基于分数阶微分预处理高光谱数据的荒漠土壤有机碳含量估算

对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖流域为研究靶区,利用2015年5月采集的103个表层土壤样本的实测有机碳数据和室内测定的高光谱数据,以0.2阶为步长对原始光谱反射率及对应的倒数变换、对数变换、对数倒数变换、均方根变换的0-2阶微分进行分数阶运算预处理并研究其与土壤有机碳含量相关性,基于通过0.01显著性检验的特征波段对土壤有机碳含量进行偏最小二乘回归建模并进行精度分析。结果表明:1)分数阶微分预处理可以细化土壤有机碳及其光谱反射率相关性的变化趋势;2)各阶微分预处理后的相关系数通...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 32; no. 21; pp. 161 - 169
Main Author 王敬哲 塔西甫拉提·特依拜 丁建丽 张东 刘巍
Format Journal Article
LanguageChinese
Published 新疆大学绿洲生态教育部重点实验室,乌鲁木齐 830046 2016
新疆大学资源与环境科学学院,乌鲁木齐 830046
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2016.21.021

Cover

Abstract 对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖流域为研究靶区,利用2015年5月采集的103个表层土壤样本的实测有机碳数据和室内测定的高光谱数据,以0.2阶为步长对原始光谱反射率及对应的倒数变换、对数变换、对数倒数变换、均方根变换的0-2阶微分进行分数阶运算预处理并研究其与土壤有机碳含量相关性,基于通过0.01显著性检验的特征波段对土壤有机碳含量进行偏最小二乘回归建模并进行精度分析。结果表明:1)分数阶微分预处理可以细化土壤有机碳及其光谱反射率相关性的变化趋势;2)各阶微分预处理后的相关系数通过显著性检验波段的数量均呈现先增后减的趋势,但波段数量最多的对应阶数并不统一;3)对数变换的1.6阶微分所建立的模型为最优模型,该模型的RMSEC=2.433 g/kg,R2c=0.786,RMSEP=2.263 g/kg,R2p=0.825,RPD=2.392。说明了分数阶预处理过后的模型精度和稳健性较整数阶微分有了大幅提升,并且运用在高光谱反演土壤有机碳含量上是可行的。
AbstractList TP79%S127; 对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖流域为研究靶区,利用2015年5月采集的103个表层土壤样本的实测有机碳数据和室内测定的高光谱数据,以0.2阶为步长对原始光谱反射率及对应的倒数变换、对数变换、对数倒数变换、均方根变换的0-2阶微分进行分数阶运算预处理并研究其与土壤有机碳含量相关性,基于通过0.01显著性检验的特征波段对土壤有机碳含量进行偏最小二乘回归建模并进行精度分析。结果表明:1)分数阶微分预处理可以细化土壤有机碳及其光谱反射率相关性的变化趋势;2)各阶微分预处理后的相关系数通过显著性检验波段的数量均呈现先增后减的趋势,但波段数量最多的对应阶数并不统一;3)对数变换的1.6阶微分所建立的模型为最优模型,该模型的RMSEC=2.433 g/kg,R2c=0.786,RMSEP=2.263 g/kg,R2p=0.825,RPD=2.392。说明了分数阶预处理过后的模型精度和稳健性较整数阶微分有了大幅提升,并且运用在高光谱反演土壤有机碳含量上是可行的。
对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖流域为研究靶区,利用2015年5月采集的103个表层土壤样本的实测有机碳数据和室内测定的高光谱数据,以0.2阶为步长对原始光谱反射率及对应的倒数变换、对数变换、对数倒数变换、均方根变换的0-2阶微分进行分数阶运算预处理并研究其与土壤有机碳含量相关性,基于通过0.01显著性检验的特征波段对土壤有机碳含量进行偏最小二乘回归建模并进行精度分析。结果表明:1)分数阶微分预处理可以细化土壤有机碳及其光谱反射率相关性的变化趋势;2)各阶微分预处理后的相关系数通过显著性检验波段的数量均呈现先增后减的趋势,但波段数量最多的对应阶数并不统一;3)对数变换的1.6阶微分所建立的模型为最优模型,该模型的RMSEC=2.433 g/kg,R2c=0.786,RMSEP=2.263 g/kg,R2p=0.825,RPD=2.392。说明了分数阶预处理过后的模型精度和稳健性较整数阶微分有了大幅提升,并且运用在高光谱反演土壤有机碳含量上是可行的。
Abstract_FL Soil organic carbon (SOC) is a crucial soil property which has attracted wide attention in the field of global change. This is especially true in the arid and semi-arid regions. In recent years, it is a hot topic to estimate SOC content by hyperspectral remote sensing technology, however, it is hard to estimate SOC content in desert area precisely when it is less than 2%. Existing work, including related research history and current status, has mostly focused on integer differential, which yet might influence the effective information detection and cause the loss of spectral information to some extent. Therefore, this study aimed to bring fractional order differential algorithm into the preprocessing of hyperspectral data. With 103 surface soil samples collected from the Ebinur Lake basin in Xinjiang Uighur Autonomous Region, China, the SOC contents and reflectance spectra were measured in the laboratory. After removing the marginal bands (350-400 and 2401-2500 nm) and smoothed by Savitzky-Golay filter, the raw hyperspectral reflectance (R) data were transformed by 4 mathematical methods, i.e., the reciprocal, logarithm, logarithm-reciprocal and root mean square method, respectively. Secondly, their 0-2 order differentials (taking 0.2-order as step) were calculated by Grünwald-Letnikov fractional differential equation. And then, we computed the correlation coefficients between each fractional order differential value ofR, its 4 mathematical transformation forms and SOC content. After choosing the feature bands whose correlation coefficient passed the significance test at 0.01 level, 103 samples were divided into 2 parts: 69 for model calibration and 34 for validation. Subsequently, partial least squares regression (PLSR) was employed to build the hyperspectral estimation models of SOC content. And then, root mean square error of calibration (RMSEC), determination coefficient of calibration (R2c), root mean square error of prediction (RMSEP), determination coefficient of predicting (R2p) and relative prediction deviation (RPD) were used for accuracy assessment. The results showed that: 1) Fractional order differential algorithm could refine the correlation coefficient curves between the SOC content and the raw hyperspectral reflectance in the wavelength ranges of 450-600, 640-700 and 1400-1500 nm, and also reduce the information loss to some extent; 2) With the order increasing, the number of bands whose correlation coefficient passed the significance test at 0.01 level firstly increased and then decreased, but the number of bands did not reach the maximum at the same order, and some differences occurred; 3) Comparing the predictive effects of 55 SOC estimating models calibrated by PLSR, the model based on 1.6-order differential of logarithm transform was much better than others, and had better performance in predicting SOC content in the study area (RMSEC=2.433 g/kg,R2c=0.786, RMSEP=2.263 g/kg, R2p=0.825, RPD=2.392). And indeed, the models based on fractional order differentials were more robust and accurate than the conventional integer differential ones. Over all, it is a fairly satisfactory preprocessing method of hyperspectral data in the quantitative study on soil nutrients by means of remote sensing. In order to achieve more universal and stable inversion model, the next step is to enlarge the sampling area and the number of soil samples as much as possible to improve and perfect the soil hyperspectral database.
Author 王敬哲 塔西甫拉提·特依拜 丁建丽 张东 刘巍
AuthorAffiliation 新疆大学资源与环境科学学院;新疆大学绿洲生态教育部重点实验室
AuthorAffiliation_xml – name: 新疆大学资源与环境科学学院,乌鲁木齐 830046; 新疆大学绿洲生态教育部重点实验室,乌鲁木齐 830046
Author_FL Ding Jianli
Tashpolat·Tiyip
Liu Wei
Zhang Dong
Wang Jingzhe
Author_FL_xml – sequence: 1
  fullname: Wang Jingzhe
– sequence: 2
  fullname: Tashpolat·Tiyip
– sequence: 3
  fullname: Ding Jianli
– sequence: 4
  fullname: Zhang Dong
– sequence: 5
  fullname: Liu Wei
Author_xml – sequence: 1
  fullname: 王敬哲 塔西甫拉提·特依拜 丁建丽 张东 刘巍
BookMark eNo9UF1LAkEUnQeDrPwZ0ZPb3NnZ3dnHkL5AiMB3mZ11baXGcony3SwfLAkiCcEw3wQxgh5E-jXurvsvGjF6uedw7-Gec-8GSsmqLCG0DVgDsC1jt6L5QSA1wJhkTQa2RjCYGgENE0ih9H9_HWWCwHewAbqFMYU0Og370_n0MXxoRi-TpPsd_owVTwaNcNiIO81k1A3vWovJp5pG7XH81li0n6PZe9jrhx_DqNeKetN48BV2Rsn903w2icevW2jN4-dBKfOHm6hwsF_IHWXzJ4fHub18VlgmZIFzlUIw7oFhlgjGglmeKQin1KbMUBR0Vziu6xATM3CxxYVLbUx03aG6i_VNtLNae8Olx2W5WKle16QyLMp6Wdw6yw8QUPcrpb5SirOqLF_5SntZ8y94rV60GLMtYIaBKaO2QRUu3VXVfwEwroDf
ClassificationCodes TP79%S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2016.21.021
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Estimation of desert soil organic carbon content based on hyperspectral data preprocessing with fractional differential
EndPage 169
ExternalDocumentID nygcxb201621021
78897185504849545049485049
GrantInformation_xml – fundername: 国家自然科学基金; 国家科技支撑计划项目
  funderid: (41130531、U1503302、41561089); (2014BAC15B01)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c761-1aa051c8af156e200c87f6c2a449485f6c13dcbddb26081d07acd490233b43d03
ISSN 1002-6819
IngestDate Thu May 29 04:04:20 EDT 2025
Wed Feb 14 10:07:46 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 21
Keywords 预处理
spectrum analysis
pretreatment
hyperspectra
光谱分析
分数阶微分
soils
有机碳
fractional differential
organic carbon
土壤
高光谱
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c761-1aa051c8af156e200c87f6c2a449485f6c13dcbddb26081d07acd490233b43d03
Notes 11-2047/S
Wang Jingzhe;Tashpolat·Tiyip;Ding Jianli;Zhang Dong;Liu Wei;College of Resource and Environment Sciences, Xinjiang University;Key Laboratory of Oasis Ecology under Ministry of Education, Xinjiang University
PageCount 9
ParticipantIDs wanfang_journals_nygcxb201621021
chongqing_primary_78897185504849545049485049
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2016
Publisher 新疆大学绿洲生态教育部重点实验室,乌鲁木齐 830046
新疆大学资源与环境科学学院,乌鲁木齐 830046
Publisher_xml – name: 新疆大学绿洲生态教育部重点实验室,乌鲁木齐 830046
– name: 新疆大学资源与环境科学学院,乌鲁木齐 830046
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.136153
Snippet 对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖流域为研究靶...
TP79%S127; 对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 161
SubjectTerms 土壤;有机碳;光谱分析;分数阶微分;高光谱;预处理
Title 基于分数阶微分预处理高光谱数据的荒漠土壤有机碳含量估算
URI http://lib.cqvip.com/qk/90712X/201621/78897185504849545049485049.html
https://d.wanfangdata.com.cn/periodical/nygcxb201621021
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB7iBkQP4hPjixzsk27cefTrODM7SxAUhAi5LTszu-tpozEBzTlGc4gGQQwSiMTcAiEieAjBX5PZzf4Lq2p6dwcVXxCGpru66quqSVd3b3eNZd2UifKaXKQwc0vcspe0cBz0ZNmTsYc_A6Wc8szeuy-mH3p3Z_nsWEkXTi0tLsRTydIv75X8j1ehDvyKt2T_wbNDplABZfAvPMHD8PwrH7OIM11jgc8iD58qwhqlmBIsEkxzFlRYpJlWLBDYFETML9Jo5jtMeVjje1SQTFcGTQF2RGL40yxSyC2wC5wFU1ViCL186q6wRjvYFITMrxDCEEGiCBelYPeQGFIBwUuEEbhEXEG5IF1JpmqkV0iyJArKD9kOJtOEjZggmUIMqCNQcqIHMAHJBZBkEOVD0-AVQxIwGJKQQn5I8l0WOCMSqLaZJsWAaVAjVT2CKLBrrgYABdyhg7KRq2aBJkyAuGoodTjiSmiVTWiDgfvAvNWiYGO_XLOwuDuTXxul_yTCLoyBoKCE8aUvC5pLElMjrwA_x2ihqUZVCArZQJOblUM04AMXjWicUSXVHFKNkzMiekvA8aGpQe_WELjKXaKpoJGbEREahgG8JZVbChOxiUJcxMAplIluJnCONqYXB_fcTRi08wT7ZkZl5x_j-TlYa8kpWqOIqaEIPG8pphzMpWuPZinDs6Od5-3kWYw0uFthn7DGHdyKK1njflANaqO1gI3bHcNg5WDKBzFaW3PbxS87DM-D4WkITkcjDIyTFhuAvPM7iJiU5dFcp_0Eppp086_TanTahUnqzFnrjFldTvr5UHHOGlt6dN467bfnTYad5gXrQbZ1cHTwOnu10n2339_4mn3bg3J_eznbWe6tr_R3N7IXq8f7n6G1u7bX-7B8vPa2e_gx29zKPu10N1e7mwe97S_Z-m7_5Zujw_3e3vuL1kwtmgmny-a7KuUELFW2Gw3QPlGNls1FE8bTRMmWSJyGR6mioGi7aRKnaewIWDCkFdlIUk-DBd3Yc9OKe8kqdeY6zcvWZCzdtKGEbjW59LgNUckR3I2TFqzjZBI7E9btoW3qj_P0OXWplIYZMecwefA0rODyFFXwnLAmjfnqZpR9Wv_B3Vf-THLVOoXlfJ_0mlVamF9sXoeVw0J8w7wj3wFJd9U2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%88%86%E6%95%B0%E9%98%B6%E5%BE%AE%E5%88%86%E9%A2%84%E5%A4%84%E7%90%86%E9%AB%98%E5%85%89%E8%B0%B1%E6%95%B0%E6%8D%AE%E7%9A%84%E8%8D%92%E6%BC%A0%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E7%A2%B3%E5%90%AB%E9%87%8F%E4%BC%B0%E7%AE%97&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E6%95%AC%E5%93%B2&rft.au=%E5%A1%94%E8%A5%BF%E7%94%AB%E6%8B%89%E6%8F%90%C2%B7%E7%89%B9%E4%BE%9D%E6%8B%9C&rft.au=%E4%B8%81%E5%BB%BA%E4%B8%BD&rft.au=%E5%BC%A0%E4%B8%9C&rft.date=2016&rft.pub=%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E7%BB%BF%E6%B4%B2%E7%94%9F%E6%80%81%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%EF%BC%8C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90+830046&rft.issn=1002-6819&rft.volume=32&rft.issue=21&rft.spage=161&rft.epage=169&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2016.21.021&rft.externalDocID=nygcxb201621021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg