15;298(2):418-30
– reference: 11747818 - Curr Biol. 2001 Dec 11;11(24):1923-33
– reference: 17437990 - Genes Dev. 2007 May 1;21(9):1075-85
– reference: 2583479 - Genetics. 1989 Oct;123(2):301-13
– reference: 17158149 - Nucleic Acids Res. 2007;35(1):125-31
– reference: 15240356 - Ann N Y Acad Sci. 2004 Jun;1018:85-98
– reference: 16779860 - Dev Dyn. 2006 Aug;235(8):2009-17
– reference: 9851916 - Science. 1998 Dec 11;282(5396):2012-8
– reference: 10747030 - EMBO J. 2000 Apr 3;19(7):1625-37
– reference: 6494891 - Science. 1984 Oct 26;226(4673):409-16
– reference: 14684825 - Science. 2003 Dec 19;302(5653):2141-4
– reference: 7556075 - EMBO J. 1995 Sep 1;14(17):4336-49
– reference: 11571276 - J Biol Chem. 2001 Nov 23;276(47):43850-9
– reference: 11134517 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):218-23
– reference: 14731397 - Mol Cell. 2004 Jan 16;13(1):91-100
– reference: 17272679 - Mol Biol Evol. 2007 Apr;24(4):909-17
– reference: 11052945 - Science. 2000 Oct 27;290(5492):809-12
– reference: 9858532 - Mol Cell Biol. 1999 Jan;19(1):69-77
– reference: 14624247 - PLoS Biol. 2003 Nov;1(2):E45
– reference: 12724288 - Bioinformatics. 2003 May 1;19(7):796-802
– reference: 15961480 - Bioinformatics. 2005 Jun;21 Suppl 1:i369-77
– reference: 15374872 - Bioinformatics. 2005 Feb 15;21(4):492-501
– reference: 10529899 - Endocr Rev. 1999 Oct;20(5):689-725
– reference: 11473790 - Prog Neurobiol. 2001 Oct;65(3):289-308
– reference: 11879639 - Dev Cell. 2002 Mar;2(3):343-53
– reference: 16488998 - Cancer Res. 2006 Feb 15;66(4):1990-9
– reference: 11988574 - Science. 2002 May 3;296(5569):907-10
– reference: 9804418 - Nature. 1998 Oct 29;395(6705):854
– reference: 16839192 - PLoS Comput Biol. 2006 Jul 14;2(7):e86
– reference: 16885237 - Nucleic Acids Res. 2006;34(13):3634-45
– reference: 16314264 - Methods. 2005 Dec;37(4):345-59
– reference: 12664684 - Biotechniques. 2003 Mar;Suppl:45-51
– reference: 11526107 - J Biol Chem. 2001 Nov 2;276(44):40464-75
– reference: 11672865 - Trends Genet. 2001 Nov;17(11):646-53
– reference: 10454541 - Mol Cell Biol. 1999 Sep;19(9):5943-51
– reference: 11030340 - Mol Cell. 2000 Sep;6(3):605-16
– reference: 16839875 - Cell. 2006 Jul 14;126(1):37-47
– reference: 14993201 - Genome Res. 2004 Mar;14(3):331-42
– reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8
– reference: 15499012 - Science. 2004 Oct 22;306(5696):655-60
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 8104846 - Genes Dev. 1993 Oct;7(10):1885-97
– reference: 17369403 - Genes Dev. 2007 Mar 15;21(6):708-18
– reference: 6684600 - Dev Biol. 1983 Nov;100(1):64-119
– reference: 15791247 - Nature. 2005 Mar 24;434(7032):462-9
– reference: 9275202 - Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9782-5
SSID ssj0035897
Score 2.140449
Snippet Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis...
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabdiiis...
  Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000001
SubjectTerms Alternative Splicing
Animals
Caenorhabditis elegans - genetics
Caenorhabditis elegans - growth & development
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Codon, Nonsense
Developmental Biology/Molecular Development
Expressed Sequence Tags
Gene expression
Gene Expression Regulation, Developmental
Genes, Helminth
Genetics
Heterogeneous-Nuclear Ribonucleoproteins - genetics
Heterogeneous-Nuclear Ribonucleoproteins - metabolism
Molecular Biology/mRNA Stability
Molecular Biology/RNA Splicing
Oligonucleotide Array Sequence Analysis
Proteins
Ribonucleic acid
RNA
RNA, Helminth - genetics
RNA, Helminth - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPRF_G60ahDBp1zzsbvZ-HYWSxWsoFX6tmS_VAi5o7lr6X_vTHaTa1DoPfhwL8nsQeY3O_ubZD4IeZMLTnWuVAKbiSbUVDQRKmMJz2mhUuNYqrF2-PMJP_5OP52xs2ujvjAnzLcH9oo70PAfonLASrB1XF7W1nGhU8MrahxlDr1vKqohmPI-uGDCj1VhrEhKCOtD0VxRZgcBo_kKAJr3b7fDQJjhUOp7948eerZqlt2_6OffWZR3Nu2qvrqsm-baEXV0n9wL3DJe-Gd6QG7Z9iG57adNXj0iZtGEt38XNu7wuzUcW_G5H0YP8MS-ZDE-nMc4jALOsNhsU4rebZeEGT1x3Q2rrYl9Snn3mJwefTg9PE7CkIVEgx9cJyqzzBWAigUu5JCuOCMM8I5aU1cyRUHfVDnHc13XmVJMGGA1zjrQZcl08YTM2mVr90hcGC4ArIIbBRyrYpUruakyI3IDQUmVRqQYlCx1aECOczAa2X9VKyEQ8XqSCI0M0EQkGVetfAOOG-TfI36jLLbP7i-AUclgVPImo4rIK0Rf-lrU0QnIBQ6bz7KKlhF53UtgC40Wc3R-1puukx-__NhB6NvJLkJfJ0Jvg5Bbgs50HYonQPPYv2siuT-RBG-hJ7f30KAH1XWgyAxrsYHAwEMPRi5xFWbftXa56SSHmB5_EXnqTX6LhKCMgqONSDnZDBP1T--0v3_1XcyB9zMg_xGZj9tmJ4Cf_Q-An5O7PvEH85L2yWx9vrEvgF2u1cvekfwBF-J2GQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrhBceMMGFogQEqdkm8R2Em5loVqQKGgfaDlZ8WtBVGlFWtBy5Y8z4zjdDQ9RDhwqRc04Sj6P7Rl75htCHqcFpyqVMoLBRCOqSxoVMmERT2kmh9qyocLc4dcTvndEXx2z4w0iu1wYjyD4iNNZ407y8QKwxJS-ZsfDuYOkRe0RapxkedI1i-cgGbsta3CRHe0Qbo8tMAvpAtnkDOz1Adk8mrwdvXdEqiyL8sxtxLTXdEh9ft2fntpbvxzN_2oyH-Cr_s5S_TXg8tKynlenX6vp9NxqNr5Kvnc4tEEsn-LlQsbq208Ukf8XqGvkijeGw1H7lOtkw9Q3yMW2PObpTaJHU79d-cWEB3jQDutsuG9OfMmx8LnLsQx34xCrZ8CiG56LgXp61mTcFhUKq6ZrbXR46GLgm1vkcPzicHcv8lUhIgUT9yKSiWE2AzUyYLxZtK-sLjQYSpWiNmeSGsuptJanqqoSKVmhwQyzxsLn50xlt8mgntVmi4SZ5gVoaMa1BKOwZKXNuS4TXaQavKhyGJCs62qhPGM6Fu6YCncMmIPn1OIkEE3h0QxItGo1bxlD_iL_DLVoJYt83-4P6FPhu1EoeM-itGCbI4FimlfwkYUaal5SbSmzAXmIOija5NnVrCVGKfL7JSXNA_LISSDnR41BRSfVsmnEyzfv1hA6mKwjtN8TeuKF7AwwU5XP9gDkUSV7kts9SZjeVO_2Fip2B10DQCaYPA4WF3x0N9QEtsJwwdrMlo3gZZLjLyB32oF31hMFZRRWhoDkvSHZg79_p_74wdGug6PCwFsJSLwavGt18N1_bXCPXG6jkjBoapsMFp-X5j6Yvgv5wM9dPwDembCj
  priority: 102
  providerName: Unpaywall
Title Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets
URI https://www.ncbi.nlm.nih.gov/pubmed/18454200
https://www.proquest.com/docview/69176917
https://pubmed.ncbi.nlm.nih.gov/PMC2265522
https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000001&type=printable
https://doaj.org/article/c38489f533324027aef68c0d694df45f
http://dx.doi.org/10.1371/journal.pgen.1000001
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: 7X7
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7404
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: BENPR
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7404
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035897
  issn: 1553-7404
  databaseCode: M48
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwQviM8tMEqEkHhK1SR2nCAhlI5VA2llGisqT1YcxwMpSkvTAv3vuUuclIgBfagqJeeqvjuf7-y7-xHywgsDmnpSOrCYqENVRJ1QuswJPOrLodJsmGLt8NkkOJ3S9zM22yMNZqthYHltaId4UtNlPvj5bfMGFvzrCrWBu82gwQJYPqjOq7Ggax_2qgjBHM5oe6_gs7CGW2HMdziE-6aY7m-_0tmsqp7-reXuLfJ5eZ1b-md25a11sUg2P5I8_23rGt8ld4zPace1ktwje1lxn9ysUSg3D4iKc3Mq-D2zS7zPhu3MXtYg9SA2uy5ltI8HNoJUwN5mq22q0avtEIPdYydlMzpTdp1qXj4kl-OTy-NTx4AvOCnYx5Uj3YxpH6SVgY-k0Y3RKlTgjyQp1ZxJmumASq0DL00SV0oWKvB2dKaBl5yl_iPSK-ZFdkhsXwUhKIIfKAm-V8QizQMVuSr0FAQr0dAifsNkkZrG5IiPkYvqto1DgFLzSaBohBGNRZx21KJuzPEf-hHKr6XFttrVg_nySphVKlL4n2GkwQXGPoUeT2CSYTpUQUSVpkxb5BlKX9Q1qq1xEDGC0LtuRLlFnlcU2FqjwNydq2RdluLdh087EH2c7EJ00SF6aYj0HHiWJqaoAjiPfb06lEcdSrAiaef1ISp0w7oSGOlijTY4NjDpRskFjsKsvCKbr0sRQKyPH4sc1Cq_lURIGQUDbBHeWQwd9nffFF-_VN3NIR5gEBRYZNAum50E_PjfE3xCbtepPpiJdER6q-U6ewr-5Er2yQ0-432yH4_ejsbwPTqZnF_0q9OZfmU-4Nl0ch5__gVWoXoS
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrhBceMMGFogQEqdkm8R2Em5loVqQKGgfaDlZ8WtBVGlFWtBy5Y8z4zjdDQ9RDhwqRc04Sj6P7Rl75htCHqcFpyqVMoLBRCOqSxoVMmERT2kmh9qyocLc4dcTvndEXx2z4w0iu1wYjyD4iNNZ407y8QKwxJS-ZsfDuYOkRe0RapxkedI1i-cgGbsta3CRHe0Qbo8tMAvpAtnkDOz1Adk8mrwdvXdEqiyL8sxtxLTXdEh9ft2fntpbvxzN_2oyH-Cr_s5S_TXg8tKynlenX6vp9NxqNr5Kvnc4tEEsn-LlQsbq208Ukf8XqGvkijeGw1H7lOtkw9Q3yMW2PObpTaJHU79d-cWEB3jQDutsuG9OfMmx8LnLsQx34xCrZ8CiG56LgXp61mTcFhUKq6ZrbXR46GLgm1vkcPzicHcv8lUhIgUT9yKSiWE2AzUyYLxZtK-sLjQYSpWiNmeSGsuptJanqqoSKVmhwQyzxsLn50xlt8mgntVmi4SZ5gVoaMa1BKOwZKXNuS4TXaQavKhyGJCs62qhPGM6Fu6YCncMmIPn1OIkEE3h0QxItGo1bxlD_iL_DLVoJYt83-4P6FPhu1EoeM-itGCbI4FimlfwkYUaal5SbSmzAXmIOija5NnVrCVGKfL7JSXNA_LISSDnR41BRSfVsmnEyzfv1hA6mKwjtN8TeuKF7AwwU5XP9gDkUSV7kts9SZjeVO_2Fip2B10DQCaYPA4WF3x0N9QEtsJwwdrMlo3gZZLjLyB32oF31hMFZRRWhoDkvSHZg79_p_74wdGug6PCwFsJSLwavGt18N1_bXCPXG6jkjBoapsMFp-X5j6Yvgv5wM9dPwDembCj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+splicing+regulation+during+C.+elegans+development%3A+splicing+factors+as+regulated+targets&rft.jtitle=PLoS+genetics&rft.au=Barberan-Soler%2C+Sergio&rft.au=Zahler%2C+Alan+M&rft.date=2008-02-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=4&rft.issue=2&rft_id=info:doi/10.1371%2Fjournal.pgen.1000001&rft.externalDocID=A202311947
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon